1
|
Sharma M, Devi P, Kaushal S, Ul-Ahsan A, Mehra S, Budhwar M, Chopra M. Cyto and Genoprotective Potential of Tannic Acid Against Cadmium and Nickel Co-exposure Induced Hepato-Renal Toxicity in BALB/c Mice. Biol Trace Elem Res 2024; 202:5624-5636. [PMID: 38393487 DOI: 10.1007/s12011-024-04117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Tannic acid (TA) is a metal chelating polyphenol that plays a crucial role in metal detoxification, but its modulatory role in co-exposure of these heavy metals' exposure needs to be explored. Cadmium (Cd) and nickel (Ni) are inorganic hazardous chemicals in the environment. Humans are prone to be exposed to the co-exposure of Cd and Ni, but the toxicological interactions of these metals are poorly defined. Present study was undertaken to study the preventive role of TA in Cd-Ni co-exposure-evoked hepato-renal toxicity in BALB/c mice. In the current investigation, increased oxidative stress in metal intoxicated groups was confirmed by elevated peroxidation of the lipids and significant lowering of endogenous antioxidant enzymes. Altered hepato-renal serum markers, DNA fragmentation, and histological alterations were also detected in the metal-treated groups. Present study revealed that Cd is a stronger toxicant than Ni and when co-exposure was administered, additive, sub-additive, and detrimental effects were observed. Prophylactic treatment with TA significantly reinstated the levels of lipid peroxidation (LPO), non-enzymatic, and enzymatic antioxidants. Moreover, it also restored the serum biomarker levels, DNA damage, and histoarchitecture of the given tissues. TA due to its metal chelating and anti-oxidative properties exhibited cyto- and genoprotective potential against Cd-Ni co-exposure-induced hepatic and renal injury.
Collapse
Affiliation(s)
- Madhu Sharma
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014
| | - Pooja Devi
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014
| | - Surbhi Kaushal
- School of Basic and Applied Sciences, Maharaja Agrasen University, Solan, Himachal Pradesh, India, 174103
| | - Aitizaz Ul-Ahsan
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014
| | - Sweety Mehra
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014
| | - Muskan Budhwar
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014
| | - Mani Chopra
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014.
| |
Collapse
|
2
|
Calzetta L, Page C, Matera MG, Cazzola M, Rogliani P. Drug-Drug Interactions and Synergy: From Pharmacological Models to Clinical Application. Pharmacol Rev 2024; 76:1159-1220. [PMID: 39009470 DOI: 10.1124/pharmrev.124.000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
This review explores the concept of synergy in pharmacology, emphasizing its importance in optimizing treatment outcomes through the combination of drugs with different mechanisms of action. Synergy, defined as an effect greater than the expected additive effect elicited by individual agents according to specific predictive models, offers a promising approach to enhance therapeutic efficacy while minimizing adverse events. The historical evolution of synergy research, from ancient civilizations to modern pharmacology, highlights the ongoing quest to understand and harness synergistic interactions. Key concepts, such as concentration-response curves, additive effects, and predictive models, are discussed in detail, emphasizing the need for accurate assessment methods throughout translational drug development. Although various mathematical models exist for synergy analysis, selecting the appropriate model and software tools remains a challenge, necessitating careful consideration of experimental design and data interpretation. Furthermore, this review addresses practical considerations in synergy assessment, including preclinical and clinical approaches, mechanism of action, and statistical analysis. Optimizing synergy requires attention to concentration/dose ratios, target site localization, and timing of drug administration, ensuring that the benefits of combination therapy detected bench-side are translatable into clinical practice. Overall, the review advocates for a systematic approach to synergy assessment, incorporating robust statistical analysis, effective and simplified predictive models, and collaborative efforts across pivotal sectors, such as academic institutions, pharmaceutical companies, and regulatory agencies. By overcoming critical challenges and maximizing therapeutic potential, effective synergy assessment in drug development holds promise for advancing patient care. SIGNIFICANCE STATEMENT: Combining drugs with different mechanisms of action for synergistic interactions optimizes treatment efficacy and safety. Accurate interpretation of synergy requires the identification of the expected additive effect. Despite innovative models to predict the additive effect, consensus in drug-drug interactions research is lacking, hindering the bench-to-bedside development of combination therapies. Collaboration among science, industry, and regulation is crucial for advancing combination therapy development, ensuring rigorous application of predictive models in clinical settings.
Collapse
Affiliation(s)
- Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| | - Clive Page
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| | - Maria Gabriella Matera
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| | - Mario Cazzola
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| | - Paola Rogliani
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| |
Collapse
|
3
|
Gekière A, Ghisbain G, Gérard M, Michez D. Towards unbiased interpretations of interactive effects in ecotoxicological studies. ENVIRONMENTAL RESEARCH 2024; 259:119572. [PMID: 38972340 DOI: 10.1016/j.envres.2024.119572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Ecotoxicological research has increasingly focused on the interactive effects of chemical mixtures on biological models, emphasising additive, synergistic, or antagonistic interactions. However, these combination studies often test chemicals at unique concentrations (e.g. x:y), limiting our understanding of the effects across the full spectrum of possible combinations. Evidence from human toxicology suggests that interactive effects among chemicals can vary significantly with total concentration (e.g. x:y vs. 2x:2y), their ratio (e.g. x:2y vs. 2x:y), and the magnitude of the tested effect (e.g. LC10vs. LC50). Our non-exhaustive review of studies on binary mixtures in bee ecotoxicology reveals that such parameters are frequently neglected. Of the 60 studies we examined, only two utilised multiple total concentrations and ratios, thus exploring a broad range of possible combinations. In contrast, 26 studies tested only a single concentration of each chemical, resulting in incomplete interpretations of the potential interactive effects. Other studies utilised various concentrations and/or ratios but failed to capture a broad spectrum of possible combinations. We also discuss potential discrepancies in interactive effects based on different metrics and exposure designs. We advocate for future ecotoxicological studies to investigate a wider spectrum of chemical combinations, including various concentrations and ratios, and to address different levels of effects.
Collapse
Affiliation(s)
- Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium.
| | - Guillaume Ghisbain
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium; Spatial Epidemiology Lab (SpELL), Free University of Brussels, Brussels, Belgium
| | - Maxence Gérard
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
4
|
Schmidlin K, Ogbunugafor CB, Alexander S, Geiler-Samerotte K. Environment by environment interactions (ExE) differ across genetic backgrounds (ExExG). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593194. [PMID: 38766025 PMCID: PMC11100745 DOI: 10.1101/2024.05.08.593194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
While the terms "gene-by-gene interaction" (GxG) and "gene-by-environment interaction" (GxE) are widely recognized in the fields of quantitative and evolutionary genetics, "environment-byenvironment interaction" (ExE) is a term used less often. In this study, we find that environmentby-environment interactions are a meaningful driver of phenotypes, and moreover, that they differ across different genotypes (suggestive of ExExG). To support this conclusion, we analyzed a large dataset of roughly 1,000 mutant yeast strains with varying degrees of resistance to different antifungal drugs. Our findings reveal that the effectiveness of a drug combination, relative to single drugs, often differs across drug resistant mutants. Remarkably, even mutants that differ by only a single nucleotide change can have dramatically different drug × drug (ExE) interactions. We also introduce a new framework that more accurately predicts the direction and magnitude of ExE interactions for some mutants. Understanding how ExE interactions change across genotypes (ExExG) is crucial not only for modeling the evolution of pathogenic microbes, but also for enhancing our knowledge of the underlying cell biology and the sources of phenotypic variance within populations. While the significance of ExExG interactions has been overlooked in evolutionary and population genetics, these fields and others stand to benefit from understanding how these interactions shape the complex behavior of living systems.
Collapse
Affiliation(s)
- Kara Schmidlin
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, 85287
- School of Life Sciences, Arizona State University, Tempe AZ, 85287
| | - C. Brandon Ogbunugafor
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT,06511
- Santa Fe Institute, Santa Fe, NM, 87501
| | - Sastokas Alexander
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, 85287
- School of Life Sciences, Arizona State University, Tempe AZ, 85287
| | - Kerry Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, 85287
- School of Life Sciences, Arizona State University, Tempe AZ, 85287
| |
Collapse
|
5
|
Sakhtemanian L, Duwadi A, Baldelli S, Ghatee MH. Simulating the ionic liquid mixing with organic-solvent clarifies the mixture's SFG spectral behavior and the specific surface region originating SFG. Sci Rep 2024; 14:23220. [PMID: 39369130 PMCID: PMC11455866 DOI: 10.1038/s41598-024-74561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
Molecular dynamics (MD) simulation of the green ionic liquid [C₄mim][PF₆] mixed with polar benzonitrile (BNZ) solvent provides detailed insights into their structural and dynamic properties, essential for electrochemistry and materials science applications. The simulations we carried out at varying mole fractions (XBZN) reveal the mixtures' physical, structural, and dynamic properties, with radial, spatial, and combined distribution functions, highlighting the effective interaction through H-bonding involved. The simulation indicates that BZN stacks on the cation butyl tail, providing a significant explanation for the unique experimental observations (following). Adding BZN causes the mixture's liquid dynamics to increase linearly at low XBZN and exponentially at high XBZN, with a notable singular transition at 0.5XBZN. Comprehensive efforts were made to verify and support experimental sum frequency generation (SFG) spectroscopy by simulating the surface structure of the mixtures. Consequently, the simulated BZN stacking structure explains (1) the absence of the C≡N vibrational mode in the SFG spectrum for XBZN < 0.8, and (2) the gradual diminishing of the CH3 SFG signal, which disappears as XBZN approaches 0.5. Finally, this research removes a persistent ambiguity, proving that only the molecular moieties on the surface generate the SFG vibrational signal, while those in the subsurface do not.
Collapse
Affiliation(s)
| | - Anjeeta Duwadi
- Department of Chemistry, University of Houston, Houston, TX, 77204-5003, USA
| | - Steven Baldelli
- Department of Chemistry, University of Houston, Houston, TX, 77204-5003, USA
| | | |
Collapse
|
6
|
Quan DH, Wang T, Martinez E, Kim HY, Sintchenko V, Britton WJ, Triccas JA, Alffenaar JWC. Synergistic oral beta-lactam combinations for treating tuberculosis. J Appl Microbiol 2024; 135:lxae255. [PMID: 39394664 DOI: 10.1093/jambio/lxae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/29/2024] [Accepted: 10/15/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND The enormous burden of tuberculosis (TB) worldwide is a major challenge to human health, but the costs and risks associated with novel drug discovery have limited treatment options for patients. Repurposing existing antimicrobial drugs offers a promising avenue to expand TB treatment possibilities. This study aimed to explore the activity and synergy of beta-lactams in combination with a beta-lactamase inhibitor, which have been underutilized in TB treatment to date. METHODS Based on inhibitory concentration, oral bioavailability, and commercial availability, seven beta-lactams (cefadroxil, tebipenem, cephradine, cephalexin, cefdinir, penicillin V, and flucloxacillin), two beta-lactamase inhibitors (avibactam and clavulanate), and three second-line TB drugs (moxifloxacin, levofloxacin, and linezolid) were selected for combination in vitro testing against Mycobacterium tuberculosis H37Rv. Resazurin assays and colony forming unit enumeration were used to quantify drug efficacy, Chou-Talalay calculations were performed to identify drug synergy and Chou-Martin calculations were performed to quantify drug dose reduction index. RESULTS The order of activity of beta-lactams was cefadroxil > tebipenem > cephradine > cephalexin > cefdinir > penicillin V > flucloxacillin. The addition of clavulanate improved beta-lactam activity to a greater degree than the addition of avibactam. As a result, avibactam was excluded from further investigations, which focused on clavulanate. Synergy was demonstrated for cefdinir/cephradine, cefadroxil/tebipenem, cefadroxil/penicillin V, cefadroxil/cefdinir, cephalexin/tebipenem, cephalexin/penicillin V, cephalexin/cefdinir, cephalexin/cephradine, and cefadroxil/cephalexin, all with clavulanate. However, combining beta-lactams with moxifloxacin, levofloxacin, or linezolid resulted in antagonistic effects, except for the combinations of penicillin V/levofloxacin, penicillin V/moxifloxacin, and cefdinir/moxifloxacin. CONCLUSIONS Beta-lactam synergy may provide viable combination therapies for the treatment of TB.
