1
|
Prideaux EB, Boyle DL, Choi E, Buckner JH, Robinson WH, Holers VM, Deane KD, Firestein GS, Wang W. Epigenetic trajectory predicts development of clinical rheumatoid arthritis in ACPA+ individuals: Targeting Immune Responses for Prevention of Rheumatoid Arthritis (TIP-RA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618490. [PMID: 39463978 PMCID: PMC11507690 DOI: 10.1101/2024.10.15.618490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Objective The presence of autoantibodies to citrullinated protein antigens (ACPAs) in the absence of clinically-apparent inflammatory arthritis (IA) identifies individuals "at-risk" for developing future clinical rheumatoid arthritis (RA). However, it is unclear why some ACPA+ individuals convert to clinical RA while others do not. We explored the possibility in the Targeting Immune Responses for Prevention of Rheumatoid Arthritis (TIP-RA) study that epigenetic remodeling is part of the trajectory from an at-risk state to clinical disease and identifies novel biomarkers associated with conversion to clinical RA. Methods ACPA-Controls, ACPA+ At-Risk, and Early RA individuals were followed for up to 5 years, including obtaining blood samples annually and at RA diagnosis. Peripheral blood mononuclear cells (PBMCs) were separated into CD19+ B cells, memory CD4+ T cells, and naïve CD4+ T cells using antibodies and magnetic beads. Genome-wide methylation within each cell lineage was assayed using the Illumina MethylationEPIC v1.0 beadchip. ACPA+ At-Risk participants who did or did not develop RA were designated "Pre-RA" or "Non-converters", respectively.Differentially methylated loci (DML) were selected using the Limma software package. Using the Caret package, we constructed machine learning models in test and validation cohorts and identified the most predictive loci of clinical RA conversion. Results Cross-sectional differential methylation analysis at baseline revealed DMLs that distinguish the Pre-RA methylome from ACPA+ Non-converters, the latter which closely resembled ACPA-Controls. Genes overlapping these DMLs correspond to aberrant NOTCH signaling and DNA repair pathways in B cells. Longitudinal analysis showed that ACPA-Control and ACPA+ Non-converter methylomes are relatively constant. In contrast, the Pre-RA methylome remodeled along a dynamic "RA methylome trajectory" characterized by epigenetic changes in active regulatory elements. Clinical conversion to RA, defined based on diagnosis, marked an epigenetic inflection point for cell cycle pathways in B cells and adaptive immunity pathways in naïve T cells. Machine learning revealed individual loci associated with RA conversion. This model significantly outperformed autoantibodies plus acute phase reactants as predictors of RA conversion. Conclusion DNA methylation is a dynamic process in ACPA+ individuals at-risk for developing RA that eventually transition to clinical disease. In contrast, non-converters and controls have stable methylomes. The accumulation of epigenetic marks over time prior to conversion to clinical RA conforms to pathways that are associated with immunity and can be used to identify potential pathogenic pathways for therapeutic targeting and/or use as prognostic biomarkers.
Collapse
|
2
|
Iwamoto N, Sato S, Furukawa K, Michitsuji T, Shiraishi K, Watanabe K, Chiba K, Osaki M, Kawakami A. Association of denosumab with serum cytokines, chemokines, and bone-related factors in patients with rheumatoid arthritis: A post hoc analysis of a multicentre, open-label, randomised, parallel-group study. Mod Rheumatol 2024; 34:936-946. [PMID: 38226481 DOI: 10.1093/mr/roae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVES To clarify changes in serum cytokines, chemokines, and bone-related factors during denosumab treatment in rheumatoid arthritis (RA) patients. METHODS This was a post hoc analysis of a multicentre, open-label, randomised, parallel-group study. Patients were randomly assigned to continue treatment with conventional synthetic disease-modifying anti-rheumatic drugs (csDMARDs) plus receive treatment with denosumab (csDMARDs plus denosumab group) or to continue treatment with csDMARD therapy alone for 12 months. Serum biomarker levels were measured at baseline and at 6 and 12 months. RESULTS Baseline and 6-month data from the csDMARDs plus denosumab (n = 22) and csDMARD therapy alone (n = 22) groups were analysed. Statistically significant changes from baseline were seen: Dickkopf-related protein 1 decreased at 6 and 12 months (both groups); osteopontin decreased at 6 months in the csDMARDs plus denosumab group; osteopontin and soluble CD40 ligand increased at 6 and 12 months in the csDMARD therapy alone group; osteocalcin decreased at 6 and 12 months, epidermal growth factor decreased at 12 months, and macrophage-derived chemokine decreased at 6 months in the csDMARDs plus denosumab group; and interferon gamma-induced protein-10 increased at 12 months in the csDMARD therapy alone group. CONCLUSIONS Denosumab may inhibit bone destruction by suppressing bone-related factors/chemokines.
Collapse
Affiliation(s)
- Naoki Iwamoto
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Kaori Furukawa
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toru Michitsuji
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuteru Shiraishi
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kounosuke Watanabe
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
3
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
4
|
Szeremeta A, Jura-Półtorak A, Zoń-Giebel A, Olczyk K, Komosińska-Vassev K. Plasma Sclerostin Levels in Rheumatoid Arthritis Women on TNF-α Inhibitor Therapy. Pharmaceuticals (Basel) 2024; 17:666. [PMID: 38931334 PMCID: PMC11206420 DOI: 10.3390/ph17060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is associated with significant systemic and local bone loss. The aim of this study was to assess whether or not 15-month tumor necrosis factor α inhibitor (TNFαI) therapy in combination with methotrexate (MTX) affects circulating levels of sclerostin (SOST) in female RA patients. Plasma levels of SOST were measured using immunoassays kits. Baseline SOST levels showed no significant differences between RA patients and control participants. Postmenopausal women with RA tended to have higher sclerostin levels than premenopausal woman with RA. After 15 months of treatment with TNFαI, plasma levels of SOST were decreased. Before starting biological therapy, circulating levels of SOST significantly correlated with the patient's age (p < 0.05) and the marker of inflammation, such as ESR (p < 0.05). Multivariate regression analysis showed that age was the only significant predictor for baseline SOST levels in women with RA (β = 0.008, p = 0.028, R2 model = 0.293). Moreover, a positive correlation between SOST levels and the 28 joint disease activity score value based on the erythrocyte sedimentation rate (DAS28-ESR) was found at baseline (p < 0.05), as well as after 15 months of biological therapy (p < 0.05). Thus, plasma SOST levels may be helpful for monitoring the efficacy of TNFαI treatment in RA patients. According to our results, TNFαI, in combination with MTX, has a beneficial effect on bone turnover with a significant reduction in bone metabolism marker SOST.
Collapse
Affiliation(s)
- Anna Szeremeta
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (K.O.); (K.K.-V.)
| | - Agnieszka Jura-Półtorak
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (K.O.); (K.K.-V.)
| | - Aleksandra Zoń-Giebel
- Department of Rheumatology and Rehabilitation, Specialty Hospital No. 1, Żeromskiego 7, 41-902 Bytom, Poland;
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (K.O.); (K.K.-V.)
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (K.O.); (K.K.-V.)
| |
Collapse
|
5
|
Alghamdi M, Somaily MY, Alemam S, Majadah S, Hassan AAH, Meshary AA, Alasmri SAA, Ali MS, Alsubaie AA, Miskeen E. Prevalence and Comorbidities Among Individuals With Rheumatoid Arthritis in the Saudi Arabian Context. Cureus 2024; 16:e53992. [PMID: 38476794 PMCID: PMC10928459 DOI: 10.7759/cureus.53992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) in Saudi Arabia (SA) is a significant health concern with a notable impact on individuals and the healthcare system. This study aimed to investigate the prevalence and profile of comorbidities in patients with RA. METHODOLOGY This is a retrospective descriptive study involving 150 RA patients from August 2022 to August 2023, which was conducted at Khamis Mushait General Hospital, a major healthcare institution in SA. We examined the medical records to gather pertinent information. Stata Statistical Software: Release 18 (2023; StataCorp LLC, College Station, Texas, United States) was used for data analysis. The examination focused on sociodemographic factors, disease duration, prescribed medications (including methotrexate and biologic therapy), and the presence of comorbidities. Approval for the study was obtained from the Institutional Review Board of the Aseer Ministry of Health (approval number: H-06-B-091). RESULTS The study found a high prevalence of comorbidities in patients with RA. Around 96.7% of the patients had at least one documented comorbidity, highlighting this population's burden of additional health conditions. The most common comorbidity observed was anemia, affecting 48.7% of the patients. Other frequently observed comorbidities include hypertension, hyperlipidemia, diabetes mellitus, osteoporosis, interstitial lung disease, chronic renal disease, stroke, and coronary artery disease. The factors influencing comorbidities included an odds ratio of 1.086 (p=0.025), while being male was associated with lower odds (odds ratio=0.529, p=0.017). Additionally, disease duration (odds ratio=1.164, p=0.007), methotrexate use (odds ratio=2.553, p=0.001), and receiving biologic therapy (odds ratio=3.488, p<0.001) were significant contributors to comorbidities. CONCLUSION These findings highlight the need for comprehensive approaches to address RA and its associated comorbidities. Research and awareness initiatives are essential to understand better the specific nuances of RA in SA, leading to improved diagnostic and treatment strategies for the needs of the local population.
Collapse
Affiliation(s)
- Mushabab Alghamdi
- Department of Internal Medicine and Rheumatology, College of Medicine, University of Bisha, Bisha, SAU
| | - Mansour Y Somaily
- Department of Medicine, Rheumatology Division, Armed Forces Hospital - Southern Region, Khamis Mushait, SAU
| | - Shahenda Alemam
- Department of Medicine, Rheumatology Division, Khamis Mushait General Hospital, Khamis Mushait, SAU
| | - Saeed Majadah
- Department of Medicine, Rheumatology Division, Khamis Mushait General Hospital, Khamis Mushait, SAU
| | | | | | | | - Munif S Ali
- College of Medicine, King Khalid University, Abha, SAU
| | | | - Elhadi Miskeen
- Department of Obstetrics and Gynecology, College of Medicine, University of Bisha, Bisha, SAU
| |
Collapse
|
6
|
Zhao D, Wu L, Hong M, Zheng S, Wu X, Ye H, Chen F, Zhang D, Liu X, Meng X, Chen X, Chen S, Zhu J, Li J. DKK-1 and Its Influences on Bone Destruction: A Comparative Study in Collagen-Induced Arthritis Mice and Rheumatoid Arthritis Patients. Inflammation 2024; 47:129-144. [PMID: 37688661 DOI: 10.1007/s10753-023-01898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023]
Abstract
Dickkopf-1 (DKK-1) has been considered a master regulator of bone remodeling. As precursors of osteoclasts (OCs), myeloid-derived suppressor cells (MDSCs) were previously shown to participate in the process of bone destruction in rheumatoid arthritis (RA). However, the role of DKK-1 and MDSCs in RA is not yet fully understood. We investigated the relevance between the level of DKK-1 and the expression of MDSCs in different tissues and joint destruction in RA patients and collagen-induced arthritis (CIA) mouse models. Furthermore, the CIA mice were administered recombinant DKK-1 protein. The arthritis scores, bone destruction, and the percentage of MDSCs in the peripheral blood and spleen were monitored. In vitro, the differentiation of MDSCs into OCs was intervened with recombinant protein and inhibitor of DKK-1. The number of OCs differentiated and the protein expression of the Wnt/β-catenin signaling pathway were explored. The level of DKK-1 positively correlates with the frequency of MDSCs and bone erosion in RA patients and CIA mice. Strikingly, recombinant DKK-1 intervention significantly exacerbated arthritis scores and bone destruction, increasing the percentage of MDSCs in the peripheral blood and spleen in CIA mice. In vitro experiments showed that recombinant DKK-1 promoted the differentiation of MDSCs into OCs, reducing the expression of β-catenin and TCF4 and increasing the expression of CyclinD1. In contrast, the DKK-1 inhibitor had the opposite effect. Our findings highlight that DKK-1 promoted MDSCs expansion in RA and enhanced the differentiation of MDSCs into OCs via targeting the Wnt/β-catenin pathway, aggravating the bone destruction in RA.
