1
|
Poty S, Ordas L, Dekempeneer Y, Parach AA, Navarro L, Santens F, Dumauthioz N, Bardiès M, Lahoutte T, D'Huyvetter M, Pouget JP. Optimizing the Therapeutic Index of sdAb-Based Radiopharmaceuticals Using Pretargeting. J Nucl Med 2024; 65:1564-1570. [PMID: 39266288 PMCID: PMC11448608 DOI: 10.2967/jnumed.124.267624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/05/2024] [Indexed: 09/14/2024] Open
Abstract
Single-domain antibodies (sdAbs) demonstrate favorable pharmacokinetic profiles for molecular imaging applications. However, their renal excretion and retention are obstacles for applications in targeted radionuclide therapy (TRT). Methods: Using a click-chemistry-based pretargeting approach, we aimed to reduce kidney retention of a fibroblast activation protein α (FAP)-targeted sdAb, 4AH29, for 177Lu-TRT. Key pretargeting parameters (sdAb-injected mass and lag time) were optimized in healthy mice and U87MG (FAP+) xenografts. A TRT study in a pancreatic ductal adenocarcinoma (PDAC) patient-derived xenograft (PDX) model was performed as a pilot study for sdAb-based pretargeting applications. Results: Modification of 4AH29 with trans-cyclooctene (TCO) moieties did not modify the sdAb pharmacokinetic profile. A 200-µg injected mass of 4AH29-TCO and an 8-h lag time for the injection of [177Lu]Lu-DOTA-PEG7-tetrazine resulted in the highest kidney therapeutic index (2.0 ± 0.4), which was 5-fold higher than that of [177Lu]Lu-DOTA-4AH29 (0.4 ± 0.1). FAP expression in the tumor microenvironment was validated in a PDAC PDX model with both immunohistochemistry and PET/CT imaging. Mice treated with the pretargeting high-activity approach (4AH29-TCO + [177Lu]Lu-DOTA-PEG7-tetrazine; 3 × 88 MBq, 1 injection per week for 3 wk) demonstrated prolonged survival compared with the vehicle control and conventionally treated ([177Lu]Lu-DOTA-4AH29; 3 × 37 MBq, 1 injection per week for 3 wk) mice. Mesangial expansion was reported in 7 of 10 mice in the conventional cohort, suggesting treatment-related kidney morphologic changes, but was not observed in the pretargeting cohort. Conclusion: This study validates pretargeting to mitigate sdAbs' kidney retention with no observation of morphologic changes on therapy regimen at early time points. Clinical translation of click-chemistry-based pre-TRT is warranted on the basis of its ability to alleviate toxicities related to biovectors' intrinsic pharmacokinetic profiles. The absence of representative animal models with extensive stroma and high FAP expression on cancer-associated fibroblasts led to a low mean tumor-absorbed dose even with high injected activity and consequently to modest survival benefit in this PDAC PDX.
Collapse
Affiliation(s)
- Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM, U1194, Équipe labellisée Ligue contre le cancer, Montpellier, France; and
| | - Laura Ordas
- Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM, U1194, Équipe labellisée Ligue contre le cancer, Montpellier, France; and
| | | | - Ali Asghar Parach
- Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM, U1194, Équipe labellisée Ligue contre le cancer, Montpellier, France; and
| | | | | | | | - Manuel Bardiès
- Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM, U1194, Équipe labellisée Ligue contre le cancer, Montpellier, France; and
| | | | | | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM, U1194, Équipe labellisée Ligue contre le cancer, Montpellier, France; and
| |
Collapse
|
2
|
Xu L, Chen XJ, Yan Q, Lei XT, Liu HL, Xu JP, Shang WT, Huang JL, Chen ZT, Tan XL, Lin HJ, Fu XH, Zheng LS, Lan P, Huang Y. Zinc finger protein 180 induces an apoptotic phenotype by activating METTL14 transcriptional activity in colorectal cancer. Oncol Rep 2024; 52:125. [PMID: 39054954 PMCID: PMC11294910 DOI: 10.3892/or.2024.8784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Zinc finger protein 180 (ZNF180) is a multifunctional protein that interacts with nucleic acids and regulates various cellular processes; however, the function of ZNF180 in colorectal cancer (CRC) remains unclear. The present study investigated the role and function of ZNF180 in CRC, and aimed to reveal the underlying molecular mechanism. The results revealed that ZNF180 was downregulated in CRC tissues and was associated with a good prognosis in patients with CRC. Additionally, the expression of ZNF180 was downregulated by methylation in CRC. In vivo and in vitro experiments revealed that ZNF180 overexpression was functionally associated with the inhibition of cell proliferation and the induction of apoptosis. Mechanistically, chromatin immunoprecipitation‑PCR and luciferase assays demonstrated that ZNF180 markedly regulated the transcriptional activity of methyltransferase 14, N6‑adenosine‑methyltransferase non‑catalytic subunit (METTL14) by directly binding to and activating its promoter region. Simultaneous overexpression of ZNF180 and knockdown of METTL14 indicated that the reduction of METTL14 could suppress the effects of ZNF180 on the induction of apoptosis. Clinically, the present study observed a significant positive correlation between ZNF180 and METTL14 expression levels, and low expression of ZNF180 and METTL14 predicted a poor prognosis in CRC. Overall, these findings revealed a novel mechanism by which the ZNF180/METTL14 axis may modulate apoptosis and cell proliferation in CRC. This evidence suggests that this axis may serve as a prognostic biomarker and therapeutic target in patients with CRC.
Collapse
Affiliation(s)
- Liang Xu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xi-Jie Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Qian Yan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xin-Tao Lei
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Hai-Ling Liu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Jing-Ping Xu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Wei-Te Shang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Jing-Lin Huang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Zhi-Ting Chen
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiao-Li Tan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Han-Jie Lin
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xin-Hui Fu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Li-Sheng Zheng
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Ping Lan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510655, P.R. China
| | - Yan Huang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
3
|
Das N, Kundu TK. Epigenetic Cancer Therapy. Indian J Surg Oncol 2024; 15:447-450. [PMID: 39239429 PMCID: PMC11371947 DOI: 10.1007/s13193-024-02067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024] Open
Affiliation(s)
- Nabanita Das
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064 India
| | - Tapas K. Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064 India
| |
Collapse
|
4
|
Wood LM, Moore JK. β3 accelerates microtubule plus end maturation through a divergent lateral interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603993. [PMID: 39071388 PMCID: PMC11275713 DOI: 10.1101/2024.07.17.603993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
β-tubulin isotypes exhibit similar sequences but different activities, suggesting that limited sequence divergence is functionally important. We investigated this hypothesis for TUBB3/β3, a β-tubulin linked to aggressive cancers and chemoresistance in humans. We created mutant yeast strains with β-tubulin alleles that mimic variant residues in β3 and find that residues at the lateral interface are sufficient to alter microtubule dynamics and response to microtubule targeting agents. In HeLa cells, β3 overexpression decreases the lifetime of microtubule growth, and this requires residues at the lateral interface. These microtubules exhibit a shorter region of EB binding at the plus end, suggesting faster lattice maturation, and resist stabilization by paclitaxel. Resistance requires the H1-S2 and H2-S3 regions at the lateral interface of β3. Our results identify the mechanistic origins of the unique activity of β3 tubulin and suggest that tubulin isotype expression may tune the rate of lattice maturation at growing microtubule plus ends in cells.
Collapse
Affiliation(s)
- Lisa M Wood
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
El Omari N, Khalid A, Makeen HA, Alhazmi HA, Albratty M, Mohan S, Tan CS, Ming LC, Chook JB, Bouyahya A. Stochasticity of anticancer mechanisms underlying clinical effectiveness of vorinostat. Heliyon 2024; 10:e33052. [PMID: 39021957 PMCID: PMC11253278 DOI: 10.1016/j.heliyon.2024.e33052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
The Food and Drug Administration (FDA) has approved vorinostat, also called Zolinza®, for its effectiveness in fighting cancer. This drug is a suberoyl-anilide hydroxamic acid belonging to the class of histone deacetylase inhibitors (HDACis). Its HDAC inhibitory potential allows it to accumulate acetylated histones. This, in turn, can restore normal gene expression in cancer cells and activate multiple signaling pathways. Experiments have proven that vorinostat induces histone acetylation and cytotoxicity in many cancer cell lines, increases the level of p21 cell cycle proteins, and enhances pro-apoptotic factors while decreasing anti-apoptotic factors. Additionally, it regulates the immune response by up-regulating programmed death-ligand 1 (PD-L1) and interferon gamma receptor 1 (IFN-γR1) expression, and can impact proteasome and/or aggresome degradation, endoplasmic reticulum function, cell cycle arrest, apoptosis, tumor microenvironment remodeling, and angiogenesis inhibition. In this study, we sought to elucidate the precise molecular mechanism by which Vorinostat inhibits HDACs. A deeper understanding of these mechanisms could improve our understanding of cancer cell abnormalities and provide new therapeutic possibilities for cancer treatment.
Collapse
Affiliation(s)
- Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum, 11111, Sudan
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University, Nilai, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Jack Bee Chook
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
6
|
Kudo G, Hirao T, Harada R, Hirokawa T, Shigeta Y, Yoshino R. Prediction of the binding mechanism of a selective DNA methyltransferase 3A inhibitor by molecular simulation. Sci Rep 2024; 14:13508. [PMID: 38866895 PMCID: PMC11169543 DOI: 10.1038/s41598-024-64236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
DNA methylation is an epigenetic mechanism that introduces a methyl group at the C5 position of cytosine. This reaction is catalyzed by DNA methyltransferases (DNMTs) and is essential for the regulation of gene transcription. The DNMT1 and DNMT3A or -3B family proteins are known targets for the inhibition of DNA hypermethylation in cancer cells. A selective non-nucleoside DNMT3A inhibitor was developed that mimics S-adenosyl-l-methionine and deoxycytidine; however, the mechanism of selectivity is unclear because the inhibitor-protein complex structure determination is absent. Therefore, we performed docking and molecular dynamics simulations to predict the structure of the complex formed by the association between DNMT3A and the selective inhibitor. Our simulations, binding free energy decomposition analysis, structural isoform comparison, and residue scanning showed that Arg688 of DNMT3A is involved in the interaction with this inhibitor, as evidenced by its significant contribution to the binding free energy. The presence of Asn1192 at the corresponding residues in DNMT1 results in a loss of affinity for the inhibitor, suggesting that the interactions mediated by Arg688 in DNMT3A are essential for selectivity. Our findings can be applied in the design of DNMT-selective inhibitors and methylation-specific drug optimization procedures.
Collapse
Affiliation(s)
- Genki Kudo
- Physics Department, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Takumi Hirao
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yasuteru Shigeta
- Physics Department, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ryunosuke Yoshino
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
7
|
Liu S, Li W, Chen J, Li M, Geng Y, Liu Y, Wu W. The footprint of gut microbiota in gallbladder cancer: a mechanistic review. Front Cell Infect Microbiol 2024; 14:1374238. [PMID: 38774627 PMCID: PMC11106419 DOI: 10.3389/fcimb.2024.1374238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Gallbladder cancer (GBC) is the most common malignant tumor of the biliary system with the worst prognosis. Even after radical surgery, the majority of patients with GBC have difficulty achieving a clinical cure. The risk of tumor recurrence remains more than 65%, and the overall 5-year survival rate is less than 5%. The gut microbiota refers to a variety of microorganisms living in the human intestine, including bacteria, viruses and fungi, which profoundly affect the host state of general health, disease and even cancer. Over the past few decades, substantial evidence has supported that gut microbiota plays a critical role in promoting the progression of GBC. In this review, we summarize the functions, molecular mechanisms and recent advances of the intestinal microbiota in GBC. We focus on the driving role of bacteria in pivotal pathways, such as virulence factors, metabolites derived from intestinal bacteria, chronic inflammatory responses and ecological niche remodeling. Additionally, we emphasize the high level of correlation between viruses and fungi, especially EBV and Candida spp., with GBC. In general, this review not only provides a solid theoretical basis for the close relationship between gut microbiota and GBC but also highlights more potential research directions for further research in the future.