Collapse
Affiliation(s)
- Diana H Quan
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, 2006 NSW, Australia
| | - Trixie Wang
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, 2006 NSW, Australia
| | - Elena Martinez
- Centre for Infectious Diseases and Microbiology, The Westmead Institute, 2145 NSW, Australia
| | - Hannah Y Kim
- School of Pharmacy, The University of Sydney, 2006 NSW, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, 2006 NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology, The Westmead Institute, 2145 NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, Camperdown, 2006 NSW, Australia
| | - Warwick J Britton
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, 2006 NSW, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, 2050 NSW, Australia
| | - James A Triccas
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, 2006 NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, Camperdown, 2006 NSW, Australia
| | - Jan-Willem C Alffenaar
- School of Pharmacy, The University of Sydney, 2006 NSW, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, 2006 NSW, Australia
- Westmead Hospital, Westmead, 2145 NSW, Australia
| |
Collapse
|
7
|
García Carnero LC, Pinzan CF, Diehl C, de Castro PA, Pontes L, Rodrigues AM, Dos Reis TF, Goldman GH. Milteforan, a promising veterinary commercial product against feline sporotrichosis. Microbiol Spectr 2024; 12:e0047424. [PMID: 39194287 PMCID: PMC11448087 DOI: 10.1128/spectrum.00474-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Sporotrichosis, the cutaneous mycosis most commonly reported in Latin America, is caused by the Sporothrix clinical clade species, including Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. Due to its zoonotic transmission in Brazil, S. brasiliensis represents a significant health threat to humans and domestic animals. Itraconazole, terbinafine, and amphotericin B are the most used antifungals for treating sporotrichosis. However, many strains of S. brasiliensis and S. schenckii have shown resistance to these agents, highlighting the importance of finding new therapeutic options. Here, we demonstrate that milteforan, a commercial veterinary product against dog leishmaniasis, whose active principle is miltefosine, is a possible therapeutic alternative for the treatment of sporotrichosis, as observed by its fungicidal activity in vitro against different strains of S. brasiliensis and S. schenckii. Fluorescent miltefosine localizes to the Sporothrix cell membrane and mitochondria and causes cell death through increased permeabilization. Milteforan decreases S. brasiliensis fungal burden in A549 pulmonary cells and bone marrow-derived macrophages and also has an immunomodulatory effect by decreasing TNF-α, IL-6, and IL-10 production. Our results suggest milteforan as a possible alternative to treat feline sporotrichosis. IMPORTANCE Sporotrichosis is an endemic disease in Latin America caused by different species of Sporothrix. This fungus can infect domestic animals, mainly cats and eventually dogs, as well as humans. Few drugs are available to treat this disease, such as itraconazole, terbinafine, and amphotericin B, but resistance to these agents has risen in the last few years. Alternative new therapeutic options to treat sporotrichosis are essential. Here, we propose milteforan, a commercial veterinary product against dog leishmaniasis, whose active principle is miltefosine, as a possible therapeutic alternative for treating sporotrichosis. Milteforan decreases S. brasiliensis fungal burden in human and mouse cells and has an immunomodulatory effect by decreasing several cytokine production.
Collapse
Affiliation(s)
- Laura C García Carnero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Diehl
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patricia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lais Pontes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Anderson Messias Rodrigues
- Department of Microbiology, Immunology and Parasitology, Discipline of Cellular Biology, Laboratory of Emerging Fungal Pathogens, Federal University of São Paulo, São Paulo, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| | - Thaila F Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
8
|
Dar MI, Gulya A, Abass S, Dev K, Parveen R, Ahmad S, Qureshi MI. Hallmarks of diabetes mellitus and insights into the therapeutic potential of synergy-based combinations of phytochemicals in reducing oxidative stress-induced diabetic complications. Nat Prod Res 2024:1-15. [PMID: 39290074 DOI: 10.1080/14786419.2024.2402461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/03/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Diabetes mellitus (DM) is a serious health issue and is still one of the major causes of mortality around the globe. Natural products have progressively integrated into modern, advanced medical practices. Phytoconstituents from some medicinal plants have demonstrated therapeutic activity in treating different metabolic disorders and have been used to treat DM and its severe complications. The present review provides details of the major anti-diabetic targets identified in the literature and also provides comprehensive information regarding the therapeutic role of a synergy-based combination of phytoconstituents that functions by controlling specific molecular pathways synchronously by inhibiting certain key regulators involved in the development and progression of DM. The review also implicated the role of oxidative stress in diabetic complications and presented scientific validations of phytochemicals and their synergy-based combination using in vitro and or in vivo approaches.
Collapse
Affiliation(s)
- Mohammad Irfan Dar
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
- School of Pharmaceutical Education and Research, Centre of Excellence in Unani Medicine (Pharmacognosy & Pharmacology), and Bioactive Natural Product Laboratory, New Delhi, India
| | - Anu Gulya
- All India Institute of Medical Science, New Delhi, India
| | - Sageer Abass
- School of Pharmaceutical Education and Research, Centre of Excellence in Unani Medicine (Pharmacognosy & Pharmacology), and Bioactive Natural Product Laboratory, New Delhi, India
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Rabea Parveen
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- School of Pharmaceutical Education and Research, Centre of Excellence in Unani Medicine (Pharmacognosy & Pharmacology), and Bioactive Natural Product Laboratory, New Delhi, India
| | | |
Collapse
|
9
|
Tsouloufi TK. An overview of mycotoxicoses in rabbits. J Vet Diagn Invest 2024; 36:638-654. [PMID: 38804173 PMCID: PMC11457744 DOI: 10.1177/10406387241255945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Mycotoxicoses are usually a consideration in large animal species but can affect companion animals as well. Due to increasing interest and the ease of using rabbits as laboratory models, a growing number of published experimental studies discuss the effects of various mycotoxins on this species. However, the available evidence is fragmented and heterogeneous, and has not recently been collated in a review, to my knowledge. Although mycotoxicoses in rabbits are typically subclinical, clinical signs can include weight loss, anorexia, gastrointestinal disorders, stunted growth, reproductive abnormalities, and susceptibility to infections. An antemortem diagnosis typically relies on a comprehensive clinical history, and assessment of clinical signs and relevant laboratory findings, with confirmation of exposure achieved through the measurement of mycotoxin concentrations in feed or target organs. My review focuses on the clinicopathologic and histopathologic effects of the mycotoxins most important in rabbits, including fumonisins, ochratoxins, aflatoxins, trichothecenes, and zearalenone. This review offers a thorough overview of the effects of mycotoxins in rabbits, serving as a one-stop resource for veterinary practitioners, diagnosticians, and researchers.
Collapse
|
10
|
Bălașoiu (Jigău) RAC, Obistioiu D, Hulea A, Suleiman MA, Popescu I, Floares (Oarga) D, Imbrea IM, Neacșu AG, Șmuleac L, Pașcalău R, Crista L, Popescu CA, Samfira I, Imbrea F. Analysing the Antibacterial Synergistic Interactions of Romanian Lavender Essential Oils via Gas Chromatography-Mass Spectrometry: In Vitro and In Silico Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:2136. [PMID: 39124254 PMCID: PMC11313841 DOI: 10.3390/plants13152136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
This study investigated the phytochemical characteristics, antibacterial activity, and synergistic potential of essential oils derived from Romanian lavender. Gas Chromatography-Mass Spectrometry (GC/MS) analysis revealed that linalool is the main compound in all lavender essential oils, with concentrations ranging from 29.410% to 35.769%. Linalyl acetate was found in similar concentrations to linalool. Other significant compounds included 1,8-cineole (8.50%), lavandulyl acetate (5.38%), trans-β-ocimene (6.90%), and camphor (7.7%). A 1,1-Diphenyl-2-Picrylhydrazyl (DPPH) test was used to assess antioxidant capacity, with substantial free-radical-scavenging activity shown in the IC50 values determined. The antibacterial efficacy of the oils was higher against Gram-positive bacteria than Gram-negative bacteria, with variations in minimum inhibitory concentrations (MICs), the extent of inhibition, and evolution patterns. The study also explored the oils' ability to enhance the efficacy of ampicillin, revealing synergistic interactions expressed as fractional inhibitory concentration indices. In silico protein-ligand docking studies used twenty-one compounds identified by GC-MS with bacterial protein targets, showing notable binding interactions with SasG (-6.3 kcal/mol to -4.6 kcal/mol) and KAS III (-6.2 kcal/mol to -4.9 kcal/mol). Overall, the results indicate that Romanian lavender essential oils possess potent antioxidant and antibacterial properties, and their synergistic interaction with ampicillin has potential for enhancing antibiotic therapies.
Collapse
Affiliation(s)
- Roxana Aurelia C. Bălașoiu (Jigău)
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Diana Obistioiu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Anca Hulea
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Mukhtar Adeiza Suleiman
- Faculty of Life Science, Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Nigeria;
| | - Iuliana Popescu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Doris Floares (Oarga)
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Ilinca Merima Imbrea
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Alina-Georgeta Neacșu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Laura Șmuleac
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Raul Pașcalău
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Laura Crista
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Cosmin Alin Popescu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Ionel Samfira
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Florin Imbrea
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| |
Collapse
|
11
|
Popov VA, Ukraintseva SV, Duan H, Yashin AI, Arbeev KG. Traffic-related air pollution and APOE4 can synergistically affect hippocampal volume in older women: new findings from UK Biobank. FRONTIERS IN DEMENTIA 2024; 3:1402091. [PMID: 39135618 PMCID: PMC11317402 DOI: 10.3389/frdem.2024.1402091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
A growing research body supports the connection between neurodegenerative disorders, including Alzheimer's disease (AD), and traffic-related air pollution (TRAP). However, the underlying mechanisms are not well understood. A deeper investigation of TRAP effects on hippocampal volume (HV), a major biomarker of neurodegeneration, may help clarify these mechanisms. Here, we explored TRAP associations with the HV in older participants of the UK Biobank (UKB), taking into account the presence of APOE e4 allele (APOE4), the strongest genetic risk factor for AD. Exposure to TRAP was approximated by the distance of the participant's main residence to the nearest major road (DNMR). The left/right HV was measured by magnetic resonance imaging (MRI) in cubic millimeters (mm3). Analysis of variance (ANOVA), Welch test, and regression were used to examine statistical significance. We found significant interactions between DNMR and APOE4 that influenced HV. Specifically, DNMR <50m (equivalent of a chronically high exposure to TRAP), and carrying APOE4 were synergistically associated with a significant (P = 0.01) reduction in the right HV by about 2.5% in women aged 60-75 years (results for men didn't reach a statistical significance). Results of our study suggest that TRAP and APOE4 jointly promote neurodegeneration in women. Living farther from major roads may help reduce the risks of neurodegenerative disorders, including AD, in female APOE4 carriers.
Collapse
|
12
|
Baik S, Heo H, Hong S, Jeong HS, Lee J, Lee H. Combination of Nicotinamide and Agastache rugosa Extract: A Potent Strategy for Protecting Hs68 Cells from UVB-Induced Photoaging. Prev Nutr Food Sci 2024; 29:162-169. [PMID: 38974585 PMCID: PMC11223918 DOI: 10.3746/pnf.2024.29.2.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
This study investigated the protective effects of nicotinamide (NAM) and Agastache rugosa extract (AR) against ultraviolet B (UVB)-induced photoaging in Hs68 cells. The results demonstrated that NAM and AR, alone or in combination, exhibited concentration-dependent protective effects against UVB radiation. The highest synergistic effect was observed at a NAM:AR ratio of 6:4. This combination exhibited a synergistic protective effect against UVB-induced photoaging. The sample concentration required for 80% cell survival was 9.70 μM and 131.16 ppm for NAM and AR, respectively. However, when combined, they exhibited strong synergistic effects with concentrations as low as 0.11 μM and 17.50 ppm. Moreover, 5.26 μM of NAM and 1,082.13 ppm of AR were required to inhibit 30% of reactive oxygen species, but the combination treatment required 0.62 μM and 95.49 ppm, respectively. This combination significantly reduced the production of matrix metalloproteinase and increased collagen production. These findings highlight the potential of combining NAM and AR as functional cosmetic materials to protect against UVB-induced photoaging. The synergistic effects observed in this study provide valuable information for developing novel strategies for cosmetic combinations that target UVB-mediated skin damage.
