1
|
Li M, Jin S, Lu Y, Sun Q, Zhang Y, Jiang P, Zhu S, Luo Y, Zhao SC, Li C, Feng N. Probiotic domestication and engineering enable one-shot treatment for bladder mucosal repair. Biomaterials 2025; 318:123123. [PMID: 39893782 DOI: 10.1016/j.biomaterials.2025.123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The bladder mucosa is an important blood-urine barrier in the human body, its destruction can lead to distressing cystitis. Traditional treatment approaches often require frequent catheterization and intravesical instillation of hyaluronic acid (HA), which greatly reduces patient compliance and therapeutic efficacy. Herein, we develop a probiotic-based one-shot therapy to repair bladder mucosa with improved convenience, efficacy, and biosafety. To this end, a high-biocompatible probiotic strain is engineered to secrete high-molecular-weight HA controlled by ultrasound stimulation. Meanwhile, a bacterium acclimation-inspired strategy to select bacterial cells targeting the site of bladder inflammation is also proposed. With just one-shot intravesical administration, these engineered bacteria can strongly adhere to the damaged bladder epithelium, continuously secrete HA, and stimulate the formation of protective living engineered materials on the bladder. Consequently, varying therapeutic efficacies in damaged murine model, such as reporting the site of inflammation within 28 days, accelerating mucosal repair (such as significantly increased expression of tight junction proteins occludin-1 and ZO-1), modulating innate immune reactions (such as pro-inflammatory factor levels decreased by about 50 %), and even recovering animal motion behaviors, are realized, achieving an improved therapeutic effect without detectable adverse effects.
Collapse
Affiliation(s)
- Menglu Li
- Department of Urology, Jiangnan University Medical Center, Wuxi, 214000, China; Institute of Urology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China; Department of Urology, Wuxi Medical Center, Nantong University, Nantong, 226007, China
| | - Shengkai Jin
- Institute of Urology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Yichen Lu
- Department of Urology, Wuxi No. 2 People's Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Qingfei Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yuwei Zhang
- Department of Urology, Wuxi Medical Center, Nantong University, Nantong, 226007, China
| | - Peng Jiang
- Department of Urology, Jiangnan University Medical Center, Wuxi, 214000, China; Institute of Urology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China; Department of Urology, Wuxi Medical Center, Nantong University, Nantong, 226007, China
| | - Sha Zhu
- Department of Urology, Jiangnan University Medical Center, Wuxi, 214000, China; Institute of Urology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China; Department of Urology, Wuxi Medical Center, Nantong University, Nantong, 226007, China
| | - Yi Luo
- Department of Urology, University of Iowa, Iowa City, IA, 52242, USA.
| | - Shan-Chao Zhao
- Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China.
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Ninghan Feng
- Department of Urology, Jiangnan University Medical Center, Wuxi, 214000, China; Institute of Urology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China; Department of Urology, Wuxi Medical Center, Nantong University, Nantong, 226007, China; Department of Urology, Wuxi No. 2 People's Hospital, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Zhang G, Jiang X, Xia Y, Qi P, Li J, Wang L, Wang Z, Tian X. Hyaluronic acid-conjugated lipid nanocarriers in advancing cancer therapy: A review. Int J Biol Macromol 2025; 299:140146. [PMID: 39842601 DOI: 10.1016/j.ijbiomac.2025.140146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Lipid nanoparticles are obtaining significant attention in cancer treatment because of their efficacy at delivering drugs and reducing side effects. These things are like a flexible platform for getting anticancer drugs to the tumor site, especially upon HA modification, a polymer that is known to target tumors overexpressing CD44. HA is promising in cancer therapy because it taregtes tumor cells by binding onto CD44 receptors, which are often upregulated in cancer cells. Lipid nanoparticles are not only beneficial in improving solubility and stability of drugs; they also use the EPR effect, meaning they accumulate more in tumor tissue than in healthy tissue. Adding HA to these nanoparticles expands their biocompatibility and makes them more accurate and specific towards tumor cells. Studies show that HA-modified nanoparticles carrying drugs such as paclitaxel or doxorubicin improve how well cells absorb the drugs, reduce drug resistance, and make tumor shrinking. These nanoparticles can respond to tumor microenvironment stimuli in targeted delivery. This targeted delivery diminishes side effects and improves anti-cancer activity of drugs. Thus, lipid-based nanoparticles conjugated with HA are a promising way to treat cancer by delivering drugs effectively, minimizing side effects, and giving us better therapeutic results.
Collapse
Affiliation(s)
- Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Xin Jiang
- Department of Clinical Pharmacy, Baoying People's Hospital, Affiliated Hospital of Medical School, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yitong Xia
- Department of Oral Medicine, Jining Medical College, Jining, Shandong, China
| | - Pengpeng Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jie Li
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Lizhen Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, Shandong, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng City Hospital of Traditional Chinese Medicine, Liaocheng, Shandong, China.
| | - Xiuli Tian
- Department of Respiration, Liaocheng People's Hospital, Liaocheng, Shandong, China.
| |
Collapse
|
3
|
Chen S, Hu C, Lu W, Zhang J. A lubcan cross-linked polyethylene glycol dimethyl ether hydrogel for hyaluronic acid replacement as soft tissue engineering fillers. Int J Biol Macromol 2025; 298:140061. [PMID: 39832602 DOI: 10.1016/j.ijbiomac.2025.140061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
The structure of soft tissues is often destroyed by injury and aging. Injectable fillers eliminate the need for surgery and enhance repair. Hyaluronic acid-based hydrogels are commonly employed for their effectiveness and biocompatibility. However, hyaluronidase breaks them down quickly. Lubcan, a naturally sourced microbial extracellular polysaccharide, has demonstrated significant water absorption and retention capabilities, as well as lubricating properties comparable to those of hyaluronic acid. In this study, a novel injectable and implantable hydrogel was created from lubcan by adding polyethylene glycol diglycidyl ether as a cross-linking agent. Lubcan hydrogels exhibit exceptional thermal stability, favorable swelling behavior, in vitro degradation, compressive strength, injectability, and rheological properties, all while preserving the integrity of their three-dimensional porous structure. In vitro tests indicated that the lubcan hydrogel was non-cytotoxic, did not adhere to blood cells, and exhibited good hemocompatibility. Compared to the subcutaneous injection of commercially available hyaluronic acid hydrogels, lubcan hydrogels demonstrated superior integrity, persistence, and a softer texture in Balb/c mice after 16 weeks. At the same time, lubcan hydrogel is non-toxic to organs, does not affect blood biochemical test values, and is non-immunogenic in mice. These findings suggest that lubcan hydrogel may be a promising new superficial soft tissue filler.
Collapse
Affiliation(s)
- Silu Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, 210094, China
| | - Chengtao Hu
- Nanjing Southern Element Biotechnology Co., Ltd, Nanjing 211899, China
| | - Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, 210094, China.
| |
Collapse
|
4
|
Di J, Pei X, Hu S, Zuo M, Liu H, Gao W. Effect of cysteine transport on the molecular weight and synthesis of hyaluronic acid in Streptococcus zooepidemicus. Int J Biol Macromol 2025; 306:141060. [PMID: 39978507 DOI: 10.1016/j.ijbiomac.2025.141060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Hyaluronic acid (HA) is a highly polymerized linear polysaccharide widely employed in cosmetics, pharmaceuticals and food. Streptococcus zooepidemicus, the primary HA industrial strain, faces high production costs and difficulties in regulating molecular weight (MW). To enhance HA yield, lactate dehydrogenase gene (ldh) was knocked out. Surprisingly, the knockout strain demonstrated a significant reduction in HA MW. To investigate the underlying mechanisms and identify novel factors affecting HA MW, transcriptome sequencing was performed on both the wild-type and knockout strain. The results revealed altered transcript levels for three presumptive cysteine transporter genes, fliY1/2/3. To assess their roles in HA synthesis, fliY1/2/3 were individually knocked out or over-expressed. It was found that overexpression of fliY1 reduced the MW further to 0.8 × 106 Da while increasing HA titer by 30 %. Additionally, the exogenous addition of cysteine was observed to lower HA MW and enhance titer. By supplementing a 3 L bioreactor with 2 g/L cysteine, the HA MW of the fliY1 overexpression strain decreased to 1.0 × 106 Da, while the titer reached 6.989 g/L. In conclusion, this study provides novel targets for genetic modification of HA-producing strains and demonstrates potential strategies for the customized production of HA with controlled MW.
Collapse
Affiliation(s)
- Jingyi Di
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xujuan Pei
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shaoru Hu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Meng Zuo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hao Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Weixia Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
5
|
Kim YH, Kim HS, Hong IS. Advances in biomaterials-based tissue engineering for regeneration of female reproductive tissues. Biofabrication 2025; 17:022001. [PMID: 39854843 DOI: 10.1088/1758-5090/adae38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/24/2025] [Indexed: 01/27/2025]
Abstract
The anatomical components of the female reproductive system-comprising the ovaries, uterus, cervix, vagina, and fallopian tubes-interact intricately to provide the structural and hormonal support essential for reproduction. However, this system is susceptible to various detrimental factors, both congenital and acquired, that can impair fertility and adversely affect quality of life. Recent advances in bioengineering have led to the development of sophisticated three-dimensional models that mimic the complex architecture and functionality of reproductive organs. These models, incorporating diverse cell types and tissue layers, are crucial for understanding physiological processes within the reproductive tract. They offer insights into decidualization, ovulation, folliculogenesis, and the progression of reproductive cancers, thereby enhancing personalized medical treatments and addressing female infertility. This review highlights the pivotal role of tissue engineering in diagnosing and treating female infertility, emphasizing the importance of considering factors like biocompatibility, biomaterial selection, and mechanical properties in the design of bioengineered systems. The challenge of replicating the functionally specialized and structurally complex organs, such as the uterus and ovary, underscores the need for reliable techniques that improve morphological and functional restoration. Despite substantial progress, the goal of creating a fully artificial female reproductive system is still a challenge. Nonetheless, the recent fabrication of artificial ovaries, uteruses, cervixes, and vaginas marks significant advancements toward this aim. Looking forward, the challenges in bioengineering are expected to spur further innovations in both basic and applied sciences, potentially hastening the clinical adoption of these technologies.