Collapse
Affiliation(s)
- Shujie Liu
- Joint Program of Nanchang University and Queen Mary University of London, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Weijian Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Jun Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| |
Collapse
|
8
|
Abouzied AS, Huwaimel B, Alqarni S, Younes KM, Alshammari RE, Alshammari AH, Algharbi WF, Elkashlan AM. Sinefungin analogs targeting VP39 methyltransferase as potential anti-monkeypox therapeutics: a multi-step computational approach. Mol Divers 2024:10.1007/s11030-024-10875-z. [PMID: 38702561 DOI: 10.1007/s11030-024-10875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
The increasing spread of the Monkeypox virus (MPXV) presents a significant public health challenge, emphasising the urgent requirement for effective treatments. Our study focuses on the VP39 Methyltransferase enzyme of MPXV as a critical target for therapy. By utilising virtual screening, we investigated natural compounds with structural similarities to sinefungin, a broad-acting MTase inhibitor. From an initial set of 177 compounds, we identified three promising compounds-CNP0346326, CNP0343532, and CNP008361, whose binding scores were notably close to that of sinefungin. These candidates bonded strongly to the VP39 enzyme, hinting at a notable potential to impede the virus. Our rigorous computational assays, including re-docking, extended molecular dynamics simulations, and energetics analyses, validate the robustness of these interactions. The data paint a promising picture of these natural compounds as front-runners in the ongoing race to develop MPXV therapeutics and set the stage for subsequent empirical trials to refine these discoveries into actionable medical interventions.
Collapse
Affiliation(s)
- Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia.
- Medical and Diagnostic Research Center, University of Hail, 55473, Hail, Saudi Arabia.
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Medical and Diagnostic Research Center, University of Hail, 55473, Hail, Saudi Arabia
| | - Saad Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
| | - Kareem M Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | | | | | | | - Akram M Elkashlan
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, El-Sadat, Egypt
| |
Collapse
|
9
|
Ocaña-Paredes B, Rivera-Orellana S, Ramírez-Sánchez D, Montalvo-Guerrero J, Freire MP, Espinoza-Ferrao S, Altamirano-Colina A, Echeverría-Espinoza P, Ramos-Medina MJ, Echeverría-Garcés G, Granda-Moncayo D, Jácome-Alvarado A, Andrade MG, López-Cortés A. The pharmacoepigenetic paradigm in cancer treatment. Front Pharmacol 2024; 15:1381168. [PMID: 38720770 PMCID: PMC11076712 DOI: 10.3389/fphar.2024.1381168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Epigenetic modifications, characterized by changes in gene expression without altering the DNA sequence, play a crucial role in the development and progression of cancer by significantly influencing gene activity and cellular function. This insight has led to the development of a novel class of therapeutic agents, known as epigenetic drugs. These drugs, including histone deacetylase inhibitors, histone acetyltransferase inhibitors, histone methyltransferase inhibitors, and DNA methyltransferase inhibitors, aim to modulate gene expression to curb cancer growth by uniquely altering the epigenetic landscape of cancer cells. Ongoing research and clinical trials are rigorously evaluating the efficacy of these drugs, particularly their ability to improve therapeutic outcomes when used in combination with other treatments. Such combination therapies may more effectively target cancer and potentially overcome the challenge of drug resistance, a significant hurdle in cancer therapy. Additionally, the importance of nutrition, inflammation control, and circadian rhythm regulation in modulating drug responses has been increasingly recognized, highlighting their role as critical modifiers of the epigenetic landscape and thereby influencing the effectiveness of pharmacological interventions and patient outcomes. Epigenetic drugs represent a paradigm shift in cancer treatment, offering targeted therapies that promise a more precise approach to treating a wide spectrum of tumors, potentially with fewer side effects compared to traditional chemotherapy. This progress marks a step towards more personalized and precise interventions, leveraging the unique epigenetic profiles of individual tumors to optimize treatment strategies.
Collapse
Affiliation(s)
- Belén Ocaña-Paredes
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - David Ramírez-Sánchez
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - María Paula Freire
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | | | | | - María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | | | - Andrea Jácome-Alvarado
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - María Gabriela Andrade
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
10
|
Lanka G, Banerjee S, Adhikari N, Ghosh B. Fragment-based discovery of new potential DNMT1 inhibitors integrating multiple pharmacophore modeling, 3D-QSAR, virtual screening, molecular docking, ADME, and molecular dynamics simulation approaches. Mol Divers 2024:10.1007/s11030-024-10837-5. [PMID: 38637479 DOI: 10.1007/s11030-024-10837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024]
Abstract
DNA methyl transferases (DNMTs) are one of the crucial epigenetic modulators associated with a wide variety of cancer conditions. Among the DNMT isoforms, DNMT1 is correlated with bladder, pancreatic, and breast cancer, as well as acute myeloid leukemia and esophagus squamous cell carcinoma. Therefore, the inhibition of DNMT1 could be an attractive target for combating cancers and other metabolic disorders. The disadvantages of the existing nucleoside and non-nucleoside DNMT1 inhibitors are the main motive for the discovery of novel promising inhibitors. Here, pharmacophore modeling, 3D-QSAR, and e-pharmacophore modeling of DNMT1 inhibitors were performed for the large fragment database screening. The resulting fragments with high dock scores were combined into molecules. The current study revealed several constitutional pharmacophoric features that can be essential for selective DNMT1 inhibition. The fragment docking and virtual screening identified 10 final hit molecules that exhibited good binding affinities in terms of docking score, binding free energies, and acceptable ADME properties. Also, the modified lead molecules (GL1b and GL2b) designed in this study showed effective binding with DNMT1 confirmed by their docking scores, binding free energies, 3D-QSAR predicted activities and acceptable drug-like properties. The MD simulation studies also suggested that leads (GL1b and GL2b) formed stable complexes with DNMT1. Therefore, the findings of this study can provide effective information for the development/identification of novel DNMT1 inhibitors as effective anticancer agents.
Collapse
Affiliation(s)
- Goverdhan Lanka
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
- Computer Aided Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P. O. Box 17020, Kolkata, West Bengal, 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P. O. Box 17020, Kolkata, West Bengal, 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, 500078, India.
- Computer Aided Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, 500078, India.
| |
Collapse
|
11
|
Ghorbani A, Hosseinie F, Khorshid Sokhangouy S, Islampanah M, Khojasteh-Leylakoohi F, Maftooh M, Nassiri M, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Khazaei M, Nazari E, Avan A. The prognostic, diagnostic, and therapeutic impact of Long noncoding RNAs in gastric cancer. Cancer Genet 2024; 282-283:14-26. [PMID: 38157692 DOI: 10.1016/j.cancergen.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/27/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Gastric cancer (GC), ranking as the third deadliest cancer globally, faces challenges of late diagnosis and limited treatment efficacy. Long non-coding RNAs (lncRNAs) emerge as valuable treasured targets for cancer prognosis, diagnosis, and therapy, given their high specificity, convenient non-invasive detection in body fluids, and crucial roles in diverse physiological and pathological processes. Research indicates the significant involvement of lncRNAs in various aspects of GC pathogenesis, including initiation, metastasis, and recurrence, underscoring their potential as novel diagnostic and prognostic biomarkers, as well as therapeutic targets for GC. Despite existing challenges in the clinical application of lncRNAs in GC, the evolving landscape of lncRNA molecular biology holds promise for advancing the survival and treatment outcomes of gastric cancer patients. This review provides insights into recent studies on lncRNAs in gastric cancer, elucidating their molecular mechanisms and exploring the potential clinical applications in GC.
Collapse
Affiliation(s)
- Atousa Ghorbani
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Hosseinie
- Department of Nursing, Faculty of Nursing and Midwifery, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Saeideh Khorshid Sokhangouy
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammad Islampanah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Nazari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Aanniz T, Bouyahya A, Balahbib A, El Kadri K, Khalid A, Makeen HA, Alhazmi HA, El Omari N, Zaid Y, Wong RSY, Yeo CI, Goh BH, Bakrim S. Natural bioactive compounds targeting DNA methyltransferase enzymes in cancer: Mechanisms insights and efficiencies. Chem Biol Interact 2024; 392:110907. [PMID: 38395253 DOI: 10.1016/j.cbi.2024.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
The regulation of gene expression is fundamental to health and life and is essentially carried out at the promoter region of the DNA of each gene. Depending on the molecular context, this region may be accessible or non-accessible (possibility of integration of RNA polymerase or not at this region). Among enzymes that control this process, DNA methyltransferase enzymes (DNMTs), are responsible for DNA demethylation at the CpG islands, particularly at the promoter regions, to regulate transcription. The aberrant activity of these enzymes, i.e. their abnormal expression or activity, can result in the repression or overactivation of gene expression. Consequently, this can generate cellular dysregulation leading to instability and tumor development. Several reports highlighted the involvement of DNMTs in human cancers. The inhibition or activation of DNMTs is a promising therapeutic approach in many human cancers. In the present work, we provide a comprehensive and critical summary of natural bioactive molecules as primary inhibitors of DNMTs in human cancers. The active compounds hold the potential to be developed as anti-cancer epidrugs targeting DNMTs.
Collapse
Affiliation(s)
- Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, B.P, 6203, Morocco.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco.
| | - Abdelaali Balahbib
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco.
| | - Kawtar El Kadri
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia; Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum, 11111, Sudan.
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia.
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia; Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia.
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco.
| | - Younes Zaid
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Rebecca Shin-Yee Wong
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Department of Medical Education, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| | - Chien Ing Yeo
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, 80000, Morocco.
| |
Collapse
|
13
|
Hu Y, Yu X, Yang L, Xue G, Wei Q, Han Z, Chen H. Research progress on the antitumor effects of harmine. Front Oncol 2024; 14:1382142. [PMID: 38590646 PMCID: PMC10999596 DOI: 10.3389/fonc.2024.1382142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Harmine is a naturally occurring β-carboline alkaloid originally isolated from Peganum harmala. As a major active component, harmine exhibits a broad spectrum of pharmacological properties, particularly remarkable antitumor effects. Recent mechanistic studies have shown that harmine can inhibit cancer cell proliferation and metastasis through epithelial-to-mesenchymal transition, cell cycle regulation, angiogenesis, and the induction of tumor cell apoptosis. Furthermore, harmine reduces drug resistance when used in combination with chemotherapeutic drugs. Despite its remarkable antitumor activity, the application of harmine is limited by its poor solubility and toxic side effects, particularly neurotoxicity. Novel harmine derivatives have demonstrated strong clinical application prospects, but further validation based on drug activity, acute toxicity, and other aspects is necessary. Here, we present a review of recent research on the action mechanism of harmine in cancer treatment and the development of its derivatives, providing new insights into its potential clinical applications and strategies for mitigating its toxicity while enhancing its efficacy.