Collapse
Affiliation(s)
- Seungjoo Baik
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Seonghwa Hong
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Heon Sang Jeong
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| |
Collapse
|
13
|
Kayani Z, Heli H, Dehdari Vais R, Haghighi H, Ajdari M, Sattarahmady N. Synchronized Chemotherapy/Photothermal Therapy/Sonodynamic Therapy of Human Triple-Negative and Estrogen Receptor-Positive Breast Cancer Cells Using a Doxorubicin-Gold Nanoclusters-Albumin Nanobioconjugate. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:869-881. [PMID: 38538442 DOI: 10.1016/j.ultrasmedbio.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Novel strategies for treating triple-negative breast cancer (TNBC) are ongoing because of the lack of standard-of-care treatment. Nanoframed materials with a protein pillar are considered a valuable tool for designing multigoals of energy-absorbing/medication cargo and are a bridge to cross-conventional treatment strategies. METHODS Nanobioconjugates of gold nanoclusters-bovine serum albumin (AuNCs-BSA) and doxorubicin-AuNCs-BSA (Dox-AuNCs-BSA) were prepared and employed as a simultaneous double photosensitizer/sonosensitizer and triple chemotherapeutic/photosensitizer/sonosensitizer, respectively. RESULTS The highly stable AuNCs-BSA and Dox-AuNCs-BSA have ζ potentials of -29 and -18 mV, respectively, and represent valuable photothermal and sonodynamic activities for the combination of photothermal therapy and sonodynamic therapy (PTT/SDT) and synchronized chemotherapy/photothermal therapy/sonodynamic therapy (CTX/PTT/SDT) of human TNBC cells, respectively. The efficiency of photothermal conversion of AuNCs-BSA was calculated to be a promising value of 32.9%. AuNCs-BSA and Dox-AuNCs-BSA were activated on either laser light irradiation or ultrasound exposure with the highest efficiency on the combination of both types of radiation. CTX/PTT/SDT of MCF-7 and MDA-MB-231 breast cancer cell lines by Dox-AuNCs-BSA were evaluated with the MTT cell proliferation assay and found to progress synergistically. CONCLUSION Results of the MTT assay, detection of the generation of intracellular reactive oxygen species and occurrence of apoptosis in the cells confirmed that CTX/PTT/SDT by Dox-AuNCs-BSA was attained with lower needed doses of the drug and improved tumor cell ablation, which would result in the enhancement of therapeutic efficacy and overcoming of therapeutic resistance.
Collapse
Affiliation(s)
- Zahra Kayani
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rezvan Dehdari Vais
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hanieh Haghighi
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Ajdari
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Naghmeh Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Bezerra TO, Roque AC, Salum C. A Computational Model for the Simulation of Prepulse Inhibition and Its Modulation by Cortical and Subcortical Units. Brain Sci 2024; 14:502. [PMID: 38790479 PMCID: PMC11118907 DOI: 10.3390/brainsci14050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
The sensorimotor gating is a nervous system function that modulates the acoustic startle response (ASR). Prepulse inhibition (PPI) phenomenon is an operational measure of sensorimotor gating, defined as the reduction of ASR when a high intensity sound (pulse) is preceded in milliseconds by a weaker stimulus (prepulse). Brainstem nuclei are associated with the mediation of ASR and PPI, whereas cortical and subcortical regions are associated with their modulation. However, it is still unclear how the modulatory units can influence PPI. In the present work, we developed a computational model of a neural circuit involved in the mediation (brainstem units) and modulation (cortical and subcortical units) of ASR and PPI. The activities of all units were modeled by the leaky-integrator formalism for neural population. The model reproduces basic features of PPI observed in experiments, such as the effects of changes in interstimulus interval, prepulse intensity, and habituation of ASR. The simulation of GABAergic and dopaminergic drugs impaired PPI by their effects over subcortical units activity. The results show that subcortical units constitute a central hub for PPI modulation. The presented computational model offers a valuable tool to investigate the neurobiology associated with disorder-related impairments in PPI.
Collapse
Affiliation(s)
- Thiago Ohno Bezerra
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil
| | - Antonio C. Roque
- Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Cristiane Salum
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil
- Interdisciplinary Applied Neuroscience Unit, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil
| |
Collapse
|
15
|
Boța M, Vlaia L, Jîjie AR, Marcovici I, Crişan F, Oancea C, Dehelean CA, Mateescu T, Moacă EA. Exploring Synergistic Interactions between Natural Compounds and Conventional Chemotherapeutic Drugs in Preclinical Models of Lung Cancer. Pharmaceuticals (Basel) 2024; 17:598. [PMID: 38794168 PMCID: PMC11123751 DOI: 10.3390/ph17050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
In the current work, the synergy between natural compounds and conventional chemotherapeutic drugs is comprehensively reviewed in light of current preclinical research findings. The prognosis for lung cancer patients is poor, with a 5-year survival rate of 18.1%. The use of natural compounds in combination with conventional chemotherapeutic drugs has gained significant attention as a potential novel approach in the treatment of lung cancer. The present work highlights the importance of finding more effective therapies to increase survival rates. Chemotherapy is a primary treatment option for lung cancer but it has limitations such as reduced effectiveness because cancer cells become resistant. Natural compounds isolated from medicinal plants have shown promising anticancer or chemopreventive properties and their synergistic effect has been observed when combined with conventional therapies. The combined use of an anti-cancer drug and a natural compound exhibits synergistic effects, enhancing overall therapeutic actions against cancer cells. In conclusion, this work provides an overview of the latest preclinical research on medicinal plants and plant-derived compounds as alternative or complementary treatment options for lung cancer chemotherapy and discusses the potential of natural compounds in treating lung cancer with minimal side effects.
Collapse
Affiliation(s)
- Mihaela Boța
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (M.B.); (L.V.)
| | - Lavinia Vlaia
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (M.B.); (L.V.)
- Formulation and Technology of Drugs Research Center, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Iasmina Marcovici
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Flavia Crişan
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Cristian Oancea
- Discipline of Pneumology, Department of Infectious Diseases, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Tudor Mateescu
- Department of Thoracic Surgery, Clinical Hospital for Infectious Diseases and Pneumophthiology Dr. Victor Babes, 13 Gheorghe Adam Street, RO-300310 Timisoara, Romania;
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| |
Collapse
|
16
|
Lyons MA, Obregon-Henao A, Ramey ME, Bauman AA, Pauly S, Rossmassler K, Reid J, Karger B, Walter ND, Robertson GT. Use of multiple pharmacodynamic measures to deconstruct the Nix-TB regimen in a short-course murine model of tuberculosis. Antimicrob Agents Chemother 2024; 68:e0101023. [PMID: 38501805 PMCID: PMC11064538 DOI: 10.1128/aac.01010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
A major challenge for tuberculosis (TB) drug development is to prioritize promising combination regimens from a large and growing number of possibilities. This includes demonstrating individual drug contributions to the activity of higher-order combinations. A BALB/c mouse TB infection model was used to evaluate the contributions of each drug and pairwise combination in the clinically relevant Nix-TB regimen [bedaquiline-pretomanid-linezolid (BPaL)] during the first 3 weeks of treatment at human equivalent doses. The rRNA synthesis (RS) ratio, an exploratory pharmacodynamic (PD) marker of ongoing Mycobacterium tuberculosis rRNA synthesis, together with solid culture CFU counts and liquid culture time to positivity (TTP) were used as PD markers of treatment response in lung tissue; and their time-course profiles were mathematically modeled using rate equations with pharmacologically interpretable parameters. Antimicrobial interactions were quantified using Bliss independence and Isserlis formulas. Subadditive (or antagonistic) and additive effects on bacillary load, assessed by CFU and TTP, were found for bedaquiline-pretomanid and linezolid-containing pairs, respectively. In contrast, subadditive and additive effects on rRNA synthesis were found for pretomanid-linezolid and bedaquiline-containing pairs, respectively. Additionally, accurate predictions of the response to BPaL for all three PD markers were made using only the single-drug and pairwise effects together with an assumption of negligible three-way drug interactions. The results represent an experimental and PD modeling approach aimed at reducing combinatorial complexity and improving the cost-effectiveness of in vivo systems for preclinical TB regimen development.
Collapse
Affiliation(s)
- M. A. Lyons
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - A. Obregon-Henao
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - M. E. Ramey
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - A. A. Bauman
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - S. Pauly
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - K. Rossmassler
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - J. Reid
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - B. Karger
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - N. D. Walter
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - G. T. Robertson
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
| |
Collapse
|
17
|
Hernández-Galdámez HV, Fattel-Fazenda S, Flores-Téllez TNJ, Aguilar-Chaparro MA, Mendoza-García J, Díaz-Fernández LC, Romo-Medina E, Sánchez-Pérez Y, Arellanes-Robledo J, De la Garza M, Villa-Treviño S, Piña-Vázquez C. Iron-saturated bovine lactoferrin: a promising chemopreventive agent for hepatocellular carcinoma. Food Funct 2024; 15:4586-4602. [PMID: 38590223 DOI: 10.1039/d3fo05184f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is a tumor with minimal chance of cure due to underlying liver diseases, late diagnosis, and inefficient treatments. Thus, HCC treatment warrants the development of additional strategies. Lactoferrin (Lf) is a mammalian multifunctional iron-binding glycoprotein of the innate immune response and can be found as either a native low iron form (native-Lf) or a high iron form (holo-Lf). Bovine Lf (bLf), which shares many functions with human Lf (hLf), is safe for humans and has several anticancer activities, including chemotherapy boost in cancer. We found endogenous hLf is downregulated in HCC tumors compared with normal liver, and decreased hLf levels in HCC tumors are associated with shorter survival of HCC patients. However, the chemoprotective effect of 100% iron saturated holo-bLf on experimental hepatocarcinogenesis has not yet been determined. We aimed to evaluate the chemopreventive effects of holo-bLf in different HCC models. Remarkably, a single dose (200 mg kg-1) of holo-bLf was effective in preventing early carcinogenic events in a diethylnitrosamine induced HCC in vivo model, such as necrosis, ROS production, and the surge of facultative liver stem cells, and eventually, holo-bLf reduced the number of preneoplastic lesions. For an established HCC model, holo-bLf treatment significantly reduced HepG2 tumor burden in xenotransplanted mice. Finally, holo-bLf in combination with sorafenib, the advanced HCC first-line treatment, synergistically decreased HepG2 viability by arresting cells in the G0/G1 phase of the cell cycle. Our findings provide the first evidence suggesting that holo-bLf has the potential to prevent HCC or to be used in combination with treatments for established HCC.
Collapse
Affiliation(s)
| | - Samia Fattel-Fazenda
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Teresita N J Flores-Téllez
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | | | - Jonathan Mendoza-García
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Lidia C Díaz-Fernández
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Eunice Romo-Medina
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Yesennia Sánchez-Pérez
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, CDMX, Mexico
| | - Jaime Arellanes-Robledo
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Ciudad de México, México. Dirección de Cátedras, Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México, Mexico
| | - Mireya De la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| |
Collapse
|
18
|
Panossian A, Lemerond T, Efferth T. State-of-the-Art Review on Botanical Hybrid Preparations in Phytomedicine and Phytotherapy Research: Background and Perspectives. Pharmaceuticals (Basel) 2024; 17:483. [PMID: 38675443 PMCID: PMC11053582 DOI: 10.3390/ph17040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Despite some evidence supporting the synergy concept, the commonly known assumption that combinations of several herbs in one formulation can have better efficacy due to additive or synergistic effects has yet to be unambiguously and explicitly studied. STUDY AIM The study aimed to reveal the molecular interactions in situ of host cells in response to botanical hybrid preparations (BHP) intervention and justify the benefits of implementing BHP in clinical practice. RESULTS This prospective literature review provides the results of recent clinical and network pharmacology studies of BHP of Rhodiola rosea L. (Arctic root) with other plants, including Withania somnifera (L.) Dunal (ashwagandha), (Camellia sinensis (L.) Kuntze (green tea), Eleutherococcus senticosus (Rupr. and Maxim.) Maxim. (eleuthero), Schisandra chinensis (Turcz.) Baill. (schisandra), Leuzea carthamoides (Willd.) DC., caffeine, Cordyceps militaris L., Ginkgo biloba L.(ginkgo), Actaea racemosa L. (black cohosh), Crocus sativus L. (saffron), and L-carnosine. CONCLUSIONS The most important finding from network pharmacology studies of BHP was the evidence supporting the synergistic interaction of BHP ingredients, revealing unexpected new pharmacological activities unique and specific to the new BHP. Some studies show the superior efficacy of BHP compared to mono-drugs. At the same time, some a priori-designed combinations can fail, presumably due to antagonistic interactions and crosstalk between molecular targets within the molecular networks involved in the cellular and overall response of organisms to the intervention. Network pharmacology studies help predict the results of studies aimed at discovering new indications and unpredicted adverse events.