Collapse
Affiliation(s)
- Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| |
Collapse
|
6
|
Wang Y, Jiang N, Wu S, Lin G, Lu W, Shang B, Zhu X, Han W, Li J, Chen Y. An injectable hydrogel for hemostasis and tumor suppression in intraoperative breast cancer. BIOMATERIALS ADVANCES 2025; 172:214219. [PMID: 39987716 DOI: 10.1016/j.bioadv.2025.214219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/14/2025] [Accepted: 02/02/2025] [Indexed: 02/25/2025]
Abstract
In the period between surgery and systemic therapy for breast cancer, residual tumor cells may proliferate, leading to tumor recurrence. Additionally, intraoperative wound bleeding may cause surgical failure or the spread of tumor cells. This study introduces an innovative injectable hydrogel composed of oxidized hyaluronic acid (OHA) loaded 5-fluorouracil (5-FU) and N-carboxyethyl chitosan (CEC), designed for intraoperative hemostasis and tumor suppression in intraoperative breast cancer. The CEC/OHA injectable hydrogel was synthesized through a Schiff base reaction between the aldehyde group of OHA and the amino group of CEC, incorporating 5-FU during hydrogel formation. This CEC/OHA injectable hydrogel demonstrated hemostatic effects comparable to gelatin sponges in both an in vivo rat liver hemorrhage model and an in vitro rat tail amputation model. When loaded with 5-FU, the injectable hydrogel effectively inhibited the proliferation of MDA-MB-231 breast cancer cells in vitro, significantly inhibited tumor growth and recurrence in vivo, and did not induce significant damage or inflammatory response in any major organ. This CEC/OHA & 5-FU injectable hydrogel is envisioned as a complementary therapeutic regimen during the intraoperative period in breast cancer surgery to prevent hemostasis and tumor recurrence.
Collapse
Affiliation(s)
- Yue Wang
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China; Department of Surgical Oncology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Nan Jiang
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China; Department of Surgical Oncology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Shuhan Wu
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China; Department of Surgical Oncology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Guangshuai Lin
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China; Department of Surgical Oncology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Wudang Lu
- Xi'an Libang Pharmaceutical Co., Ltd, Xi'an, Shaanxi 710075, China
| | - Bin Shang
- Xi'an Libang Pharmaceutical Co., Ltd, Xi'an, Shaanxi 710075, China
| | - Xulong Zhu
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China; Department of Surgical Oncology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Wei Han
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China; Department of Surgical Oncology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China; Department of Surgical Oncology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China.
| | - Yongmei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
7
|
Dong J, Chi Z, Lu S, Xie X, Gong P, Li H, Liu W. Bacterial exopolysaccharides: Characteristics and antioxidant mechanism. Int J Biol Macromol 2025; 289:138849. [PMID: 39701244 DOI: 10.1016/j.ijbiomac.2024.138849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Bacterial exopolysaccharides (EPS) are secondary metabolites of microorganisms which play important roles in adhesion, protection, biofilm formation, and as a source of nutrition. Compared with polysaccharides obtained from animal and plant species, bacterial polysaccharides have significant advantages in terms of production cost and large-scale production due to their abundant metabolic pathways and efficient polysaccharide production capacity. Most extracellular polysaccharides are water-soluble, and some are insoluble, such as bacterial cellulose. Some soluble bacterial EPS also have biological activities such as anticancer, antioxidant, antibacterial and immunomodulatory activities. These biological activities are mainly affected by the molecular weight, monosaccharide type, composition and structure of EPS. In recent years, bacterial EPS are considered as novel functional polysaccharides with important application prospects, especially in free radical scavenging and antioxidation. This review focuses on the characteristics of bacterial EPS, their ability to scavenge free radicals and their corresponding antioxidant mechanisms, and summarizes the relationship between different structures (such as monosaccharide composition, functional groups, molecular weight, etc.) and antioxidant activities. It provides a new idea for the development of more bioactive bacterial EPS antioxidants, points out a new direction for the commercial production of natural, safe and economical polysaccharide drugs and health products.
Collapse
Affiliation(s)
- Junqi Dong
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Zhenxing Chi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Siqi Lu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Xiaoqin Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Pixian Gong
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China.
| | - Huijing Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Wei Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China.
| |
Collapse
|
8
|
Wu X, Wang B, Liao Y, Li X, Chen J, Zhao L. Low-Crosslinked Hyaluronic Acid Injections in the Superficial Fat Layer for Facial Rejuvenation in Chinese Patients: A Retrospective Clinical Study. Cureus 2025; 17:e79607. [PMID: 40008108 PMCID: PMC11851090 DOI: 10.7759/cureus.79607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 02/27/2025] Open
Abstract
Objective To evaluate the clinical efficacy of low-crosslinked hyaluronic acid (HA) injections in the superficial fat layer for facial rejuvenation in Chinese patients. Methods A total of 30 patients were treated between July 2023 and October 2024, with three sessions of low-crosslinked HA injections spaced one month apart. The injections were administered using the fanning technique into the superficial fat layer. Patients were followed up at one month and three months post-treatment. Skin improvements were assessed using smart skin analysis equipment, while overall aesthetic improvement was evaluated using the Global Aesthetic Improvement Scale (GAIS). Patient pain levels, satisfaction, and adverse reactions were also recorded. Results Significant improvements in facial wrinkles, pore size, and pigmentation were observed at one and three months post-treatment, as measured by skin analysis equipment, compared to baseline. GAIS scores confirmed facial rejuvenation in all patients. Patient satisfaction was 100% at one month and 93.3% at three months. Mild discomfort was reported by 90% of patients, with an average pain score of 3.40 ± 1.55, resolving within 24 hours. Two patients experienced mild bruising, which resolved within a week. No other adverse reactions were noted. Conclusion Low-crosslinked HA injection in the superficial fat layer is an effective and safe method for facial rejuvenation, offering high patient satisfaction. No serious adverse events were reported during the follow-up period.
Collapse
Affiliation(s)
- Xiaohui Wu
- Medicine, Bloomage Biotechnology Corporation Limited, Beijing, CHN
| | - Bo Wang
- Plastic Surgery, Beijing Berrina Medical Aesthetic Clinic, Beijing, CHN
| | - Yong Liao
- Medicine, Bloomage Biotechnology Corporation Limited, Beijing, CHN
| | - Xiaojuan Li
- Dermatology, Beijing Berrina Medical Aesthetic Clinic, Beijing, CHN
| | - Jingjing Chen
- Dermatology, Beijing Berrina Medical Aesthetic Clinic, Beijing, CHN
| | - Liangsen Zhao
- Medicine, Bloomage Biotechnology Corporation Limited, Beijing, CHN
| |
Collapse
|
9
|
Awisi-Gyau D, Kapur N, Parekh R, Yeddula U, Kodavoor SK. Safety and Efficacy of Hydroxypropyl Guar-Hyaluronic Acid Dual-Polymer Lubricating Eye Drops in Indian Subjects with Dry Eye: A Phase IV Study. Ophthalmol Ther 2025; 14:309-321. [PMID: 39673038 PMCID: PMC11754552 DOI: 10.1007/s40123-024-01069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/31/2024] [Indexed: 12/15/2024] Open
Abstract
INTRODUCTION This work aimed to evaluate the safety and efficacy of hydroxypropyl guar-hyaluronic acid (HPG-HA) dual-polymer lubricating drops in Indian subjects with dry eye disease (DED). METHODS This prospective, open-label, single-arm, phase IV study was conducted in India. INCLUSION CRITERIA Adults (18-65 years) with an average total ocular surface staining (TOSS) score ≥ 4, best-corrected visual acuity of ≥ 20/40 in each eye, tear break-up time (TBUT) ≤ 10 s, and dry eye questionnaire (DEQ-5) score ≥ 6. Subjects received the first dose of HPG-HA eye drops on day 1 and self-administered 1-2 drops four times daily for 90 ± 5 days. PRIMARY ENDPOINTS Frequency and characteristics of treatment-emergent adverse events (TEAEs) throughout the study and TOSS score at day 90. Secondary/other endpoints: Dry eye symptoms score (through dry eye questionnaire [DEQ-5]) and TBUT. RESULTS Of 175 subjects, 36 (20.6%) had ≥ 1 TEAE, and 27 (15.4%) of this reported ≥ 1 mild drug-related TEAE (eye irritation [n = 9], eye pruritus [n = 8], blurred vision [n = 6], increased lacrimation [n = 4], ocular hyperemia [n = 3], and ocular discomfort [n = 1]). One subject discontinued due to TEAEs, and none led to drug interruptions. No serious adverse events were reported. The mean TOSS score reduced from day 1 (6.12 ± 1.69, OU [both eyes]) to day 90 (2.40 ± 1.97, OU). The mean DEQ-5 score reduced from day 1 (11.50 ± 2.27) to day 90 (5.50 ± 2.50). TBUT increased from day 1 (right eye [OD], 5.70 ± 1.94; left eye [OS], 5.70 ± 1.96) to day 90 (OD, 9.51 ± 3.08; OS, 9.63 ± 3.01). CONCLUSIONS HPG-HA dual-polymer eye drop was safe and effective in relieving signs and symptoms of DED over 90 days in Indian subjects. TRIAL REGISTRATION Clinical Trial Registry India, CTRI/2022/03/041175.
Collapse
Affiliation(s)
- Deborah Awisi-Gyau
- Alcon Research LLC, 6201 South Freeway, Fort Worth, TX, 76134-2099, USA.
| | - Neha Kapur
- Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Rajesh Parekh
- Bhagwan Mahaveer Jain Hospital, Bengaluru, Karnataka, India
| | | | | |
Collapse
|
10
|
Alayoubi O, Poyraz Y, Hassan G, Gül SB, Çalhan N, Mert Şahin NM, Gautam M, Kutlu A, Özuğur Uysal B, Akten ED, Pekcan Ö. Hydrogels from Protein-Polymer Conjugates: A Pathway to Next-Generation Biomaterials. Gels 2025; 11:96. [PMID: 39996639 PMCID: PMC11854714 DOI: 10.3390/gels11020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/05/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Hybrid hydrogels from protein-polymer conjugates are biomaterials formed via the chemical bonding of a protein molecule with a polymer molecule. Protein-polymer conjugates offer a variety of biological properties by combining the mechanical strength of polymers and the bioactive functionality of proteins. These properties allow these conjugates to be used as biocompatible components in biomedical applications. Protein-polymer conjugation is a vital bioengineering strategy in many fields, such as drug delivery, tissue engineering, and cancer therapy. Protein-polymer conjugations aim to create materials with new and unique properties by combining the properties of different molecular components. There are various ways of creating protein-polymer conjugates. PEGylation is one of the most common conjugation techniques where a protein is conjugated with Polyethylene Glycol. However, some limitations of PEGylation (like polydispersity and low biodegradability) have prompted researchers to devise novel synthesis techniques like PEGylation, where synthetic polypeptides are used as the polymer component. This review will illustrate the properties of protein-polymer conjugates, their synthesis methods, and their various biomedical applications.