Collapse
Affiliation(s)
- Yonghua Hu
- Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaoli Yu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lei Yang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gaimei Xue
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qinglin Wei
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhijian Han
- Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hao Chen
- Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Wang Y, Pandak WM, Hylemon PB, Min HK, Min J, Fuchs M, Sanyal AJ, Ren S. Cholestenoic acid as endogenous epigenetic regulator decreases hepatocyte lipid accumulation in vitro and in vivo. Am J Physiol Gastrointest Liver Physiol 2024; 326:G147-G162. [PMID: 37961761 PMCID: PMC11208024 DOI: 10.1152/ajpgi.00184.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023]
Abstract
Cholestenoic acid (CA) has been reported as an important biomarker of many severe diseases, but its physiological and pathological roles remain unclear. This study aimed to investigate the potential role of CA in hepatic lipid homeostasis. Enzyme kinetic studies revealed that CA specifically activates DNA methyltransferases 1 (DNMT1) at low concentration with EC50 = 1.99 × 10-6 M and inhibits the activity at higher concentration with IC50 = 9.13 × 10-6 M, and specifically inhibits DNMT3a, and DNMT3b activities with IC50= 8.41 × 10-6 M and IC50= 4.89 × 10-6 M, respectively. In a human hepatocyte in vitro model of high glucose (HG)-induced lipid accumulation, CA significantly increased demethylation of 5mCpG in the promoter regions of over 7,000 genes, particularly those involved in master signaling pathways such as calcium-AMPK and 0.0027 at 6 h. RNA sequencing analysis showed that the downregulated genes are affected by CA encoding key enzymes, such as PCSK9, MVK, and HMGCR, which are involved in cholesterol metabolism and steroid biosynthesis pathways. In addition, untargeted lipidomic analysis showed that CA significantly reduced neutral lipid levels by 60% in the cells cultured in high-glucose media. Administration of CA in mouse metabolic dysfunction-associated steatotic liver disease (MASLD) models significantly decreases lipid accumulation, suppresses the gene expression involved in lipid biosynthesis in liver tissues, and alleviates liver function. This study shows that CA as an endogenous epigenetic regulator decreases lipid accumulation via epigenetic regulation. The results indicate that CA can be considered a potential therapeutic target for the treatment of metabolic disorders.NEW & NOTEWORTHY To our knowledge, this study is the first to identify the mitochondrial monohydroxy bile acid cholestenoic acid (CA) as an endogenous epigenetic regulator that regulates lipid metabolism through epigenome modification in human hepatocytes. The methods used in this study are all big data analysis, and the results of each part show the global regulation of CA on human hepatocytes rather than narrow point effects.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - Williams M Pandak
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - Phillip B Hylemon
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - Hae-Ki Min
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - John Min
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - Shunlin Ren
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| |
Collapse
|
15
|
Zhao Q, Zong H, Zhu P, Su C, Tang W, Chen Z, Jin S. Crosstalk between colorectal CSCs and immune cells in tumorigenesis, and strategies for targeting colorectal CSCs. Exp Hematol Oncol 2024; 13:6. [PMID: 38254219 PMCID: PMC10802076 DOI: 10.1186/s40164-024-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy in the treatment of colorectal cancer, and relapse after tumor immunotherapy has attracted increasing attention. Cancer stem cells (CSCs), a small subset of tumor cells with self-renewal and differentiation capacities, are resistant to traditional therapies such as radiotherapy and chemotherapy. Recently, CSCs have been proven to be the cells driving tumor relapse after immunotherapy. However, the mutual interactions between CSCs and cancer niche immune cells are largely uncharacterized. In this review, we focus on colorectal CSCs, CSC-immune cell interactions and CSC-based immunotherapy. Colorectal CSCs are characterized by robust expression of surface markers such as CD44, CD133 and Lgr5; hyperactivation of stemness-related signaling pathways, such as the Wnt/β-catenin, Hippo/Yap1, Jak/Stat and Notch pathways; and disordered epigenetic modifications, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA action. Moreover, colorectal CSCs express abnormal levels of immune-related genes such as MHC and immune checkpoint molecules and mutually interact with cancer niche cells in multiple tumorigenesis-related processes, including tumor initiation, maintenance, metastasis and drug resistance. To date, many therapies targeting CSCs have been evaluated, including monoclonal antibodies, antibody‒drug conjugates, bispecific antibodies, tumor vaccines adoptive cell therapy, and small molecule inhibitors. With the development of CSC-/niche-targeting technology, as well as the integration of multidisciplinary studies, novel therapies that eliminate CSCs and reverse their immunosuppressive microenvironment are expected to be developed for the treatment of solid tumors, including colorectal cancer.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chang Su
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jing‑ba Road, Zhengzhou, 450014, China.
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
16
|
Li X, Li Z, Gao Q, Peng Y, Yu Y, Hu T, Wang W. Correlation of DNA methylation of DNMT3A and TET2 with oral squamous cell carcinoma. Discov Oncol 2024; 15:15. [PMID: 38246976 PMCID: PMC10800327 DOI: 10.1007/s12672-024-00866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the sixth most common malignancy worldwide. Abnormal epigenetic modifications, including DNA methylation, are hallmarks of cancer and implicated in the development of various tumors. DNA methylation is catalyzed by the DNA methyltransferase and ten-eleven translocation dioxygenase families, with DNMT3A and TET2 being the most widely studied members, respectively. The correlation of methylation β values and clinical features was conducted in patients with OSCC in The Cancer Genome Atlas database. DNA methylation and protein expression levels of DNMT3A and TET2 in tissues were analyzed with methylation-specific polymerase chain reaction (MSP) and western blotting. To evaluate the effects of DNMT3A and TET2 on the biological characteristics of OSCC, cell proliferation was assessed with 5-ethynyl-2'-deoxyuridine, and cell migration capacity was quantified with wound healing and transwell assays. A survival analysis was performed with the Kaplan-Meier approach. The correlation between different methylation β values and clinical features was revealed. MSP revealed varying methylation degrees of DNMT3A and TET2 in OSCC tissues. Furthermore, western blotting showed that the protein expression levels were significantly different in cancer and surrounding healthy tissue samples. In vitro experiments demonstrated that DNMT3A knockdown and TET2 overexpression could inhibit the proliferation and migration of OSCC. Survival analysis revealed that patients with high DNMT3A methylation levels showed higher survival rates.
Collapse
Affiliation(s)
- Xueming Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zaikun Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Qingxi Gao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yanan Peng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yang Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tenglong Hu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wei Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
17
|
Huang X, Huang L, Gao X, Liu C. Global research trends in DNA methylation in rheumatoid arthritis: A bibliometric analysis and visual analysis. Medicine (Baltimore) 2024; 103:e36218. [PMID: 38181259 PMCID: PMC10766281 DOI: 10.1097/md.0000000000036218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/30/2023] [Indexed: 01/07/2024] Open
Abstract
Rheumatoid arthritis (RA) is a prevalent autoimmune disorder with a significant global economic burden. Epigenetic modifications, particularly DNA methylation, play a crucial role in RA. This study conducted a bibliometric analysis to explore the evolving trends and predominant themes in RA and DNA methylation research over the past two decades. A total of 1800 articles met the inclusion criteria, and the analysis revealed consistent growth in the literature, with a notable increase in output after 2019. The research involved 70 countries, 2139 academic institutions, 23,365 unique authors, and 58,636 co-cited authors. The United States emerged as a dominant contributor in this research domain. The significance of DNA methylation in shaping research directions for RA management is increasingly evident. Recent investigations have shed light on the pivotal role of DNA methylation in RA, particularly in characterizing synovial tissue and exploring the underlying mechanisms of disease pathogenesis. This study provides valuable insights into the landscape of DNA methylation research in RA and highlights the importance of epigenetics in autoimmune diseases.
Collapse
Affiliation(s)
- Xin Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Longxiang Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Xiang Gao
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Changhua Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
18
|
Kumar V, Dhanjal JK, Sari AN, Khurana M, Kaul SC, Wadhwa R, Sundar D. Effect of Withaferin-A, Withanone, and Caffeic Acid Phenethyl Ester on DNA Methyltransferases: Potential in Epigenetic Cancer Therapy. Curr Top Med Chem 2024; 24:379-391. [PMID: 37496252 DOI: 10.2174/1568026623666230726105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND DNA methyltransferases (DNMTs) have been reported to be potential drug targets in various cancers. The major hurdle in inhibiting DNMTs is the lack of knowledge about different DNMTs and their role in the hypermethylation of gene promoters in cancer cells. Lack of information on specificity, stability, and higher toxicity of previously reported DNMT inhibitors is the major reason for inadequate epigenetic cancer therapy. DNMT1 and DNMT3A are the two DNMTs that are majorly overexpressed in cancers. OBJECTIVE In this study, we have presented computational and experimental analyses of the potential of some natural compounds, withaferin A (Wi-A), withanone (Wi-N), and caffeic acid phenethyl ester (CAPE), as DNMT inhibitors, in comparison to sinefungin (SFG), a known dual inhibitor of DNMT1 and DNMT3A. METHODS We used classical simulation methods, such as molecular docking and molecular dynamics simulations, to investigate the binding potential and properties of the test compounds with DNMT1 and DNMT3A. Cell culture-based assays were used to investigate the inactivation of DNMTs and the resulting hypomethylation of the p16INK4A promoter, a key tumour suppressor that is inactivated by hypermethylation in cancer cells, resulting in upregulation of its expression. RESULTS Among the three test compounds (Wi-A, Wi-N, and CAPE), Wi-A showed the highest binding affinity to both DNMT1 and DNMT3A; CAPE showed the highest affinity to DNMT3A, and Wi-N showed a moderate affinity interaction with both. The binding energies of Wi-A and CAPE were further compared with SFG. Expression analysis of DNMTs showed no difference between control and treated cells. Cell viability and p16INK4A expression analysis showed a dose-dependent decrease in viability, an increase in p16INK4A, and a stronger effect of Wi-A compared to Wi-N and CAPE. CONCLUSION The study demonstrated the differential binding ability of Wi-A, Wi-N, and CAPE to DNMT1 and DNMT3A, which was associated with their inactivation, leading to hypomethylation and desilencing of the p16INK4A tumour suppressor in cancer cells. The test compounds, particularly Wi-A, have the potential for cancer therapy.
Collapse
Affiliation(s)
- Vipul Kumar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, Okhla Industrial Estate, Phase III, New Delhi, 110020, India
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Anissa Nofita Sari
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Mallika Khurana
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Sunil C Kaul
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Renu Wadhwa
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
19
|
Sadida HQ, Abdulla A, Marzooqi SA, Hashem S, Macha MA, Akil ASAS, Bhat AA. Epigenetic modifications: Key players in cancer heterogeneity and drug resistance. Transl Oncol 2024; 39:101821. [PMID: 37931371 PMCID: PMC10654239 DOI: 10.1016/j.tranon.2023.101821] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Cancer heterogeneity and drug resistance remain pivotal obstacles in effective cancer treatment and management. One major contributor to these challenges is epigenetic modifications - gene regulation that does not involve changes to the DNA sequence itself but significantly impacts gene expression. As we elucidate these phenomena, we underscore the pivotal role of epigenetic modifications in regulating gene expression, contributing to cellular diversity, and driving adaptive changes that can instigate therapeutic resistance. This review dissects essential epigenetic modifications - DNA methylation, histone modifications, and chromatin remodeling - illustrating their significant yet complex contributions to cancer biology. While these changes offer potential avenues for therapeutic intervention due to their reversible nature, the interplay of epigenetic and genetic changes in cancer cells presents unique challenges that must be addressed to harness their full potential. By critically analyzing the current research landscape, we identify knowledge gaps and propose future research directions, exploring the potential of epigenetic therapies and discussing the obstacles in translating these concepts into effective treatments. This comprehensive review aims to stimulate further research and aid in developing innovative, patient-centered cancer therapies. Understanding the role of epigenetic modifications in cancer heterogeneity and drug resistance is critical for scientific advancement and paves the way towards improving patient outcomes in the fight against this formidable disease.