Collapse
Affiliation(s)
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55099 Mainz, Germany
| |
Collapse
|
19
|
Bentley DJ. Revisiting the Checkerboard to Inform Development of β-Lactam/β-Lactamase Inhibitor Combinations. Antibiotics (Basel) 2024; 13:337. [PMID: 38667012 PMCID: PMC11047560 DOI: 10.3390/antibiotics13040337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
A two-dimensional "checkerboard" array employing systematic titration (e.g., serial two-fold dilutions) is a well-established in vitro method for exploring the antibacterial effects of novel drug combinations. Minimum inhibitory concentrations (MICs) on the checkerboard are isoeffective points at which the antibiotic potency is the same. Representations of checkerboard MIC curves for a β-lactam and β-lactamase inhibitor combination are used in hypothetical "thought experiments" and reveal the ways in which current practices can be improved. Because different types of response (i.e., independence vs. additivity vs. one effective agent; interaction vs. noninteraction) produce different MIC curves, data from different strains/isolates should not be pooled indiscriminately, as the composition of a pooled dataset will influence any derived pharmacokinetic/pharmacodynamic (PK/PD) index. Because the β-lactamase inhibitor threshold concentration (CT) parameter is a function of the β-lactam partner dosing regimen, it is not possible to derive a universal PK/PD index target based on CT. Alternative susceptibility testing methods represent different planes through the checkerboard; a fixed ratio method is less prone to bias for all β-lactam and β-lactamase inhibitor combinations. Susceptibility test MICs will often not reflect the sensitivity of the strain/isolate to the β-lactamase inhibitor, so the use of these MICs to normalize PK/PD indices is inappropriate.
Collapse
Affiliation(s)
- Darren J Bentley
- Certara Drug Development Solutions, Certara Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| |
Collapse
|
20
|
Slomberg DL, Auffan M, Payet M, Carboni A, Ouaksel A, Brousset L, Angeletti B, Grisolia C, Thiéry A, Rose J. Tritiated stainless steel (nano)particle release following a nuclear dismantling incident scenario: Significant exposure of freshwater ecosystem benthic zone. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133093. [PMID: 38056254 DOI: 10.1016/j.jhazmat.2023.133093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
Nuclear facilities continue to be developed to help meet global energy demands while reducing fossil fuel use. However, an incident during the dismantling of these facilities could accidentally release tritiated particles (e.g. stainless steel) into the environment. Herein, we investigated the environmental dosimetry, fate, and impact of tritiated stainless steel (nano)particles (1 mg.L-1 particles and 1 MBq.L-1 tritium) using indoor freshwater aquatic mesocosms to mimic a pond ecosystem. The tritium (bio)distribution and particle fate and (bio)transformation were monitored in the different environmental compartments over 4 weeks using beta counting and chemical analysis. Impacts on picoplanktonic and picobenthic communities, and the benthic freshwater snail, Anisus vortex, were assessed as indicators of environmental health. Following contamination, some tritium (∼16%) desorbed into the water column while the particles rapidly settled onto the sediment. After 4 weeks, the particles and the majority of the tritium (>80%) had accumulated in the sediment, indicating a high exposure of the benthic ecological niche. Indeed, the benthic grazers presented significant behavioral changes despite low steel uptake (<0.01%). These results provide knowledge on the potential environmental impacts of incidental tritiated (nano)particles, which will allow for improved hazard and risk management.
Collapse
Affiliation(s)
- Danielle L Slomberg
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France.
| | - Mélanie Auffan
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France; Civil and Environmental Engineering Department, Duke University, Durham, NC 27707, United States
| | | | - Andrea Carboni
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Amazigh Ouaksel
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Lenka Brousset
- CNRS, IRD, IMBE, Aix-Marseille Univ, Avignon Univ., Marseille, France
| | - Bernard Angeletti
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | | | - Alain Thiéry
- CNRS, IRD, IMBE, Aix-Marseille Univ, Avignon Univ., Marseille, France
| | - Jérôme Rose
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France; Civil and Environmental Engineering Department, Duke University, Durham, NC 27707, United States
| |
Collapse
|
21
|
Carnero LCG, Dos Reis TF, Diehl C, de Castro PA, Pontes L, Pinzan CF, Goldman GH. Milteforan, a promising veterinary commercial product against feline sporotrichosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580352. [PMID: 38405873 PMCID: PMC10888911 DOI: 10.1101/2024.02.14.580352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Sporotrichosis, the cutaneous mycosis most commonly reported in Latin America, is caused by the Sporothrix clinical clade species, including Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. In Brazil, S. brasiliensis represents a vital health threat to humans and domestic animals due to its zoonotic transmission. Itraconazole, terbinafine, and amphotericin B are the most used antifungals for treating sporotrichosis. However, many strains of S. brasiliensis and S. schenckii have shown resistance to these agents, highlighting the importance of finding new therapeutic options. Here, we demonstrate that milteforan, a commercial veterinary product against dog leishmaniasis whose active principle is miltefosine, is a possible therapeutic alternative for the treatment of sporotrichosis, as observed by its fungicidal activity in vitro against different strains of S. brasiliensis and S. schenckii, and by its antifungal activity when used to treat infected epithelial cells and macrophages. Our results suggest milteforan as a possible alternative to treat feline sporotrichosis.
Collapse
Affiliation(s)
- Laura C García Carnero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila F Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Diehl
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patricia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lais Pontes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
22
|
Afroz M, Bhuia MS, Rahman MA, Hasan R, Islam T, Islam MR, Chowdhury R, Khan MA, Antas E Silva D, Melo Coutinho HD, Islam MT. Anti-diarrheal effect of piperine possibly through the interaction with inflammation inducing enzymes: In vivo and in silico studies. Eur J Pharmacol 2024; 965:176289. [PMID: 38158111 DOI: 10.1016/j.ejphar.2023.176289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Piperine is a natural alkaloid that possesses a variety of therapeutic properties, including anti-inflammatory, antioxidant, antibacterial, and anticarcinogenic activities. The present study aims to assess the medicinal benefits of piperine as an anti-diarrheal agent in a chick model by utilizing in vivo and in silico techniques. For this, castor oil was administered orally to 2-day-old chicks to cause diarrhea. Bismuth subsalicylate (10 mg/kg), loperamide (3 mg/kg), and nifedipine (2.5 mg/kg) were used as positive controls, while the vehicle was utilized as a negative control. Two different doses (25 and 50 mg/kg b.w.) of the test sample (piperine) were administered orally, and the highest dose was tested with standards to investigate the synergistic activity of the test sample. In our findings, piperine prolonged the latent period while reducing the number of diarrheal feces in the experimental chicks during the monitoring period (4 h). At higher doses, piperine appears to reduce diarrheal secretion while increasing latency in chicks. Throughout the combined pharmacotherapy, piperine outperformed bismuth subsalicylate and nifedipine in terms of anti-diarrheal effects with loperamide. In molecular docking, piperine exhibited higher binding affinities towards different inflammatory enzymes such as cyclooxygenase 1 (-7.9 kcal/mol), cyclooxygenase 2 (-8.4 kcal/mol), nitric oxide synthases (-8.9 kcal/mol), and L-type calcium channel (-8.8 kcal/mol), indicating better interaction of PP with these proteins. In conclusion, piperine showed a potent anti-diarrheal effect in castor oil-induced diarrheal chicks by suppressing the inflammation and calcium ion influx induced by castor oil.
Collapse
Affiliation(s)
- Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Md Anisur Rahman
- Department of Pharmacy, Islamic University, Kushtia, 7003, Bangladesh.
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Md Rakibul Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Md Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | | | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
23
|
Wasilewicz LJ, Gagnon ZE, Jung J, Mercier AJ. Investigating postsynaptic effects of a Drosophila neuropeptide on muscle contraction. J Neurophysiol 2024; 131:137-151. [PMID: 38150542 DOI: 10.1152/jn.00246.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/20/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023] Open
Abstract
The Drosophila neuropeptide, DPKQDFMRFamide, was previously shown to enhance excitatory junctional potentials (EJPs) and muscle contraction by both presynaptic and postsynaptic actions. Since the peptide acts on both sides of the synaptic cleft, it has been difficult to examine postsynaptic modulatory mechanisms, particularly when contractions are elicited by nerve stimulation. Here, postsynaptic actions are examined in 3rd instar larvae by applying peptide and the excitatory neurotransmitter, l-glutamate, in the bathing solution to elicit contractions after silencing motor output by removing the central nervous system (CNS). DPKQDFMRFamide enhanced glutamate-evoked contractions at low concentrations (EC50 1.3 nM), consistent with its role as a neurohormone, and the combined effect of both substances was supra-additive. Glutamate-evoked contractions were also enhanced when transmitter release was blocked in temperature-sensitive (Shibire) mutants, confirming the peptide's postsynaptic action. The peptide increased membrane depolarization in muscle when co-applied with glutamate, and its effects were blocked by nifedipine, an L-type channel blocker, indicating effects at the plasma membrane involving calcium influx. DPKQDFMRFamide also enhanced contractions induced by caffeine in the absence of extracellular calcium, suggesting increased calcium release from the sarcoplasmic reticulum (SR) or effects downstream of calcium release from the SR. The peptide's effects do not appear to involve calcium/calmodulin-dependent protein kinase II (CaMKII), previously shown to mediate presynaptic effects. The approach used here might be useful for examining postsynaptic effects of neurohormones and cotransmitters in other systems.NEW & NOTEWORTHY Distinguishing presynaptic and postsynaptic effects of neurohormones is a long-standing challenge in many model organisms. Here, postsynaptic actions of DPKQDFMRFamide are demonstrated by assessing its ability to potentiate contractions elicited by direct application of the neurotransmitter, glutamate, when axons are silent and when transmitter release is blocked. The peptide acts at multiple sites to increase contraction, increasing glutamate-induced depolarization at the cell membrane, acting on L-type channels, and acting downstream of calcium release from the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Lucas J Wasilewicz
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Zoe E Gagnon
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - JaeHwan Jung
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - A Joffre Mercier
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
24
|
Choi D, Gonzalez‐Suarez AM, Dumbrava MG, Medlyn M, de Hoyos‐Vega JM, Cichocki F, Miller JS, Ding L, Zhu M, Stybayeva G, Gaspar‐Maia A, Billadeau DD, Ma WW, Revzin A. Microfluidic Organoid Cultures Derived from Pancreatic Cancer Biopsies for Personalized Testing of Chemotherapy and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303088. [PMID: 38018486 PMCID: PMC10837378 DOI: 10.1002/advs.202303088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Patient-derived cancer organoids (PDOs) hold considerable promise for personalizing therapy selection and improving patient outcomes. However, it is challenging to generate PDOs in sufficient numbers to test therapies in standard culture platforms. This challenge is particularly acute for pancreatic ductal adenocarcinoma (PDAC) where most patients are diagnosed at an advanced stage with non-resectable tumors and where patient tissue is in the form of needle biopsies. Here the development and characterization of microfluidic devices for testing therapies using a limited amount of tissue or PDOs available from PDAC biopsies is described. It is demonstrated that microfluidic PDOs are phenotypically and genotypically similar to the gold-standard Matrigel organoids with the advantages of 1) spheroid uniformity, 2) minimal cell number requirement, and 3) not relying on Matrigel. The utility of microfluidic PDOs is proven by testing PDO responses to several chemotherapies, including an inhibitor of glycogen synthase kinase (GSKI). In addition, microfluidic organoid cultures are used to test effectiveness of immunotherapy comprised of NK cells in combination with a novel biologic. In summary, our microfluidic device offers considerable benefits for personalizing oncology based on cancer biopsies and may, in the future, be developed into a companion diagnostic for chemotherapy or immunotherapy treatments.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | | | - Mihai G. Dumbrava
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Michael Medlyn
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | | | - Frank Cichocki
- Department of MedicineUniversity of MinnesotaMinneapolisMN55455USA
| | | | - Li Ding
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Mojun Zhu
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | - Alexandre Gaspar‐Maia
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Daniel D. Billadeau
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Wen Wee Ma
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Alexander Revzin
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| |
Collapse
|
25
|
Font Farre M, Brown D, König M, Killinger BJ, Kaschani F, Kaiser M, Wright AT, Burton J, van der Hoorn RAL. Glutathione Transferase Photoaffinity Labeling Displays GST Induction by Safeners and Pathogen Infection. PLANT & CELL PHYSIOLOGY 2024; 65:128-141. [PMID: 37924215 PMCID: PMC10799724 DOI: 10.1093/pcp/pcad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Glutathione transferases (GSTs) represent a large and diverse enzyme family involved in the detoxification of small molecules by glutathione conjugation in crops, weeds and model plants. In this study, we introduce an easy and quick assay for photoaffinity labeling of GSTs to study GSTs globally in various plant species. The small-molecule probe contains glutathione, a photoreactive group and a minitag for coupling to reporter tags via click chemistry. Under UV irradiation, this probe quickly and robustly labels GSTs in crude protein extracts of different plant species. Purification and mass spectrometry (MS) analysis of labeled proteins from Arabidopsis identified 10 enriched GSTs from the Phi(F) and Tau(U) classes. Photoaffinity labeling of GSTs demonstrated GST induction in wheat seedlings upon treatment with safeners and in Arabidopsis leaves upon infection with avirulent bacteria. Treatment of Arabidopsis with salicylic acid (SA) analog benzothiadiazole (BTH) induces GST labeling independent of NPR1, the master regulator of SA. Six Phi- and Tau-class GSTs that are induced upon BTH treatment were identified, and their labeling was confirmed upon transient overexpression. These data demonstrate that GST photoaffinity labeling is a useful approach to studying GST induction in crude extracts of different plant species upon different types of stress.