Collapse
Affiliation(s)
- Oubadah Alayoubi
- Materials Science and Nanotechnology, School of Graduate Studies, Kadir Has University, Cibali, Fatih, Istanbul 34083, Türkiye
| | - Yağmur Poyraz
- Computational Sciences and Engineering, School of Graduate Studies, Kadir Has University, Cibali, Fatih, Istanbul 34083, Türkiye
| | - Gana Hassan
- Materials Science and Nanotechnology, School of Graduate Studies, Kadir Has University, Cibali, Fatih, Istanbul 34083, Türkiye
| | - Sümeyye Berfin Gül
- Materials Science and Nanotechnology, School of Graduate Studies, Kadir Has University, Cibali, Fatih, Istanbul 34083, Türkiye
| | - Nergiz Çalhan
- Materials Science and Nanotechnology, School of Graduate Studies, Kadir Has University, Cibali, Fatih, Istanbul 34083, Türkiye
| | - Naz Mina Mert Şahin
- Computational Sciences and Engineering, School of Graduate Studies, Kadir Has University, Cibali, Fatih, Istanbul 34083, Türkiye
| | - Megha Gautam
- Computational Sciences and Engineering, School of Graduate Studies, Kadir Has University, Cibali, Fatih, Istanbul 34083, Türkiye
| | - Aylin Kutlu
- Materials Science and Nanotechnology, School of Graduate Studies, Kadir Has University, Cibali, Fatih, Istanbul 34083, Türkiye
| | - Bengü Özuğur Uysal
- Department of Basic Sciences, Faculty of Engineering and Architecture, Altınbaş University, Bağcılar, Istanbul 34218, Türkiye
| | - Ebru Demet Akten
- Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali, Fatih, Istanbul 34083, Türkiye (Ö.P.)
| | - Önder Pekcan
- Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali, Fatih, Istanbul 34083, Türkiye (Ö.P.)
| |
Collapse
|
11
|
Wu G, Zhong C, Tian X, Zha L, Hou L, Feng X. Emerging roles of hyaluronic acid hydrogels in cancer treatment and wound healing: A review. Int J Biol Macromol 2025; 303:140442. [PMID: 39880244 DOI: 10.1016/j.ijbiomac.2025.140442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 01/31/2025]
Abstract
Hyaluronic acid (HA)-derived hydrogels demonstrate a significant development in the biomedical uses, especially in cancer treatment and wound repair. Cancer continues to be one of the leading causes of death worldwide, with current therapies frequently impeded by lack of specificity, side effects, and the emergence of resistance. HA hydrogels, characterized by their distinctive three-dimensional structure, hydrophilic nature, and biocompatibility, develop an advanced platform for precise drug delivery, improving therapeutic results while minimizing systemic toxicity. These hydrogels facilitate the controlled release of drugs, genes, and various therapeutic substances, enhancing the effectiveness of chemotherapy, radiotherapy, and immunotherapy. Additionally, they can be designed to react to stimuli such as pH, light, and magnetic fields, enhancing their therapeutic capabilities. In the process of wound healing, the hydrophilic and porous characteristics of HA hydrogels establish a moist environment encouraging cell growth and contributes to the tissue recovery. By imitating the extracellular matrix, they promote tissue regeneration, improve angiogenesis, and influence immune reactions. This review examines the various functions of HA-based hydrogels in cancer treatment and wound healing, highlighting their advancement, applications, and ability to change existing therapeutic methods in these important health sectors.
Collapse
Affiliation(s)
- Gang Wu
- Department of Hepatobiliary Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Chunyan Zhong
- Department of Ultrasound, Chongqing Health Center for Women and Children, Chongqing, China
| | - Xiaohui Tian
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lisha Zha
- School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan, PR China.
| | - Lingmi Hou
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu 610041, Sichuan, China.
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, No. 89 Xiguan Road, Gaozhou 525299, Guangdong, China.
| |
Collapse
|
12
|
Boyraz B, Tauber R, Dernedde J. Identification of an Immunoglobulin Paratope Binding to Keratan Sulfate and Expression of a Single-Chain Derivative for Imaging. Biomolecules 2025; 15:178. [PMID: 40001481 PMCID: PMC11852928 DOI: 10.3390/biom15020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Keratan sulfate (KS) is a negatively charged carbohydrate linked to proteins. Several KS-bearing structural glycosaminoglycans participate to maintain the homeostasis of a functional extracellular matrix. Dysfunction of its biochemical composition and structure might therefore lead to pathological situations. For this reason, imaging of KS in tissues is an important diagnostic tool. Here, we describe the identification of the KS paratope derived from the ancestral anti-KS IgG mAb MZ15, as well as the engineering, functional recombinant expression in E. coli, and purification of an anti-KS single-chain variable fragment (ScFv). The ScFv enabled in vitro imaging of KS in cryosections of rat cornea by immunofluorescence microscopy comparable to the ancestral IgG MZ15.
Collapse
Affiliation(s)
- Burak Boyraz
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany;
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Rudolf Tauber
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany;
| |
Collapse
|
13
|
Sepe F, Valentino A, Marcolongo L, Petillo O, Conte R, Margarucci S, Peluso G, Calarco A. Marine-Derived Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Compounds. Int J Mol Sci 2025; 26:764. [PMID: 39859476 PMCID: PMC11766179 DOI: 10.3390/ijms26020764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Marine polysaccharide hydrogels have emerged as an innovative platform for regulating the in vivo release of natural bioactive compounds for medical purposes. These hydrogels, which have exceptional biocompatibility, biodegradability, and high water absorption capacity, create effective matrices for encapsulating different bioactive molecules. In addition, by modifying the physical and chemical properties of marine hydrogels, including cross-linking density, swelling behavior, and response to external stimuli like pH, temperature, or ionic strength, the release profile of encapsulated bioactive compounds is strictly regulated, thus maximizing therapeutic efficacy and minimizing side effects. Finally, by using naturally sourced polysaccharides in hydrogel formulations, sustainability is promoted by reducing dependence on synthetic polymers, meeting the growing demand for eco-friendly materials. This review analyzes the interaction between marine polysaccharide hydrogels and encapsulating compounds and offers examples of how bioactive molecules can be encapsulated, released, and stabilized.
Collapse
Affiliation(s)
- Fabrizia Sepe
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Loredana Marcolongo
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Orsolina Petillo
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Sabrina Margarucci
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
14
|
Cheng Q, Liu C, Zhao J, Guo F, Qin J, Wang Y. Hyaluronic acid promotes heat-induced gelation of ginkgo seed proteins. Food Chem 2025; 463:141114. [PMID: 39243628 DOI: 10.1016/j.foodchem.2024.141114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/27/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to investigate how varying concentrations (0.01-0.5 %, w/v) and molecular weights (50, 500, 1500 kDa) of hyaluronic acid (HA) affect the physicochemical properties of heat-induced ginkgo seed protein isolate (GSPI)-HA composite gel. Incorporating HA increased viscosity (up to 14 times) and charge (up to 23 %) of GSPI-HA aggregates, while reducing particle size (up to 31 %) and improving gel texture, particularly with high molecular weight HA. However, high concentrations (0.5 %, w/v) of HA weakened gel texture. Non-covalent bonds primarily drive the formation of a continuous gel network between HA and GSPI, resulting in small pores and enhanced hydration properties. With increasing HA molecular weight, non-covalent interactions between GSPI and HA increased, leading to improved gel thermal stability. Overall, the study suggests that manipulating the molecular weight and concentration of HA can enhance the gelling properties of GSPI, leading to the development of a diverse array of GSPI-HA composite gels with varied properties.
Collapse
Affiliation(s)
- Qiao Cheng
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Jing Zhao
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Fengxian Guo
- Fujian Province Key Laboratory for Development of Bioactive Material from Marine Algae, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Jiawei Qin
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yaosong Wang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
15
|
Zhang H, Xie WC, Yao Y, Tang ZY, Ni WX, Wang B, Gao S, Sessler JL, Zhang JL. Electrostatic Force-Enabled Microneedle Patches that Exploit Photoredox Catalysis for Transdermal Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3038-3051. [PMID: 39739671 DOI: 10.1021/acsami.4c18211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Microneedle patches for topical administration of photodynamic therapy (PDT) sensitizers are attractive owing to their safety, selectivity, and noninvasiveness. However, low-efficiency photosensitizer delivery coupled with the limitations of the hypoxic tumor microenvironment remains challenging. To overcome these issues, we developed an effective microneedle patch based on intermolecular electrostatic interactions within a photosensitizer matrix containing a zinc-containing porphyrin analogue, ZnBP (w). This design improved the mechanical strength of the microneedle patch and enhanced the photosensitizer loading efficiency in aqueous environments. A key feature of the system is efficient electron transfer between ZnBP (w) and NADH upon photoirradiation. Electrostatic interactions between ZnBP (w) and NADH were hypothesized to support initial binding and subsequent photoinduced electron transfer, disrupting NADH/NAD+ homeostasis and inducing tumor cell death. The developed microneedle patch demonstrated an antiangiogenesis effect in a vascular malformation model and an antitumor effect in a melanoma mouse model after transdermal administration. This study highlights the benefits of electrostatic interactions in designing microneedle PDT patches and their clinical potential, particularly in reducing systemic phototoxicity.