Collapse
Affiliation(s)
- Di Zhao
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lisheng Wu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Mukeng Hong
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Songyuan Zheng
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xianghui Wu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haixin Ye
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Feilong Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Dingding Zhang
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xinhang Liu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiangyun Meng
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoyun Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shixian Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junqing Zhu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Juan Li
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Weng W, Liu Y, Hu Z, Li Z, Peng X, Wang M, Dong B, Zhong S, Jiang Y, Pan Y. Macrophage extracellular traps promote tumor-like biologic behaviors of fibroblast-like synoviocytes through cGAS-mediated PI3K/Akt signaling pathway in patients with rheumatoid arthritis. J Leukoc Biol 2024; 115:116-129. [PMID: 37648663 DOI: 10.1093/jleuko/qiad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023] Open
Abstract
Rheumatoid arthritis is an autoimmune disease characterized by synovium hyperplasia and bone destruction. Macrophage extracellular traps are released from macrophages under various stimuli and may generate stable autoantigen-DNA complexes, as well as aggravate autoantibody generation and autoimmune responses. We aimed to investigate the role of macrophage extracellular traps on the biologic behaviors of rheumatoid arthritis fibroblast-like synoviocytes. Synovial tissues and fibroblast-like synoviocytes were obtained from patients with rheumatoid arthritis. Extracellular traps in synovium and synovial fluids were detected by immunofluorescence, immunohistochemistry, and SYTOX Green staining. Cell viability, migration, invasion, and cytokine expression of rheumatoid arthritis fibroblast-like synoviocytes were assessed by CCK-8, wound-healing assay, Transwell assays, and quantitative real-time polymerase chain reaction, respectively. RNA sequencing analysis was performed to explore the underlying mechanism, and Western blot was used to validate the active signaling pathways. We found that extracellular trap formation was abundant in rheumatoid arthritis and positively correlated to anti-CCP. Rheumatoid arthritis fibroblast-like synoviocytes stimulated with purified macrophage extracellular traps demonstrated the obvious promotion in tumor-like biologic behaviors. The DNA sensor cGAS in rheumatoid arthritis fibroblast-like synoviocytes was activated after macrophage extracellular trap stimuli. RNA sequencing revealed that differential genes were significantly enriched in the PI3K/Akt signaling pathway, and cGAS inhibitor RU.521 effectively reversed the promotion of tumor-like biologic behaviors in macrophage extracellular trap-treated rheumatoid arthritis fibroblast-like synoviocytes and downregulated the PI3K/Akt activation. In summary, our study demonstrates that macrophage extracellular traps promote the pathogenically biological behaviors of rheumatoid arthritis fibroblast-like synoviocytes through cGAS-mediated activation of the PI3K/Akt signaling pathway. These findings provide a novel insight into the pathogenesis of rheumatoid arthritis and the mechanisms of macrophages in modulating rheumatoid arthritis fibroblast-like synoviocyte tumor-like behaviors.
Collapse
Affiliation(s)
- Weizhen Weng
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
- Department of Infectious Disease, The Third People's Hospital of Shenzhen, 29 Bulang Road, Longgang district, Shenzhen, China
| | - Yan Liu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Zuoyu Hu
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Baiyun District, Guangzhou, China
| | - Zhihui Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Xiaohua Peng
- Department of Gastroenterology, The Seventh Affiliated Hospital of Sun Yat-Sen University, 628 Zhenyuan Road, Guangming District, Shenzhen, China
| | - Manli Wang
- Medical Research Center, The Eighth Affiliated Hospital of Sun Yat-sen University, 3025 Shennan Road, Futian District, Shenzhen, China
| | - Bo Dong
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Shuyuan Zhong
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Yutong Jiang
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Yunfeng Pan
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| |
Collapse
|
8
|
Su X, Teng M, Zhang Y, Ji W. Decellularized extracellular matrix scaffold seeded with adipose-derived stem cells promotes neurorestoration and functional recovery after spinal cord injury through Wnt/ β-catenin signaling pathway regulation. Biomed Mater 2023; 19:015007. [PMID: 38044745 DOI: 10.1088/1748-605x/ad0fa1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Spinal cord injury (SCI) causes tissue destruction and neuronal apoptosis, which impede neural function recovery. Therefore, promoting neuronal regeneration and neural pathway reconstruction is crucial. In this study, a novel and facile decellularized extracellular matrix (dECM) scaffold seeded with adipose-derived stem cells (ADSCs) (dECM scaffolds/ADSCs) was reported. The dECM scaffold maintained the original three-dimensional network structure of spinal cord tissue and contained various small pores.In vitrostudies demonstrated that dECM scaffolds exhibited excellent biocompatibility, facilitated efficient adhesion and proliferation of ADSCs, and promoted the secretion of neurotrophin-3 and neuronal differentiation in the microenvironment after SCI.In vivostudies further showed that dECM scaffolds/ADSCs could alleviate inflammatory and apoptotic reactions, providing a favorable microenvironment for promoting endogenous nerve regeneration rather than glial scars formation, ultimately achieving recovery of hind limb function in rats. Notably, ICG-001 effectively reversed the therapeutic effect of dECM scaffolds/ADSCs, proving that dECM scaffolds/ADSCs promoted functional recovery after SCI by regulating the Wnt/β-catenin signaling pathway. Overall, dECM scaffolds/ADSCs can simulate the physiological characteristics of the spinal cord and exert neurorestorative potential, providing a new therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Xiaochen Su
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Menghao Teng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Yingang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Wenchen Ji
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| |
Collapse
|
9
|
Wang Q, Liu Y, Wu J, Chen S, Hu T, Liu Y, Li X, Li X, Wu Y, Yu J, Zeng T, Luo Y, Hu X, Tan LM. Potential significance of changes in serum levels of IL-17, TNF-α and DKK-1 in the progression of the rheumatoid arthritis. Autoimmunity 2023; 56:2276068. [PMID: 37909152 DOI: 10.1080/08916934.2023.2276068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023]
Abstract
To detect the value of serum interleukin-17 (IL-17), tumour necrosis factor-α (TNF-α), and Dickkopf-1 (DKK-1) in rheumatoid arthritis (RA) at different disease stages. 141 RA patients were randomly obtained and diagnosed in a large tertiary first-class hospital in Jiangxi Province from November 2021 to January 2022. RA was divided into 38 low activity and remission phase (low remission patients), 72 moderate activity patients, 41 high activity patients, according to the disease activity score 28 (DAS28) of RA and 70 healthy controls. IL-17 and TNF-α in serum detected by flow cytometry; DKK-1by ELISA; rheumatoid factor (RF) and C-reactive protein (CRP) by rate scattering turbidimetry; erythrocyte sedimentation rate (ESR) by Widmanstat method; anti-cyclic citrullinated polypeptide antibody (Anti-CCP) by chemiluminescence. The changes among the groups were statistically analysed and evaluated their diagnostic value. ①Anti-CCP, CRP, and ESR levels in the moderate-to-high activity group were higher than controls, while IL-17, TNF-α, and DKK-1levels higher than low remission group, moderate activity group and controls (p < 0.05). ②IL-17, TNF-α and DKK-1 were positively correlated with RA disease activity, with the correlations of IL-17, TNF-α and DKK-1 all over 0.5 (p < 0.05). ③The ROC curve showed that among all indices the AUC of DKK-1 was the largest, 0. 922, and has the highest sensitivity and negative predictive value for RA, 0.965 and 0.953, respectively. The specificity and positive predictive value of TNF-α is highest, 0.918 and 0.921, respectively, combined them had the highest predictive value in moderate-to-high activity RA, with AUC of 0.968, and had the highest sensitivity of 0.965. The IL-17, TNF-α and DKK-1 levels were elevated in RA and positively correlated with disease activity, involved in the Wnt signalling pathway of inflammatory and joint destructive effects, combining them to monitor the RA disease process and biologically treat the cytokines in the pathogenesis of RA were valuable.
Collapse
Affiliation(s)
- Qunxia Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Yanzhao Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Jiazhen Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Simei Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Tingting Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Yuhan Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Xu Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Xiaohang Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Yang Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Jianlin Yu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Tingting Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yi Luo
- The Second Affiliated Hospital of Jiangxi, University of Chinese Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Xiaoyan Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Li-Ming Tan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
10
|
Huang Y, Xue Q, Chang J, Wang X, Miao C. Wnt5a: A promising therapeutic target for inflammation, especially rheumatoid arthritis. Cytokine 2023; 172:156381. [PMID: 37806072 DOI: 10.1016/j.cyto.2023.156381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Wnt5a is a member of the Wnt protein family, which acts on classical or multiple non-classical Wnt signaling pathways by binding to different receptors. The expression regulation and signal transduction of Wnt5a is closely related to the inflammatory response. Abnormal activation of Wnt5a signaling is an important part of inflammation and rheumatoid arthritis (RA). OBJECTIVES This paper mainly focuses on Wnt5a protein and its mediated signaling pathway, summarizes the latest research progress of Wnt5a in the pathological process of inflammation and RA, and looks forward to the main directions of Wnt5a in RA research, aiming to provide a theoretical basis for the prevention and treatment of RA diseases by targeting Wnt5a. RESULTS Wnt5a is highly expressed in activated blood vessels, histocytes and synoviocytes in inflammatory diseases such as sepsis, sepsis, atherosclerosis and rheumatoid arthritis. It mediates the production of pro-inflammatory cytokines and chemokines, regulates the migration and recruitment of various immune effector cells, and thus participates in the inflammatory response. Wnt5a plays a pathological role in synovial inflammation and bone destruction of RA, and may be an important clinical therapeutic target for RA. CONCLUSION Wnt5a is involved in the pathological process of inflammation and interacts with inflammatory factors. Wnt5a may be a new target for regulating the progression of RA disease and intervening therapy because of its multi-modal effects on the etiology of RA, especially as a regulator of osteoclast activity and inflammation.
Collapse
Affiliation(s)
- Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
11
|
Gong JS, Zhu GQ, Zhang Y, Chen B, Liu YW, Li HM, He ZH, Zou JT, Qian YX, Zhu S, Hu XY, Rao SS, Cao J, Xie H, Wang ZX, Du W. Aptamer-functionalized hydrogels promote bone healing by selectively recruiting endogenous bone marrow mesenchymal stem cells. Mater Today Bio 2023; 23:100854. [PMID: 38024846 PMCID: PMC10665677 DOI: 10.1016/j.mtbio.2023.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Bone regeneration heavily relies on bone marrow mesenchymal stem cells (BMSCs). However, recruiting endogenous BMSCs for in situ bone regeneration remains challenging. In this study, we developed a novel BMSC-aptamer (BMSC-apt) functionalized hydrogel (BMSC-aptgel) and evaluated its functions in recruiting BMSCs and promoting bone regeneration. The functional hydrogels were synthesized between maleimide-terminated 4-arm polyethylene glycols (PEG) and thiol-flanked PEG crosslinker, allowing rapid in situ gel formation. The aldehyde group-modified BMSC-apt was covalently bonded to a thiol-flanked PEG crosslinker to produce high-density aptamer coverage on the hydrogel surface. In vitro and in vivo studies demonstrated that the BMSC-aptgel significantly increased BMSC recruitment, migration, osteogenic differentiation, and biocompatibility. In vivo fluorescence tomography imaging demonstrated that functionalized hydrogels effectively recruited DiR-labeled BMSCs at the fracture site. Consequently, a mouse femur fracture model significantly enhanced new bone formation and mineralization. The aggregated BMSCs stimulated bone regeneration by balancing osteogenic and osteoclastic activities and reduced the local inflammatory response via paracrine effects. This study's findings suggest that the BMSC-aptgel can be a promising and effective strategy for promoting in situ bone regeneration.
Collapse
Affiliation(s)
- Jiang-Shan Gong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Yu Zhang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Bei Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yi-Wei Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Hong-Ming Li
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Ze-Hui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Jing-Tao Zou
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Yu-Xuan Qian
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Sheng Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Xin-Yue Hu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Shan-Shan Rao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
| | - Jia Cao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
| | - Wei Du
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
- Department of Rehabilitation Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
12
|
Guo D, Pan H, Lu X, Chen Z, Zhou L, Chen S, Huang J, Liang X, Xiao Z, Zeng H, Shao Y, Qi W, Xie D, Lin C. Rspo2 exacerbates rheumatoid arthritis by targeting aggressive phenotype of fibroblast-like synoviocytes and disrupting chondrocyte homeostasis via Wnt/β-catenin pathway. Arthritis Res Ther 2023; 25:217. [PMID: 37946278 PMCID: PMC10634117 DOI: 10.1186/s13075-023-03198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The aggressive phenotype of fibroblast-like synoviocytes (FLS) has been identified as a contributing factor to the exacerbation of rheumatoid arthritis (RA) through the promotion of synovitis and cartilage damage. Regrettably, there is currently no effective therapeutic intervention available to address this issue. Recent research has shed light on the crucial regulatory role of R-spondin-2 (Rspo2) in cellular proliferation, cartilage degradation, and tumorigenesis. However, the specific impact of Rspo2 on RA remains poorly understood. We aim to investigate the function and mechanism of Rspo2 in regulating the aggressive phenotype of FLS and maintaining chondrocyte homeostasis in the context of RA. METHODS The expression of Rspo2 in knee joint synovium and cartilage were detected in RA mice with antigen-induced arthritis (AIA) and RA patients. Recombinant mouse Rspo2 (rmRspo2), Rspo2 neutralizing antibody (Rspo2-NAb), and recombinant mouse DKK1 (rmDKK1, a potent inhibitor of Wnt signaling pathway) were used to explore the role and mechanism of Rspo2 in the progression of RA, specifically in relation to the aggressive phenotype of FLS and chondrocyte homeostasis, both in vivo and in vitro. RESULTS We indicated that Rspo2 expression was upregulated both in synovium and articular cartilage as RA progressed in RA mice and RA patients. Increased Rspo2 upregulated the expression of leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), as the ligand for Rspo2, and β-catenin in FLS and chondrocytes. Subsequent investigations revealed that intra-articular administration of rmRspo2 caused striking progressive synovitis and articular cartilage destruction to exacerbate RA progress in mice. Conversely, neutralization of Rspo2 or inhibition of the Wnt/β-catenin pathway effectively alleviated experimental RA development. Moreover, Rspo2 facilitated FLS aggressive phenotype and disrupted chondrocyte homeostasis primarily through activating Wnt/β-catenin pathway, which were effectively alleviated by Rspo2-NAb or rmDKK1. CONCLUSIONS Our data confirmed a critical role of Rspo2 in enhancing the aggressive phenotype of FLS and disrupting chondrocyte homeostasis through the Wnt/β-catenin pathway in the context of RA. Furthermore, the results indicated that intra-articular administration of Rspo2 neutralizing antibody or recombinant DKK1 might represent a promising therapeutic strategy for the treatment of RA.