Collapse
Affiliation(s)
- Maria Font Farre
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Daniel Brown
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, Oxfordshire OX1 3TA, UK
| | - Maurice König
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Brian J Killinger
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Farnusch Kaschani
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen 45141, Germany
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen 45141, Germany
| | - Aaron T Wright
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
- Department of Biology, Baylor University, Waco, TX 76798, USA
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76706, USA
| | - Jonathan Burton
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, Oxfordshire OX1 3TA, UK
| | | |
Collapse
|
26
|
Fang X, Zhou S. A comparative study of in vitro dose-response estimation under extreme observations. Biom J 2024; 66:e2200092. [PMID: 37068189 DOI: 10.1002/bimj.202200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/30/2022] [Accepted: 02/08/2023] [Indexed: 04/19/2023]
Abstract
Quantifying drug potency, which requires an accurate estimation of dose-response relationship, is essential for drug development in biomedical research and life sciences. However, the standard estimation procedure of the median-effect equation to describe the dose-response curve is vulnerable to extreme observations in common experimental data. To facilitate appropriate statistical inference, many powerful estimation tools have been developed in R, including various dose-response packages based on the nonlinear least squares method with different optimization strategies. Recently, beta regression-based methods have also been introduced in estimation of the median-effect equation. In theory, they can overcome nonnormality, heteroscedasticity, and asymmetry and accommodate flexible robust frameworks and coefficients penalization. To identify a reliable estimation method(s) to estimate dose-response curves even with extreme observations, we conducted a comparative study to review 14 different tools in R and examine their robustness and efficiency via Monte Carlo simulation under a list of comprehensive scenarios. The simulation results demonstrate that penalized beta regression using the mgcv package outperforms other methods in terms of stable, accurate estimation, and reliable uncertainty quantification.
Collapse
Affiliation(s)
- Xinying Fang
- Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Shouhao Zhou
- Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
27
|
Soto-Mercado V, Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. Neuroprotective Effect of Combined Treatment with Epigallocatechin 3-Gallate and Melatonin on Familial Alzheimer's Disease PSEN1 E280A Cerebral Spheroids Derived from Menstrual Mesenchymal Stromal Cells. J Alzheimers Dis 2024; 99:S51-S66. [PMID: 36846998 DOI: 10.3233/jad-220903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Background Familial Alzheimer's disease (FAD) is caused by mutations in one or more of 3 genes known as AβPP, PSEN1, and PSEN2. There are currently no effective therapies for FAD. Hence, novel therapeutics are needed. Objective To analyze the effect of treatment with a combination of epigallocatechin-3-gallate (EGCG) and Melatonin (N-acetyl-5-methoxytryptamine, aMT) in a cerebral spheroid (CS) 3D in vitro model of PSEN 1 E280A FAD. Methods We developed a CS in vitro model based on menstrual stromal cells derived from wild-type (WT) and mutant PSEN1 E280A menstrual blood cultured in Fast-N-Spheres V2 medium. Results Beta-tubulin III, choline acetyltransferase, and GFAP in both WT and mutant CSs spontaneously expressed neuronal and astroglia markers when grown in Fast-N-Spheres V2 medium for 4 or 11 days. Mutant PSEN1 CSs had significantly increased levels of intracellular AβPP fragment peptides and concomitant appearance of oxidized DJ-1 as early as 4 days, and phosphorylated tau, decreased ΔΨm, and increased caspase-3 activity were observed on Day 11. Moreover, mutant CSs were unresponsive to acetylcholine. Treatment with a combination of EGCG and aMT decreased the levels of all typical pathological markers of FAD more efficiently than did EGCG or aMT alone, but aMT failed to restore Ca2+ influx in mutant CSs and decreased the beneficial effect of EGCG on Ca2+ influx in mutant CSs. Conclusion Treatment with a combination of EGCG and aMT can be of high therapeutic value due to the high antioxidant capacity and anti-amyloidogenic effect of both compounds.
Collapse
Affiliation(s)
- Viviana Soto-Mercado
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| |
Collapse
|
28
|
Hendrayana T, Yoana K, Adnyana IK, Sukandar EY. Cucumber ( Cucumis sativus L.) Fruit and Combination with Losartan Attenuate the Elevation of Blood Pressure in Hypertensive Rats Induced by Angiotensin II. J Pharmacopuncture 2023; 26:298-306. [PMID: 38162466 PMCID: PMC10739478 DOI: 10.3831/kpi.2023.26.4.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/18/2023] [Accepted: 09/12/2023] [Indexed: 01/03/2024] Open
Abstract
Objectives Cucumis sativus L. (C. sativus) is vegetable commonly used for managing blood pressure and often consumed in combination with standard antihypertensive therapy, despite lack of scientific evidence supporting their use. Combination of herbs and standard medication could have positive or negative effects. Therefore, this study aimed to evaluate the antihypertensive activity of C. sativus and the combined effect with losartan in the hypertensive rat model induced by angiotensin II. Angiotensin II is a component of the renin-angiotensin-aldosterone system that, upon binding to its receptor, constricts blood vessels leading to elevation of blood pressure. Methods In an antihypertensive study, rats received C. sativus orally at doses of 9, 18, 27, and 36 mg/kg (full dose); while in a combination study, animals received losartan 2.25 mg/kg combined by either with C. sativus 9 or 18 mg/kg. The standards group received losartan 2.25 mg/kg or 4.5 mg/kg (full dose). Results Blood pressure was measured using the tail-cuff method. C. sativus significantly attenuated angiotensin II-induced hypertension as observed in groups receiving C. sativus at 9, 18, 27, and 36 mg/kg at 30 minutes after induction showed the average change (Δ) of systolic blood pressure (SBP) and diastolic blood pressure (DBP) with respect to time zero were 28.8/18.3, 24.8/15.8, 22.8/15.5, and 11.5/9.0 mmHg, respectively. Whereas the average change (Δ) of SBP and DBP in the rats receiving the combination of half doses of C. sativus and losartan were 8.8/9.0 mmHg, respectively. These diminished effects were better than a full dose of C. sativus and comparable with a full dose of losartan (6.5/7.8 mmHg). Conclusion The present findings indicate that C. sativus dose-dependently blocks blood pressure elevation induced by angiotensin II. The combination of half dose of C. sativus and losartan has an additive effect in lowering blood pressure.
Collapse
Affiliation(s)
- Tomi Hendrayana
- Pharmacology and Clinical Pharmacy Research Group, School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Klaudia Yoana
- Pharmacology and Clinical Pharmacy Research Group, School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - I Ketut Adnyana
- Pharmacology and Clinical Pharmacy Research Group, School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | | |
Collapse
|
29
|
Alvarez-Jimenez L, Morales-Palomo F, Moreno-Cabañas A, Ortega JF, Mora-Gonzalez D, Mora-Rodriguez R. Acute Statin Withdrawal Does not Interfere With the Improvements of a Session of Exercise in Postprandial Metabolism. J Clin Endocrinol Metab 2023; 109:80-91. [PMID: 37565392 DOI: 10.1210/clinem/dgad477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The risk for atherogenic plaque formation is high after ingestion of meals in individuals with high blood lipid levels (ie, dyslipidemia). Statins and exercise reduce the rise of blood triglyceride concentrations after a meal, but the effect of their combination is unclear. METHODS In a randomized crossover design, 11 individuals with dyslipidemia and metabolic syndrome treated with statins underwent a mixed-meal (970 ± 111 kcal, 24% fat, and 34% carbohydrate) tolerance test. Plasma lipid concentrations, fat oxidation, glucose, and glycerol kinetics were monitored immediately prior and during the meal test. Trials were conducted with participants under their habitual statin treatment and 96 hours after blinded statin withdrawal. Trials were duplicated after a prolonged bout of low-intensity exercise (75 minutes at 53 ± 4% maximal oxygen consumption) to study the interactions between exercise and statins. RESULTS Statins reduced postprandial plasma triglycerides from 3.03 ± 0.85 to 2.52 ± 0.86 mmol·L-1 (17%; P = .015) and plasma glycerol concentrations (ie, surrogate of whole-body lipolysis) without reducing plasma free fatty acid concentration or fat oxidation. Prior exercise increased postprandial plasma glycerol levels (P = .029) and fat oxidation rates (P = .024). Exercise decreased postprandial plasma insulin levels (241 ± 116 vs 301 ± 172 ρmol·L-1; P = .026) but not enough to increase insulin sensitivity (P = .614). Neither statins nor exercise affected plasma glucose appearance rates from exogenous or endogenous sources. CONCLUSIONS In dyslipidemic individuals, statins reduce blood triglyceride concentrations after a meal, but without limiting fat oxidation. Statins do not interfere with exercise lowering the postprandial insulin that likely promotes fat oxidation. Last, statins do not restrict the rates of plasma incorporation or oxidation of the ingested glucose.
Collapse
Affiliation(s)
- Laura Alvarez-Jimenez
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, 45004 Toledo, Spain
| | - Felix Morales-Palomo
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, 45004 Toledo, Spain
| | - Alfonso Moreno-Cabañas
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, 45004 Toledo, Spain
| | - Juan F Ortega
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, 45004 Toledo, Spain
| | - Diego Mora-Gonzalez
- Department of Nursing, Physiotherapy, and Occupational Therapy, University of Castilla-La Mancha, 45004 Toledo, Spain
| | - Ricardo Mora-Rodriguez
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, 45004 Toledo, Spain
| |
Collapse
|
30
|
Angrish N, Lalwani N, Khare G. In silico virtual screening for the identification of novel inhibitors against dihydrodipicolinate reductase (DapB) of Mycobacterium tuberculosis, a key enzyme of diaminopimelate pathway. Microbiol Spectr 2023; 11:e0135923. [PMID: 37855602 PMCID: PMC10714930 DOI: 10.1128/spectrum.01359-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/02/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Non-compliance to lengthy antituberculosis (TB) treatment regimen, associated side effects, and emergence of drug-resistant strains of Mycobacterium tuberculosis (M. tb) emphasize the need to develop more effective anti-TB drugs. Here, we have evaluated the role of M. tb dihydrodipicolinate reductase (DapB), a component of the diaminopimelate pathway, which is involved in the biosynthesis of both lysine and mycobacterial cell wall. We showed that DapB is essential for the in vitro as well as intracellular growth of M. tb. We further utilized M. tb DapB, as a target for identification of inhibitors by employing in silico virtual screening, and conducted various in vitro screening assays to identify inhibitors with potential to inhibit DapB activity and in vitro and intracellular growth of M. tb with no significant cytotoxicity against various mammalian cell lines. Altogether, M. tb DapB serves as an important drug target and a hit molecule, namely, 4-(3-Phenylazoquinoxalin-2-yl) butanoic acid methyl ester has been identified as an antimycobacterial molecule in our study.