Collapse
Affiliation(s)
- Hang Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Chuan Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515031, China
| | - Yuhang Yao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zi-Yi Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515031, China
| | - Bingwu Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515031, China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515031, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515031, China
| |
Collapse
|
16
|
Zou R, Xu X, Li F. Classification and characteristics of bacterial glycosaminoglycan lyases, and their therapeutic and experimental applications. J Cell Sci 2025; 138:JCS263489. [PMID: 39846151 DOI: 10.1242/jcs.263489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Glycosaminoglycans (GAGs), as animal polysaccharides, are linked to proteins to form various types of proteoglycans. Bacterial GAG lyases are not only essential enzymes that spoilage bacteria use for the degradation of GAGs, but also valuable tools for investigating the biological function and potential therapeutic applications of GAGs. The ongoing discovery and characterization of novel GAG lyases has identified an increasing number of lyases suitable for functional studies and other applications involving GAGs, which include oligosaccharide sequencing, detection and removal of specific glycan chains, clinical drug development and the design of novel biomaterials and sensors, some of which have not yet been comprehensively summarized. GAG lyases can be classified into hyaluronate lyases, chondroitinases and heparinases based on their substrate spectra, and their functional applications are mainly determined by their substrates, with different lyases exhibiting differing substrate selectivity and preferences. It is thus necessary to understand the properties of the available enzymes to determine strategies for their functional application. Building on previous studies and reviews, this Review highlights small yet crucial differences among or within the various GAG lyases to aid in optimizing their use in future studies. To clarify ideas and strategies for further research, we also discuss several traditional and novel applications of GAG lyases.
Collapse
Affiliation(s)
- Ruyi Zou
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Xiangyu Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| |
Collapse
|
17
|
Schmaus A, Spataro S, Sallmann P, Möller S, Scapozza L, Prunotto M, Sleeman JP. A Novel, Cell-Compatible Hyaluronidase Activity Assay Identifies Dextran Sulfates and Other Sulfated Polymeric Hydrocarbons as Potent Inhibitors for CEMIP. Cells 2025; 14:101. [PMID: 39851529 PMCID: PMC11764312 DOI: 10.3390/cells14020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Hyaluronan (HA) levels are dynamically regulated homeostatically through biosynthesis and degradation. HA homeostasis is often perturbed under disease conditions. HA degradation products are thought to contribute to disease pathology. The hyaluronidase CEMIP requires the presence of living cells for its HA depolymerizing activity. CEMIP is overexpressed in a variety of pathological conditions, and the inhibition of its hyaluronidase activity therefore has therapeutic potential. To identify novel inhibitors of the CEMIP hyaluronidase activity, we established here a cell-compatible, medium-throughput assay for CEMIP-dependent HA depolymerization. The assay employs ultrafiltration plates to separate low- from high-molecular-weight HA, followed by quantification of HA fragments using an HA ELISA-like assay. Using this assay, we tested a range of compounds that have been reported to inhibit other hyaluronidases. Thereby, we identified several sulfated hydrocarbon polymers that inhibit CEMIP more potently than other hyaluronidases. One of these is heparin, a sulfated glycosaminoglycan produced by mast cells that constitutes the first described physiological CEMIP inhibitor. The most potent inhibitor (IC50 of 1.8 nM) is dextran sulfate, a synthetic sulfated polysaccharide. Heparin and dextran sulfate are used in numerous established and experimental biomedical applications. Their ability to inhibit CEMIP needs to be taken into account in these contexts.
Collapse
Affiliation(s)
- Anja Schmaus
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (A.S.); (P.S.)
| | - Sofia Spataro
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (S.S.); (L.S.); (M.P.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Paul Sallmann
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (A.S.); (P.S.)
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e.V., Prüssingstrasse 27b, 07745 Jena, Germany;
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (S.S.); (L.S.); (M.P.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Marco Prunotto
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (S.S.); (L.S.); (M.P.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Jonathan P. Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (A.S.); (P.S.)
- Karlsruhe Institute of Technology (KIT) Campus Nord, Institute of Biological and Chemical Systems-Biological Information Processing, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
18
|
Aroche AF, Nissan HE, Daniele MA. Hydrogel-Forming Microneedles and Applications in Interstitial Fluid Diagnostic Devices. Adv Healthc Mater 2025; 14:e2401782. [PMID: 39558769 PMCID: PMC11694095 DOI: 10.1002/adhm.202401782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Hydrogel-forming microneedles are constructed from or coated with polymeric, hydrophilic materials that swell upon insertion into the skin. Designed to dissolve or disintegrate postinsertion, these microneedles can deliver drugs, vaccines, or other therapeutics. Recent advancements have broadened their application scope to include the collection, transport, and extraction of dermal interstitial fluid (ISF) for medical diagnostics. This review presents a brief introduction to the characteristics of dermal ISF, methods for extraction and sampling, and critical assessment of the state-of-the-art in hydrogel-forming microneedles for ISF diagnostics. Key factors are evaluated including material composition, swelling behavior, biocompatibility, and mechanical strength necessary for effective microneedle performance and ISF collection. The review also discusses successful examples of dermal ISF assays and microneedle sensor integrations, highlighting notable achievements, identifying research opportunities, and addressing challenges with potential solutions. Despite the predominance of synthetic hydrogels in reported hydrogel-forming microneedle technologies due to their favorable swelling and gelation properties, there is a significant variety of biopolymers and composites reported in the literature. The field lacks consensus on the optimal material, composition, or fabrication methods, though emerging evidence suggests that processing and fabrication techniques are critical to the performance and utility of hydrogel-forming microneedles for ISF diagnostics.
Collapse
Affiliation(s)
- Angélica F. Aroche
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North CarolinaChapel Hill, 911 Oval Dr.RaleighNC27695USA
| | - Hannah E. Nissan
- Department of Electrical & Computer EngineeringNorth Carolina State University890 Oval Dr.RaleighNC27695USA
| | - Michael A. Daniele
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North CarolinaChapel Hill, 911 Oval Dr.RaleighNC27695USA
- Department of Electrical & Computer EngineeringNorth Carolina State University890 Oval Dr.RaleighNC27695USA
| |
Collapse
|
19
|
Wang P, Zhang Q, Wang S, Wang D, Yip RCS, Xie W, Chen H. Injectable Salecan/hyaluronic acid-based hydrogels with antibacterial, rapid self-healing, pH-responsive and controllable drug release capability for infected wound repair. Carbohydr Polym 2025; 347:122750. [PMID: 39486979 DOI: 10.1016/j.carbpol.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Accepted: 09/12/2024] [Indexed: 11/04/2024]
Abstract
Designing materials for wound dressings with superior therapeutic benefits, self-healing and injectable characteristics is important in clinical practice. Herein, a new self-healing injectable hydrogel was prepared via thermal treatment and dynamic Schiff base reaction by mixing oxidized hyaluronic acid (OHA) and hydrazided Salecan (Sal-ADH). The versatility of the wound dressing was confirmed by studying the inherent rheological properties, high swelling rate, sustained-release behavior of the drug, pH/hyaluronidase-dependent biodegradation, in vitro antimicrobial as well as in vivo wound healing performance. The presence of the antimicrobial drug polyhexamethylene biguanide (PHMB) conferred good antimicrobial properties to the Sal-ADH/OHA/PHMB (SOP) hydrogel, which could effectively prevent wound infection (the width of the inhibition circle of SOP-0.20 hydrogel was 4.97 mm, 5.93 mm for Staphylococcus aureus and Escherichia coli, respectively). The findings suggested that SOP hydrogel exhibited remarkable self-healing and injectability properties, as well as excellent hemostasis and biocompatibility. In vivo experiments indicated that the application of SOP hydrogels would obviously accelerate wound healing and attenuate the inflammatory response while increasing collagen deposition and angiogenesis. Altogether, antibacterial SOP hydrogels with moderate mechanical properties, pH-responsive release, excellent injectability, exceptional self-healing ability and anti-inflammatory effects could expand potential applications of injectable hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Pu Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Qinling Zhang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China
| | - Shuxin Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Donghui Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.
| | - Weidong Xie
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Hao Chen
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University; Weihai Key Laboratory of Medical Conditioning Functional Food Processing Technology, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agro-Products Processing and Storage, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, P. R. China.
| |
Collapse
|
20
|
Kwant AN, Es Sayed JS, Kamperman M, Burgess JK, Slebos D, Pouwels SD. Sticky Science: Using Complex Coacervate Adhesives for Biomedical Applications. Adv Healthc Mater 2025; 14:e2402340. [PMID: 39352099 PMCID: PMC11730373 DOI: 10.1002/adhm.202402340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Indexed: 01/15/2025]
Abstract
Tissue adhesives are used for various medical applications, including wound closure, bleeding control, and bone healing. Currently available options often show weak adhesion or cause adverse effects. Recently, there has been an increasing interest in complex coacervates as medical adhesives. Complex coacervates are formed by mixing oppositely charged macromolecules that associate and undergo liquid-liquid phase separation, in which the dense bottom phase is the complex coacervate. Complex coacervates are strong and often biocompatible, and show strong underwater adhesion. The properties of the resulting materials are tunable by intrinsic factors such as polymer chemistry, molecular weight, charge density, and topology of the macromolecules, as well as extrinsic factors such as temperature, pH, and salt concentration. Therefore, complex coacervates are interesting new candidates for medical adhesives. In this review, it is described how complex coacervates form and how different factors influence their behavior. Next, an overview of recent studies on complex coacervates in the context of medical adhesives is presented. The application of complex coacervates as hemostatic or embolic agents, skin or bone repair adhesives, and soft tissue sealants is discussed. Lastly, additional possibilities for utilizing these materials in the future are discussed.