Collapse
Affiliation(s)
- Dong Guo
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Haoyan Pan
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Xueying Lu
- Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang), Shenzhen, 518100, People's Republic of China
| | - Zhong Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Laixi Zhou
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China
| | - Shuxin Chen
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China
| | - Jin Huang
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China
| | - Xinzhi Liang
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Zhisheng Xiao
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Hua Zeng
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Yan Shao
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China
| | - Weizhong Qi
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China.
| | - Denghui Xie
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, People's Republic of China.
| | - Chuangxin Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515031, People's Republic of China.
| |
Collapse
|
13
|
Chen N, Diao CY, Huang X, Tan WX, Chen YB, Qian XY, Gao J, Zhao DB. RhoA Promotes Synovial Proliferation and Bone Erosion in Rheumatoid Arthritis through Wnt/PCP Pathway. Mediators Inflamm 2023; 2023:5057009. [PMID: 38022686 PMCID: PMC10667059 DOI: 10.1155/2023/5057009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Ras homolog gene family member A (RhoA) plays a major role in the Wnt/planar cell polarity (PCP) pathway, which is significantly activated in patients with rheumatoid arthritis (RA). The function of RhoA in RA synovitis and bone erosion is still elusive. Here, we not only explored the impact of RhoA on the proliferation and invasion of RA fibroblast-like synoviocytes (FLSs) but also elucidated its effect on mouse osteoclast and a mouse model of collagen-induced arthritis (CIA). Results showed that RhoA was overexpressed in RA and CIA synovial tissues. Lentivirus-mediated silencing of RhoA increased apoptosis, attenuated invasion, and dramatically upregulated osteoprotegerin/receptor activator of nuclear factor-κB ligand (OPG/RANKL) ratio in RA-FLSs. Additionally, the silencing of RhoA inhibited mouse osteoclast differentiation in vitro and alleviated synovial hyperplasia and bone erosion in the CIA mouse model. These effects in RA-FLSs and osteoclasts were all regulated by RhoA/Rho-associated protein kinase 2 (ROCK2) and might interact with Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Ning Chen
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Rheumatology and Immunology, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Chao-Yue Diao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Xing Tan
- Air Force Health Care Center for Special Services, Hangzhou, China
| | - Ya-Bing Chen
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin-Yu Qian
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Gao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dong-Bao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
14
|
Sales LP, Hounkpe BW, Perez MO, Caparbo VF, Domiciano DS, Borba EF, Schett G, Figueiredo CP, Pereira RMR. Transcriptomic characterization of classical monocytes highlights the involvement of immuno-inflammation in bone erosion in Rheumatoid Arthritis. Front Immunol 2023; 14:1251034. [PMID: 37868981 PMCID: PMC10588645 DOI: 10.3389/fimmu.2023.1251034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Evidence-based data suggest that under inflammatory conditions, classical monocytes are the main source of osteoclasts and might be involved in bone erosion pathophysiology. Here, we analyze the transcriptomic profile of classical monocytes in erosive and non-erosive rheumatoid arthritis patients in order to better understand their contribution to bone erosion. Methods Thirty-nine premenopausal RA patients were consecutively enrolled and divided into two groups based on the presence of bone erosions on hand joints. Classical monocytes were isolated from peripheral blood through negative selection, and RNA-seq was performed using a poly-A enrichment kit and Illumina® platform. Classical monocytes transcriptome from healthy age-matched women were also included to identify differentially expressed genes (DEGs). Therefore, gene sets analysis was performed to identify the enriched biological pathways. Results RNA-seq analysis resulted in the identification of 1,140 DEGs of which 89 were up-regulated and 1,051 down-regulated in RA patients with bone erosion compared to those without bone erosions. Among up-regulated genes, there was a highlighted expression of IL18RAP and KLF14 related to the production of pro-inflammatory cytokines, innate and adaptive immune response. Genes related to collagen metabolism (LARP6) and bone formation process (PAPPA) were down-regulated in RA patients with erosions. Enriched pathways in patients with erosions were associated with greater activation of immune activation, and inflammation. Interestingly, pathways associated with osteoblast differentiation and regulation of Wnt signaling were less activated in RA patients with erosions. Conclusion These findings suggest that alterations in expression of monocyte genes related to the inflammatory process and impairment of bone formation might have an important role in the pathophysiology of bone erosions in RA patients.
Collapse
Affiliation(s)
- Lucas Peixoto Sales
- Rheumatology Division, Bone Metabolism Laboratory, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bidossessi Wilfried Hounkpe
- Rheumatology Division, Bone Metabolism Laboratory, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana Ortega Perez
- Rheumatology Division, Bone Metabolism Laboratory, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Valéria Falco Caparbo
- Rheumatology Division, Bone Metabolism Laboratory, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Diogo Souza Domiciano
- Rheumatology Division, Bone Metabolism Laboratory, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo Ferreira Borba
- Rheumatology Division, Bone Metabolism Laboratory, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Camille Pinto Figueiredo
- Rheumatology Division, Bone Metabolism Laboratory, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rosa Maria Rodrigues Pereira
- Rheumatology Division, Bone Metabolism Laboratory, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Ye L, Jin Y, Huang H, Ding F, Xu X, Liu C, Bao S, Wu J, Jin Y. The plasma levels of Dickkopf-1 elevated in patients with Juvenile Idiopathic Arthritis. Pediatr Res 2023; 94:1349-1354. [PMID: 37179434 DOI: 10.1038/s41390-023-02637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/24/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND To explore the role of two major inhibitors of Wnt signal pathway, Dickkopf-1(DKK-1) and Sclerostin (SOST), in the pathogenesis of juvenile idiopathic arthritis (JIA). METHODS 88 patients with JIA, which including 49 patients with enthesitis-related arthritis (ERA), 21 oligoarthritis (oJIA) and 18 polyarthritis (pJIA), and 36 age-and sex-matched children as healthy controls (HC) were enrolled in this study. The plasma levels of DKK-1 and SOST, measured using commercially available ELISA kits, were analyzed the correlation between the levels of DKK-1/SOST and JIA, and were analyzed in 14 patients with JIA during before and after treatment. RESULTS Plasma levels of DKK-1 were significantly higher in the patients with JIA than that in HC, the elevation of DKK-1 level was positively correlated with HLA-B27 positive JIA. DKK-1 levels dropped significantly in patient with JIA after treatment (P < 0.05). There was no significant change in SOST levels among different subtypes of JIA, patients with JIA during before and after treatment, and HC. CONCLUSION It was suggested that the DKK-1 may have a certain correlation with the pathogenesis of JIA, and DKK-1 levels are more closely related to the HLA-B27 positive-ERA. IMPACT The abnormally elevated levels of Dickkopf-1 (DKK-1) may be involved in the pathogenesis of juvenile idiopathic arthritis (JIA). DKK-1 levels were more closely related to the HLA-B27 positive-enthesitis-related arthritis (ERA). DKK-1 is an inhibitor of Wnt signaling pathway that promotes osteoblastic new bone formation; it is very rare for pediatric patients with HLA-B27 positive-ERA to manifest typical spondylitis, while sacroiliac arthritis is relatively common, which may be related to the high levels of DKK-1, which is consistent with the early stage of ankylosing spondylitis (AS).
Collapse
Affiliation(s)
- Lili Ye
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Yingying Jin
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Hua Huang
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Fei Ding
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xuemei Xu
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Chenxi Liu
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Shengfang Bao
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jing Wu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Yanliang Jin
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Coto-Segura P, Segú-Vergés C, Martorell A, Moreno-Ramírez D, Jorba G, Junet V, Guerri F, Daura X, Oliva B, Cara C, Suárez-Magdalena O, Abraham S, Mas JM. A quantitative systems pharmacology model for certolizumab pegol treatment in moderate-to-severe psoriasis. Front Immunol 2023; 14:1212981. [PMID: 37809085 PMCID: PMC10552644 DOI: 10.3389/fimmu.2023.1212981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/07/2023] [Indexed: 10/10/2023] Open
Abstract
Background Psoriasis is a chronic immune-mediated inflammatory systemic disease with skin manifestations characterized by erythematous, scaly, itchy and/or painful plaques resulting from hyperproliferation of keratinocytes. Certolizumab pegol [CZP], a PEGylated antigen binding fragment of a humanized monoclonal antibody against TNF-alpha, is approved for the treatment of moderate-to-severe plaque psoriasis. Patients with psoriasis present clinical and molecular variability, affecting response to treatment. Herein, we utilized an in silico approach to model the effects of CZP in a virtual population (vPop) with moderate-to-severe psoriasis. Our proof-of-concept study aims to assess the performance of our model in generating a vPop and defining CZP response variability based on patient profiles. Methods We built a quantitative systems pharmacology (QSP) model of a clinical trial-like vPop with moderate-to-severe psoriasis treated with two dosing schemes of CZP (200 mg and 400 mg, both every two weeks for 16 weeks, starting with a loading dose of CZP 400 mg at weeks 0, 2, and 4). We applied different modelling approaches: (i) an algorithm to generate vPop according to reference population values and comorbidity frequencies in real-world populations; (ii) physiologically based pharmacokinetic (PBPK) models of CZP dosing schemes in each virtual patient; and (iii) systems biology-based models of the mechanism of action (MoA) of the drug. Results The combination of our different modelling approaches yielded a vPop distribution and a PBPK model that aligned with existing literature. Our systems biology and QSP models reproduced known biological and clinical activity, presenting outcomes correlating with clinical efficacy measures. We identified distinct clusters of virtual patients based on their psoriasis-related protein predicted activity when treated with CZP, which could help unravel differences in drug efficacy in diverse subpopulations. Moreover, our models revealed clusters of MoA solutions irrespective of the dosing regimen employed. Conclusion Our study provided patient specific QSP models that reproduced clinical and molecular efficacy features, supporting the use of computational methods as modelling strategy to explore drug response variability. This might shed light on the differences in drug efficacy in diverse subpopulations, especially useful in complex diseases such as psoriasis, through the generation of mechanistically based hypotheses.
Collapse
Affiliation(s)
- Pablo Coto-Segura
- Dermatology Department, Hospital Vital Alvarez-Buylla de Mieres, Asturias, Spain
| | - Cristina Segú-Vergés
- Anaxomics Biotech SL, Barcelona, Spain
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - David Moreno-Ramírez
- Dermatology Department, University Hospital Virgen Macarena, Andalusian Health Service, University of Seville, Seville, Spain
| | - Guillem Jorba
- Anaxomics Biotech SL, Barcelona, Spain
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Valentin Junet
- Anaxomics Biotech SL, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Filippo Guerri
- Anaxomics Biotech SL, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, Spain
| | - Baldomero Oliva
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Sonya Abraham
- National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College, London, United Kingdom
- Medical Affairs, UCB Pharma, Brussels, Belgium
| | | |
Collapse
|
17
|
Li M, Tian F, Guo J, Li X, Ma L, Jiang M, Zhao J. Therapeutic potential of Coptis chinensis for arthritis with underlying mechanisms. Front Pharmacol 2023; 14:1243820. [PMID: 37637408 PMCID: PMC10450980 DOI: 10.3389/fphar.2023.1243820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Arthritis is a common degenerative disease of joints, which has become a public health problem affecting human health, but its pathogenesis is complex and cannot be eradicated. Coptis chinensis (CC) has a variety of active ingredients, is a natural antibacterial and anti-inflammatory drug. In which, berberine is its main effective ingredient, and has good therapeutic effects on rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis (GA). RA, OA and GA are the three most common types of arthritis, but the relevant pathogenesis is not clear. Therefore, molecular mechanism and prevention and treatment of arthritis are the key issues to be paid attention to in clinical practice. In general, berberine, palmatine, coptisine, jatrorrhizine, magnoflorine and jatrorrhizine hydrochloride in CC play the role in treating arthritis by regulating Wnt1/β-catenin and PI3K/AKT/mTOR signaling pathways. In this review, active ingredients, targets and mechanism of CC in the treatment of arthritis were expounded, and we have further explained the potential role of AHR, CAV1, CRP, CXCL2, IRF1, SPP1, and IL-17 signaling pathway in the treatment of arthritis, and to provide a new idea for the clinical treatment of arthritis by CC.