Collapse
Affiliation(s)
- Nupur Angrish
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Neha Lalwani
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
31
|
Fu Q, Frick JM, O'Neil MF, Eller OC, Morris EM, Thyfault JP, Christianson JA, Lane RH. Early-life stress perturbs the epigenetics of Cd36 concurrent with adult onset of NAFLD in mice. Pediatr Res 2023; 94:1942-1950. [PMID: 37479748 PMCID: PMC10665193 DOI: 10.1038/s41390-023-02714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 06/15/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases in the U.S. and worldwide. The roles of early postnatal life stress (EPLS) and the fatty acid translocase (CD36) on the pathogenesis of adult-onset NAFLD remain unknown. We hypothesized that EPLS, in the form of neonatal maternal separation (NMS), would predispose mice towards developing adult NAFLD, increase hepatic CD36 expression, and differentially methylate Cd36 promoter concurrently. METHODS NMS was performed on mice from postnatal day 1 to 21 and a high-fat/high-sucrose (HFS) diet was started at 4 weeks of age to generate four experimental groups: Naive-control diet (CD), Naive-HFS, NMS-CD, and NMS-HFS. RESULTS NMS alone caused NAFLD in adult male mice at 25 weeks of age. The effects of NMS and HFS were generally additive in terms of NAFLD, hepatic Cd36 mRNA levels, and hepatic Cd36 promoter DNA hypomethylation. Cd36 promoter methylation negatively correlated with Cd36 mRNA levels. Two differentially methylated regions (DMRs) within Cd36 promoter regions appeared to be vulnerable to NMS in the mouse. CONCLUSIONS Our findings suggest that NMS increases the risk of an individual, particularly male, towards NAFLD when faced with a HFS diet later in life. IMPACT The key message of this article is that neonatal maternal separation and a postweaning high-fat/high-sucrose diet increased the risk of an individual, particularly male, towards NAFLD in adult life. What this study adds to the existing literature includes the identification of two vulnerable differentially methylated regions in hepatic Cd36 promoters whose methylation levels very strongly negatively correlated with Cd36 mRNA. The impact of this article is that it provides an early-life environment-responsive gene/promoter methylation model and an animal model for furthering the mechanistic study on how the insults in early-life environment are "transmitted" into adulthood and caused NAFLD.
Collapse
Affiliation(s)
- Qi Fu
- Department of Research Administration, Children's Mercy Hospital, Kansas City, MO, USA
| | - Jenna M Frick
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Maura F O'Neil
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Olivia C Eller
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - E Matthew Morris
- Department of Molecular and Integrative Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Research Service, Kansas City VA Medical Center, Kansas City, KS, USA
| | - Julie A Christianson
- Department of Anatomy and Cell Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robert H Lane
- Department of Administration, Children's Mercy Hospital, Kansas City, MO, USA.
| |
Collapse
|
32
|
Gevertz JL, Kareva I. Guiding model-driven combination dose selection using multi-objective synergy optimization. CPT Pharmacometrics Syst Pharmacol 2023; 12:1698-1713. [PMID: 37415306 PMCID: PMC10681518 DOI: 10.1002/psp4.12997] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 07/08/2023] Open
Abstract
Despite the growing appreciation that the future of cancer treatment lies in combination therapies, finding the right drugs to combine and the optimal way to combine them remains a nontrivial task. Herein, we introduce the Multi-Objective Optimization of Combination Synergy - Dose Selection (MOOCS-DS) method for using drug synergy as a tool for guiding dose selection for a combination of preselected compounds. This method decouples synergy of potency (SoP) and synergy of efficacy (SoE) and identifies Pareto optimal solutions in a multi-objective synergy space. Using a toy combination therapy model, we explore properties of the MOOCS-DS algorithm, including how optimal dose selection can be influenced by the metric used to define SoP and SoE. We also demonstrate the potential of our approach to guide dose and schedule selection using a model fit to preclinical data of the combination of the PD-1 checkpoint inhibitor pembrolizumab and the anti-angiogenic drug bevacizumab on two lung cancer cell lines. The identification of optimally synergistic combination doses has the potential to inform preclinical experimental design and improve the success rates of combination therapies. Jel classificationDose Finding in Oncology.
Collapse
Affiliation(s)
- Jana L. Gevertz
- Department of Mathematics and StatisticsThe College of New JerseyEwingNew JerseyUSA
| | - Irina Kareva
- Quantitative Pharmacology Department, EMD SeronoMerck KGaABillericaMassachusettsUSA
| |
Collapse
|
33
|
Townsend JR, Kirby TO, Sapp PA, Gonzalez AM, Marshall TM, Esposito R. Nutrient synergy: definition, evidence, and future directions. Front Nutr 2023; 10:1279925. [PMID: 37899823 PMCID: PMC10600480 DOI: 10.3389/fnut.2023.1279925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Nutrient synergy refers to the concept that the combined effects of two or more nutrients working together have a greater physiological impact on the body than when each nutrient is consumed individually. While nutrition science traditionally focuses on isolating single nutrients to study their effects, it is recognized that nutrients interact in complex ways, and their combined consumption can lead to additive effects. Additionally, the Dietary Reference Intakes (DRIs) provide guidelines to prevent nutrient deficiencies and excessive intake but are not designed to assess the potential synergistic effects of consuming nutrients together. Even the term synergy is often applied in different manners depending on the scientific discipline. Considering these issues, the aim of this narrative review is to investigate the potential health benefits of consuming different nutrients and nutrient supplements in combination, a concept we define as nutrient synergy, which has gained considerable attention for its impact on overall well-being. We will examine how nutrient synergy affects major bodily systems, influencing systemic health. Additionally, we will address the challenges associated with promoting and conducting research on this topic, while proposing potential solutions to enhance the quality and quantity of scientific literature on nutrient synergy.
Collapse
Affiliation(s)
- Jeremy R. Townsend
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV, United States
- Health & Human Performance, Concordia University Chicago, River Forest, IL, United States
| | - Trevor O. Kirby
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV, United States
| | - Philip A. Sapp
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV, United States
| | - Adam M. Gonzalez
- Department of Allied Health and Kinesiology, Hofstra University, Hempstead, NY, United States
| | - Tess M. Marshall
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV, United States
| | - Ralph Esposito
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV, United States
- Department of Nutrition, Food Studies, and Public Health, New York University-Steinhardt, New York, NY, United States
| |
Collapse
|
34
|
Zashikhina N, Gandalipov E, Dzhuzha A, Korzhikov-Vlakh V, Korzhikova-Vlakh E. Dual drug loaded polypeptide delivery systems for cancer therapy. J Microencapsul 2023:1-19. [PMID: 37824702 DOI: 10.1080/02652048.2023.2270064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The present study was aimed to prepare and examine in vitro novel dual-drug loaded delivery systems. Biodegradable nanoparticles based on poly(L-glutamic acid-co-D-phenylalanine) were used as nanocarriers for encapsulation of two drugs from the paclitaxel, irinotecan, and doxorubicin series. The developed delivery systems were characterised with hydrodynamic diameters less than 300 nm (PDI < 0.3). High encapsulation efficiencies (≥75%) were achieved for all single- and dual-drug formulations. The release studies showed faster release at acidic pH, with the release rate decreasing over time. The release patterns of the co-encapsulated forms of substances differed from those of the separately encapsulated drugs, suggesting differences in drug-polymer interactions. The joint action of encapsulated drugs was analysed using the colon cancer cells, both for the dual-drug delivery sytems and a mixture of single-drug formulations. The encapsulated forms of the drug combinations demonstrated comparable efficacy to the free forms, with the encapsulation enhancing solubility of the hydrophobic drug paclitaxel.
Collapse
Affiliation(s)
- Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - Erik Gandalipov
- International Institute of Solution Chemistry and Advanced Materials Technologies, ITMO University, St. Petersburg, Russia
| | - Apollinariia Dzhuzha
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | - Viktor Korzhikov-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
35
|
Moreno-Cabañas A, Morales-Palomo F, Alvarez-Jimenez L, Mora-Gonzalez D, Ortega JF, Mora-Rodriguez R. Metformin and exercise effects on postprandial insulin sensitivity and glucose kinetics in pre-diabetic and diabetic adults. Am J Physiol Endocrinol Metab 2023; 325:E310-E324. [PMID: 37584610 DOI: 10.1152/ajpendo.00118.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
The potential interaction between metformin and exercise on glucose-lowering effects remains controversial. We studied the separated and combined effects of metformin and/or exercise on fasting and postprandial insulin sensitivity in individuals with pre-diabetes and type 2 diabetes (T2D). Eight T2D adults (60 ± 4 yr) with overweight/obesity (32 ± 4 kg·m-2) under chronic metformin treatment (9 ± 6 yr; 1281 ± 524 mg·day-1) underwent four trials; 1) taking their habitual metformin treatment (MET), 2) substituting during 96 h their metformin medication by placebo (PLAC), 3) placebo combined with 50 min bout of high-intensity interval exercise (PLAC + EX), and 4) metformin combined with exercise (MET + EX). Plasma glucose kinetics using stable isotopes (6,6-2H2 and [U-13C] glucose), and glucose oxidation by indirect calorimetry, were assessed at rest, during exercise, and in a subsequent oral glucose tolerance test (OGTT). Postprandial glucose and insulin concentrations were analyzed as mean and incremental area under the curve (iAUC), and insulin sensitivity was calculated (i.e., MATSUDAindex and OGISindex). During OGTT, metformin reduced glucose iAUC (i.e., MET and MET + EX lower than PLAC and PLAC + EX, respectively; P = 0.023). MET + EX increased MATSUDAindex above PLAC (4.8 ± 1.4 vs. 3.3 ± 1.0, respectively; P = 0.018) and OGISindex above PLAC (358 ± 52 vs. 306 ± 46 mL·min-1·m-2, respectively; P = 0.006). Metformin decreased the plasma appearance of the ingested glucose (Ra OGTT; MET vs. PLAC, -3.5; 95% CI -0.1 to -6.8 µmol·kg-1·min-1; P = 0.043). Metformin combined with exercise potentiates insulin sensitivity during an OGTT in individuals with pre-diabetes and type 2 diabetes. Metformin's blood glucose-lowering effect seems mediated by decreased oral glucose entering the circulation (gut-liver effect) an effect partially blunted after exercise.NEW & NOTEWORTHY Metformin is the most prescribed oral antidiabetic medicine in the world but its mechanism of action and its interactions with exercise are not fully understood. Our stable isotope tracer data suggested that metformin reduces the rates of oral glucose entering the circulation (gut-liver effect). Exercise, in turn, tended to reduce postprandial insulin blood levels potentiating metformin improvements in insulin sensitivity. Thus, exercise potentiates metformin improvements in glycemic control and should be advised to metformin users.
Collapse
Affiliation(s)
- Alfonso Moreno-Cabañas
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
- Center for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| | - Felix Morales-Palomo
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
| | | | - Diego Mora-Gonzalez
- Department of Nursing, Physiotherapy, and Occupational Therapy, University of Castilla-La Mancha, Toledo, Spain
| | - Juan Fernando Ortega
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
| | | |
Collapse
|
36
|
Ivanova N, Ermenlieva N, Simeonova L, Kolev I, Slavov I, Karashanova D, Andonova V. Chlorhexidine-Silver Nanoparticle Conjugation Leading to Antimicrobial Synergism but Enhanced Cytotoxicity. Pharmaceutics 2023; 15:2298. [PMID: 37765267 PMCID: PMC10536778 DOI: 10.3390/pharmaceutics15092298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
This study explored the potential synergism within chlorhexidine-silver nanoparticle conjugates against Influenza type A, Staphylococcus aureus, Escherichia coli, and Candida albicans. Silver nanoparticles (SN) were obtained by the reduction of silver ions with green tea total phenolic extract and conjugated with chlorhexidine (Cx). The particles were characterized by UV-Vis and FTIR spectroscopies, dynamic light scattering, X-ray diffraction, and transmission electron microscopy. A stable negatively charged nano-silver colloid (ζ = -50.01) was obtained with an average hydrodynamic diameter of 92.34 nm. In the presence of chlorhexidine, the spectral data and the shift of the zeta potential to positive values (ζ = +44.59) revealed the successful sorption of the drug onto the silver surface. The conjugates (SN-Cx) demonstrated potentiation in their effects against S. aureus and C. albicans and synergism against E. coli with minimal inhibitory concentrations of SN at 5.5 µg/mL + Cx 8.8 µg/mL. The SN showed excellent virucidal properties, increasing with time, and demonstrated low toxicity. However, the coupling of the cationic chlorhexidine with nano-silver did not reduce its intrinsic cytotoxicity on various cell lines (MDCK, BJ, and A549). The newly synthesized antimicrobial agent exhibited an extended and promising therapeutic spectrum and needs to be further evaluated regarding the designated route of administration in three-dimensional cell models (e.g., nasal, bronchial, dermal, ocular, etc.).