Collapse
Affiliation(s)
- Ayla N. Kwant
- Department of Pulmonary DiseasesUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Polymer ScienceZernike Institute for Advanced Materials (ZIAM)University of GroningenNijenborgh 3Groningen9747AGThe Netherlands
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Groningen Research Institute for Asthma and COPDUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
| | - Julien S. Es Sayed
- Polymer ScienceZernike Institute for Advanced Materials (ZIAM)University of GroningenNijenborgh 3Groningen9747AGThe Netherlands
| | - Marleen Kamperman
- Polymer ScienceZernike Institute for Advanced Materials (ZIAM)University of GroningenNijenborgh 3Groningen9747AGThe Netherlands
| | - Janette K. Burgess
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Groningen Research Institute for Asthma and COPDUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
| | - Dirk‐Jan Slebos
- Department of Pulmonary DiseasesUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Groningen Research Institute for Asthma and COPDUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
| | - Simon D. Pouwels
- Department of Pulmonary DiseasesUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Groningen Research Institute for Asthma and COPDUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
| |
Collapse
|
21
|
Wójcik-Pastuszka D, Iwaszkiewicz R, Musiał W. The Effects of Synthetic Polymers on the Release Patterns of Bupivacaine Hydrochloride from Sodium Hyaluronate Hydrogels. Biomedicines 2024; 13:39. [PMID: 39857623 PMCID: PMC11760862 DOI: 10.3390/biomedicines13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Using hydrogels for the controlled release of drugs is beneficial for patients, who then receive the proper dose of the medicinal substance. In addition, the formulation can provide more consistent drug absorption while reducing the frequency of dosing. OBJECTIVES The aim of this investigation is to propose a novel HA (sodium hyaluronate)-based hydrogel for intra-articular injection doped with synthetic polymers and incorporated with bupivacaine hydrochloride (Bu) as a local anesthetic. The other aim of this study is to reveal the effects of the formulation's ingredients on its viscosity and the relationship between the hydrogel's viscosity and drug release. METHODS First, HA-based hydrogels doped with synthetic polymers and incorporated with Bu were prepared. A study of the hydrogels' viscosities was performed using a rotational viscometer. Release tests were carried out by employing a paddle-over-disk apparatus following the USP/Ph.Eur guidelines. The drug concentrations in the acceptor fluid were analyzed spectrophotometrically. RESULTS It was found that the viscosity of the hydrogels doped with synthetic polymers was higher than the viscosity of the hydrogels made with only HA. The viscosity of the hydrogels doped with AX (ammonium acryloyldimethyltaurate/VP copolymer) was the highest, measuring 6750 ± 160 cP and 12623 ± 379 cP with and without Bu, respectively. The results of the kinetic experiment indicate that the Higuchi and Korsmeyer-Peppas models best described the drug release. Bu was released the most slowly from the formulation doped with AX. The release rate constants obtained from the Higuchi and Korsmeyer-Peppas models were kH = 4.4 ± 0.2 mg × min-1/2 and kK-P = 3.4 ± 0.2 × 10-2 min-N, respectively. The half-release time, calculated using the Higuchi model, was the longest for the formulation doped with AX, at 199.5 ± 17.6 min. CONCLUSIONS This indicates that the incorporation of AX into the hydrogel may prolong the drug dissolution. The hydrogel doped with AX was the optimal formulation for the controlled release of Bu.
Collapse
Affiliation(s)
| | | | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211A, 55-556 Wrocław, Poland; (D.W.-P.); (R.I.)
| |
Collapse
|
22
|
Egidi S, Valentini V, Schiavetti A. Case report: Improving quality of life through hyaluronic acid-based fillers after orbital cancer treatment. Front Oncol 2024; 14:1501556. [PMID: 39744006 PMCID: PMC11688356 DOI: 10.3389/fonc.2024.1501556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
Background Myoepithelial carcinoma is a very rare yet aggressive tumor in children. Surgical intervention and local radiotherapy often lead to post-therapy complications, affecting both the aesthetic and functional quality of life in survivors. Hyaluronic acid (HA) dermal fillers offer a minimally invasive option to improve the appearance and quality of life for these patients once they are declared tumor-free. Case presentation We present the case of an 18-year-old girl with a history of myoepithelial carcinoma in the right upper orbit, diagnosed at the age of 8. The patient underwent surgery to remove the tumor and lacrimal gland, followed by chemotherapy and radiotherapy. A complete response to treatment was achieved, and the patient was monitored with regular clinical and radiological exams for 5 years, after which she was declared tumor-free and followed for late effects of therapy. Post-surgical radiotherapy resulted in atrophy of the upper orbital frame and functional complications. The patient exhibited upper eyelid retraction, ptosis, continuous lacrimation, and conjunctival redness. Ten years after treatment, the patient underwent dermal filler injections using Aliaxin® Essential Volume (AEV) and Aliaxin® Superior Volume (ASV) to address the aesthetic impairment of the upper right orbit. ASV was administered using a 22G x 50mm cannula on the periosteum of the superior orbital frame, entering from the outer canthus. AEV was injected with a cannula into the muscle, also entering from the outer canthus. Before treatment, the patient exhibited upper eyelid retraction, ptosis, continuous lacrimation, and conjunctival redness. Following the injections, improvements were observed in all pre-treatment symptoms. The closing ability of the upper eyelid was restored, along with superior orbital volume and symmetry. Enhanced eyelid function improved eye hydration, reduced redness in the conjunctiva, and led to better vision and overall quality of life. Conclusion To our knowledge, this is the first reported case of using dermal fillers to treat ocular changes resulting from cancer treatment. Injections of AEV and ASV provided both aesthetic and functional improvements.
Collapse
|
23
|
Zhao Y, Zhang J, Zhang G, Huang H, Tan WS, Cai H. Injectable Nanocomposite Hydrogel with Synergistic Biofilm Eradication and Enhanced Re-epithelialization for Accelerated Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69086-69102. [PMID: 39635909 DOI: 10.1021/acsami.4c17855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Diabetic wounds remain a critical clinical challenge due to their harsh microenvironment, which impairs cellular function, hinders re-epithelialization and tissue remodeling, and slows healing. Injectable nanocomposite hydrogel dressings offer a promising strategy for diabetic wound repair. In this study, we developed an injectable nanocomposite hydrogel dressing (HDL@W379) using LAP@W379 nanoparticles and an injectable hyaluronic acid-based hydrogel (HA-ADH-ODEX). This dressing provided a sustained, pH-responsive release of W379 antimicrobial peptides, effectively regulating the wound microenvironment to enhance healing. The HDL@W379 hydrogel featured multifunctional properties, including mechanical stability, injectability, self-healing, biocompatibility, and tissue adhesion. In vitro, the HDL@W379 hydrogel achieved synergistic biofilm elimination and subsequent activation of basal cell migration and endothelial cell tube formation. Pathway analysis indicated that the HDL@W379 hydrogel enhances basal cell migration through MEK/ERK pathway activation. In methicillin-resistant Staphylococcus aureus (MRSA)-infected diabetic wounds, the HDL@W379 hydrogel accelerated wound healing by inhibiting bacterial proliferation and promoting re-epithelialization, regenerating the granulation tissue, enhancing collagen deposition, and facilitating angiogenesis. Overall, this strategy of biofilm elimination and basal cell activation to continuously regulate the diabetic wound microenvironment offers an innovative approach to treating chronic wounds.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jingwei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Guofeng Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Huimin Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
24
|
Kim M, Jung MY, Lee DY, Ahn SM, Lee GM, Park CY. How to Fabricate Hyaluronic Acid for Ocular Drug Delivery. Pharmaceutics 2024; 16:1604. [PMID: 39771582 PMCID: PMC11680071 DOI: 10.3390/pharmaceutics16121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
This review aims to examine existing research on the development of ocular drug delivery devices utilizing hyaluronic acid (HA). Renowned for its exceptional biocompatibility, viscoelastic properties, and ability to enhance drug bioavailability, HA is a naturally occurring biopolymer. The review discussed specific mechanisms by which HA enhances drug delivery, including prolonging drug residence time on ocular surfaces, facilitating controlled drug release, and improving drug penetration through ocular tissues. By focusing on these unique functionalities, this review highlights the potential of HA-based systems to revolutionize ocular treatment. Various fabrication techniques for HA-based ocular drug delivery systems, including hydrogels, nanoparticles, and microneedles, are discussed, highlighting their respective advantages and limitations. Additionally, this review explores the clinical applications of HA-based devices in treating a range of ocular diseases, such as dry eye syndrome, glaucoma, retinal disorders, and ocular infections. By comparing the efficacy and safety profiles of these devices with traditional ocular drug delivery methods, this review aims to provide a comprehensive understanding of the potential benefits and challenges associated with HA-based systems. Moreover, this review discusses current limitations and future directions in the field, such as the need for standardized fabrication protocols, long-term biocompatibility studies, and large-scale clinical trials. The insights and advancements presented in this review aim to guide future research and development efforts, ultimately enhancing the effectiveness of ocular drug delivery and improving patient outcomes.
Collapse
Affiliation(s)
- Martha Kim
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Mi-Young Jung
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Do-Yeon Lee
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - So Min Ahn
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Gyeong Min Lee
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Choul Yong Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
25
|
Kumar S, Malviya R, Sridhar SB, Wadhwa T, Shareef J, Meenakshi DU. Polysaccharide-based implant drug delivery systems for precise therapy: Recent developments, and future trends. ANNALES PHARMACEUTIQUES FRANÇAISES 2024:S0003-4509(24)00175-5. [PMID: 39675419 DOI: 10.1016/j.pharma.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Implantable drug delivery systems offer numerous benefits, including effective drug administration at lower concentrations, fewer side effects, and improved patient compliance. Various polymers are used for fabricating implants, with biopolymers, particularly polysaccharides, being notable for their ability to modulate drug delivery characteristics. The review aims to describe the strategies employed in the development of polysaccharide-based implants and provide a comprehensive understanding of various polysaccharides such as starch, cellulose, alginate, chitosan, pullulan, carrageenan, dextran, hyaluronic acid, agar, pectin, and gellan gum in the fabrication of implant for targeted therapy. The review explores the biomedical applications of polysaccharide-based implantable devices, highlighting recent advancements in the development of these systems. Detailed discussions cover implants used in the oral cavity, nasal cavity, bone, ocular applications, and antiviral therapy. Additionally, regulatory considerations concerning implantable drug delivery are emphasized. The findings of the study show that polysaccharides can be used for the development of implants for drug delivery applications.