Collapse
Affiliation(s)
- Hana Q Sadida
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Alanoud Abdulla
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Sara Al Marzooqi
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Laboratory of Genomic Medicine, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Jammu & Kashmir, India
| | - Ammira S Al-Shabeeb Akil
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar.
| | - Ajaz A Bhat
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
20
|
Meng J, Li S, Niu Z, Bao Z, Niu L. The efficacy of sorafenib against hepatocellular carcinoma is enhanced by 5-aza-mediated inhibition of ID1 promoter methylation. FEBS Open Bio 2024; 14:127-137. [PMID: 37964494 PMCID: PMC10761934 DOI: 10.1002/2211-5463.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
Sorafenib resistance greatly restricts its clinical application in patients with hepatocellular carcinoma (HCC). Numerous studies have reported that ID1 exerts a crucial effect in cancer initiation and development. Our previous research revealed an inhibitory role of ID1 in sorafenib resistance. However, the upstream regulatory mechanism of ID1 expression is unclear. Here, we discovered that ID1 expression is negatively correlated with promoter methylation, which is regulated by DNMT3B. Knockdown of DNMT3B significantly inhibited ID1 methylation status and resulted in an increase of ID1 expression. The demethylating agent 5-aza-2'-deoxycytidine (5-aza) remarkably upregulated ID1 expression. The combination of 5-aza with sorafenib showed a synergistic effect on the inhibition of cell viability.
Collapse
Affiliation(s)
- Jing Meng
- Department of Clinical LaboratoryThe Second Hospital of Shandong University, Shandong UniversityJinanChina
| | - Shi Li
- Department of GastroenterologyPeople's Hospital of WeihaiweiWeihaiChina
| | - Zhao‐qing Niu
- Department of Clinical LaboratoryThe Second Hospital of Shandong University, Shandong UniversityJinanChina
| | - Zheng‐qiang Bao
- Cancer CenterThe Second Hospital of Shandong University, Shandong UniversityJinanChina
| | - Lei‐lei Niu
- Department of Clinical LaboratoryThe Second Hospital of Shandong University, Shandong UniversityJinanChina
| |
Collapse
|
21
|
Ahuja P, Yadav R, Goyal S, Yadav C, Ranga S, Kadian L. Targeting epigenetic deregulations for the management of esophageal carcinoma: recent advances and emerging approaches. Cell Biol Toxicol 2023; 39:2437-2465. [PMID: 37338772 DOI: 10.1007/s10565-023-09818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Ranking from seventh in incidence to sixth in mortality, esophageal carcinoma is considered a severe malignancy of food pipe. Later-stage diagnosis, drug resistance, and a high mortality rate contribute to its lethality. Esophageal squamous cell carcinoma and esophageal adenocarcinoma are the two main histological subtypes of esophageal carcinoma, with squamous cell carcinoma alone accounting for more than eighty percent of its cases. While genetic anomalies are well known in esophageal cancer, accountability of epigenetic deregulations is also being explored for the recent two decades. DNA methylation, histone modifications, and functional non-coding RNAs are the crucial epigenetic players involved in the modulation of different malignancies, including esophageal carcinoma. Targeting these epigenetic aberrations will provide new insights into the development of biomarker tools for risk stratification, early diagnosis, and effective therapeutic intervention. This review discusses different epigenetic alterations, emphasizing the most significant developments in esophageal cancer epigenetics and their potential implication for the detection, prognosis, and treatment of esophageal carcinoma. Further, the preclinical and clinical status of various epigenetic drugs has also been reviewed.
Collapse
Affiliation(s)
- Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India.
| | - Sandeep Goyal
- Department of Internal Medicine, Pt. B.D, Sharma University of Health Sciences, (Haryana), Rohtak, 124001, India
| | - Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Lokesh Kadian
- Department of Dermatology, School of Medicine, Indiana University, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
22
|
Liu XW, Hong MJ, Qu YY. Study on the Relationship Between PTPRO Methylation in Plasma and Efficacy Neoadjuvant Chemotherapy in Patients with Early Breast Cancer. Int J Womens Health 2023; 15:1673-1680. [PMID: 37937223 PMCID: PMC10627070 DOI: 10.2147/ijwh.s428038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/07/2023] [Indexed: 11/09/2023] Open
Abstract
Objective This study aimed to explore the correlation between PTPRO methylation in plasma and the efficacy of neoadjuvant chemotherapy (NAC) for early breast cancer (BC). Methods Eighty-two patients with early BC undergoing NAC were included. PTPRO methylation status in plasma before and after NAC was detected using methylation-specific PCR and the relationship between PTPRO methylation and NAC efficacy was analyzed. Results The rate of pathologic complete response (pCR) was only 25.0% (12/48) in patients with positive PTPRO methylation result before NAC, but 61 0.8% (21/34) in pre-NAC methylation-negative patients (OR = 0.24, 95% CI: 0.09-0.65, P = 0.005). In addition, the pCR rate was 12.1% (4/33) in patients with positive PTPRO methylation results both before and after NAC, but 53.3% (8/15) in patients with pre-NAC positive methylation and post-NAC negative methylation results (OR = 0.12, 95% CI: 0.03-0.52, P = 0.004). Conclusion Plasma PTPRO methylation is a potential biomarker for predicting the efficacy of NAC in early BC.
Collapse
Affiliation(s)
- Xiang-Wei Liu
- Department of Breast Surgery, The First People’s Hospital of Foshan, Foshan, 528000, People’s Republic of China
| | - Mei-Juan Hong
- Ultrasound Diagnosis and Treatment Center, The First People’s Hospital of Foshan, Foshan, 528000, People’s Republic of China
| | - Yan-Yu Qu
- Departmentof Pathology, The Second People’s Hospital of Foshan, Foshan, 528000, People’s Republic of China
| |
Collapse
|
23
|
Yan J, Yang Y, Lu J, Yuan Y, Wu X, Huang J, Zhang S. Identification of TMEM178 as a Potential Prognostic Biomarker and Therapeutic Target for Breast Cancer. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:2427-2439. [PMID: 38106832 PMCID: PMC10719715 DOI: 10.18502/ijph.v52i11.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/08/2023] [Indexed: 12/19/2023]
Abstract
Background The transmembrane protein (TMEM) family plays important roles in cancer. However, the expression pattern and biological roles of TMEM178, a member of TMEM family, remains unclear in breast cancer (BRCA). Methods Methylation and RNA-seq data were obtained to explore methylation level. Expression of TMEM178, methylation inhibitor 5-Aza-CdR was used to verify the effect of methylation status on the expression of TMEM178. We comprehensively investigated the prognostic outcomes, biological functions and effects on immune cell infiltration of the TMEM178 in BRCA using multiple bioinformatics methods. Results The expression of TMEM178 was downregulated and negatively correlated with the level of DNA methylation and DNA methyltransferase (DNMT1, DNMT3A, and DNMT3B) in BRCA. Consistently, TMEM178 mRNA were confirmed to be downregulated, while upregulated in response to treatment with methylation inhibitor 5-Aza-CdR by RT-qPCR. Patients with high expression of TMEM178 have better prognosis and are more sensitive to targeted drug Pazopanib. Immune infiltration analysis showed that the infiltration levels of CD4+ T cell subsets were reduced in BRAC tissues with high TMEM178 expression, and immunosuppressive molecules of T-cell exhaustion were lower expression level. Conclusion Hypermethylation of the TMEM178 promoter region was a contributing factor to the downregulation of its expression, and TMEM178 may reflect a prognostic and immunosuppressive situation in BRCA.
Collapse
Affiliation(s)
- Jiaoyan Yan
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Ye Yang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Jingrun Lu
- Department of Clinical Laboratory, The First People’s Hospital of Guiyang, Guiyang, 550002, China
| | - Yan Yuan
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Xiangyi Wu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Jian Huang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Shu Zhang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
24
|
Papakonstantinou E, Pappa I, Androutsopoulos G, Adonakis G, Maroulis I, Tzelepi V. Comprehensive Analysis of DNA Methyltransferases Expression in Primary and Relapsed Ovarian Carcinoma. Cancers (Basel) 2023; 15:4950. [PMID: 37894317 PMCID: PMC10605797 DOI: 10.3390/cancers15204950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Despite recent advances in epithelial ovarian carcinoma (EOC) treatment, its recurrence and mortality rates have not improved significantly. DNA hypermethylation has generally been associated with an ominous prognosis and chemotherapy resistance, but the role of DNA methyltransferases (DNMTs) in EOC remains to be investigated. METHODS In the current study, we systematically retrieved gene expression data from patients with EOC and studied the immunohistochemical expression of DNMTs in 108 primary and 26 relapsed tumors. RESULTS Our results showed that the DNMT1, DNMT3A, DNMT3B and DNMT3L RNA levels were higher and the DNMT2 level was lower in tumors compared to non-neoplastic tissue, and DNMT3A and DNMT2 expression decreased from Stage-II to Stage-IV carcinomas. The proteomic data also suggested that the DNMT1 and DNMT3A levels were increased in the tumors. Similarly, the DNMT1, DNMT3A and DNMT3L protein levels were overexpressed and DNMT2 expression was reduced in high-grade carcinomas compared to non-neoplastic tissue and low-grade tumors. Moreover, DNMT1 and DNMT3L were increased in relapsed tumors compared to their primaries. The DNMT3A, DNMT1 and DNMT3B mRNA levels were correlated with overall survival. CONCLUSIONS Our study demonstrates that DNMT1 and DNMT3L are upregulated in primary high-grade EOC and further increase in relapses, whereas DNMT3A is upregulated only in the earlier stages of cancer progression. DNMT2 downregulation highlights the presumed tumor-suppressor activity of this gene in ovarian carcinoma.
Collapse
Affiliation(s)
- Efthymia Papakonstantinou
- Department of Obstetrics and Gynecology, School of Medicine, University of Patras, 26504 Patras, Greece; (E.P.); (G.A.)
| | - Ioanna Pappa
- Multidimensional Data Analysis and Knowledge Management Laboratory, Computer Engineering and Informatics Department, School of Engineering, University of Patras, 26504 Patras, Greece;
| | - Georgios Androutsopoulos
- Gynecological Oncology Unit, Department of Obstetrics and Gynecology, Medical School, University of Patras, 26504 Patras, Greece;
| | - Georgios Adonakis
- Department of Obstetrics and Gynecology, School of Medicine, University of Patras, 26504 Patras, Greece; (E.P.); (G.A.)
| | - Ioannis Maroulis
- Department of General Surgery, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
25
|
Patnaik E, Madu C, Lu Y. Epigenetic Modulators as Therapeutic Agents in Cancer. Int J Mol Sci 2023; 24:14964. [PMID: 37834411 PMCID: PMC10573652 DOI: 10.3390/ijms241914964] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Epigenetics play a crucial role in gene regulation and cellular processes. Most importantly, its dysregulation can contribute to the development of tumors. Epigenetic modifications, such as DNA methylation and histone acetylation, are reversible processes that can be utilized as targets for therapeutic intervention. DNA methylation inhibitors disrupt DNA methylation patterns by inhibiting DNA methyltransferases. Such inhibitors can restore normal gene expression patterns, and they can be effective against various forms of cancer. Histone deacetylase inhibitors increase histone acetylation levels, leading to altered gene expressions. Like DNA methylation inhibitors, histone methyltransferase inhibitors target molecules involved in histone methylation. Bromodomain and extra-terminal domain inhibitors target proteins involved in gene expression. They can be effective by inhibiting oncogene expression and inducing anti-proliferative effects seen in cancer. Understanding epigenetic modifications and utilizing epigenetic inhibitors will offer new possibilities for cancer research.