Collapse
Affiliation(s)
- Mengyuan Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Fei Tian
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinling Guo
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhao
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
18
|
Mkhize BC, Mosili P, Ngubane PS, Sibiya NH, Khathi A. The Relationship between Renin-Angiotensin-Aldosterone System (RAAS) Activity, Osteoporosis and Estrogen Deficiency in Type 2 Diabetes. Int J Mol Sci 2023; 24:11963. [PMID: 37569338 PMCID: PMC10419188 DOI: 10.3390/ijms241511963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with a plethora of comorbidities, including osteoporosis, which occurs due to an imbalance between bone resorption and formation. Numerous mechanisms have been explored to understand this association, including the renin-angiotensin-aldosterone system (RAAS). An upregulated RAAS has been positively correlated with T2D and estrogen deficiency in comorbidities such as osteoporosis in humans and experimental studies. Therefore, research has focused on these associations in order to find ways to improve glucose handling, osteoporosis and the downstream effects of estrogen deficiency. Upregulation of RAAS may alter the bone microenvironment by altering the bone marrow inflammatory status by shifting the osteoprotegerin (OPG)/nuclear factor kappa-Β ligand (RANKL) ratio. The angiotensin-converting-enzyme/angiotensin II/Angiotensin II type 1 receptor (ACE/Ang II/AT1R) has been evidenced to promote osteoclastogenesis and decrease osteoblast formation and differentiation. ACE/Ang II/AT1R inhibits the wingless-related integration site (Wnt)/β-catenin pathway, which is integral in bone formation. While a lot of literature exists on the effects of RAAS and osteoporosis on T2D, the work is yet to be consolidated. Therefore, this review looks at RAAS activity in relation to osteoporosis and T2D. This review also highlights the relationship between RAAS activity, osteoporosis and estrogen deficiency in T2D.
Collapse
Affiliation(s)
- Bongeka Cassandra Mkhize
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| | - Palesa Mosili
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| | - Phikelelani Sethu Ngubane
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| | | | - Andile Khathi
- Human Physiology, Health Science, Westville Campus, University of KwaZulu-Natal, Westville 4041, South Africa; (B.C.M.); (P.M.); (P.S.N.)
| |
Collapse
|
19
|
Tong Y, Li X, Deng Q, Shi J, Feng Y, Bai L. Advances of the small molecule drugs regulating fibroblast-like synovial proliferation for rheumatoid arthritis. Front Pharmacol 2023; 14:1230293. [PMID: 37547337 PMCID: PMC10400780 DOI: 10.3389/fphar.2023.1230293] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is a type of chronic autoimmune and inflammatory disease. In the pathological process of RA, the alteration of fibroblast-like synoviocyte (FLS) and its related factors is the main influence in the clinic and fundamental research. In RA, FLS exhibits a uniquely aggressive phenotype, leading to synovial hyperplasia, destruction of the cartilage and bone, and a pro-inflammatory environment in the synovial tissue for perpetuation and progression. Evidently, it is a highly promising way to target the pathological function of FLS for new anti-RA drugs. Based on this, we summed up the pathological mechanism of RA-FLS and reviewed the recent progress of small molecule drugs, including the synthetic small molecule compounds and natural products targeting RA-FLS. In the end, there were some views for further action. Compared with MAPK and NF-κB signaling pathways, the JAK/STAT signaling pathway has great potential for research as targets. A small number of synthetic small molecule compounds have entered the clinic to treat RA and are often used in combination with other drugs. Meanwhile, most natural products are currently in the experimental stage, not the clinical trial stage, such as triptolide. There is an urgent need to unremittingly develop new agents for RA.
Collapse
Affiliation(s)
- Yitong Tong
- Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Xinyu Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Singh V, Naldi A, Soliman S, Niarakis A. A large-scale Boolean model of the rheumatoid arthritis fibroblast-like synoviocytes predicts drug synergies in the arthritic joint. NPJ Syst Biol Appl 2023; 9:33. [PMID: 37454172 DOI: 10.1038/s41540-023-00294-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune disease with an unknown aetiology. However, rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) play a significant role in initiating and perpetuating destructive joint inflammation by expressing immuno-modulating cytokines, adhesion molecules, and matrix remodelling enzymes. In addition, RA-FLS are primary drivers of inflammation, displaying high proliferative rates and an apoptosis-resistant phenotype. Thus, RA-FLS-directed therapies could become a complementary approach to immune-directed therapies by predicting the optimal conditions that would favour RA-FLS apoptosis, limit inflammation, slow the proliferation rate and minimise bone erosion and cartilage destruction. In this paper, we present a large-scale Boolean model for RA-FLS that consists of five submodels focusing on apoptosis, cell proliferation, matrix degradation, bone erosion and inflammation. The five-phenotype-specific submodels can be simulated independently or as a global model. In silico simulations and perturbations reproduced the expected biological behaviour of the system under defined initial conditions and input values. The model was then used to mimic the effect of mono or combined therapeutic treatments and predict novel targets and drug candidates through drug repurposing analysis.
Collapse
Affiliation(s)
- Vidisha Singh
- Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde-Genhotel, Univ Evry, Evry, France
| | - Aurelien Naldi
- Lifeware Group, Inria, Saclay-île de France, 91120, Palaiseau, France
| | - Sylvain Soliman
- Lifeware Group, Inria, Saclay-île de France, 91120, Palaiseau, France
| | - Anna Niarakis
- Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde-Genhotel, Univ Evry, Evry, France.
- Lifeware Group, Inria, Saclay-île de France, 91120, Palaiseau, France.
| |
Collapse
|
21
|
Fang X, Chen C, Wang ZX, Zhao Y, Jiang LQ, Fang Y, Zhang RD, Pan HF, Tao SS. Serum DKK-1 level in ankylosing spondylitis: insights from meta-analysis and Mendelian randomization. Front Immunol 2023; 14:1193357. [PMID: 37503346 PMCID: PMC10368999 DOI: 10.3389/fimmu.2023.1193357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Objective The purpose of this study was to precisely evaluate the serum Dickkopf-1 (DKK-1) level in patients with ankylosing spondylitis (AS) relative to that in normal controls and to test the causal relationship between DKK-1 and the risk of AS. Methods Embase, PubMed, Web of Science, WANFANG DATA, VIP, and China National Knowledge Infrastructure (CNKI) were comprehensively searched until July 2022 for pertinent studies. The pooled standardized mean difference (SMD) with a 95% confidence interval (CI) was calculated by the fixed or random-effect model. In Mendelian randomization (MR) analysis on the causal relationship between serum DKK-1 level and AS risk, the inverse variance weighting method (IVW), MR-Egger regression, weighted median method, and weighted pattern method were applied. Sensitivity analyses, including the horizontal pleiotropy test, heterogeneity test, and leave-one-out test, were also performed. Results The meta-analysis of 40 studies containing 2,371 AS patients and 1,633 healthy controls showed that there was no significant difference in DKK-1 serum level between AS patients and normal controls (pooled SMD=0.207, 95% CI =-0.418-0.832, P=0.516). The subgroup analysis of the CRP ≤ 10 mg/L group showed that AS patients had higher serum DKK-1 concentration than the healthy controls (SMD=2.267, 95% CI = 0.102-4.432, P=0.040). Similarly, MR analysis also demonstrated no significant association between DKK-1 serum level and AS (IVW OR=0.999, 95% CI = 0.989-1.008, P=0.800). All sensitivity analyses revealed consistent results. Conclusions There was no significant change in serum DKK-1 concentration between AS patients and healthy controls. In addition, no causal relationship exists between serum DKK-1 levels and AS risk.
Collapse
Affiliation(s)
- Xi Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Cong Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhi-Xin Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ling-Qiong Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ruo-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
22
|
Wu CY, Yang HY, Lai JH. Potential therapeutic targets beyond cytokines and Janus kinases for autoimmune arthritis. Biochem Pharmacol 2023; 213:115622. [PMID: 37230194 DOI: 10.1016/j.bcp.2023.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Synovial inflammation and destruction of articular cartilage and bone are hallmarks of autoimmune arthritis. Although current efforts to inhibit proinflammatory cytokines (biologics) or block Janus kinases (JAK) appear to be promising in many patients with autoimmune arthritis, adequate disease control is still lacking in a significant proportion of autoimmune arthritis patients. The possible adverse events from taking biologics and JAK inhibitors, such as infection, remain a major concern. Recent advances showing the effects of a loss of balance between regulatory T cells and T helper-17 cells as well as how the imbalance between osteoblastic and osteoclastic activities of bone cells exaggerates joint inflammation, bony destruction and systemic osteoporosis highlight an interesting area to explore in the search for better therapeutics. The recognition of the heterogenicity of synovial fibroblasts in osteoclastogenesis and their crosstalk with immune and bone cells provides an opportunity for identifying novel therapeutic targets for autoimmune arthritis. In this commentary, we comprehensively review the current knowledge regarding the interactions among heterogenic synovial fibroblasts, bone cells and immune cells and how they contribute to the immunopathogenesis of autoimmune arthritis, as well as the search for novel therapeutic targets not targeted by current biologics and JAK inhibitors.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Huang-Yu Yang
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
23
|
Rabie M, El-Hady HIA, Ibrahim DA, Hassan TH, Abdelhady EI. Plasma Wnt7b protein in rheumatoid arthritis: Detection of interstitial lung disease. Immunobiology 2023; 228:152397. [PMID: 37290224 DOI: 10.1016/j.imbio.2023.152397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/22/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To determine the plasma level of Wingless-related integration site 7b (Wnt7b) protein in rheumatoid arthritis (RA) patients (with and without interstitial lung disease (ILD)) and in idiopathic pulmonary fibrosis (IPF) patients and its relationship with RA disease activity and/or severity of pulmonary fibrosis. To assess the validity of plasma Wnt7b for the detection of ILD among RA patients. METHOD This case-control study included 128 subjects (32 RA-ILD, 32 RA, 32 IPF, and 32 healthy controls). RA and RA-ILD Patients were evaluated for disease activity by DAS28 and disease activity grades were recorded according to DAS28 grades. Laboratory parameters as Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), Rheumatoid Factor (RF), Anti-citrullinated peptide (Anti-CCP) were recorded. Plasma Wnt7b levels were measured by ELISA. Diagnosis of pulmonary fibrosis (for RA-ILD and IPF patients) was done by high resolution computed tomography (HRCT) and its severity was assessed mainly by pulmonary function test using forced vital capacity (FVC) grading. RESULTS Comparison of Wnt7b plasma levels showed a significant difference between the studied groups with the P-value < 0.018 (RA-ILD had the highest levels). Post hoc analysis revealed a significant difference in Wnt7b plasma levels between RA-ILD and IPF groups (P = 0.008). Also, RA-ILD and control groups had a significant difference (P = 0.039). However, there was a non-significant relationship between Wnt7b plasma levels and RA disease activity as well as the severity of pulmonary fibrosis. ROC curve analysis for the plasma Wnt7b levels revealed that a level ≥285.1 pg/ml had a sensitivity of 87.5% and a specificity of 43.8% for the detection of ILD in RA patients with positive likelihood ratio of 1.56 and negative likelihood ratio of 0.29. CONCLUSION RA-ILD patients had significantly higher plasma Wnt7b levels than the controls and IPF patients. These data suggest that the Wnt7b secretion is augmented by the concomitant presence of RA with pulmonary fibrosis. In addition, plasma Wnt7b may be used as a highly sensitive test for the detection of immunologically induced fibrotic changes in lung tissue among RA patients.