Collapse
Affiliation(s)
- Nadezhda Ivanova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Neli Ermenlieva
- Department of Microbiology and Virology, Faculty of Medicine, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Lora Simeonova
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 G. Bonchev Str., 1113 Sofia, Bulgaria;
| | - Iliyan Kolev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Iliya Slavov
- Department of Biology, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Daniela Karashanova
- Institute of Optical Materials and Technologies “Acad. Jordan Malinowski”, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 109, 1113 Sofia, Bulgaria;
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| |
Collapse
|
37
|
Kalo D, Mendelson P, Komsky-Elbaz A, Voet H, Roth Z. The Effect of Mycotoxins and Their Mixtures on Bovine Spermatozoa Characteristics. Toxins (Basel) 2023; 15:556. [PMID: 37755982 PMCID: PMC10534433 DOI: 10.3390/toxins15090556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
There is growing concern about the effects of mycotoxins on mammalian reproduction. Although the effects of single mycotoxins have been well documented, the impact of their mixtures on spermatozoon quality is less known. Here, frozen-thawed semen (n = 6 bulls) was in-vitro-cultured (2 h) without (control) or with (i) a single mycotoxin [zearalenone (ZEN), ochratoxin A (OTA), toxin 2 (T2), and diacetoxyscirpenol (DAS)] in a dose-response manner; (ii) binary mixtures (OTA + T2, OTA + ZEN, OTA + DAS, ZEN + T2, DAS + T2 and ZEN + DAS); or (iii) ternary mixtures (OTA + DAS + T2, OTA + ZEN + T2, and ZEN + DAS + T2). Then, the spermatozoa quality was characterized according to its plasma- and acrosome-membrane integrity, mitochondrial membrane potential, and oxidation status by a flow cytometer. Exposure to single mycotoxins or binary mixtures did not affect the spermatozoa characteristics. However, exposure to the ternary mixtures, OTA + DAS + T2 and OTA + ZEN + T2, reduced (p < 0.05) the mitochondrial membrane potential relative to the control. In addition, OTA + ZEN + T2 increased (p < 0.05) the proportion of spermatozoa with reactive oxygen species relative to the control. The most suggested interaction effect between the mycotoxins was found to be an additive one. A synergistic interaction, mainly regarding the oxidation status of the spermatozoa, was also found between the mycotoxins. The current study sheds light on the potential risk of exposing spermatozoa to a mycotoxin mixture.
Collapse
Affiliation(s)
- Dorit Kalo
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel
| | - Paz Mendelson
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel
| | - Alisa Komsky-Elbaz
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel
| | - Hillary Voet
- Department of Agricultural Economics and Management, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel
| | - Zvi Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel
| |
Collapse
|
38
|
Cho M, Oh E, Ahn B, Yoon M. Response surface analyses of antihypertensive effects of angiotensin receptor blockers and amlodipine or hydrochlorothiazide combination therapy in patients with essential hypertension. Transl Clin Pharmacol 2023; 31:154-166. [PMID: 37810629 PMCID: PMC10551747 DOI: 10.12793/tcp.2023.31.e15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
While previous studies have examined the dose-response characteristics of certain antihypertensive drugs alone or in combination, response surface analysis for combination therapies involving angiotensin receptor blockers (ARBs) and either amlodipine (AML) or hydrochlorothiazide (HCT) has not been explored, particularly in the context of low-dose combinations. The objectives of present study were to generate useful dose-response information for the combination of ARB/AML or ARB/HCT and to predict the blood pressure lowering effects of combination therapies compared to monotherapies. We reviewed the New Drug Application data of combination drugs of ARB/AML and ARB/HCT. Data on systolic blood pressure (SBP), from studies conducted using a factorial dose-response design over a period of 8-12 weeks, were used. The placebo-subtracted SBP change was used for analysis. Response surface analyses of the collected data were conducted using a polynomial regression model. For ARB/AML combination, the quadratic polynomial regression model containing two linear terms, two quadratic terms, and one interaction term was best fitted to the naïve pooled data. Meanwhile, for ARB/HCT combination, the best-fitted model was a quadratic model that included two linear terms and two quadratic terms. The 1/2-dose combination of these medications, compared to each monotherapy, resulted in predicted SBP reductions that were 8-30% greater. The ratio of the estimated antihypertensive effects of the combination to the expected additive effects of each component ranged from 82% to 100% of the expected effect. These results can provide a rationale for developing lower-dose combinations of ARB/AML or ARB/HCT and assist in designing clinical trials.
Collapse
|
39
|
Christensen C, Rose M, Cornett C, Allesø M. Decoding the Postulated Entourage Effect of Medicinal Cannabis: What It Is and What It Isn't. Biomedicines 2023; 11:2323. [PMID: 37626819 PMCID: PMC10452568 DOI: 10.3390/biomedicines11082323] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The 'entourage effect' term was originally coined in a pre-clinical study observing endogenous bio-inactive metabolites potentiating the activity of a bioactive endocannabinoid. As a hypothetical afterthought, this was proposed to hold general relevance to the usage of products based on Cannabis sativa L. The term was later juxtaposed to polypharmacy pertaining to full-spectrum medicinal Cannabis products exerting an overall higher effect than the single compounds. Since the emergence of the term, a discussion of its pharmacological foundation and relevance has been ongoing. Advocates suggest that the 'entourage effect' is the reason many patients experience an overall better effect from full-spectrum products. Critics state that the term is unfounded and used primarily for marketing purposes in the Cannabis industry. This scoping review aims to segregate the primary research claiming as well as disputing the existence of the 'entourage effect' from a pharmacological perspective. The literature on this topic is in its infancy. Existing pre-clinical and clinical studies are in general based on simplistic methodologies and show contradictory findings, with the clinical data mostly relying on anecdotal and real-world evidence. We propose that the 'entourage effect' is explained by traditional pharmacological terms pertaining to other plant-based medicinal products and polypharmacy in general (e.g., synergistic interactions and bioenhancement).
Collapse
Affiliation(s)
- Catalina Christensen
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| | - Martin Rose
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| | - Claus Cornett
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark;
| | - Morten Allesø
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| |
Collapse
|
40
|
Ratti A, Fassi EMA, Forlani F, Zangrossi M, Mori M, Cappitelli F, Roda G, Villa S, Villa F, Grazioso G. Unlocking the Antibiofilm Potential of Natural Compounds by Targeting the NADH:quinone Oxidoreductase WrbA. Antioxidants (Basel) 2023; 12:1612. [PMID: 37627607 PMCID: PMC10451263 DOI: 10.3390/antiox12081612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilm-dwelling cells endure adverse conditions, including oxidative imbalances. The NADH:quinone oxidoreductase enzyme WrbA has a crucial role in the mechanism of action of antibiofilm molecules such as ellagic and salicylic acids. This study aimed to exploit the potential of the WrbA scaffold as a valuable target for identifying antibiofilm compounds at non-lethal concentrations. A three-dimensional computational model, based on the published WrbA structure, was used to screen natural compounds from a virtual library of 800,000 compounds. Fisetin, morin, purpurogallin, NZ028, and NZ034, along with the reference compound ellagic acid, were selected. The antibiofilm effect of the molecules was tested at non-lethal concentrations evaluating the cell-adhesion of wild-type and WrbA-deprived Escherichia coli strains through fluorochrome-based microplate assays. It was shown that, except for NZ028, all of the selected molecules exhibited notable antibiofilm effects. Purpurogallin and NZ034 showed excellent antibiofilm performances at the lowest concentration of 0.5 μM, in line with ellagic acid. The observed loss of activity and the level of reactive oxygen species in the mutant strain, along with the correlation with terms contributing to the ligand-binding free energy on WrbA, strongly indicates the WrbA-dependency of purpurogallin and NZ034. Overall, the molecular target WrbA was successfully employed to identify active compounds at non-lethal concentrations, thus revealing, for the first time, the antibiofilm efficacy of purpurogallin and NZ034.
Collapse
Affiliation(s)
- Alessandro Ratti
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Enrico M A Fassi
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Fabio Forlani
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Maurizio Zangrossi
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Matteo Mori
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Federica Villa
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Giovanni Grazioso
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
41
|
Thomas M, Tripathi N, Eappen SM, Meena KC, Shrivastava A, Prasad N. Effect of storage age and containers on the physicochemical degradation of guggul oleo-resin. Sci Rep 2023; 13:12821. [PMID: 37550367 PMCID: PMC10406816 DOI: 10.1038/s41598-023-39594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
Guggul is a gum oleo-resin, tapped from a data deficient plant- Commiphora wightii (Arnott.) Bhandari in India. It is extensively used in ayurvedic drugs and formulations since ages. Natural plant-based products; especially aromatic ones like guggul gum oleo-resin deteriorates, qualitatively during its storage and transits before reaching the industry for its value addition. This economical and ecological loss can be avoided if it is stored in proper containers. Physico-chemical degradation of guggul samples stored were analysed by scanned electron microscopy, fourier transformed infra red, thermogravimatric, Powdered X-ray diffraction and elemental analysis for carbon, hydrogen, nitrogen and sulphur. Physico-chemical degradation of guggul oleo-resin occurs with the age of storage and the type of storage containers used. Among the four storage containers (earthen pot, plastic jar, polythene bag, jute bag) evaluated, earthen pot was found to be the best in checking the qualitative loss of guggul even upto 24 months. The qualitative information generated in the study on guggul storage may be useful to the drug industry and guggul traders. It may encourage them practice storing guggul in earthen pots against current practice of using jute bags and polythene bags, to store it.
Collapse
Affiliation(s)
- Moni Thomas
- Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, 482004, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, 482004, India.
| | - Shibu M Eappen
- Sophisticated Test and Instrumentation Centre, Cochin University of Science and Technology, Ernakulam, 682022, India
| | - Kailash C Meena
- Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, 482004, India
| | - Atul Shrivastava
- Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, 482004, India
| | - Niranjan Prasad
- Indian Institute of Natural Resins and Gums, Namkum, Ranchi, 834010, India
| |
Collapse
|
42
|
Kaiser KG, Delattre V, Frost VJ, Buck GW, Phu JV, Fernandez TG, Pavel IE. Nanosilver: An Old Antibacterial Agent with Great Promise in the Fight against Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1264. [PMID: 37627684 PMCID: PMC10451389 DOI: 10.3390/antibiotics12081264] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance in bacteria is a major problem worldwide that costs 55 billion USD annually for extended hospitalization, resource utilization, and additional treatment expenditures in the United States. This review examines the roles and forms of silver (e.g., bulk Ag, silver salts (AgNO3), and colloidal Ag) from antiquity to the present, and its eventual incorporation as silver nanoparticles (AgNPs) in numerous antibacterial consumer products and biomedical applications. The AgNP fabrication methods, physicochemical properties, and antibacterial mechanisms in Gram-positive and Gram-negative bacterial models are covered. The emphasis is on the problematic ESKAPE pathogens and the antibiotic-resistant pathogens of the greatest human health concern according to the World Health Organization. This review delineates the differences between each bacterial model, the role of the physicochemical properties of AgNPs in the interaction with pathogens, and the subsequent damage of AgNPs and Ag+ released by AgNPs on structural cellular components. In closing, the processes of antibiotic resistance attainment and how novel AgNP-antibiotic conjugates may synergistically reduce the growth of antibiotic-resistant pathogens are presented in light of promising examples, where antibiotic efficacy alone is decreased.
Collapse
Affiliation(s)
- Kyra G. Kaiser
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Victoire Delattre
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Victoria J. Frost
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Gregory W. Buck
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Julianne V. Phu
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Timea G. Fernandez
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Ioana E. Pavel
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
43
|
Bijak V, Szczygiel M, Lenkiewicz J, Gucwa M, Cooper DR, Murzyn K, Minor W. The current role and evolution of X-ray crystallography in drug discovery and development. Expert Opin Drug Discov 2023; 18:1221-1230. [PMID: 37592849 PMCID: PMC10620067 DOI: 10.1080/17460441.2023.2246881] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION Macromolecular X-ray crystallography and cryo-EM are currently the primary techniques used to determine the three-dimensional structures of proteins, nucleic acids, and viruses. Structural information has been critical to drug discovery and structural bioinformatics. The integration of artificial intelligence (AI) into X-ray crystallography has shown great promise in automating and accelerating the analysis of complex structural data, further improving the efficiency and accuracy of structure determination. AREAS COVERED This review explores the relationship between X-ray crystallography and other modern structural determination methods. It examines the integration of data acquired from diverse biochemical and biophysical techniques with those derived from structural biology. Additionally, the paper offers insights into the influence of AI on X-ray crystallography, emphasizing how integrating AI with experimental approaches can revolutionize our comprehension of biological processes and interactions. EXPERT OPINION Investing in science is crucially emphasized due to its significant role in drug discovery and advancements in healthcare. X-ray crystallography remains an essential source of structural biology data for drug discovery. Recent advances in biochemical, spectroscopic, and bioinformatic methods, along with the integration of AI techniques, hold the potential to revolutionize drug discovery when effectively combined with robust data management practices.