Collapse
Affiliation(s)
- Eshaan Patnaik
- Department of Biology, Memphis University School, Memphis, TN 38119, USA;
| | - Chikezie Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA;
| | - Yi Lu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
26
|
Li X, Lu Z, Du X, Ye Y, Zhu J, Li Y, Liu J, Zhang W. Prenatal cadmium exposure has inter-generational adverse effects on Sertoli cells through the follicle-stimulating hormone receptor pathway. Reproduction 2023; 166:271-284. [PMID: 37590121 PMCID: PMC10502957 DOI: 10.1530/rep-23-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
In brief Exposure to cadmium (Cd) during pregnancy can potentially harm the reproductive system of male offspring. This article shows that pregnant woman should be protected from cadmium exposure. Abstract Exposure to cadmium (Cd) during pregnancy can potentially harm the reproductive system of male offspring, although the full extent of its heritable effects remains partially unresolved. In this study, we examined the inter-generational impacts of Cd using a distinct male-lineage generational model. Pregnant Sprague-Dawley female rats (F0) were administered control or cadmium chloride (0.5, 1 and 2 mg/day) via intra-gastric administration from gestation day 1 to 20. Subsequently, the first filial generation (F1) male rats were mated with untreated females (not exposed to Cd) to produce the second filial generation (F2). Histopathological analysis of the F1 and F2 generations revealed abnormal testicular development, while ultrastructural examination indicated damage to Sertoli cells. Cd exposure also led to alterations in serum hormone levels (gonadotropin-releasing hormone, follicle-stimulating hormone) and reduced follicle-stimulating hormone receptor (FSHR) protein expression in Sertoli cells in the F1 generation. Furthermore, Cd affected the mRNA and protein expression of FSHR pathway factors and DNA methyltransferase, albeit with distinct patterns and inconsistencies observed between the F1 and F2 generations. Overall, our findings indicate that prenatal Cd exposure, using a male-lineage transmission model, can induce inter-generational effects on male reproduction, particularly by causing toxicity in Sertoli cells. This effect appears to be primarily mediated through disruptions in the FSHR pathway and changes in DNA methyltransferase activity in the male testes.
Collapse
Affiliation(s)
- Xiaoqin Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zhilan Lu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiushuai Du
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Youbin Ye
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
27
|
Gupta MK, Peng H, Li Y, Xu CJ. The role of DNA methylation in personalized medicine for immune-related diseases. Pharmacol Ther 2023; 250:108508. [PMID: 37567513 DOI: 10.1016/j.pharmthera.2023.108508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Epigenetics functions as a bridge between host genetic & environmental factors, aiding in human health and diseases. Many immune-related diseases, including infectious and allergic diseases, have been linked to epigenetic mechanisms, particularly DNA methylation. In this review, we summarized an updated overview of DNA methylation and its importance in personalized medicine, and demonstrated that DNA methylation has excellent potential for disease prevention, diagnosis, and treatment in a personalized manner. The future implications and limitations of the DNA methylation study have also been well-discussed.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - He Peng
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
28
|
Esrafili A, Kupfer J, Thumsi A, Jaggarapu MMCS, Suresh AP, Talitckii A, Khodaei T, Swaminathan SJ, Mantri S, Peet MM, Acharya AP. Exponentially decreasing exposure of antigen generates anti-inflammatory T-cell responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.558014. [PMID: 37745575 PMCID: PMC10516048 DOI: 10.1101/2023.09.15.558014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Rheumatoid Arthritis (RA) is a chronic debilitating disease characterized by auto-immune reaction towards self-antigen such as collagen type II. In this study, we investigated the impact of exponentially decreasing levels of antigen exposure on pro-inflammatory T cell responses in the collagen-induced arthritis (CIA) mouse model. Using a controlled delivery experimental approach, we manipulated the collagen type II (CII) antigen concentration presented to the immune system. We observed that exponentially decreasing levels of antigen generated reduced pro-inflammatory T cell responses in secondary lymphoid organs in mice suffering from RA. Specifically, untreated mice exhibited robust pro-inflammatory T cell activation and increased paw inflammation, whereas, mice exposed to exponentially decreasing concentrations of CII demonstrated significantly reduced pro-inflammatory T cell responses, exhibited lower levels of paw inflammation, and decreased arthritis scores in right rear paw. The data also demonstrate that the decreasing antigen levels promoted the induction of regulatory T cells (Tregs), which play a crucial role in maintaining immune tolerance and suppressing excessive inflammatory responses. Our findings highlight the importance of antigen concentration in modulating pro-inflammatory T cell responses in the CIA model. These results provide valuable insights into the potential therapeutic strategies that target antigen presentation to regulate immune responses and mitigate inflammation in rheumatoid arthritis and other autoimmune diseases. Further investigations are warranted to elucidate the specific mechanisms underlying the antigen concentration-dependent modulation of T cell responses and to explore the translational potential of this approach for the development of novel therapeutic interventions in autoimmune disorders.
Collapse
Affiliation(s)
- Arezoo Esrafili
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Joshua Kupfer
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Abhirami Thumsi
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | | | - Abhirami P. Suresh
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Aleksandr Talitckii
- Aerospace and Mechanical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Taravat Khodaei
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA, 85281
| | | | - Shivani Mantri
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA, 85281
| | - Matthew M Peet
- Aerospace and Mechanical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Abhinav P. Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA, 85281
- Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA, 85281
- Biodesign Center for Biomaterials Innovation and Translation, Arizona State University, Tempe, AZ, USA, 85281
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA, 44106
| |
Collapse
|
29
|
Zhu L, Wang J, Zhang Y, Xiang X, Liu K, Wei J, Li Z, Shao D, Li B, Ma Z, Qiu Y. A Porcine DNMT1 Variant: Molecular Cloning and Generation of Specific Polyclonal Antibody. Genes (Basel) 2023; 14:1324. [PMID: 37510229 PMCID: PMC10379332 DOI: 10.3390/genes14071324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
DNA methyltransferase 1 (DNMT1), the first-identified DNA methyltransferase in mammals, has been well studied in the control of embryo development and somatic homeostasis in mice and humans. Accumulating reports have demonstrated that DNMT1 plays an important role in the regulation of differentiation and the activation of immune cells. However, little is known about the effects of porcine DNMT1 on such functional regulation, especially the regulation of the biological functions of immune cells. In this study, we report the cloning of DNMT1 (4833 bp in length) from porcine alveolar macrophages (PAMs). According to the sequence of the cloned DNMT1 gene, the deduced protein sequence contains a total of 1611 amino acids with a 2 amino acid insertion, a 1 amino acid deletion, and 12 single amino acid mutations in comparison to the reported DNMT1 protein. A polyclonal antibody based on a synthetic peptide was generated to study the expression of the porcine DNMT1. The polyclonal antibody only recognized the cloned porcine DNMT1 and not the previously reported protein due to a single amino acid difference in the antigenic peptide region. However, the polyclonal antibody recognized the endogenous DNMT1 in several porcine cells (PAM, PK15, ST, and PIEC) and the cells of other species (HEK-293T, Marc-145, MDBK, and MDCK cells). Moreover, our results demonstrated that all the detected tissues of piglet express DNMT1, which is the same as that in porcine alveolar macrophages. In summary, we have identified a porcine DNMT1 variant with sequence and expression analyses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yafeng Qiu
- Correspondence: ; Tel.: +86-21-34293635; Fax: +86-21-54081818
| |
Collapse
|
30
|
Cho CC, Lin CJ, Huang HH, Yang WZ, Fei CY, Lin HY, Lee MS, Yuan HS. Mechanistic Insights into Harmine-Mediated Inhibition of Human DNA Methyltransferases and Prostate Cancer Cell Growth. ACS Chem Biol 2023; 18:1335-1350. [PMID: 37188336 PMCID: PMC10278071 DOI: 10.1021/acschembio.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Mammalian DNA methyltransferases (DNMTs), including DNMT1, DNMT3A, and DNMT3B, are key DNA methylation enzymes and play important roles in gene expression regulation. Dysregulation of DNMTs is linked to various diseases and carcinogenesis, and therefore except for the two approved anticancer azanucleoside drugs, various non-nucleoside DNMT inhibitors have been identified and reported. However, the underlying mechanisms for the inhibitory activity of these non-nucleoside inhibitors still remain largely unknown. Here, we systematically tested and compared the inhibition activities of five non-nucleoside inhibitors toward the three human DNMTs. We found that harmine and nanaomycin A blocked the methyltransferase activity of DNMT3A and DNMT3B more efficiently than resveratrol, EGCG, and RG108. We further determined the crystal structure of harmine in complex with the catalytic domain of the DNMT3B-DNMT3L tetramer revealing that harmine binds at the adenine cavity of the SAM-binding pocket in DNMT3B. Our kinetics assays confirm that harmine competes with SAM to competitively inhibit DNMT3B-3L activity with a Ki of 6.6 μM. Cell-based studies further show that harmine treatment inhibits castration-resistant prostate cancer cell (CRPC) proliferation with an IC50 of ∼14 μM. The CPRC cells treated with harmine resulted in reactivating silenced hypermethylated genes compared to the untreated cells, and harmine cooperated with an androgen antagonist, bicalutamide, to effectively inhibit the proliferation of CRPC cells. Our study thus reveals, for the first time, the inhibitory mechanism of harmine on DNMTs and highlights new strategies for developing novel DNMT inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Chao-Cheng Cho
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
| | - Chun-Jung Lin
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Hsun-Ho Huang
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Wei-Zen Yang
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
| | - Cheng-Yin Fei
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
| | - Hsin-Ying Lin
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Ming-Shyue Lee
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Hanna S. Yuan
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| |
Collapse
|
31
|
Nejati-Koshki K, Roberts CT, Babaei G, Rastegar M. The Epigenetic Reader Methyl-CpG-Binding Protein 2 (MeCP2) Is an Emerging Oncogene in Cancer Biology. Cancers (Basel) 2023; 15:2683. [PMID: 37345019 PMCID: PMC10216337 DOI: 10.3390/cancers15102683] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Epigenetic mechanisms are gene regulatory processes that control gene expression and cellular identity. Epigenetic factors include the "writers", "readers", and "erasers" of epigenetic modifications such as DNA methylation. Accordingly, the nuclear protein Methyl-CpG-Binding Protein 2 (MeCP2) is a reader of DNA methylation with key roles in cellular identity and function. Research studies have linked altered DNA methylation, deregulation of MeCP2 levels, or MECP2 gene mutations to different types of human disease. Due to the high expression level of MeCP2 in the brain, many studies have focused on its role in neurological and neurodevelopmental disorders. However, it is becoming increasingly apparent that MeCP2 also participates in the tumorigenesis of different types of human cancer, with potential oncogenic properties. It is well documented that aberrant epigenetic regulation such as altered DNA methylation may lead to cancer and the process of tumorigenesis. However, direct involvement of MeCP2 with that of human cancer was not fully investigated until lately. In recent years, a multitude of research studies from independent groups have explored the molecular mechanisms involving MeCP2 in a vast array of human cancers that focus on the oncogenic characteristics of MeCP2. Here, we provide an overview of the proposed role of MeCP2 as an emerging oncogene in different types of human cancer.