Collapse
Affiliation(s)
- Mona Rabie
- Rheumatology & Rehabilitation Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Hanaa I Abd El-Hady
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia A Ibrahim
- Chest Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek H Hassan
- Chest Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Enas I Abdelhady
- Rheumatology & Rehabilitation Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
24
|
Liu FY, Wang MQ, Liu MM, Li T, Wang XH, Jiang F, Wu XJ, Cheng J, Cai L, Li R. Therapeutic effects of shikonin on adjuvant-induced arthritis in rats and cellular inflammation, migration and invasion of rheumatoid fibroblast-like synoviocytes via blocking the activation of Wnt/β-catenin pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154857. [PMID: 37163904 DOI: 10.1016/j.phymed.2023.154857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Shikonin (SKN), the main bioactive component isolated from Lithospermum erythrorhizon Sieb et Zucc, has multiple activities including anti-rheumatic effect, but its specific roles and the precise mechanisms in regulating biological properties of rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) are unclear and need further clarification. PURPOSE This study explored the therapeutic roles of SKN on rat adjuvant-induced arthritis (AIA) and cellular inflammation, migration and invasion of TNF-α-induced RA FLS (MH7A cells), and further demonstrated the involved mechanisms. METHODS SKN was intraperitoneally given to AIA rats and its therapeutic role was valued. The effects of SKN in vivo and in vitro on the production of pro-inflammatory factors were examined by ELISA and western blot. Wound-healing, transwell and phalloidin staining assay were carried out to evaluate the effects of SKN on TNF-α-induced migration and invasion in RA FLS. The involvement of Wnt/β-catenin pathway was checked by immunohistochemistry or immunofluorescence assay for β-catenin and western blot for pathway-related proteins. RESULTS SKN treatment in AIA rats reduced paw swelling, arthritis index and pathological damage of ankle joints, indicating its anti-arthritic effect in vivo. SKN had anti-inflammatory roles in vivo and in vitro, evidenced by inhibiting the production of pro-inflammatory factors (like IL-1β, IL-6, IL-8, TNF-α, MMP-2 and MMP-9) in sera and synovium of AIA rats, and in TNF-α-induced MH7A cells. Gelatin zymography result revealed the suppression of SKN on TNF-α-induced MMP-2 activity in vitro. Moreover, SKN inhibited TNF-α-induced migration, invasion and cytoskeletal reorganization in MH7A cells. Mechanistically, SKN suppressed the activation of Wnt/β-catenin signaling in AIA rat synovium and in TNF-α-induced MH7A cells, indicated by the reduced protein levels of Wnt1, p-GSK-3β (Ser9) and β-catenin, the raised protein level of GSK-3β and the decreased nuclear translocation of β-catenin. Interestingly, the combination of LiCl (Wnt/β-catenin agonist) canceled the therapeutic functions of SKN on cellular inflammation, migration and invasion in TNF-α-induced MH7A cells, whereas XAV939 (Wnt/β-catenin inhibitor) enhanced the therapeutic roles of SKN. CONCLUSION SKN showed therapeutic effects on rat AIA and cellular inflammation, migration and invasion of TNF-α-stimulated RA FLS via interrupting Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Fang-Yuan Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, PR China
| | - Meng-Qing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, PR China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, PR China
| | - Tao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, PR China
| | - Xiao-Hua Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, PR China
| | - Fei Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, PR China
| | - Xin-Jie Wu
- The First Clinical Medical College, Anhui Medical University, Hefei, Anhui Province 230032, PR China
| | - Juan Cheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, PR China
| | - Li Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, PR China; Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui Province 230032, PR China.
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, PR China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui Province 230026, PR China.
| |
Collapse
|
25
|
Zhu M, Ding Q, Lin Z, Fu R, Zhang F, Li Z, Zhang M, Zhu Y. New Targets and Strategies for Rheumatoid Arthritis: From Signal Transduction to Epigenetic Aspect. Biomolecules 2023; 13:biom13050766. [PMID: 37238636 DOI: 10.3390/biom13050766] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to joint damage and even permanent disability, seriously affecting patients' quality of life. At present, the complete cure for RA is not achievable, only to relieve the symptoms to reduce the pain of patients. Factors such as environment, genes, and sex can induce RA. Presently, non-steroidal anti-inflammatory drugs, DRMADs, and glucocorticoids are commonly used in treating RA. In recent years, some biological agents have also been applied in clinical practice, but most have side effects. Therefore, finding new mechanisms and targets for treating RA is necessary. This review summarizes some potential targets discovered from the perspective of epigenetics and RA mechanisms.
Collapse
Affiliation(s)
- Menglin Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Rong Fu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Fuyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Zhaoyi Li
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Mei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
26
|
Rotondo C, Cantatore FP, Cici D, Erroi F, Sciacca S, Rella V, Corrado A. Vitamin D Status and Psoriatic Arthritis: Association with the Risk for Sacroiliitis and Influence on the Retention Rate of Methotrexate Monotherapy and First Biological Drug Survival-A Retrospective Study. Int J Mol Sci 2023; 24:5368. [PMID: 36982443 PMCID: PMC10049319 DOI: 10.3390/ijms24065368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
A growing body of evidence on the importance of vitamin D in immune modulation has increased the interest in its possible impact on the course of rheumatological diseases. The scope of our study is to assess if the presence of different statuses of vitamin D could interfere in the clinical subsets, in methotrexate monotherapy discontinuation, and biological drug (b-DMARDs) survival in psoriatic arthritis patients (PsA). We conducted a retrospective study on PsA patients and split them into three groups based on their vitamin D status: the group with 25(OH)D ≤ 20 ng/mL, the group with levels of 25(OH)D between 20 and 30 ng/mL, and the group with serum levels of 25(OH)D ≥ 30 ng/mL. All patients were required to fulfill the CASPAR criteria for psoriatic arthritis and to have the evaluation of vitamin D serum levels at baseline visit and at clinical follow-up visits. The exclusion criteria were ages less than 18 years old, the presence of HLA B27, and satisfaction of rheumatoid arthritis classification criteria (during the study time). Statistical significance was set at p ≤ 0.05. Furthermore, 570 patients with PsA were screened and 233 were recruited. A level of 25(OH)D ≤ 20 ng/mL was present in 39% of patients; levels of 25(OH)D between 20 and 30 ng/mL presented in 25% of patients; 65% of patients with sacroiliitis presented 25 (OH)D ≤ 20 ng/mL. Methotrexate monotherapy discontinuation for failure was higher in the group with 25 (OH)D ≤ 20 ng/mL (survival time: 92 ± 10.3 weeks vs. 141.9 ± 24.1 weeks vs. 160.1 ± 23.6 weeks; p = 0.02) with higher discontinuation risk (HR = 2.168, 95% CI 1.334, 3.522; p = 0.002) than those with 25(OH)D between 20 and 30 ng/mL and those with 25(OH)D ≥ 30 ng/mL. Significantly shorter survival of first b-DMARDs was assessed in the group with 25 (OH)D ≤ 20 ng/mL versus the other groups (133.6 ± 11 weeks vs. 204.8 ± 35.8 weeks vs. 298.9 ± 35.4; p = 0.028) (discontinuation risk 2.129, 95% CI 1.186, 3.821; p = 0.011). This study highlights significant differences in clinical presentation, in particular sacroiliac involvement and on drug survival (methotrexate and b-DMARDs) in PsA patients with vitamin D deficiency. Further prospective studies, including a larger sample of patients, are needed to validate these data and to assess if the supplementation of vitamin D could improve the b-DMARDs response in PsA patients.
Collapse
|
27
|
Özdemirel AE, Güven SC, Doğancı A, Sarı Sürmeli Z, Özyuvalı A, Kurt M, Rüstemova D, Hassan S, Yalçın Sayın AP, Tutkak H, Ataman Ş. Anti-tumor necrosis factor alpha treatment does not influence serum levels of the markers associated with radiographic progression in ankylosing spondylitis. Arch Rheumatol 2023; 38:148-155. [PMID: 37235120 PMCID: PMC10208618 DOI: 10.46497/archrheumatol.2023.9974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVES The study aimed to determine the levels of change of the markers related to radiographic progression, such as Dickkopf-1 (DKK-1), sclerostin (SOST), bone morphogenetic protein (BMP)-2 and -4, and interleukin (IL)-17 and -23, in ankylosing spondyloarthritis (AS) during anti-tumor necrosis factor alpha (TNF-α) treatment. PATIENTS AND METHODS Fifty-three anti-TNF-α naïve AS patients (34 males, 19 females; median: 38 years; range, 20 to 52 years) refractory to conventional treatments meeting the modified New York criteria or Assessment of SpondyloArthritis International Society classification criteria were enrolled to this cross-sectional, controlled study between October 2015 and January 2017. Fifty healthy volunteers (35 males, 15 females; median: 36 years; range, 18 to 55 years) with similar age and sex characteristics were recruited. Serum DKK-1, BMP-2, BMP-4, SOST, IL-17, and IL-23 levels were measured in both groups. The serum levels of the markers were measured again after about two years (mean follow-up duration of 21.7±6.4 months) in AS patients who started anti-TNF-α treatment. Demographic, clinical characteristics, and laboratory parameters were recorded. The disease activity at the time of inclusion was assessed through the Bath Ankylosing Spondylitis Disease Activity Index. RESULTS Serum DKK-1, SOST, IL-17, and IL-23 levels in the AS group before anti-TNF-a treatment were significantly higher compared to the control group (p<0.01 for DKK-1, p<0.001 for others). There was no difference regarding serum BMP-4 levels, whereas BMP-2 levels were significantly higher in the control group (p<0.01). Forty (75.47%) AS patients had serum marker levels measured after anti-TNF-α treatment. No significant change was observed in the serum levels of these 40 patients measured 21.7±6.4 months after the initiation of anti-TNF-α treatment (p>0.05 for all). CONCLUSION In AS patients, there was no change in DKK-1/SOST, BMP, and IL-17/23 cascade with anti-TNF-α treatment. This finding may suggest that these pathways act independently of each other, and their local effects are not influenced by systemic inflammation.
Collapse
Affiliation(s)
| | - Serdar Can Güven
- Department of Rheumatology, Ankara City Hospital, Ankara, Türkiye
| | - Alper Doğancı
- Department of Physical and Rehabilitation Medicine, Erzurum Regional Training and Research Hospital, Erzurum, Türkiye
| | | | - Ayla Özyuvalı
- Department of Physical and Rehabilitation Medicine, HFM Beyazpınar Physical Medicine And Rehabilitation Centre, Ankara, Türkiye
| | - Mehmet Kurt
- Department of Physical and Rehabilitation Medicine, Dr. Ergun Özdemir Görele State Hospital, Giresun, Türkiye
| | - Diana Rüstemova
- Department of Physical and Rehabilitation Medicine, Can Private Hospital, Manisa, Türkiye
| | - Selin Hassan
- Department of Physical and Rehabilitation Medicine, Başkent University Medical School, Ankara, Türkiye
| | | | - Hüseyin Tutkak
- Department of Immunology and Allergy, Ankara University Medical School, Ankara, Türkiye
| | - Şebnem Ataman
- Department of Rheumatology, Ankara University Medical School, Ankara, Türkiye
| |
Collapse
|
28
|
Palatianou ME, Karamanolis G, Tsentidis C, Gourgiotis D, Papaconstantinou I, Vezakis A, Tzouvala M. Signaling pathways associated with bone loss in inflammatory bowel disease. Ann Gastroenterol 2023; 36:132-140. [PMID: 36864939 PMCID: PMC9932862 DOI: 10.20524/aog.2023.0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/03/2023] [Indexed: 02/12/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract characterized in many patients by extraintestinal manifestations. One of the most common comorbidities seen in IBD patients is a significant reduction in their bone mass. The pathogenesis of IBD is mainly attributed to the disrupted immune responses in the gastrointestinal mucosa and putative disruptions in the gut microbiomes. The excessive inflammation of the gastrointestinal tract activates different systems, such as the RANKL/RANK/OPG and the Wnt pathways linked with bone alterations in IBD patients, thereby suggesting a multifactorial etiology. The mechanism responsible for the reduced bone mineral density in IBD patients is thought to be multifactorial, and, so far, the principal pathophysiological pathway has not been well established. However, in recent years, many investigations have increased our understanding of the effect of gut inflammation on the systemic immune response and bone metabolism. Here, we review the main signaling pathways associated with altered bone metabolism in IBD.
Collapse
Affiliation(s)
- Maria E. Palatianou
- Department of Gastroenterology, “Agios Panteleimon” General Hospital of Nikaia-Piraeus, “Agia Varvara” General Hospital of Western Attica, Nikaia (Maria E. Palatianou, Maria Tzouvala)
| | - George Karamanolis
- Gastroenterology Unit, Second Department of Surgery, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens (George Karamanolis)
| | - Charalambos Tsentidis
- Department of Endocrinology, Metabolism & Diabetes Mellitus, “Agios Panteleimon”General Hospital of Nikaia-Piraeus, Piraeus (Charalambos Tsentidis)
| | - Dimitrios Gourgiotis
- Laboratory of Clinical Biochemistry-Molecular Diagnostic, 2 Department of Pediatrics, Medical School, NKUA, “P. & A. Kyriakou” Children’s Hospital, Athens (Dimitrios Gourgiotis)
| | - Ioannis Papaconstantinou
- Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens (Ioannis Papaconstantinou, Antonios Vezakis), Greece
| | - Antonios Vezakis
- Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens (Ioannis Papaconstantinou, Antonios Vezakis), Greece
| | - Maria Tzouvala
- Department of Gastroenterology, “Agios Panteleimon” General Hospital of Nikaia-Piraeus, “Agia Varvara” General Hospital of Western Attica, Nikaia (Maria E. Palatianou, Maria Tzouvala)
| |
Collapse
|
29
|
Chen L, Li Z, Wu H. CeDAR: incorporating cell type hierarchy improves cell type-specific differential analyses in bulk omics data. Genome Biol 2023; 24:37. [PMID: 36855165 PMCID: PMC9972684 DOI: 10.1186/s13059-023-02857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/17/2023] [Indexed: 03/02/2023] Open
Abstract
Bulk high-throughput omics data contain signals from a mixture of cell types. Recent developments of deconvolution methods facilitate cell type-specific inferences from bulk data. Our real data exploration suggests that differential expression or methylation status is often correlated among cell types. Based on this observation, we develop a novel statistical method named CeDAR to incorporate the cell type hierarchy in cell type-specific differential analyses of bulk data. Extensive simulation and real data analyses demonstrate that this approach significantly improves the accuracy and power in detecting cell type-specific differential signals compared with existing methods, especially in low-abundance cell types.