Collapse
Affiliation(s)
- Suraj Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No 17 A, Yamuna Expressway, Greater Noida, U.P., India; Pragya College of Pharmaceutical Sciences, Shanti Nagar, Gaya, Bihar, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No 17 A, Yamuna Expressway, Greater Noida, U.P., India.
| | - Sathvik Belagodu Sridhar
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Tarun Wadhwa
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Javedh Shareef
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | | |
Collapse
|
26
|
Prakash G, Clasky AJ, Gadani K, Nazeri M, Gu FX. Ion-Mediated Cross-Linking of Hyaluronic Acid into Hydrogels without Chemical Modification. Biomacromolecules 2024; 25:7723-7735. [PMID: 39485907 DOI: 10.1021/acs.biomac.4c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Hyaluronic acid (HA) is a biomedically relevant polymer widely explored as a component of hydrogels. The prevailing approaches for cross-linking HA into hydrogels require chemically modifying the polymer, which can increase processing steps and complicate biocompatibility. Herein, we demonstrate an alternative approach to cross-link HA that eliminates the need for chemical modifications by leveraging the interactions between metal cations and the negatively charged, ionizable functional groups on HA. We demonstrate that HA can be cross-linked with the bivalent metal cations Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), and notably Mg(II). Using Mg(II) as a model, we show that ion-HA hydrogel rheological properties can be tuned by altering the HA molecular weight and concentrations of ions, NaOH, and HA. Mg(II)-HA hydrogels showed the potential for self-healing and stimulus response. Our findings lay the groundwork for developing a new class of HA-based hydrogels for use in biomedical applications and beyond.
Collapse
Affiliation(s)
- Gayatri Prakash
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Kunal Gadani
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mohammad Nazeri
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
27
|
Capell Morera A, de Planell Mas E, Perez Palma L, Manzanares-Céspedes MC. Range of Flexion Improvement in Degenerative Stages of the First Metatarsophalangeal Joint ( Hallux rigidus) with Cross-Linked Hyaluronic Acid: A Cadaveric Study. J Funct Morphol Kinesiol 2024; 9:259. [PMID: 39728243 DOI: 10.3390/jfmk9040259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Viscosupplementation consists of intraarticular hyaluronic acid injections applied to treat pain and improve joint mobility. The objective of the study was to analyze the improvement of the range of mobility of the first metatarsophalangeal joint with a single dose of cross-linked hyaluronic acid. METHODS Ten fresh frozen specimens of feet sectioned below the knee were selected. Before and after the infiltration procedure, the range of flexion was calculated for all specimen's metatarsophalangeal joints. To detect complications due to the procedure, five feet were dissected and five were sectioned with a diamond saw. RESULTS The range of the first metatarsophalangeal joint flexion differences between the preoperative and the postoperative period was as follows: (1) 47° (range, 37-51.5) to 58° (range, 49-69.5) degrees of loaded dorsiflexion (p > 0.006); (2) 41° (range, 40-51.5) to 58° (range, 52.5-66.5) degrees of unloaded dorsiflexion (p > 0.009); and (3) 14° (range, 10.5-24.25) to 16° (range, 14.25-28.5) degrees of unloaded plantarflexion (p > 0.083). No injuries of anatomical structures were observed either by anatomical dissection or in the anatomical sections. CONCLUSIONS The results obtained in this viscosupplementation study demonstrate the improvement of the range of mobility of the first metatarsophalangeal joint without evidence of extravasation and lesions of the periarticular anatomical structures.
Collapse
Affiliation(s)
- Annabel Capell Morera
- Clinical Sciences Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Hospitalet, Spain
| | - Elena de Planell Mas
- Clinical Sciences Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Hospitalet, Spain
| | - Laura Perez Palma
- Clinical Sciences Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Hospitalet, Spain
| | - Maria Cristina Manzanares-Céspedes
- Human Anatomy and Embryology Unit, Experimental Pathology and Therapeutics Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Hospitalet, Spain
| |
Collapse
|
28
|
Altahla R, Alshorman J, Tao X. Ferroptosis plays a role in osteoarthritis. ALL LIFE 2024; 17. [DOI: 10.1080/26895293.2024.2391292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/28/2024] [Indexed: 01/06/2025] Open
Affiliation(s)
- Ruba Altahla
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jamal Alshorman
- Department of Orthopedics, The Second Affiliated Hospital, Hubei University of Science and Technology, Xiang Ning, People’s Republic of China
| | - Xu Tao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
29
|
Moradi A, Bhatia AC, Behr K, Napekoski K, Foldvari M. In Vivo and Ex Vivo Evaluation of a Novel Method for Topical Delivery of Macromolecules Through the Stratum Corneum for Cosmetic Applications. Dermatol Surg 2024:00042728-990000000-01045. [PMID: 39635989 DOI: 10.1097/dss.0000000000004504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Effective topical delivery of large/charged molecules into skin has always been challenging. Chemical penetration enhancers, organic substances that increase permeability of skin, have been in use for decades with variable success. One application of enhancers involves multilamellar vesicles composed of submicron emulsion droplets and micelles surrounded by concentric phospholipid bilayers. OBJECTIVE This report introduces the next generation of multilamellar vesicles, termed Tiered-Release Vesicles (TRVs), as a new platform for topical delivery of macromolecules such as peptides and hyaluronic acid (HA). METHODS Fluorescently labeled peptides and HA, diffusion cells, and confocal microscopy were employed to assess the penetration efficiency of macromolecules in TRV formulations using an ex vivo human skin model. Two in vivo studies utilized punch biopsies followed by histochemical staining and analysis. RESULTS Based on fluorescent intensity, TRV formulations delivered a large peptide more completely (2-5 fold) into ex vivo human skin than optimized liposomes. The penetration of 2 HA species in TRV formulations was 3- to 13-fold higher than with a simple gel vehicle. In the case studies, reduction of solar elastosis was observed from a topical TRV formulation. CONCLUSION Topical delivery of large peptides and HA into human skin using TRV technology has been demonstrated.
Collapse
Affiliation(s)
- Amir Moradi
- Moradi MD, Vista California, Vista, California
| | - Ashish C Bhatia
- Oak Dermatology, Naperville, Illinois
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | - Marianna Foldvari
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
30
|
Zhang S, Zhong R, Younis MR, He H, Xu H, Li G, Yang R, Lui S, Wang Y, Wu M. Hydrogel Applications in the Diagnosis and Treatment of Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65754-65778. [PMID: 39366948 DOI: 10.1021/acsami.4c11855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Glioblastoma multiforme (GBM), a common malignant neurological tumor, has boundaries indistinguishable from those of normal tissue, making complete surgical removal ineffective. The blood-brain barrier (BBB) further impedes the efficacy of radiotherapy and chemotherapy, leading to suboptimal treatment outcomes and a heightened probability of recurrence. Hydrogels offer multiple advantages for GBM diagnosis and treatment, including overcoming the BBB for improved drug delivery, controlled drug release for long-term efficacy, and enhanced relaxation properties of magnetic resonance imaging (MRI) contrast agents. Hydrogels, with their excellent biocompatibility and customizability, can mimic the in vivo microenvironment, support tumor cell culture, enable drug screening, and facilitate the study of tumor invasion and metastasis. This paper reviews the classification of hydrogels and recent research for the diagnosis and treatment of GBM, including their applications as cell culture platforms and drugs including imaging contrast agents carriers. The mechanisms of drug release from hydrogels and methods to monitor the activity of hydrogel-loaded drugs are also discussed. This review is intended to facilitate a more comprehensive understanding of the current state of GBM research. It offers insights into the design of integrated hydrogel-based GBM diagnosis and treatment with the objective of achieving the desired therapeutic effect and improving the prognosis of GBM.
Collapse
Affiliation(s)
- Shuaimei Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Renming Zhong
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Chengdu, Sichuan 610041, P. R. China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Hualong He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ruiyan Yang
- Department of Biology, Macalester College, Saint Paul, Minnesota 55105, United States
| | - Su Lui
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
31
|
Deng H, Zhang X, Su S, Liu Y, Cui L, Zhao J, Rong J. Poly(2-hydroxyethyl methacrylate-co-methacrylated hyaluronan-β-cyclodextrin) hydrogel: A potential contact lens material with high hydrophilicity, good mechanical properties and sustained drug delivery. Int J Biol Macromol 2024; 283:137579. [PMID: 39542329 DOI: 10.1016/j.ijbiomac.2024.137579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
A novel poly(2-hydroxyethyl methacrylate-co-methacrylated hyaluronan-β-cyclodextrin) [p(HEMA-co-mHA-β-CD)] hydrogel was developed as a potential contact lens for ophthalmic disease. The hydrogel was synthesized from the copolymerization of 2-hydroxyethyl methacrylate (HEMA) monomer and mHA-β-CD as a hydrophilic macromolecular crosslinker. By adjusting the methacrylate substitution degree in hyaluronan (20-29 %) and the mHA-β-CD content (5-11 %), transparent p(HEMA-co-mHA-β-CD) hydrogels were achieved. p(HEMA-co-m20HA-β-CD) hydrogels exhibited an enhanced tensile modulus (from 0.35 to 0.88 MPa) with a decreased elongation at break (from 255 % to 108 %), meanwhile they showed increased hydrophilicity with a decreased water contact angle (from 83.4° to 48.6°) and an increased equilibrium water content (from 38.2 % to 46.4 %). Increasing the mHA-β-CD content resulted in a higher encapsulation and cumulative release of hydrophilic levofloxacin hydrochloride or hydrophobic puerarin, due to the improved hydrophilicity and the formation of β-CD/drug inclusion complexes. Compared with pHEMA hydrogel, p(HEMA-co-m20HA-β-CD) hydrogels better inhibited the deposition of lysozyme and bovine serum albumin, and the bacterial adhesion against S. aureus and E. coli. The hydrogels were stable at physiological conditions and non-toxic to immortalized human keratinocytes. With good mechanical properties, tear protein deposition resistance, antibacterial activity, and sustained drug delivery capabilities, p(HEMA-co-m20HA-β-CD) hydrogels were identified as a promising contact lens material for eye diseases.
Collapse
Affiliation(s)
- Haotian Deng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Xiong Zhang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Shuxian Su
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Yuying Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Lishu Cui
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Jianhao Zhao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 511436, China.
| | - Jianhua Rong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 511436, China.
| |
Collapse
|
32
|
Wu Y, Zhao S, Wang J, Chen Y, Li H, Li JP, Kan Y, Zhang T. Methods for determining the structure and physicochemical properties of hyaluronic acid and its derivatives: A review. Int J Biol Macromol 2024; 282:137603. [PMID: 39542327 DOI: 10.1016/j.ijbiomac.2024.137603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Hyaluronic acid (HA) is a linear high molecular weight polymer ubiquitously distributed in humans and animals. The D-glucuronic acid and N-acetyl-D-glucosamine repeating disaccharide backbone along with variable secondary and tertiary structures endows HA with unique rheological characteristics as well as diverse biological functions such as maintaining tissue homeostasis and mediating cell functions. Due to its excellent biocompatibility, biodegradability, viscoelasticity and moisturizing properties, natural HA and its chemically modified derivatives are widely used in medical, pharmaceutical, food and cosmetic industries. For broad application purposes, abundant HA-based biochemical products have been developed, including the methodologies for characterization of these products. This review provides an overview focusing on the methods used for determining HA structure as well as the strategies for constructing its derivatives. Apart from the analytical approaches for defining the physicochemical properties of HA (e.g., molecular weight, rheology and swelling capacity), quantitative methods for assessing the purity of HA-based materials are discussed. In addition, the biological functions and potential applications of HA and its derivatives are briefly embarked and perspectives in methodological development are discussed.