Collapse
Affiliation(s)
- Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil 85991-56189, Iran;
| | - Chris-Tiann Roberts
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 57157-89400, Iran;
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| |
Collapse
|
32
|
Cullati SN, Zhang E, Shan Y, Guillen RX, Chen JS, Navarrete-Perea J, Elmore ZC, Ren L, Gygi SP, Gould KL. Fission yeast CK1 promotes DNA double-strand break repair through both homologous recombination and non-homologous end joining. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538600. [PMID: 37162912 PMCID: PMC10168346 DOI: 10.1101/2023.04.27.538600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The CK1 family are conserved serine/threonine kinases with numerous substrates and cellular functions. The fission yeast CK1 orthologues Hhp1 and Hhp2 were first characterized as regulators of DNA repair, but the mechanism(s) by which CK1 activity promotes DNA repair had not been investigated. Here, we found that deleting Hhp1 and Hhp2 or inhibiting CK1 catalytic activities in yeast or in human cells activated the DNA damage checkpoint due to persistent double-strand breaks (DSBs). The primary pathways to repair DSBs, homologous recombination and non-homologous end joining, were both less efficient in cells lacking Hhp1 and Hhp2 activity. In order to understand how Hhp1 and Hhp2 promote DSB repair, we identified new substrates using quantitative phosphoproteomics. We confirmed that Arp8, a component of the INO80 chromatin remodeling complex, is a bona fide substrate of Hhp1 and Hhp2 that is important for DSB repair. Our data suggest that Hhp1 and Hhp2 facilitate DSB repair by phosphorylating multiple substrates, including Arp8.
Collapse
Affiliation(s)
- Sierra N. Cullati
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric Zhang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Current address: Columbia University Medical Center, New York, NY, USA
| | - Yufan Shan
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rodrigo X. Guillen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Zachary C. Elmore
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Current address: Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
33
|
Huang DY, Lu ST, Chen YS, Cheng CY, Lin WW. Epigenetic upregulation of spleen tyrosine kinase in cancer cells through p53-dependent downregulation of DNA methyltransferase. Exp Cell Res 2023; 425:113540. [PMID: 36889573 DOI: 10.1016/j.yexcr.2023.113540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
Syk is a tumor suppressor gene in some solid tumors. Currently, it remains unknown how Syk gene hypermethylation is controlled by DNA methyltransferase (DNMT) and p53. In colorectal cancer HCT116 cells, we found that protein and mRNA levels of Syk were much higher in WT than in p53-/- cells. Both p53 inhibitor PFT-α and p53 silencing can reduce the protein and mRNA expression of Syk in WT cells, while DNMT inhibitor 5-Aza-2'-dC can increase Syk expression in p53-/- cells. Interestingly, the DNMT expression in p53-/- HCT116 cells was higher than that in WT cells. PFT-α can not only enhance Syk gene methylation but also increase DNMT1 protein and mRNA levels in WT HCT116 cells. In metastatic lung cancer cell lines A549 and PC9, which express WT p53 and gain function of p53, respectively, PFT-α can also downregulate Syk mRNA and protein expression. However, the Syk methylation level was increased by PFT-α in A549 but not in PC9 cells. Likewise, 5-Aza-2'-dC transcriptionally increased Syk gene expression in A549 cells, but not in PC9 cells. In summary methylation of Syk promoter requires DNMT1, and p53 can upregulate Syk expression via downregulation of DNMT1 at the transcriptional level.
Collapse
Affiliation(s)
- Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shang-Te Lu
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Shen Chen
- Department of Neurosurgery, National Taiwan University Hospital Yunlin Branch, Douliu, 64041, Taiwan
| | - Ching-Yuan Cheng
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
34
|
Alshamrani AA, Alshehri S, Alqarni SS, Ahmad SF, Alghibiwi H, Al-Harbi NO, Alqarni SA, Al-Ayadhi LY, Attia SM, Alfardan AS, Bakheet SA, Nadeem A. DNA Hypomethylation Is Associated with Increased Inflammation in Peripheral Blood Neutrophils of Children with Autism Spectrum Disorder: Understanding the Role of Ubiquitous Pollutant Di(2-ethylhexyl) Phthalate. Metabolites 2023; 13:metabo13030458. [PMID: 36984898 PMCID: PMC10057726 DOI: 10.3390/metabo13030458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Autism spectrum disorder (ASD) is a multidimensional disorder in which environmental, immune, and genetic factors act in concert to play a crucial role. ASD is characterized by social interaction/communication impairments and stereotypical behavioral patterns. Epigenetic modifications are known to regulate genetic expression through various mechanisms. One such mechanism is DNA methylation, which is regulated by DNA methyltransferases (DNMTs). DNMT transfers methyl groups onto the fifth carbon atom of the cytosine nucleotide, thus converting it into 5-methylcytosine (5mC) in the promoter region of the DNA. Disruptions in methylation patterns of DNA are usually associated with modulation of genetic expression. Environmental pollutants such as the plasticizer Di(2-ethylhexyl) phthalate (DEHP) have been reported to affect epigenetic mechanisms; however, whether DEHP modulates DNMT1 expression, DNA methylation, and inflammatory mediators in the neutrophils of ASD subjects has not previously been investigated. Hence, this investigation focused on the role of DNMT1 and overall DNA methylation in relation to inflammatory mediators (CCR2, MCP-1) in the neutrophils of children with ASD and typically developing healthy children (TDC). Further, the effect of DEHP on overall DNA methylation, DNMT1, CCR2, and MCP-1 in the neutrophils was explored. Our results show that the neutrophils of ASD subjects have diminished DNMT1 expression, which is associated with hypomethylation of DNA and increased inflammatory mediators such as CCR2 and MCP-1. DEHP further causes downregulation of DNMT1 expression in the neutrophils of ASD subjects, probably through oxidative inflammation, as antioxidant treatment led to reversal of a DEHP-induced reduction in DNMT1. These data highlight the importance of the environmental pollutant DEHP in the modification of epigenetic machinery such as DNA methylation in the neutrophils of ASD subjects.
Collapse
Affiliation(s)
- Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sana S Alqarni
- Department of Medical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hanan Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
35
|
Song WM, Chia PL, Zhou X, Walsh M, Silva J, Zhang B. Pseudo-temporal dynamics of chemoresistant triple negative breast cancer cells reveal EGFR/HER2 inhibition as synthetic lethal during mid-neoadjuvant chemotherapy. iScience 2023; 26:106064. [PMID: 36824282 PMCID: PMC9942122 DOI: 10.1016/j.isci.2023.106064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
In the absence of targetable hormonal axes, chemoresistance for triple-negative breast cancer (TNBC) often compromises patient outcomes. To investigate the underlying tumor dynamics, we performed trajectory analysis on the single-nuclei RNA-seq (snRNA-seq) of chemoresistant tumor clones during neoadjuvant chemotherapy (NAC). It revealed a common tumor trajectory across multiple patients with HER2-like expansions during NAC. Genome-wide CRISPR-Cas9 knock-out on mammary epithelial cells revealed chemosensitivity-promoting knock-outs were up-regulated along the tumor trajectory. Furthermore, we derived a consensus gene signature of TNBC chemoresistance by comparing the trajectory transcriptome with chemoresistant transcriptomes from TNBC cell lines and poor prognosis patient samples to predict FDA-approved drugs, including afatinib (pan-HER inhibitor), targeting the consensus signature. We validated the synergistic efficacy of afatinib and paclitaxel in chemoresistant TNBC cells and confirmed pharmacological suppression of the consensus signature. The study provides a dynamic model of chemoresistant tumor transcriptome, and computational framework for pharmacological intervention.
Collapse
Affiliation(s)
- Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Pei-Ling Chia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Martin Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jose Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
36
|
Pourjafari F, Ezzatabadipour M, Nematollahi-Mahani SN, Afgar A, Haghpanah T. In utero and postnatal exposure to Foeniculum vulgare and Linum usitatissimum seed extracts: modifications of key enzymes involved in epigenetic regulation and estrogen receptors expression in the offspring's ovaries of NMRI mice. BMC Complement Med Ther 2023; 23:45. [PMID: 36788561 PMCID: PMC9926564 DOI: 10.1186/s12906-023-03875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Early-life exposure to exogenous estrogens such as phytoestrogens (plant-derived estrogens) could affect later health through epigenetic modifications. Foeniculum vulgare (fennel) and Linum usitatissimum (flax) are two common medicinal plants with high phytoestrogen content. Considering the developmental epigenetic programming effect of phytoestrogens, the main goal of the present study was to evaluate the perinatal exposure with life-long exposure to hydroalcoholic extracts of both plants on offspring's ovarian epigenetic changes and estrogen receptors (ESRs) expression level as signaling cascades triggers of phytoestrogens. METHODS Pregnant mice were randomly divided into control (CTL) that received no treatment and extract-treated groups that received 500 mg/kg/day of fennel (FV) and flaxseed (FX) alone or in combination (FV + FX) during gestation and lactation. At weaning, female offspring exposed to extracts prenatally remained on the maternal-doses diets until puberty. Then, the ovaries were collected for morphometric studies and quantitative real-time PCR analysis. RESULTS A reduction in mRNA transcripts of the epigenetic modifying enzymes DNMTs and HDACs as well as estrogen receptors was observed in the FV and FX groups compared to the CTL group. Interestingly, an increase in ESRα/ESRβ ratio along with HDAC2 overexpression was observed in the FV + FX group. CONCLUSION Our findings clearly show a positive relationship between pre and postnatal exposure to fennel and flaxseed extracts, ovarian epigenetic changes, and estrogen receptors expression, which may affect the estrogen signaling pathway. However, due to the high phytoestrogen contents of these extracts, the use of these plants in humans requires more detailed investigations.
Collapse
Affiliation(s)
- Fahimeh Pourjafari
- grid.412105.30000 0001 2092 9755Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- grid.412105.30000 0001 2092 9755Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Noureddin Nematollahi-Mahani
- grid.412105.30000 0001 2092 9755Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- grid.412105.30000 0001 2092 9755Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
37
|
Ye D, Wang Y, Deng X, Zhou X, Liu D, Zhou B, Zheng W, Wang X, Fang L. DNMT3a-dermatopontin axis suppresses breast cancer malignancy via inactivating YAP. Cell Death Dis 2023; 14:106. [PMID: 36774339 PMCID: PMC9922281 DOI: 10.1038/s41419-023-05657-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/13/2023]
Abstract
Breast cancer (BC) is the most common malignant tumor in women worldwide, and its recurrence and metastasis negatively affect patient prognosis. However, the mechanisms underlying its tumorigenesis and progression remain unclear. Recently, the influence of dermatopontin (DPT), which is an extracellular matrix protein, has been proposed in the development of cancer. Here we found that DNMT3a-mediated DPT, promoter hypermethylation results in the downregulation of DPT expression in breast cancer and its low expression correlated with poor prognosis. Notably, DPT directly interacted with YAP to promote YAP Ser127 phosphorylation, and restricted the translocation of endogenous YAP from the cytoplasm to the nucleus, thereby suppressing malignant phenotypes in BC cells. In addition, Ectopic YAP overexpression reversed the inhibitory effects of DPT on BC growth and metastasis. Our study showed the critical role of DPT in regulating BC progression, making it easier to explore the clinical potential of modulating DPT/YAP activity in BC targeted therapies.