Collapse
Affiliation(s)
- Luxiao Chen
- Department of Biostatistics and Bioinformatics, Emory University, GA 30322 Atlanta, USA
| | - Ziyi Li
- Department of Biostatistics, The University of MD Anderson Cancer Center, 77030 Houston, TX, USA
| | - Hao Wu
- Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055 P.R. China
| |
Collapse
|
30
|
Conditioned Medium - Is it an Undervalued Lab Waste with the Potential for Osteoarthritis Management? Stem Cell Rev Rep 2023:10.1007/s12015-023-10517-1. [PMID: 36790694 PMCID: PMC10366316 DOI: 10.1007/s12015-023-10517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND The approaches currently used in osteoarthritis (OA) are mainly short-term solutions with unsatisfactory outcomes. Cell-based therapies are still controversial (in terms of the sources of cells and the results) and require strict culture protocol, quality control, and may have side-effects. A distinct population of stromal cells has an interesting secretome composition that is underrated and commonly ends up as biological waste. Their unique properties could be used to improve the existing techniques due to protective and anti-ageing properties. SCOPE OF REVIEW In this review, we seek to outline the advantages of the use of conditioned media (CM) and exosomes, which render them superior to other cell-based methods, and to summarise current information on the composition of CM and their effect on chondrocytes. MAJOR CONCLUSIONS CM are obtainable from a variety of mesenchymal stromal cell (MSC) sources, such as adipose tissue, bone marrow and umbilical cord, which is significant to their composition. The components present in CMs include proteins, cytokines, growth factors, chemokines, lipids and ncRNA with a variety of functions. In most in vitro and in vivo studies CM from MSCs had a beneficial effect in enhance processes associated with chondrocyte OA pathomechanism. GENERAL SIGNIFICANCE This review summarises the information available in the literature on the function of components most commonly detected in MSC-conditioned media, as well as the effect of CM on OA chondrocytes in in vitro culture. It also highlights the need to standardise protocols for obtaining CM, and to conduct clinical trials to transfer the effects obtained in vitro to human subjects.
Collapse
|
31
|
Zhan Q, Zhang J, Lin Y, Chen W, Fan X, Zhang D. Pathogenesis and treatment of Sjogren's syndrome: Review and update. Front Immunol 2023; 14:1127417. [PMID: 36817420 PMCID: PMC9932901 DOI: 10.3389/fimmu.2023.1127417] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Sjogren's syndrome (SS) is a chronic autoimmune disease accompanied by multiple lesions. The main manifestations include dryness of the mouth and eyes, along with systemic complications (e.g., pulmonary disease, kidney injury, and lymphoma). In this review, we highlight that IFNs, Th17 cell-related cytokines (IL-17 and IL-23), and B cell-related cytokines (TNF and BAFF) are crucial for the pathogenesis of SS. We also summarize the advances in experimental treatment strategies, including targeting Treg/Th17, mesenchymal stem cell treatment, targeting BAFF, inhibiting JAK pathway, et al. Similar to that of SLE, RA, and MS, biotherapeutic strategies of SS consist of neutralizing antibodies and inflammation-related receptor blockers targeting proinflammatory signaling pathways. However, clinical research on SS therapy is comparatively rare. Moreover, the differences in the curative effects of immunotherapies among SS and other autoimmune diseases are not fully understood. We emphasize that targeted drugs, low-side-effect drugs, and combination therapies should be the focus of future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Dunfang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Prajapati P, Doshi G. An Update on the Emerging Role of Wnt/β-catenin, SYK, PI3K/AKT, and GM-CSF Signaling Pathways in Rheumatoid Arthritis. Curr Drug Targets 2023; 24:1298-1316. [PMID: 38083893 DOI: 10.2174/0113894501276093231206064243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024]
Abstract
Rheumatoid arthritis is an untreatable autoimmune disorder. The disease is accompanied by joint impairment and anomalies, which negatively affect the patient's quality of life and contribute to a decline in manpower. To diagnose and treat rheumatoid arthritis, it is crucial to understand the abnormal signaling pathways that contribute to the disease. This understanding will help develop new rheumatoid arthritis-related intervention targets. Over the last few decades, researchers have given more attention to rheumatoid arthritis. The current review seeks to provide a detailed summary of rheumatoid arthritis, highlighting the basic description of the disease, past occurrences, the study of epidemiology, risk elements, and the process of disease progression, as well as the key scientific development of the disease condition and multiple signaling pathways and enumerating the most current advancements in discovering new rheumatoid arthritis signaling pathways and rheumatoid arthritis inhibitors. This review emphasizes the anti-rheumatoid effects of these inhibitors [for the Wnt/β-catenin, Phosphoinositide 3-Kinases (PI3K/AKT), Spleen Tyrosine Kinase (SYK), and Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) signaling pathways], illustrating their mechanism of action through a literature search, current therapies, and novel drugs under pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Pradyuman Prajapati
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
33
|
Abstract
Bone is a living organ that exhibits active metabolic processes, presenting constant bone formation and resorption. The bone cells that maintain local homeostasis are osteoblasts, osteoclasts, osteocytes and bone marrow stem cells, their progenitor cells. Osteoblasts are the main cells that govern bone formation, osteoclasts are involved in bone resorption, and osteocytes, the most abundant bone cells, also participate in bone remodeling. All these cells have active metabolic activities, are interconnected and influence each other, having both autocrine and paracrine effects. Ageing is associated with multiple and complex bone metabolic changes, some of which are currently incompletely elucidated. Ageing causes important functional changes in bone metabolism, influencing all resident cells, including the mineralization process of the extracellular matrix. With advancing age, a decrease in bone mass, the appearance of specific changes in the local microarchitecture, a reduction in mineralized components and in load-bearing capacity, as well as the appearance of an abnormal response to different humoral molecules have been observed. The present review points out the most important data regarding the formation, activation, functioning, and interconnection of these bone cells, as well as data on the metabolic changes that occur due to ageing.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- IIIrd Medical Clinic, "Saint Spiridon" Clinic Emergency County Hospital, Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Elena Rezus
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| |
Collapse
|
34
|
Wang H, Tran TT, Duong KT, Nguyen T, Le UM. Options of Therapeutics and Novel Delivery Systems of Drugs for the Treatment of Melanoma. Mol Pharm 2022; 19:4487-4505. [PMID: 36305753 DOI: 10.1021/acs.molpharmaceut.2c00775] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanoma is one of the most severe cancerous diseases. The cells employ multiple signaling pathways, such as ERK, HGF/c-MET, WNT, and COX-2 to cause the cell proliferation, survival, and metastasis. Treatment of melanoma, including surgery, chemotherapy, immunotherapy, radiation, and targeted therapy, is based on 4 major or 11 substages of the disease. Fourteen drugs, including dacarbazine, interferon α-2b, interleukin-12, ipilimumab, peginterferon α-2b, vemurafenib, trametinib, talimogene laherparepvec, cobimetinib, pembrolizumab, dabrafenib, binimetinib, encorafenib, and nivolumab, have been approved by the FDA for the treatment of melanoma. All of them are in conventional dosage forms of injection solutions, suspensions, oral tablets, or capsules. Major drawbacks of the treatment are side effects of the drugs and patients' incompliance to them. These are consequences of high doses and long-term treatments for the diseases. Currently more than 350 NCI-registered clinical trials are being carried out to treat advanced and/or metastatic melanoma using novel treatment methods, such as immune cell therapy, cancer vaccines, and new therapeutic targets. In addition, novel delivery systems using biomaterials of the approved drugs have been developed attempting to increase the drug delivery, targeting, stability, bioavailability, thus potentially reducing the toxicity and increasing the treatment effectiveness. Nanoparticles and liposomes have been emerging as advanced delivery systems which can improve drug stability and systemic circulation time. In this review, the most recent findings in the options for treatment and development of novel drug delivery systems for the treatment of melanoma are comprehensively discussed.
Collapse
Affiliation(s)
- Hongbin Wang
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States.,Master of Pharmaceutical Sciences College of Graduate Study, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Tuan T Tran
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Katherine T Duong
- CVS Pharmacy, 18872 Beach Boulevard, Huntington Beach, California 92648, United States
| | - Trieu Nguyen
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Uyen M Le
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| |
Collapse
|
35
|
Tao SS, Cao F, Sam NB, Li HM, Feng YT, Ni J, Wang P, Li XM, Pan HF. Dickkopf-1 as a promising therapeutic target for autoimmune diseases. Clin Immunol 2022; 245:109156. [DOI: 10.1016/j.clim.2022.109156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/24/2022] [Accepted: 10/06/2022] [Indexed: 11/03/2022]
|
36
|
Jakobsson PJ, Robertson L, Welzel J, Zhang M, Zhihua Y, Kaixin G, Runyue H, Zehuai W, Korotkova M, Göransson U. Where traditional Chinese medicine meets Western medicine in the prevention of rheumatoid arthritis. J Intern Med 2022; 292:745-763. [PMID: 35854675 PMCID: PMC9796271 DOI: 10.1111/joim.13537] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chinese medicine has a long tradition of use against rheumatoid arthritis (RA). The formulations are based on combinations of typically 5-10 plants, which are usually boiled and administered as a decoction or tea. There are few clinical trials performed so the clinical evidence is sparse. One fundamental of traditional medicine is to prevent disease. RA is an autoimmune, inflammatory and chronic disease that primarily affects the joints of 0.5%-1% of the population. In two out of three of the cases, the patients are characterised by the presence of autoantibodies such as the rheumatoid factor and the more disease-specific autoantibody against citrullinated proteins, so-called 'ACPA' (anticitrullinated protein/peptide antibodies). ACPA positivity is also strongly associated with specific variations in the HLA-DRB1 gene, the shared epitope alleles. Together with smoking, these factors account for the major risks of developing RA. In this review, we will summarise the background using certain plant-based formulations based on Chinese traditional medicine for the treatment and prevention of RA and the strategy we have taken to explore the mechanisms of action. We also summarise the major pathophysiological pathways related to RA and how these could be analysed. Finally, we summarise our ideas on how a clinical trial using Chinese herbal medicine to prevent RA could be conducted.
Collapse
Affiliation(s)
- Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine Solna & Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Luke Robertson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Janika Welzel
- Division of Rheumatology, Department of Medicine Solna & Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Mingshu Zhang
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Yang Zhihua
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gao Kaixin
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huang Runyue
- Section of Rheumatology and Immunology Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Wen Zehuai
- Key Unit of Methodology in Clinical Research, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine Solna & Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Göransson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
37
|
Shaw AT, Yan J, Kuhstoss SA, Charles JF, Gravallese EM. Dickkopf-1 directs periosteal bone formation in two murine models of inflammatory arthritis. Scand J Rheumatol 2022; 51:495-499. [PMID: 35272576 PMCID: PMC9464261 DOI: 10.1080/03009742.2022.2040136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The Wnt signalling antagonist Dickkopf-1 (DKK1) inhibits osteoblast differentiation and function and has been described to play a central role in promoting bone loss, while blockade of DKK1 increases bone formation. We investigated the effects of DKK1 on periosteal new bone formation in two murine models of inflammatory arthritis, the antigen-induced arthritis (AIA) and K/BxN serum transfer arthritis (STA) models. METHOD The flare variant of AIA was induced in wild-type mice and a blocking antibody to DKK1, control rat immunoglobulin G (IgG), or phosphate-buffered saline (PBS) was administered starting on day 14, a time at which inflammation and erosions are known to be established. Knees were assessed for histological inflammation and periosteal new bone formation was quantitated. In addition, STA was generated in transgenic (Tg) mice with osteoblast-specific overexpression of Dkk1 and littermate controls. New bone formation around the wrists of these mice was quantified by micro-computed tomography. RESULTS Blockade of DKK1 in arthritic mice resulted in significantly more periosteal new bone formation compared to mice treated with control rat IgG or PBS. Conversely, in the setting of increased Dkk1 expression, arthritic Dkk1 Tg mice developed significantly less periosteal new bone than arthritic controls. CONCLUSION DKK1 is a regulator of periosteal bone formation in inflammatory arthritis. Thus, regulation of DKK1 may be considered as a therapeutic approach in inflammatory diseases in which patients suffer from excessive periosteal bone formation, such as spondyloarthritis.