Collapse
Affiliation(s)
- Yiyang Wu
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Siran Zhao
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Jiandong Wang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Yujuan Chen
- Bloomage Biotechnology Corporation Limited, Jinan, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Jin-Ping Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden.
| | - Ying Kan
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China.
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China.
| |
Collapse
|
33
|
Liu Y, Sun M, Chang Y, Mei X, Liu G, Sun Y, Xue C. Carbohydrate-binding module could integrate with ELISA and serve the simple and specific quantification of hyaluronic acid. Int J Biol Macromol 2024; 283:137528. [PMID: 39537067 DOI: 10.1016/j.ijbiomac.2024.137528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 10/15/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Quantification is essential in the research and development of polysaccharides. However, achieving simplicity and specificity in polysaccharide quantification remains a challenging task. Enzyme-linked immunosorbent assay (ELISA) based on antibodies provides a straightforward and specific quantification strategy. Nevertheless, acquiring antibodies for polysaccharides is complicated. Carbohydrate-binding modules (CBMs), which can be efficiently obtained, exhibit the capability to specifically recognize and bind carbohydrates. In this study, we verified the feasibility of a CBM-based ELISA for the quantification of hyaluronic acid (HA) by replacing an antibody with a CBM. The CBM-based ELISA, which employed a HA-specific CBM, exhibited a linear detection range spanning from 10 to 100 μg/mL. Both intra-assay and inter-assay coefficients of variation remained below 15 % and recoveries ranged from 96.26 % to 98.22 %, indicating favorable precision and accuracy. The method exhibited specificity exclusively to HA, suggesting its reliance on CBM binding specificity. The effectiveness of the method in analyzing commercial products was confirmed. Additionally, a comparison with the carbazole assay revealed a highly significant correlation (r = 0.994). By integrating CBMs with ELISA, the study presented a novel and easily implementable solution for simple and specific quantification of HA while also highlighting the potential of this strategy to advance polysaccharide detection.
Collapse
Affiliation(s)
- Yanyan Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Menghui Sun
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yuhao Sun
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
34
|
Zheng J, Chen R, Hao J, Yang Y, Xu S, Zhang F, Zhang F, Yao Y. Design and preparation of hydrogel microspheres for spinal cord injury repair. J Biomed Mater Res A 2024; 112:2358-2371. [PMID: 39169748 DOI: 10.1002/jbm.a.37788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
A severe disorder known as spinal cord damage causes both motor and sensory impairment in the limbs, significantly reducing the patients' quality of life. After a spinal cord injury, functional recovery and therapy have emerged as critical concerns. Hydrogel microspheres have garnered a lot of interest lately because of their enormous promise in the field of spinal cord injury rehabilitation. The material classification of hydrogel microspheres (natural and synthetic macromolecule polymers) and their synthesis methods are examined in this work. This work also covers the introduction of several kinds of hydrogel microspheres and their use as carriers in the realm of treating spinal cord injuries. Lastly, the study reviews the future prospects for hydrogel microspheres and highlights their limitations and problems. This paper can offer feasible ideas for researchers to advance the application of hydrogel microspheres in the field of spinal cord injury.
Collapse
Affiliation(s)
- Jian Zheng
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ruilin Chen
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jie Hao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yang Yang
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shaohu Xu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Feiyu Zhang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Feng Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yu Yao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
35
|
Burge KY, Zhong H, Wilson AP, Chaaban H. Network-Based Bioinformatics Highlights Broad Importance of Human Milk Hyaluronan. Int J Mol Sci 2024; 25:12679. [PMID: 39684390 DOI: 10.3390/ijms252312679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Human milk (HM) is rich in bioactive factors promoting postnatal small intestinal development and maturation of the microbiome. HM is also protective against necrotizing enterocolitis (NEC), a devastating inflammatory condition predominantly affecting preterm infants. The HM glycosaminoglycan, hyaluronan (HA), is present at high levels in colostrum and early milk. Our group has demonstrated that HA with a molecular weight of 35 kDa (HA35) promotes maturation of the murine neonatal intestine and protects against two distinct models of NEC. However, the molecular mechanisms underpinning HA35-induced changes in the developing ileum are unclear. CD-1 mouse pups were treated with HA35 or vehicle control daily, from P7 to P14, and we used network and functional analyses of bulk RNA-seq ileal transcriptomes to further characterize molecular mechanisms through which HA35 likely influences intestinal maturation. HA35-treated pups separated well by principal component analysis, and cell deconvolution revealed increases in stromal, Paneth, and mature enterocyte and progenitor cells in HA35-treated pups. Gene set enrichment and pathway analyses demonstrated upregulation in key processes related to antioxidant and growth pathways, such as nuclear factor erythroid 2-related factor-mediated oxidative stress response, hypoxia inducible factor-1 alpha, mechanistic target of rapamycin, and downregulation of apoptotic signaling. Collectively, pro-growth and differentiation signals induced by HA35 may present novel mechanisms by which this HM bioactive factor may protect against NEC.
Collapse
Affiliation(s)
- Kathryn Y Burge
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hua Zhong
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Adam P Wilson
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hala Chaaban
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
36
|
Cheng QS, Xu PY, Luo SC, Chen AZ. Advances in Adhesive Materials for Oral and Maxillofacial Soft Tissue Diseases. Macromol Biosci 2024:e2400494. [PMID: 39588806 DOI: 10.1002/mabi.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Oral diseases represent a prevalent global health burden, profoundly affecting patients' quality of life. Given the involvement of oral mucosa and muscles in diverse physiological functions, coupled with clinical aesthetics considerations, repairing oral and maxillofacial soft tissue defects poses a formidable challenge. Wet-adhesive materials are regarded as promising oral repair materials due to their unique advantages in easily overcoming physical and biological barriers in the oral cavity. This review first introduces the intricate wet-state environment prevalent in the oral cavity, meticulously explaining the fundamental physical and chemical adhesion mechanisms that underpin adhesive materials. It then comprehensively summarizes the diverse types of adhesives utilized in stomatology, encompassing polysaccharide, protein, and synthetic polymer adhesive materials. The review further evaluates the latest research advancements in utilizing these materials to treat various oral and maxillofacial soft tissue diseases, including oral mucosal diseases, periodontitis, peri-implantitis, oral and maxillofacial skin defects, and maxillofacial tumors. Finally, it also highlights the promising future prospects and pivotal challenges related to stomatology application of multifunctional adhesive materials.
Collapse
Affiliation(s)
- Qiu-Shuang Cheng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Sheng-Chang Luo
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian, 361021, P. R. China
| |
Collapse
|
37
|
Fatimi A, Damiri F, Berrada M, Musuc AM. Patent Overview of Innovative Hyaluronic Acid-Based Hydrogel Biosensors. BIOSENSORS 2024; 14:567. [PMID: 39727834 DOI: 10.3390/bios14120567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Hyaluronic acid-based hydrogels are emerging as highly versatile materials for cost-effective biosensors, capable of sensitive chemical and biological detection. These hydrogels, functionalized with specific groups, exhibit sensitivity modulated by factors such as temperature, pH, and analyte concentration, allowing for a broad spectrum of applications. This study presents a patent-centered overview of recent advancements in hyaluronic acid hydrogel biosensors from 2003 to 2023. A total of 50 patent documents-including 41 patent applications and 9 granted patents-reveal a growing interest, primarily driven by United States-based institutions, which account for approximately 54% of all filings. This trend reflects the strong collaboration between universities, industry, and foundations in pushing this technology forward. Most patented technologies focus on biosensors for in vivo blood analysis, measuring critical parameters such as gas concentration and pH, with particular emphasis on glucose monitoring via tissue impedance using enzyme-immobilized oxidase electrodes. Additionally, the 9 granted patents collectively showcase key innovations, highlighting applications from continuous glucose monitors to implantable vascular devices and sweat analyte detection systems. These patents underscore the adaptability and biocompatibility of hyaluronic acid hydrogels, reinforcing their role in enhancing biosensor performance for real-time health monitoring. In summary, this overview highlights the importance of patent analysis in tracking and directing research and development, helping to clarify the field's evolution and identify innovation gaps for hyaluronic acid-based hydrogel biosensors.