Collapse
Affiliation(s)
- Danrong Ye
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yuying Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaochong Deng
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Xiqian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Diya Liu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Baian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenfang Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xuehui Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
38
|
Ghobashi AH, Vuong TT, Kimani JW, O'Hagan HM. Activation of AKT induces EZH2-mediated β-catenin trimethylation in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526429. [PMID: 36778289 PMCID: PMC9915619 DOI: 10.1101/2023.01.31.526429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) develops in part through the deregulation of different signaling pathways, including activation of the WNT/β-catenin and PI3K/AKT pathways. Enhancer of zeste homolog 2 (EZH2) is a lysine methyltransferase that is involved in regulating stem cell development and differentiation and is overexpressed in CRC. However, depending on the study EZH2 has been found to be both positively and negatively correlated with the survival of CRC patients suggesting that EZH2's role in CRC may be context specific. In this study, we explored how PI3K/AKT activation alters EZH2's role in CRC. We found that activation of AKT by PTEN knockdown or by hydrogen peroxide treatment induced EZH2 phosphorylation at serine 21. Phosphorylation of EZH2 resulted in EZH2-mediated methylation of β-catenin and an associated increased interaction between β-catenin, TCF1, and RNA polymerase II. AKT activation increased β-catenin's enrichment across the genome and EZH2 inhibition reduced this enrichment by reducing the methylation of β-catenin. Furthermore, PTEN knockdown increased the expression of epithelial-mesenchymal transition (EMT)-related genes, and somewhat unexpectedly EZH2 inhibition further increased the expression of these genes. Consistent with these findings, EZH2 inhibition enhanced the migratory phenotype of PTEN knockdown cells. Overall, we demonstrated that EZH2 modulates AKT-induced changes in gene expression through the AKT/EZH2/ β-catenin axis in CRC with active PI3K/AKT signaling. Therefore, it is important to consider the use of EZH2 inhibitors in CRC with caution as these inhibitors will inhibit EZH2-mediated methylation of histone and non-histone targets such as β-catenin, which can have tumor-promoting effects.
Collapse
|
39
|
Rehman A, Kumari R, Kamthan A, Tiwari R, Srivastava RK, van der Westhuizen FH, Mishra PK. Cell-free circulating mitochondrial DNA: An emerging biomarker for airborne particulate matter associated with cardiovascular diseases. Free Radic Biol Med 2023; 195:103-120. [PMID: 36584454 DOI: 10.1016/j.freeradbiomed.2022.12.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The association of airborne particulate matter exposure with the deteriorating function of the cardiovascular system is fundamentally driven by the impairment of mitochondrial-nuclear crosstalk orchestrated by aberrant redox signaling. The loss of delicate balance in retrograde communication from mitochondria to the nucleus often culminates in the methylation of the newly synthesized strand of mitochondrial DNA (mtDNA) through DNA methyl transferases. In highly metabolic active tissues such as the heart, mtDNA's methylation state alteration impacts mitochondrial bioenergetics. It affects transcriptional regulatory processes involved in biogenesis, fission, and fusion, often accompanied by the integrated stress response. Previous studies have demonstrated a paradoxical role of mtDNA methylation in cardiovascular pathologies linked to air pollution. A pronounced alteration in mtDNA methylation contributes to systemic inflammation, an etiological determinant for several co-morbidities, including vascular endothelial dysfunction and myocardial injury. In the current article, we evaluate the state of evidence and examine the considerable promise of using cell-free circulating methylated mtDNA as a predictive biomarker to reduce the more significant burden of ambient air pollution on cardiovascular diseases.
Collapse
Affiliation(s)
- Afreen Rehman
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Arunika Kamthan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | | | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
40
|
Mechanistic insights into dietary (poly)phenols and vascular dysfunction-related diseases using multi-omics and integrative approaches: Machine learning as a next challenge in nutrition research. Mol Aspects Med 2023; 89:101101. [PMID: 35728999 DOI: 10.1016/j.mam.2022.101101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023]
Abstract
Dietary (poly)phenols have been extensively studied for their vasculoprotective effects and consequently their role in preventing or delaying onsets of cardiovascular and metabolic diseases. Even though early studies have ascribed the vasculoprotective properties of (poly)phenols primarily on their putative free radical scavenging properties, recent data indicate that in biological systems, (poly)phenols act primarily through genomic and epigenomic mechanisms. The molecular mechanisms underlying their health properties are still not well identified, mainly due to the use of physiologically non-relevant conditions (native molecules or extracts at high concentrations, rather than circulating metabolites), but also due to the use of targeted genomic approaches aiming to evaluate the effect only on few specific genes, thus preventing to decipher detailed molecular mechanisms involved. The use of state-of-the-art untargeted analytical methods represents a significant breakthrough in nutrigenomics, as these methods enable detailed insights into the effects at each specific omics level. Moreover, the implementation of multi-omics approaches allows integration of different levels of regulation of cellular functions, to obtain a comprehensive picture of the molecular mechanisms of action of (poly)phenols. In combination with bioinformatics and the methods of machine learning, multi-omics has potential to make a huge contribution to the nutrition science. The aim of this review is to provide an overview of the use of the omics, multi-omics, and integrative approaches in studying the vasculoprotective properties of dietary (poly)phenols and address the potentials for use of the machine learning in nutrigenomics.
Collapse
|
41
|
Shu Y, Lan J, Hu Z, Liu W, Song R. Epigenetic regulation of RARB overcomes the radio-resistance of colorectal carcinoma cells via cancer stem cells. JOURNAL OF RADIATION RESEARCH 2023; 64:11-23. [PMID: 36214504 PMCID: PMC9855330 DOI: 10.1093/jrr/rrac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/19/2022] [Indexed: 06/16/2023]
Abstract
Cancer stem cells (CSCs) are able to survive after cancer therapies, leading to cancer progression and recurrence in colorectal carcinoma (CRC). Therapies targeting CSCs are believed to be promising strategies for efficiently eradicating cancers. This study was to investigate that how retinoic acid receptor beta (RARB) affected the biological characteristics of CSCs and radio-resistance in CRC and the epigenetic mechanism. The sensitivity of CSCs isolated from HCT116 cells to radiotherapy was reduced compared with the parental cells. Using database querying, we found that RARB was one of the most significantly downregulated gene in radio-resistant cells in CRC. Also, RARB was poorly expressed in our isolated CSCs, and overexpression of RARB inhibited the properties of CSCs and enhanced radiotherapy sensitivity. Mechanistically, the methylation of RARB was higher in CSCs compared with HCT116 cells, which was significantly reduced after the application of DNA methylation inhibitor 5-azacytidine (5-azaC). DNA methyltransferases (DNMT1) was found to be recruited into the RARB promoter. 5-AzaC treatment inhibited DNMT1 activity and improved radiotherapy sensitivity by promoting RARB expression. Our results imply that inhibition of DNMT1 can display a new mechanism for the epigenetic mediation of RARB in radio-resistant CRC.
Collapse
Affiliation(s)
- Yuxian Shu
- Department of Comprehensive Radiotherapy, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi, P.R. China
| | - Jun Lan
- Department 1 of General Surgery, Jiangxi Gao’an People’s Hospital, Gao’an 330800, Jiangxi, P.R. China
| | - Zhaobing Hu
- Department of Oncology, Jingdezhen Second People’s Hospital, Jingdezhen 333000, Jiangxi, P.R. China
| | - Weiguo Liu
- Department of Gastroenterology, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi, P.R. China
| | - Rongfeng Song
- Corresponding author. Department of Gastroenterology, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Qingshanhu District, Nanchang 330029, Jiangxi, P.R. China. ; Tel/Fax: 13879172671
| |
Collapse
|
42
|
Zhang W, Jiang T, Xie K. Epigenetic reprogramming in pancreatic premalignancy and clinical implications. Front Oncol 2023; 13:1024151. [PMID: 36874143 PMCID: PMC9978013 DOI: 10.3389/fonc.2023.1024151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Pancreatic cancer (PC) is the most lethal human cancer, with less than 10% 5-year survival. Pancreatic premalignancy is a genetic and epigenomic disease and is linked to PC initiation. Pancreatic premalignant lesions include pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), with pancreatic acinar-to-ductal metaplasia (ADM) as the major source of pancreatic premalignant lesions. Emerging evidence reveals that an epigenetic dysregulation is an early event in pancreatic tumorigenesis. The molecular mechanisms of epigenetic inheritance include chromatin remodeling; modifications in histone, DNA, and RNA; non-coding RNA expression; and alternative splicing of RNA. Changes in those epigenetic modifications contribute to the most notable alterations in chromatin structure and promoter accessibility, thus leading to the silence of tumor suppressor genes and/or activation of oncogenes. The expression profiles of various epigenetic molecules provide a promising opportunity for biomarker development for early diagnosis of PC and novel targeted treatment strategies. However, how the alterations in epigenetic regulatory machinery regulate epigenetic reprogramming in pancreatic premalignant lesions and the different stages of their initiation needs further investigation. This review will summarize the current knowledge of epigenetic reprogramming in pancreatic premalignant initiation and progression, and its clinical applications as detection and diagnostic biomarkers and therapeutic targets in PC.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| |
Collapse
|
43
|
Mani N, Daiya A, Chowdhury R, Mukherjee S, Chowdhury S. Epigenetic adaptations in drug-tolerant tumor cells. Adv Cancer Res 2023; 158:293-335. [PMID: 36990535 DOI: 10.1016/bs.acr.2022.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Traditional chemotherapy against cancer is often severely hampered by acquired resistance to the drug. Epigenetic alterations and other mechanisms like drug efflux, drug metabolism, and engagement of survival pathways are crucial in evading drug pressure. Herein, growing evidence suggests that a subpopulation of tumor cells can often tolerate drug onslaught by entering a "persister" state with minimal proliferation. The molecular features of these persister cells are gradually unraveling. Notably, the "persisters" act as a cache of cells that can eventually re-populate the tumor post-withdrawal drug pressure and contribute to acquiring stable drug-resistant features. This underlines the clinical significance of the tolerant cells. Accumulating evidence highlights the importance of modulation of the epigenome as a critical adaptive strategy for evading drug pressure. Chromatin remodeling, altered DNA methylation, and de-regulation of non-coding RNA expression and function contribute significantly to this persister state. No wonder targeting adaptive epigenetic modifications is increasingly recognized as an appropriate therapeutic strategy to sensitize them and restore drug sensitivity. Furthermore, manipulating the tumor microenvironment and "drug holiday" is also explored to maneuver the epigenome. However, heterogeneity in adaptive strategies and lack of targeted therapies have significantly hindered the translation of epigenetic therapy to the clinics. In this review, we comprehensively analyze the epigenetic alterations adapted by the drug-tolerant cells, the therapeutic strategies employed to date, and their limitations and future prospects.
Collapse
|
44
|
Shahmohamadnejad S, Nouri Ghonbalani Z, Tahbazlahafi B, Panahi G, Meshkani R, Emami Razavi A, Shokri Afra H, Khalili E. Aberrant methylation of miR-124 upregulates DNMT3B in colorectal cancer to accelerate invasion and migration. Arch Physiol Biochem 2022; 128:1503-1509. [PMID: 32552060 DOI: 10.1080/13813455.2020.1779311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dysregulation of microRNA expression is significantly associated with the initiation and development of CRC. miR-124 is markedly downregulated in colorectal cancer. In the present study, the effects of methylation, over expression and downregulation of miR-124 and its target gene DNMT3B on the proliferation, migration and invasion of colorectal cell line were investigated. The promoter methylation status of miR-124 in the CRC was investigated by methylation specific PCR (MSP). The potential role of miR-124 expression in CRC cells was investigated using the demethylation reagent 5-Aza-CdR and transfection of miR-124 mimic/antimir. MSP revealed that miR-124 promoter region was hypermethylated, result in its significant downregulation in tumour tissues. We showed miR-124 expression was upregulated following 5-AZA-CdR treatment. Transfected Hct-116 cell line with miR-124 leads to decreased DNMT3B expression, cell proliferation, migration and invasion of HCT-116. In conclusion, our data indicate that miR-124 suppress colorectal cancer proliferation, migration and invasion through downregulating DNMT3B level.