Collapse
Affiliation(s)
- Anita T. Shaw
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jing Yan
- Department of Orthopedic Surgery, Brigham and Women’s Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Stuart A. Kuhstoss
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Julia F. Charles
- Department of Orthopedic Surgery, Brigham and Women’s Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ellen M. Gravallese
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Gao Y, Cai W, Zhou Y, Li Y, Cheng J, Wei F. Immunosenescence of T cells: a key player in rheumatoid arthritis. Inflamm Res 2022; 71:1449-1462. [DOI: 10.1007/s00011-022-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
|
39
|
Behera JK, Bhattacharya M, Mishra P, Mishra A, Dash AA, Kar NB, Behera B, Patra BC. Regulatory role of miRNAs in Wnt signaling pathway linked with cardiovascular diseases. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100133. [PMID: 36568258 PMCID: PMC9780067 DOI: 10.1016/j.crphar.2022.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are discovered in science about 23 years ago. These are short, a series of non-coding, single-stranded and evolutionary conserved RNA molecules found in eukaryotic cells. It involved post-transcriptional fine-tune protein expression and repressing the target of mRNA in different biological processes. These miRNAs binds with the 3'-UTR region of specific mRNAs to phosphorylate the mRNA degradation and inhibit the translation process in various tissues. Therefore, aberrant expression in miRNAs induces numerous cardiovascular diseases and developmental defects. Subsequently, the miRNAs and Wnt singling pathway are regulating a cellular process in cardiac development and regeneration, maintain the homeostasis and associated heart diseases. In Wnt signaling pathway majority of the signaling components are expressed and regulated by miRNAs, whereas the inhibition or dysfunction of the Wnt signaling pathway induces cardiovascular diseases. Moreover, inadequate studies about the important role of miRNAs in heart development and diseases through Wnt signaling pathway has been exist still now. For this reason in present review we summarize and update the involvement of miRNAs and the role of Wnt signaling in cardiovascular diseases. We have discussed the mechanism of miRNA functions which regulates the Wnt components in cellular signaling pathway. The fundamental understanding of Wnt signaling regulation and mechanisms of miRNAs is quite essential for study of heart development and related diseases. This approach definitely enlighten the future research to provide a new strategy for formulation of novel therapeutic approaches against cardiovascular diseases.
Collapse
Affiliation(s)
- Jiban Kumar Behera
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Pabitra Mishra
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Akansha Mishra
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Adya Anindita Dash
- Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Niladri Bhusan Kar
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Bhaskar Behera
- Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Bidhan Chandra Patra
- Department of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| |
Collapse
|
40
|
Tesolin P, Bertinetto FE, Sonaglia A, Cappellani S, Concas MP, Morgan A, Ferrero NM, Zabotti A, Gasparini P, Amoroso A, Quartuccio L, Girotto G. High Throughput Genetic Characterisation of Caucasian Patients Affected by Multi-Drug Resistant Rheumatoid or Psoriatic Arthritis. J Pers Med 2022; 12:jpm12101618. [PMID: 36294757 PMCID: PMC9605087 DOI: 10.3390/jpm12101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Rheumatoid and psoriatic arthritis (RA and PsA) are inflammatory rheumatic disorders characterised by a multifactorial etiology. To date, the genetic contributions to the disease onset, severity and drug response are not clearly defined, and despite the development of novel targeted therapies, ~10% of patients still display poor treatment responses. We characterised a selected cohort of eleven non-responder patients aiming to define the genetic contribution to drug resistance. An accurate clinical examination of the patients was coupled with several high-throughput genetic testing, including HLA typing, SNPs-array and Whole Exome Sequencing (WES). The analyses revealed that all the subjects carry very rare HLA phenotypes which contain HLA alleles associated with RA development (e.g., HLA-DRB1*04, DRB1*10:01 and DRB1*01). Additionally, six patients also carry PsA risk alleles (e.g., HLA-B*27:02 and B*38:01). WES analysis and SNPs-array revealed 23 damaging variants with 18 novel “drug-resistance” RA/PsA candidate genes. Eight patients carry likely pathogenic variants within common genes (CYP21A2, DVL1, PRKDC, ORAI1, UGT2B17, MSR1). Furthermore, “private” damaging variants were identified within 12 additional genes (WNT10A, ABCB7, SERPING1, GNRHR, NCAPD3, CLCF1, HACE1, NCAPD2, ESR1, SAMHD1, CYP27A1, CCDC88C). This multistep approach highlighted novel RA/PsA candidate genes and genotype-phenotype correlations potentially useful for clinicians in selecting the best therapeutic strategy.
Collapse
Affiliation(s)
- Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Francesca Eleonora Bertinetto
- Department of Medical Sciences, University of Turin, and Immunogenetic and Transplant Biology Service, University Hospital “Città della Salute e della Scienza”, 10124 Turin, Italy
| | - Arianna Sonaglia
- Division of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, 33100 Udine, Italy
| | - Stefania Cappellani
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
- Correspondence: ; Tel.: +39-0403785539
| | - Anna Morgan
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| | - Norma Maria Ferrero
- Department of Medical Sciences, University of Turin, and Immunogenetic and Transplant Biology Service, University Hospital “Città della Salute e della Scienza”, 10124 Turin, Italy
| | - Alen Zabotti
- Division of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, 33100 Udine, Italy
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, and Immunogenetic and Transplant Biology Service, University Hospital “Città della Salute e della Scienza”, 10124 Turin, Italy
| | - Luca Quartuccio
- Division of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, 33100 Udine, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| |
Collapse
|
41
|
Dong Z, Geng Y, Zhang P, Tang J, Cao Z, Zheng H, Guo J, Zhang C, Liu B, Liu WJ. Identification of molecular mechanism and key biomarkers in membranous nephropathy by bioinformatics analysis. Am J Transl Res 2022; 14:5833-5847. [PMID: 36105034 PMCID: PMC9452341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Membranous nephropathy (MN) is an autoimmune nephropathy. The incidence of MN is increasing gradually in recent years. Previous studies focused on antibody production, complement activation and podocyte injury in MN. However, the etiology and underlying mechanism of MN remain to be further studied. METHODS GSE104948 and GSE108109 of glomerular expression profile were downloaded from Gene Expression Omnibus (GEO) database, GSE47184, GSE99325, GSE104954, GSE108112, GSE133288 of renal tubule expression profile, and GSE73953 of peripheral blood mononuclear cells (PBMCs) expression profile. After data integration by Networkanalyst, differentially expressed genes (DEGs) between MN and healthy samples were obtained. DEGs were enriched in gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG), and protein-protein interaction (PPI) networks of these genes were constructed through Metascape, etc. We further understood the function of hub genes through gene set enrichment analysis (GSEA). The diagnostic value of DEGs in MN was evaluated by receiver operating characteristic (ROC) analysis. RESULTS A total of 3 genes (TP53, HDAC5, and SLC2A3) were screened out. Among them, the up-regulated TP53 expression may be closely related to MN renal pathological changes. However, the expression of MN podocyte target antigen was not significantly different from that of healthy controls. In addition, the changes of Wnt signaling pathway in PBMCs and the effects of SLC2A3 on the differentiation of M2 monocyte need further study. CONCLUSION It is difficult to unify a specific mechanism for the changes of glomerulus, renal tubules and PBMCs in MN patients. This may be related to the pathogenesis, pathology and immune characteristics of MN. MN podocyte target antigen may not be the root cause of the disease, but a stage result in the pathogenesis process.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Yunling Geng
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Pingna Zhang
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Jingyi Tang
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Zijing Cao
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Jing Guo
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Chao Zhang
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical UniversityBeijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| |
Collapse
|
42
|
Özdemirel AE, Güven SC, Sarı Sürmeli Z, Özyuvalı A, Kurt M, Rüstemova D, Yalçın Sayan AP, Tutkan H, Ataman Ş. Serum BMP-2 and BMP-4 levels and their relationship with disease activity in patients with rheumatoid arthritis and ankylosing spondylitis. Arch Rheumatol 2022; 37:466-474. [PMID: 36589602 PMCID: PMC9791556 DOI: 10.46497/archrheumatol.2022.9819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 11/07/2022] Open
Abstract
Objectives This study aims to investigate the levels of bone morphogenic proteins (BMPs), one of the pathways affecting bone turnover in these diseases, and to investigate their relationship with disease activity. Patients and methods Between September 2013 and July 2015, a total of 100 ankylosing spondylitis (AS) patients (53 males, 48 females; median age: 40 years; range, 18 to 62 years), 58 rheumatoid arthritis (RA) patients (25 males, 33 females; median age: 40.5 years; range, 26 to 59 years), and 102 age- and sex-matched healthy controls (55 males, 47 females; median age: 38 years; range, 18 to 55 years) were included in the study. In all groups, serum BMP-2 and BMP-4 levels were measured using enzyme-linked immunosorbent assay (ELISA). Demographic data (age, sex, duration of disease) and acute phase reactants of the patients at the final visit were recorded. Disease activity was assessed through the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and Ankylosing Spondylitis Disease Activity Score C-Reactive Protein (ASDAS-CRP) for AS patients and through the Disease Activity Score-28-CRP (DAS-28-CRP) for RA patients. Results The median BMP-2 values were found to be significantly higher in the RA group compared to the other groups and in the control group compared to the AS group (p<0.001 for both). There was no significant difference between the groups in terms of median BMP-4 values (p>0.05). No significant relationship was found between serum BMP-2 and BMP-4 levels and disease activity in both AS and RA patients, while there was a weak positive correlation between erythrocyte sedimentation rate and CRP levels with BMP-2 level in RA patients (p=0.014, r=0.320 and p=0.029, r=0.287, respectively). Conclusion Our study results suggest that the BMP pathway may have different dual effects in AS and RA patients depending on the underlying pathogenesis, and that local effects are more prominent than serum levels.
Collapse
Affiliation(s)
| | - Serdar Can Güven
- Department of Rheumatology, Ankara City Hospital, Ankara, Türkiye
| | | | - Ayla Özyuvalı
- Department of Physical and Rehabilitation Medicine, HFM Beyazpınar Physical Medicine and Rehabilitation Centre, Ankara, Türkiye
| | - Memet Kurt
- Department of Physical and Rehabilitation Medicine, Dr. Ergun Özdemir Görele State Hospital, Giresun, Türkiye
| | - Diana Rüstemova
- Department of Physical and Rehabilitation Medicine, Can Private Hospital Clinic of Physical and Rehabilitation, Manisa, Türkiye
| | - Ayşe Peyman Yalçın Sayan
- Department of Physical and Rehabilitation Medicine, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Hüseyin Tutkan
- Department of Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Şebnem Ataman
- Department of Physical and Rehabilitation Medicine, Division of Rheumatology, Ankara University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
43
|
Jiang P, Wei K, Chang C, Zhao J, Zhang R, Xu L, Jin Y, Xu L, Shi Y, Guo S, Schrodi SJ, He D. SFRP1 Negatively Modulates Pyroptosis of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis: A Review. Front Immunol 2022; 13:903475. [PMID: 35795672 PMCID: PMC9251540 DOI: 10.3389/fimmu.2022.903475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/26/2022] [Indexed: 12/26/2022] Open
Abstract
Secreted frizzled-related protein 1 (SFRP1) is a member of secretory glycoprotein SFRP family. As a primitive gene regulating cell growth, development and transformation, SFRP1 is widely expressed in human cells, including various cancer cells and fibroblast-like synoviocytes (FLS) of rheumatoid arthritis (RA). Deletion or silencing of SFRP1 involves epigenetic and other mechanisms, and participates in biological behaviors such as cell proliferation, migration and cell pyroptosis, which leads to disease progression and poor prognosis. In this review, we discuss the role of SFRP1 in the pathogenesis of RA-FLS and summarize different experimental platforms and recent research results. These are helpful for understanding the biological characteristics of SFRP1 in RA, especially the mechanism by which SFRP1 regulates RA-FLS pyroptosis through Wnt/β-catenin and Notch signaling pathways. In addition, the epigenetic regulation of SFRP1 in RA-FLS is emphasized, which may be considered as a promising biomarker and therapeutic target of RA.
Collapse
Affiliation(s)
- Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Runrun Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yehua Jin
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
44
|
Effects of Biological/Targeted Therapies on Bone Mineral Density in Inflammatory Arthritis. Int J Mol Sci 2022; 23:ijms23084111. [PMID: 35456929 PMCID: PMC9029148 DOI: 10.3390/ijms23084111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammatory arthritis has been reported to be associated with the development of osteoporosis. Recent research has investigated the mechanisms of bone metabolism in chronic inflammatory arthritis such as rheumatoid arthritis (RA) and spondyloarthritis (SpA). Progress in both animal and clinical studies has provided a better understanding of the osteoclastogenesis-related pathways regarding the receptor activator of nuclear factor-κB ligand (RANKL), anti-citrullinated protein antibodies (ACPAs), and Wnt signaling and Dickkopf-related protein 1 (Dkk-1). The complex interplay between inflammatory cytokines and bone destruction has been elucidated, especially that in the interleukin-17/23 (IL-17/23) axis and Janus kinase and signal transducer and activator of transcription (JAK-STAT) signaling. Moreover, advances in biological and targeted therapies have achieved essential modifications to the bone metabolism of these inflammatory arthritis types. In this narrative review, we discuss recent findings on the pathogenic effects on bone in RA and SpA. Proinflammatory cytokines, autoantibodies, and multiple signaling pathways play an essential role in bone destruction in RA and SpA patients. We also reviewed the underlying pathomechanisms of bone structure in biological and targeted therapies of RA and SpA. The clinical implications of tumor necrosis factor inhibitors, abatacept, rituximab, tocilizumab, Janus kinase inhibitors, and inhibitors of the IL-17/23 axis are discussed. Since these novel therapeutics provide new options for disease improvement and symptom control in patients with RA and SpA, further rigorous evidence is warranted to provide a clinical reference for physicians and patients.