Collapse
Affiliation(s)
- Vanessa Bijak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| | - Michal Szczygiel
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Joanna Lenkiewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| | - Michal Gucwa
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - David R. Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| |
Collapse
|
44
|
Gach J, Grzelczyk J, Strzała T, Boratyński F, Olejniczak T. Microbial Metabolites of 3- n-butylphthalide as Monoamine Oxidase A Inhibitors. Int J Mol Sci 2023; 24:10605. [PMID: 37445788 DOI: 10.3390/ijms241310605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Novel compounds with antidepressant activity via monoamine oxidase inhibition are being sought. Among these, derivatives of 3-n-butylphthalide, a neuroprotective lactone from Apiaceae plants, may be prominent candidates. This study aimed to obtain the oxidation products of 3-n-butylphthalide and screen them regarding their activity against the monoamine oxidase A (MAO-A) isoform. Such activity of these compounds has not been previously tested. To obtain the metabolites, we used fungi as biocatalysts because of their high oxidative capacity. Overall, 37 strains were used, among which Penicillium and Botrytis spp. were the most efficient, leading to the obtaining of three main products: 3-n-butyl-10-hydroxyphthalide, 3-n-butylphthalide-11-oic acid, and 3-n-butyl-11-hydroxyphthalide, with a total yield of 0.38-0.82 g per g of the substrate, depending on the biocatalyst used. The precursor-3-n-butylphthalide and abovementioned metabolites inhibited the MAO-A enzyme; the most active was the carboxylic acid derivative of the lactone with inhibitory constant (Ki) < 0.001 µmol/L. The in silico prediction of the drug-likeness of the metabolites matches the assumptions of Lipinski, Ghose, Veber, Egan, and Muegge. All the compounds are within the optimal range for the lipophilicity value, which is connected to adequate permeability and solubility.
Collapse
Affiliation(s)
- Joanna Gach
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Joanna Grzelczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-924 Łódź, Poland
| | - Tomasz Strzała
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631 Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
45
|
Eo J, Kang J, Youn T, Park HJ. Neuropharmacological computational analysis of longitudinal electroencephalograms in clozapine-treated patients with schizophrenia using hierarchical dynamic causal modeling. Neuroimage 2023; 275:120161. [PMID: 37172662 DOI: 10.1016/j.neuroimage.2023.120161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/15/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
The hierarchical characteristics of the brain are prominent in the pharmacological treatment of psychiatric diseases, primarily targeting cellular receptors that extend upward to intrinsic connectivity within a region, interregional connectivity, and, consequently, clinical observations such as an electroencephalogram (EEG). To understand the long-term effects of neuropharmacological intervention on neurobiological properties at different hierarchical levels, we explored long-term changes in neurobiological parameters of an N-methyl-D-aspartate canonical microcircuit model (CMM-NMDA) in the default mode network (DMN) and auditory hallucination network (AHN) using dynamic causal modeling of longitudinal EEG in clozapine-treated patients with schizophrenia. The neurobiological properties of the CMM-NMDA model associated with symptom improvement in schizophrenia were found across hierarchical levels, from a reduced membrane capacity of the deep pyramidal cell and intrinsic connectivity with the inhibitory population in DMN and intrinsic and extrinsic connectivity in AHN. The medication duration mainly affects the intrinsic connectivity and NMDA time constant in DMN. Virtual perturbation analysis specified the contribution of each parameter to the cross-spectral density (CSD) of the EEG, particularly intrinsic connectivity and membrane capacitances for CSD frequency shifts and progression. It further reveals that excitatory and inhibitory connectivity complements frequency-specific CSD changes, notably the alpha frequency band in DMN. Positive and negative synergistic interactions exist between neurobiological properties primarily within the same region in patients treated with clozapine. The current study shows how computational neuropharmacology helps explore the multiscale link between neurobiological properties and clinical observations and understand the long-term mechanism of neuropharmacological intervention reflected in clinical EEG.
Collapse
Affiliation(s)
- Jinseok Eo
- Graduate School of Medical Science, Brain Korea 21 Project, Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea; Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
| | - Jiyoung Kang
- Department of Scientific Computing, Pukyong National University, Busan, Republic of Korea; Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
| | - Tak Youn
- Department of Psychiatry and Electroconvulsive Therapy Center, Dongguk University International Hospital, Goyang, Republic of Korea; Institute of Buddhism and Medicine, Dongguk University, Seoul, Republic of Korea
| | - Hae-Jeong Park
- Graduate School of Medical Science, Brain Korea 21 Project, Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea; Center for Systems and Translational Brain Science, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea; Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Lin-Rahardja K, Weaver DT, Scarborough JA, Scott JG. Evolution-Informed Strategies for Combating Drug Resistance in Cancer. Int J Mol Sci 2023; 24:6738. [PMID: 37047714 PMCID: PMC10095117 DOI: 10.3390/ijms24076738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
The ever-changing nature of cancer poses the most difficult challenge oncologists face today. Cancer's remarkable adaptability has inspired many to work toward understanding the evolutionary dynamics that underlie this disease in hopes of learning new ways to fight it. Eco-evolutionary dynamics of a tumor are not accounted for in most standard treatment regimens, but exploiting them would help us combat treatment-resistant effectively. Here, we outline several notable efforts to exploit these dynamics and circumvent drug resistance in cancer.
Collapse
Affiliation(s)
- Kristi Lin-Rahardja
- Systems Biology & Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Davis T. Weaver
- Systems Biology & Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jessica A. Scarborough
- Systems Biology & Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jacob G. Scott
- Systems Biology & Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Translational Hematology & Oncology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44106, USA
| |
Collapse
|
47
|
Dhanda G, Acharya Y, Haldar J. Antibiotic Adjuvants: A Versatile Approach to Combat Antibiotic Resistance. ACS OMEGA 2023; 8:10757-10783. [PMID: 37008128 PMCID: PMC10061514 DOI: 10.1021/acsomega.3c00312] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 06/13/2023]
Abstract
The problem of antibiotic resistance is on the rise, with multidrug-resistant strains emerging even to the last resort antibiotics. The drug discovery process is often stalled by stringent cut-offs required for effective drug design. In such a scenario, it is prudent to delve into the varying mechanisms of resistance to existing antibiotics and target them to improve antibiotic efficacy. Nonantibiotic compounds called antibiotic adjuvants which target bacterial resistance can be used in combination with obsolete drugs for an improved therapeutic regime. The field of "antibiotic adjuvants" has gained significant traction in recent years where mechanisms other than β-lactamase inhibition have been explored. This review discusses the multitude of acquired and inherent resistance mechanisms employed by bacteria to resist antibiotic action. The major focus of this review is how to target these resistance mechanisms by the use of antibiotic adjuvants. Different types of direct acting and indirect resistance breakers are discussed including enzyme inhibitors, efflux pump inhibitors, inhibitors of teichoic acid synthesis, and other cellular processes. The multifaceted class of membrane-targeting compounds with poly pharmacological effects and the potential of host immune-modulating compounds have also been reviewed. We conclude with providing insights about the existing challenges preventing clinical translation of different classes of adjuvants, especially membrane-perturbing compounds, and a framework about the possible directions which can be pursued to fill this gap. Antibiotic-adjuvant combinatorial therapy indeed has immense potential to be used as an upcoming orthogonal strategy to conventional antibiotic discovery.
Collapse
Affiliation(s)
- Geetika Dhanda
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Yash Acharya
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
48
|
Abuladze M, Asatiani N, Kartvelishvili T, Krivonos D, Popova N, Safonov A, Sapojnikova N, Yushin N, Zinicovscaia I. Adaptive Mechanisms of Shewanella xiamenensis DCB 2-1 Metallophilicity. TOXICS 2023; 11:304. [PMID: 37112530 PMCID: PMC10142276 DOI: 10.3390/toxics11040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The dose-dependent effects of single metals (Zn, Ni, and Cu) and their combinations at steady time-actions on the cell viability of the bacteria Shewanella xiamenensis DCB 2-1, isolated from a radionuclide-contaminated area, have been estimated. The accumulation of metals by Shewanella xiamenensis DCB 2-1 in single and multi-metal systems was assessed using the inductively coupled plasma atomic emission spectroscopy. To estimate the response of the bacteria's antioxidant defense system, doses of 20 and 50 mg/L of single studied metals and 20 mg/L of each metal in their combinations (non-toxic doses, determined by the colony-forming viability assay) were used. Emphasis was given to catalase and superoxide dismutase since they form the primary line of defense against heavy metal action and their regulatory circuit of activity is crucial. The effect of metal ions on total thiol content, an indicator of cellular redox homeostasis, in bacterial cells was evaluated. Genome sequencing of Shewanella xiamenensis DCB 2-1 reveals genes responsible for heavy metal tolerance and detoxification, thereby improving understanding of the potential of the bacterial strain for bioremediation.
Collapse
Affiliation(s)
- Marina Abuladze
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., 0162 Tbilisi, Georgia; (M.A.); (N.A.); (T.K.)
| | - Nino Asatiani
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., 0162 Tbilisi, Georgia; (M.A.); (N.A.); (T.K.)
| | - Tamar Kartvelishvili
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., 0162 Tbilisi, Georgia; (M.A.); (N.A.); (T.K.)
| | - Danil Krivonos
- Research Institute for Systems Biology and Medicine (RISBM), 18, Nauchniy Proezd, 117246 Moscow, Russia
- Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology, State University, 141700 Dolgoprudny, Russia
| | - Nadezhda Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31, Leninsky Ave., 199071 Moscow, Russia; (N.P.); (A.S.)
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31, Leninsky Ave., 199071 Moscow, Russia; (N.P.); (A.S.)
| | - Nelly Sapojnikova
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., 0162 Tbilisi, Georgia; (M.A.); (N.A.); (T.K.)
| | - Nikita Yushin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia; (N.Y.); (I.Z.)
| | - Inga Zinicovscaia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Russia; (N.Y.); (I.Z.)
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str. MG-6, 077125 Bucharest, Romania
- The Institute of Chemistry, 3 Academiei Str., 2028 Chisinau, Moldova
| |
Collapse
|
49
|
Pearson RA, Wicha SG, Okour M. Drug Combination Modeling: Methods and Applications in Drug Development. J Clin Pharmacol 2023; 63:151-165. [PMID: 36088583 DOI: 10.1002/jcph.2128] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/22/2022] [Indexed: 01/18/2023]
Abstract
Combination therapies have become increasingly researched and used in the treatment and management of complex diseases due to their ability to increase the chances for better efficacy and decreased toxicity. To evaluate drug combinations in drug development, pharmacokinetic and pharmacodynamic interactions between drugs in combination can be quantified using mathematical models; however, it can be difficult to deduce which models to use and how to use them to aid in clinical trial simulations to simulate the effect of a drug combination. This review paper aims to provide an overview of the various methods used to evaluate combination drug interaction for use in clinical trial development and a practical guideline on how combination modeling can be used in the settings of clinical trials.
Collapse
Affiliation(s)
- Rachael A Pearson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Malek Okour
- Clinical Pharmacology Modeling and Simulation (CPMS), GlaxoSmithKline, Upper Providence, Pennsylvania, USA
| |
Collapse
|
50
|
Artificial Intelligence and Data Mining for the Pharmacovigilance of Drug-Drug Interactions. Clin Ther 2023; 45:117-133. [PMID: 36732152 DOI: 10.1016/j.clinthera.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Despite increasing mechanistic understanding, undetected and underrecognized drug-drug interactions (DDIs) persist. This elusiveness relates to an interwoven complexity of increasing polypharmacy, multiplex mechanistic pathways, and human biological individuality. This persistent elusiveness motivates development of artificial intelligence (AI)-based approaches to enhancing DDI detection and prediction capabilities. The literature is vast and roughly divided into "prediction" and "detection." The former relatively emphasizes biological and chemical knowledge bases, drug development, new drugs, and beneficial interactions, whereas the latter utilizes more traditional sources such as spontaneous reports, claims data, and electronic health records to detect novel adverse DDIs with authorized drugs. However, it is not a bright line, either nominally or in practice, and both are in scope for pharmacovigilance supporting signal detection but also signal refinement and evaluation, by providing data-based mechanistic arguments for/against DDI signals. The wide array of intricate and elegant methods has expanded the pharmacovigilance tool kit. How much they add to real prospective pharmacovigilance, reduce the public health impact of DDIs, and at what cost in terms of false alarms amplified by automation bias and its sequelae are open questions. (Clin Ther. 2023;45:XXX-XXX) © 2023 Elsevier HS Journals, Inc.
Collapse
|