Collapse
Affiliation(s)
- Shiva Shahmohamadnejad
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Nouri Ghonbalani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnoosh Tahbazlahafi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirnader Emami Razavi
- Iran National Tumor Bank, Cancer Institute of Iran, Imam Hospitals Complex, Tehran, Iran
| | - Hajar Shokri Afra
- Gut and Liver Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Khalili
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Devi P, Engdahl K, Punga T, Bergqvist A. Next-Generation Sequencing Analysis of CpG Methylation of a Tumor Suppressor Gene SHP-1 Promoter in Stable Cell Lines and HCV-Positive Patients. Viruses 2022; 14:v14112352. [PMID: 36366451 PMCID: PMC9695419 DOI: 10.3390/v14112352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatitis C virus (HCV) is the major causative pathogen associated with hepatocellular carcinoma and liver cirrhosis. The main virion component, the Core (C) protein, is involved in multiple aspects of HCV pathology including oncogenesis and immune evasion. In this study, we established a next-generation bisulfite sequencing (NGS-BS) protocol to analyze the CpG methylation profile at the tumor suppressor gene SHP-1 P2 promoter as a model system. Our data show that HCV C protein expression in the immortalized T cells correlated with a specific CpG methylation profile at the SHP-1 P2. The NGS-BS on HCV-positive (HCV+) patient-derived PBMCs revealed a considerably different CpG methylation profile compared to the HCV C protein immortalized T cells. Notably, the CpG methylation profile was very similar in healthy and HCV+ PBMCs, suggesting that the SHP-1 P2 CpG methylation profile is not altered in the HCV+ individuals. Collectively, the NGS-BS is a highly sensitive method that can be used to quantitatively characterize the CpG methylation status at the level of individual CpG position and also allows the characterization of cis-acting effects on epigenetic regulation.
Collapse
Affiliation(s)
- Priya Devi
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden
| | - Katarina Engdahl
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE 75123 Uppsala, Sweden
| | - Anders Bergqvist
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden
- Clinical Microbiology and Hospital Infection Control, Uppsala University Hospital, SE 75185 Uppsala, Sweden
- Correspondence: ; Tel.: +46-186113937
| |
Collapse
|
46
|
Papini C, Wang Z, Kudalkar SN, Schrank TP, Tang S, Sasaki T, Wu C, Tejada B, Ziegler SJ, Xiong Y, Issaeva N, Yarbrough WG, Anderson KS. Exploring ABOBEC3A and APOBEC3B substrate specificity and their role in HPV positive head and neck cancer. iScience 2022; 25:105077. [PMID: 36164654 PMCID: PMC9508485 DOI: 10.1016/j.isci.2022.105077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
APOBEC3 family members are cytidine deaminases catalyzing conversion of cytidine to uracil. Many studies have established a link between APOBEC3 expression and cancer development and progression, especially APOBEC3A (A3A) and APOBEC3B (A3B). Preclinical studies with human papillomavirus positive (HPV+) head and neck squamous cell carcinoma (HNSCC) and clinical trial specimens revealed induction of A3B, but not A3A expression after demethylation. We examined the kinetic features of the cytidine deaminase activity for full length A3B and found that longer substrates and a purine at −2 position favored by A3B, whereas A3A prefers shorter substrates and an adenine or thymine at −2 position. The importance and biological significance of A3B catalytic activity rather than A3A and a preference for purine at the −2 position was also established in HPV+ HNSCCs. Our study explored factors influencing formation of A3A and A3B-related cancer mutations that are essential for understanding APOBEC3-related carcinogenesis and facilitating drug discovery. A3B is upregulated after 5-AzaC treatment and related to 5-AzaC sensitivity in HPV+ HNSCC Full-length A3B prefers longer substrates and a purine at −2 site biochemically A3B also prefers a purine at −2 site in both HPV+ and HPV− HNSCC cells A3B signature at -2 site linked to poor patient survival in HPV+ HNSCC low smokers
Collapse
Affiliation(s)
- Christina Papini
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Zechen Wang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Shalley N Kudalkar
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Travis Parke Schrank
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Su Tang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Tomoaki Sasaki
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Cory Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Brandon Tejada
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Samantha J Ziegler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Natalia Issaeva
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Pathology and Lab Medicine, Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Wendell G Yarbrough
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Pathology and Lab Medicine, Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
47
|
Kandil NS, Kandil LS, Mohamed R, Selima M, El Nemr M, Barakat AR, Alwany YN. The Role of miRNA-182 and FOXO3 Expression in Breast Cancer. Asian Pac J Cancer Prev 2022; 23:3361-3370. [PMID: 36308360 PMCID: PMC9924337 DOI: 10.31557/apjcp.2022.23.10.3361] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE evaluating the role of FOXO3 mRNA and mi RNA 182-5P expression levels in BC patients. METHOD 25 Samples of breast cancer and paired samples of non-cancerous tissues from the same resected breast were obtained from 25 female patients suffering from breast cancer and examined and analyzed by real time PCR to detect the expression levels of FOXO3 mRNA and mi RNA 182-5P. Patients' data were collected from patients medical records. RESULTS Foxo3 m RNA expression was down regulated in BC tissues (1.37± 1.96) as compared to control group (23.62 ± 54.39) and decreased FOXO3 expression was associated with larger tumor size (p= 0.046), late histopathological grading (p= 0.002), late TNM staging (<0.001) and increased miR-182 expression (p= 0.025). We found that expression level of miR-182 was significantly higher among breast cancer group (1.10±1.15) as compared to the control group (0.58±0.96 ) with p value = 0.017. We noted a significant increased expression associated with larger tumor size (p= 0.002), late histopathological grading (p= 0.008), late TNM staging (p= 0.002) and decreased FOXO3 expression (p= 0.025). A significant negative correlation between miR-182 and FOXO3 mRNA fold expression with r = - 0.447, and a p value of 0.025, this could be attributed to miRNA targeting FOXO gene. COCLUSION Down regulation of FOXO3 and up regulation of miR-182 expression was associated with advanced breast cancer. The negative correlation between miR-182 and FOXO3 mRNA could be attributed to miRNA targeting FOXO gene.
Collapse
Affiliation(s)
- Noha S Kandil
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Egypt. ,For Correspondence:
| | - Lamia Said Kandil
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University, Egypt. ,Lecturer in the School of Biological Sciences, Faculty of Science, University of East Anglia, UK.
| | - Radwa Mohamed
- Department of Pathology, Medical Research Institute, Alexandria University, Egypt.
| | - Mohamed Selima
- Department of Surgery, Medical Research Institute, Alexandria University, Egypt.
| | - Mohamed El Nemr
- Department of Cancer Management and Research, Medical Research Institute, Alexandria University, Alexandria, Egypt. ,Centre hospitalier de Troyes, radiotherapy department, France.
| | | | - Yasmine Nagy Alwany
- Department of Cancer Management and Research, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
48
|
Bhatt T, Dey R, Hegde A, Ketkar AA, Pulianmackal AJ, Deb AP, Rampalli S, Jamora C. Initiation of wound healing is regulated by the convergence of mechanical and epigenetic cues. PLoS Biol 2022; 20:e3001777. [PMID: 36112666 PMCID: PMC9522318 DOI: 10.1371/journal.pbio.3001777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/29/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Wound healing in the skin is a complex physiological process that is a product of a cell state transition from homeostasis to repair. Mechanical cues are increasingly being recognized as important regulators of cellular reprogramming, but the mechanism by which it is translated to changes in gene expression and ultimately cellular behavior remains largely a mystery. To probe the molecular underpinnings of this phenomenon further, we used the down-regulation of caspase-8 as a biomarker of a cell entering the wound healing program. We found that the wound-induced release of tension within the epidermis leads to the alteration of gene expression via the nuclear translocation of the DNA methyltransferase 3A (DNMT3a). This enzyme then methylates promoters of genes that are known to be down-regulated in response to wound stimuli as well as potentially novel players in the repair program. Overall, these findings illuminate the convergence of mechanical and epigenetic signaling modules that are important regulators of the transcriptome landscape required to initiate the tissue repair process in the differentiated layers of the epidermis. Wound healing in the skin is a complex physiological process that entails a cell state transition from homeostasis to repair. This study reveals a mechanism involving nuclear translocation of DNA methyltransferase 3A (DNMT3a) that initiates the wound-healing process and is perturbed in skin diseases such as psoriasis.
Collapse
Affiliation(s)
- Tanay Bhatt
- IFOM-inStem Joint Research Laboratory, Center for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- National Centre for Biological Sciences, Bangalore, India
| | - Rakesh Dey
- IFOM-inStem Joint Research Laboratory, Center for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Akshay Hegde
- IFOM-inStem Joint Research Laboratory, Center for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Alhad Ashok Ketkar
- Center for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ajai J. Pulianmackal
- IFOM-inStem Joint Research Laboratory, Center for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ashim P. Deb
- IFOM-inStem Joint Research Laboratory, Center for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Shravanti Rampalli
- Center for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Colin Jamora
- IFOM-inStem Joint Research Laboratory, Center for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- * E-mail:
| |
Collapse
|
49
|
Organic cation transporter 2 activation enhances sensitivity to oxaliplatin in human pancreatic ductal adenocarcinoma. Biomed Pharmacother 2022; 153:113520. [DOI: 10.1016/j.biopha.2022.113520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
|
50
|
Xu J, Yang R, Li J, Wang L, Cohen M, Simeone DM, Costa M, Wu XR. DNMT3A/ miR-129-2-5p/Rac1 Is an Effector Pathway for SNHG1 to Drive Stem-Cell-like and Invasive Behaviors of Advanced Bladder Cancer Cells. Cancers (Basel) 2022; 14:4159. [PMID: 36077697 PMCID: PMC9454896 DOI: 10.3390/cancers14174159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The stem-cell-like behavior of cancer cells plays a central role in tumor heterogeneity and invasion and correlates closely with drug resistance and unfavorable clinical outcomes. However, the molecular underpinnings of cancer cell stemness remain incompletely defined. Here, we show that SNHG1, a long non-coding RNA that is over-expressed in ~95% of human muscle-invasive bladder cancers (MIBCs), induces stem-cell-like sphere formation and the invasion of cultured bladder cancer cells by upregulating Rho GTPase, Rac1. We further show that SNHG1 binds to DNA methylation transferase 3A protein (DNMT3A), and tethers DNMT3A to the promoter of miR-129-2, thus hyper-methylating and repressing miR-129-2-5p transcription. The reduced binding of miR-129-2 to the 3'-UTR of Rac1 mRNA leads to the stabilization of Rac1 mRNA and increased levels of Rac1 protein, which then stimulates MIBC cell sphere formation and invasion. Analysis of the Human Protein Atlas shows that a high expression of Rac1 is strongly associated with poor survival in patients with MIBC. Our data strongly suggest that the SNHG1/DNMT3A/miR-129-2-5p/Rac1 effector pathway drives stem-cell-like and invasive behaviors in MIBC, a deadly form of bladder cancer. Targeting this pathway, alone or in combination with platinum-based therapy, may reduce chemoresistance and improve longer-term outcomes in MIBC patients.
Collapse
Affiliation(s)
- Jiheng Xu
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Rui Yang
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Jingxia Li
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Lidong Wang
- Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Mitchell Cohen
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Diane M. Simeone
- Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Max Costa
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Xue-Ru Wu
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
- Department of Urology, New York University School of Medicine, New York, NY 10016, USA
- Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010, USA
| |
Collapse
|