Collapse
|
45
|
Li Y, Li M, Qu C, Li Y, Tang Z, Zhou Z, Yu Z, Wang X, Xin L, Shi T. The Polygenic Map of Keloid Fibroblasts Reveals Fibrosis-Associated Gene Alterations in Inflammation and Immune Responses. Front Immunol 2022; 12:810290. [PMID: 35082796 PMCID: PMC8785650 DOI: 10.3389/fimmu.2021.810290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023] Open
Abstract
Due to many inconsistencies in differentially expressed genes (DEGs) related to genomic expression changes during keloid formation and a lack of satisfactory prevention and treatment methods for this disease, the critical biomarkers related to inflammation and the immune response affecting keloid formation should be systematically clarified. Normal skin/keloid scar tissue-derived fibroblast genome expression data sets were obtained from the Gene Expression Omnibus (GEO) and ArrayExpress databases. Hub genes have a high degree of connectivity and gene function aggregation in the integration network. The hub DEGs were screened by gene-related protein–protein interactions (PPIs), and their biological processes and signaling pathways were annotated to identify critical biomarkers. Finally, eighty-one hub DEGs were selected for further analysis, and some noteworthy signaling pathways and genes were found to be closely related to keloid fibrosis. For example, IL17RA is involved in IL-17 signal transduction, TIMP2 and MMP14 activate extracellular matrix metalloproteinases, and TNC, ITGB2, and ITGA4 interact with cell surface integrins. Furthermore, changes in local immune cell activity in keloid tissue were detected by DEG expression, immune cell infiltration, and mass CyTOF analyses. The results showed that CD4+ T cells, CD8+ T cells and NK cells were abnormal in keloid tissue compared with normal skin tissue. These findings not only support the key roles of fibrosis-related pathways, immune cells and critical genes in the pathogenesis of keloids but also expand our understanding of targets that may be useful for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Yang Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Min Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Caijie Qu
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yongxi Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zhanli Tang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhike Zhou
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zengzhao Yu
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xu Wang
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Linlin Xin
- Department of Dermatology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Tongxin Shi
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
46
|
Maeda K, Yoshida K, Nishizawa T, Otani K, Yamashita Y, Okabe H, Hadano Y, Kayama T, Kurosaka D, Saito M. Inflammation and Bone Metabolism in Rheumatoid Arthritis: Molecular Mechanisms of Joint Destruction and Pharmacological Treatments. Int J Mol Sci 2022; 23:2871. [PMID: 35270012 PMCID: PMC8911191 DOI: 10.3390/ijms23052871] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease characterized by a variety of symptoms and pathologies often presenting with polyarthritis. The primary symptom in the initial stage is joint swelling due to synovitis. With disease progression, cartilage and bone are affected to cause joint deformities. Advanced osteoarticular destruction and deformation can cause irreversible physical disabilities. Physical disabilities not only deteriorate patients' quality of life but also have substantial medical economic effects on society. Therefore, prevention of the progression of osteoarticular destruction and deformation is an important task. Recent studies have progressively improved our understanding of the molecular mechanism by which synovitis caused by immune disorders results in activation of osteoclasts; activated osteoclasts in turn cause bone destruction and para-articular osteoporosis. In this paper, we review the mechanisms of bone metabolism under physiological and RA conditions, and we describe the effects of therapeutic intervention against RA on bone.
Collapse
Affiliation(s)
- Kazuhiro Maeda
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Ken Yoshida
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.Y.); (K.O.); (D.K.)
| | - Tetsuro Nishizawa
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Kazuhiro Otani
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.Y.); (K.O.); (D.K.)
| | - Yu Yamashita
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Hinako Okabe
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Yuka Hadano
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Tomohiro Kayama
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| | - Daitaro Kurosaka
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.Y.); (K.O.); (D.K.)
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (T.N.); (Y.Y.); (H.O.); (Y.H.); (T.K.); (M.S.)
| |
Collapse
|
47
|
Cai L, Zong P, Zhou MY, Liu FY, Meng B, Liu MM, Li Z, Li R. 7-Hydroxycoumarin mitigates the severity of collagen-induced arthritis in rats by inhibiting proliferation and inducing apoptosis of fibroblast-like synoviocytes via suppression of Wnt/β-catenin signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153841. [PMID: 34752968 DOI: 10.1016/j.phymed.2021.153841] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND 7-Hydroxycoumarin (7-HC) as a coumarin compound is widely found in Chinese herbs and exhibits diverse biological activities. Promoting cell apoptosis of fibroblast-like synoviocytes (FLS) is a meaningful strategy for rheumatoid arthritis (RA). Though the protective effect of 7-HC on RA experimental models has been reported, the specific mechanisms, especially the possible relationships of this effect to regulating FLS proliferation and apoptosis, still need clarification. PURPOSE This study clarified the therapeutic effects of 7-HC on collagen-induced arthritis (CIA) in rats and explored the underlying mechanisms. METHODS In vivo, 7-HC (15, 30 or 60 mg/kg) was intraperitoneally given to CIA rats, and its therapeutic effect and anti-inflammatory activity were evaluated. Ki67 immunohistochemistry, TUNEL assay and synovial proteins detection were conducted. In vitro, after treating with 7-HC (20, 40 or 80 μM) in TNF-α-stimulated RA FLS (MH7A cell line), cell proliferation and apoptosis were examined. The involvement of Wnt/β-catenin pathway was checked in vivo and in vitro. RESULTS 7-HC attenuated the severity of rat CIA, evidenced by the reduction of paw swelling, arthritis index, joint damage, collagen type II antibody serum level, and IL-1β, IL-6, TNF-α production in serum and synovium. Particularly, 7-HC in vivo had anti-proliferative and pro-apoptotic effects on CIA rat synovial cells, indicated by reduced synovial Ki67 expression, raised synovial apoptosis index, decreased Bcl-2 protein level and increased level of Bax and cleaved caspase 3 protein. Further, 7-HC in vitro suppressed proliferation and promoted apoptosis of TNF-α-stimulated MH7A cells by regulating the mitochondrial pathway. Mechanistically, 7-HC treatment inhibited Wnt/β-catenin pathway, suggested by the reduction of pathway-related proteins (e.g. Wnt1, LRP6, p-GSK-3β (Ser9), β-catenin, cyclin D1 and c-Myc), the recovery of GSK-3β activity and the inhibition of β-catenin nuclear translocation. As expected, combined use of lithium chloride, an activator of Wnt/β-catenin signaling, reversed the anti-proliferative and pro-apoptotic effects of 7-HC in vitro. CONCLUSION 7-HC relieved the severity of rat CIA by inhibiting cell proliferation and inducing apoptosis of rheumatoid FLS via inhibition of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Li Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China; Department of Pathology, School of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China
| | - Pan Zong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China; Department of Pharmacy, the First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei 230026, Anhui Province, P.R. China
| | - Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China
| | - Fang-Yuan Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China
| | - Bo Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China.
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China.
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China.
| |
Collapse
|
48
|
Maes M, Kubera M, Kotańska M. Aberrations in the Cross-Talks Among Redox, Nuclear Factor-κB, and Wnt/β-Catenin Pathway Signaling Underpin Myalgic Encephalomyelitis and Chronic Fatigue Syndrome. Front Psychiatry 2022; 13:822382. [PMID: 35599774 PMCID: PMC9120845 DOI: 10.3389/fpsyt.2022.822382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/23/2022] [Indexed: 01/07/2023] Open
Abstract
There is evidence that chronic fatigue spectrum disorders (CFAS-Ds), including myalgic encephalomyelitis (ME), chronic fatigue syndrome (CFS), and chronic fatigue with physiosomatic symptoms including when due to comorbid medical disease, are characterized by neuroimmune and neuro-oxidative biomarkers. This study was performed to delineate the protein-protein interaction (PPI) network of CFAS-D and to discover the pathways, molecular patterns, and domains enriched in their PPI network. We performed network, enrichment, and annotation analyses using differentially expressed proteins and metabolics, which were established in patients with CFAS-D. The PPI network analysis revealed that the backbone of the highly connective CFAS-D network comprises NFKB1, CTNNB1, ALB, peroxides, NOS2, tumor necrosis factor (TNF), and interleukin-6 (IL-6) and that the network comprises interconnected immune-oxidative-nitrosative and Wnt/β-catenin subnetworks. Multiomics enrichment analysis shows that the CFAS-D network is highly significantly associated with cellular (antioxidant) detoxification, hydrogen peroxide metabolic process, peroxidase and oxidoreductase activity, interleukin-10 (IL-10) anti-inflammatory signaling and neurodegenerative canonical Wnt, the β-catenin complex, cadherin domains, cell-cell junctions and TLR2/4 pathways, and the transcription factors nuclear factor kappa B (NF-κB) and RELA. The top 10 DOID annotations of the CFAS-D network include four intestinal, three immune system disorders, cancer, and infectious disease. The custom Gene Ontology (GO) term annotation analysis revealed that the CFAS-D network is associated with a response to a toxic substance, lipopolysaccharides, bacterium, or virus. In conclusion, CFAS-D may be triggered by a variety of stimuli and their effects are mediated by aberrations in the cross-talks between redox, NF-κB, and Wnt/β-catenin signaling pathways leading to dysfunctions in multicellular organismal homeostatic processes.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.,IMPACT Strategic Research Center, Deakin University, Geelong, VIC, Australia
| | - Marta Kubera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Medical College, Jagiellonian University, Kraków, Poland
| |
Collapse
|
49
|
Patidar V, Shah S, Kumar R, Singh PK, Singh SB, Khatri DK. A molecular insight of inflammatory cascades in rheumatoid arthritis and anti-arthritic potential of phytoconstituents. Mol Biol Rep 2021; 49:2375-2391. [PMID: 34817776 DOI: 10.1007/s11033-021-06986-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an auto-immune inflammatory disorder of the synovial lining of joints marked by immune cells infiltration and hyperplasia of synovial fibroblasts which results in articular cartilage destruction and bone erosion. The current review will provide comprehensive information and results obtained from the recent research on the phytochemicals which were found to have potential anti-arthritic activity along with the molecular pathway that were targeted to control RA progression. In this review, we have summarized the scientific data from various animal studies about molecular mechanisms, possible side effects, associations with conventional therapies, and the role of complementary and alternative medicines (CAM) for RA such as ayurvedic medicines in arthritis. In the case of RA, phytochemicals have been shown to act through different pathways such as regulation of inflammatory signaling pathways, T cell differentiation, inhibition of angiogenic factors, induction of the apoptosis of fibroblast-like synoviocytes (FLS), inhibition of autophagic pathway by inhibiting High-mobility group box 1 protein (HMGB-1), Akt/ mTOR pathway and HIF-1α mediated Vascular endothelial growth (VEGF) expression. Also, osteoclasts differentiation is inhibited by down-regulating the VEGF expression by decreasing the accumulation of the ARNT (Aryl Hydrocarbon Receptor Nuclear Translocator)-HIF-1α complex Although phytochemicals have shown to exert potential anti-arthritic activity in many animal models and further clinical data is needed to confirm their safety, efficacy, and interactions in humans.
Collapse
Affiliation(s)
- Vaibhav Patidar
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shruti Shah
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rahul Kumar
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
50
|
Impact of Posttranslational Modification in Pathogenesis of Rheumatoid Arthritis: Focusing on Citrullination, Carbamylation, and Acetylation. Int J Mol Sci 2021; 22:ijms221910576. [PMID: 34638916 PMCID: PMC8508717 DOI: 10.3390/ijms221910576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is caused by prolonged periodic interactions between genetic, environmental, and immunologic factors. Posttranslational modifications (PTMs) such as citrullination, carbamylation, and acetylation are correlated with the pathogenesis of RA. PTM and cell death mechanisms such as apoptosis, autophagy, NETosis, leukotoxic hypercitrullination (LTH), and necrosis are related to each other and induce autoantigenicity. Certain microbial infections, such as those caused by Porphyromonasgingivalis, Aggregatibacter actinomycetemcomitans, and Prevotella copri, can induce autoantigens in RA. Anti-modified protein antibodies (AMPA) containing anti-citrullinated protein/peptide antibodies (ACPAs), anti-carbamylated protein (anti-CarP) antibodies, and anti-acetylated protein antibodies (AAPAs) play a role in pathogenesis as well as in prediction, diagnosis, and prognosis. Interestingly, smoking is correlated with both PTMs and AMPAs in the development of RA. However, there is lack of evidence that smoking induces the generation of AMPAs.
Collapse
|