Collapse
Affiliation(s)
- Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, FPBM, Sultan Moulay Slimane University (USMS), Mghila Campus, Beni Mellal 23000, Morocco
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry-Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|
38
|
Saletti M, Pepi S, Paolino M, Venditti J, Giuliani G, Bonechi C, Leone G, Magnani A, Rossi C, Cappelli A. Crosslinking by Click Chemistry of Hyaluronan Graft Copolymers Involving Resorcinol-Based Cinnamate Derivatives Leading to Gel-like Materials. Gels 2024; 10:751. [PMID: 39590107 PMCID: PMC11594237 DOI: 10.3390/gels10110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The well-known "click chemistry" reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) was used to transform under very mild conditions hyaluronan-based graft copolymers HA(270)-FA-Pg into the crosslinked derivatives HA(270)-FA-TEGERA-CL and HA(270)-FA-HEGERA-CL. In particular, medium molecular weight (i.e., 270 kDa) hyaluronic acid (HA) grafted at various extents (i.e., 10, 20, and 40%) with fluorogenic ferulic acid (FA) residue bonding propargyl groups were used in the CuAAC reaction with novel azido-terminated crosslinking agents Tri(Ethylene Glycol) Ethyl Resorcinol Acrylate (TEGERA) and Hexa(Ethylene Glycol) Ethyl Resorcinol Acrylate (HEGERA). The resulting HA(270)-FA-TEGERA-CL and HA(270)-FA-HEGERA-CL materials were characterized from the point of view of their structure by performing NMR studies. Moreover, the swelling behavior and rheological features were assessed employing TGA and DSC analysis to evaluate the potential gel-like properties of the resulting crosslinked materials. Despite the 3D crosslinked structure, HA(270)-FA-TEGERA-CL and HA(270)-FA-HEGERA-CL frameworks showed adequate swelling performance, the required shear thinning behavior, and coefficient of friction values close to those of the main commercial HA solutions used as viscosupplements (i.e., 0.20 at 10 mm/s). Furthermore, the presence of a crosslinked structure guaranteed a longer residence time. Indeed, HA(270)-FA-TEGERA-CL-40 and HA(270)-FA-HEGERA-CL-40 after 48 h showed a four times greater enzymatic resistance than the commercial viscosupplements. Based on the promising obtained results, the crosslinked materials are proposed for their potential applicability as novel viscosupplements.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.S.); (S.P.); (M.P.); (J.V.); (G.G.); (C.B.); (G.L.); (A.M.); (C.R.)
| |
Collapse
|
39
|
Xiao J, Liang Y, Sun T, Liu M, He X. A functional dual responsive CMC/OHA/SA/TOB hydrogel as wound dressing to enhance wound healing. Sci Rep 2024; 14:26854. [PMID: 39501050 PMCID: PMC11538550 DOI: 10.1038/s41598-024-78044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Within the clinical realm, the complexities of wound healing have consistently presented formidable challenges. Recent advancements, notably in hydrogel technologies, have broadened the therapeutic spectrum. This study focuses on investigating a novel dual responsive composite hydrogel for wound healing. This hydrogel is ingeniously designed to maintain an optimal moist environment, expedite healing, and combat bacterial infection during wound recovery. This study combining carboxymethyl chitosan (CMC), oxidized hyaluronic acid (OHA), and sodium alginate (SA), in addition, tobramycin (TOB) was incorporated to create a CMC/OHA/SA/TOB hydrogel. Hydrogel cross-linking was verified by infrared spectroscopy, and the microstructure was examined with scanning electron microscopy. We explored its swelling and degradation behaviors in different pH environments. The drug release profile and biocompatibility was evaluated via cytotoxicity and hemolysis assays. The antibacterial efficacy of hydrogel was tested in both solid and liquid media. Additionally, the wound models in Sprague-Dawley (SD) rat was employed to investigate the hydrogel's wound healing capabilities in vivo. Results showed that CMCOHA/SA/TOB hydrogel was effectively cross-linked with a network structure. The hydrogel exhibited pronounced responsiveness in its swelling and degradation characteristics, which was significantly influenced by different levels of pH. In vitro results demonstrated that the CMC/OHA/SA/TOB hydrogel exhibits limited cytotoxicity and hemolysis, coupled with a drug release profile of dual responsive characteristics. Antibacterial activity of the hydrogel against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli was confirmed. Furthermore, in vivo experiments underscored the hydrogel's proficiency in promoting wound healing, highlighting its potential for clinical applications. The CMC/OHA/SA/TOB hydrogel not only fosters a moist environment essential for wound healing and enhances structural stability, but it also exhibits functional dual responsive capabilities in swelling and degradation. These distinctive abilities enable the precise release of TOB, thereby optimizing wound healing.
Collapse
Affiliation(s)
- Jiajun Xiao
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, China
- Department of Endodontics, Shanghai Fengxian Dental Institute, Shanghai, China
| | - Yanming Liang
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, China
| | - Ting Sun
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, China
- Department of Periodontology, Jinzhou Stomatological Hospital, Jinzhou, Liaoning, China
| | - Ming Liu
- Department of Epidemiology and Biostatistics, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, Liaoning, China.
| | - Xiaoning He
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, China.
| |
Collapse
|
40
|
Assi MM, Grawish ME, Elsabaa HM, Helal ME, Ezzat SK. Therapeutic potential of hyaluronic acid hydrogel combined with bone marrow stem cells-conditioned medium on arthritic rats' TMJs. Sci Rep 2024; 14:26828. [PMID: 39500985 PMCID: PMC11538243 DOI: 10.1038/s41598-024-77325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Conditioned media (CM) is derived from mesenchymal stem cells (MSC) culture and contains biologically active components. CM is easy to handle and reduces inflammation while repairing injured joints. Combination therapy of the CM with cross-linked hyaluronic acid (HA) could ameliorate the beneficial effect of HA in treating degenerative changes of articulating surfaces associated with arthritic rats' temporomandibular joints (TMJs). This study aimed to evaluate the therapeutic potential of HA hydrogel combined with bone marrow stem cells-conditioned medium (BMSCs-CM) on the articulating surfaces of TMJs associated with complete Freund's adjuvant (CFA)-induced arthritis. Fifty female Sprague-Dawley rats were divided randomly into five equal groups. Rats of group I served as the negative controls and received intra-articular (IA) injections of 50 µl saline solution, whereas rats of group II were subjected to twice IA injections of 50 µg CFA in 50 µl; on day 1 of the experiment to induce persistent inflammation and on day 14 to induce arthritis. Rats of group III and IV were handled as group II and instead, they received an IA injection of 50 µl HA hydrogel and 50 µl of BMSCs-CM, respectively. Rats of group V were given combined IA injections of 50 µl HA hydrogel and BMSCs-CM. All rats were euthanized after the 4th week of inducing arthritis. The joints were processed for sectioning and histological staining using hematoxylin and eosin, Masson's trichrome and toluidine blue special staining, and immunohistochemical staining for nuclear factor-kappa B (NF-κB). SPSS software was used to analyze the data and one-way analysis of variance followed by post-hoc Tukey statistical tests were used to test the statistical significance at 0.05 for alpha and 0.2 for beta. In the pooled BMSC-CM, 197.14 pg/ml of platelet-derived growth factor and 112.22 pg/ml of interleukin-10 were detected. Compared to TMJs of groups III and IV, TMJs of group V showed significant improvements (P = 0.001) in all parameters tested as the disc thickness was decreased (331.79 ± 0.73), the fibrocartilaginous layer was broadened (0.96 ± 0.04), and the amount of the trabecular bone was distinctive (19.35 ± 1.07). The mean values for the collagen amount were increased (12.29 ± 1.38) whereas the mean values for the NF-κB expression were decreased (0.62 ± 0.15). Combination therapy of HA hydrogel and BMSCs-CM is better than using HA hydrogel or BMSCs-CM, separately to repair degenerative changes in rats' TMJs associated with CFA-induced arthritis.
Collapse
Affiliation(s)
- Mai M Assi
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
| | - Mohammed E Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt.
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Dakahlia, Egypt.
| | - Heba Mahmoud Elsabaa
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
- Department of Oral Biology and Pathology, Faculty of Dentistry, Badr University in Cairo, Cairo, Egypt
| | - Mohamad E Helal
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
| | - Samah K Ezzat
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
| |
Collapse
|
41
|
Sweis IE, Cressey BC. New Findings in Prominent Lower Eyelid Fat Pads Possibly Contributing to Their Etiology: Two Prospective Studies. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6340. [PMID: 39583781 PMCID: PMC11584228 DOI: 10.1097/gox.0000000000006340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/26/2024]
Abstract
Background Little is known about the actual composition of prominent orbital fat pads. It was incidentally noted that hyaluronidase injections in prominent lower eyelid fat pads attenuated them, suggesting prevalence of hyaluronic acid (HA), and raising questions regarding their etiology. This led to 2 institutional review board studies: The first quantified HA concentration in orbital fat pads and assessed possible correlation between HA levels and degree of lower eyelid puffiness. The second determined if regular hyaluronidase injections in prominent lower eyelid fat pads impacted their size to uncover a possible role of intrinsic HA and its hydrophilic properties in their etiology. Methods Lower eyelid orbital fat harvested from 20 filler-naive blepharoplasty patients underwent enzyme linked immunosorbent assay for HA quantification. A separate group of 14 filler-naive patients requesting nonsurgical treatment of lower eyelid puffiness were treated with a series of hyaluronidase injections. Results HA levels in prominent eyelid orbital fat pads averaged 39.3 µg/mg of the dry weight, higher than reported in other solid human tissues. Orbital fat HA levels correlated with the degree of clinical puffiness. Hyaluronidase attenuated lower eyelid puffiness in 78.6% of patients. The extent and duration of improvement varied between responders but increased with repetitive injections. Conclusions Prominent orbital fat pads have a higher HA concentration than reported in other solid human tissues. HA hydrophilic properties likely contribute to fat pad edema manifesting as puffiness. Attenuation of prominent lower eyelid fat pads following hyaluronidase injections further implicates intrinsic HA in the etiology of prominent eyelid fat pads.
Collapse
Affiliation(s)
- Iliana E. Sweis
- From the Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | | |
Collapse
|
42
|
Han C, Zhang M, Xu S, Wang C, Li B, Zhao W. Strontium ranelate-loaded human hair keratin-hyaluronic acid hydrogel accelerates wound repair with anti-inflammatory and antioxidant properties. Int J Biol Macromol 2024; 281:136536. [PMID: 39396587 DOI: 10.1016/j.ijbiomac.2024.136536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Inflammation and reactive oxygen species (ROS) production often accompany the repair of severe skin wounds, and the management of wounds has always been a clinical challenge, so the design of a hydrogel wound dressing with antioxidant and anti-inflammatory properties is of significant importance. This work incorporated strontium ranelate (SrR) into the keratin/hyaluronic acid (K/HA) hydrogel, which could scavenge ROS and reduce inflammation. The optimized hydrogel exhibits large pore size (217.2 μm), high porosity (57 %), high swelling rate (1759.52 %), and an elastic modulus (3.41 kPa). In the in vitro study, incorporating SrR into hydrogel effectively inhibited oxidative damage in mouse fibroblasts (L929) and improved anti-inflammatory effect in RAW264.7 cells stimulated by lipopolysaccharide. The in vivo study showed that, compared with the control group, the expression of ROS, IL-6 and TNF - α in the K/HA/0.5 mM SrR group were significantly reduced to 31.6 %, 39.7 % and 61.1 %, respectively. The in vivo evaluation in a full-thickness wound defect model demonstrated that K/HA/0.5 mM SrR hydrogel promotes wound healing by attenuating ROS levels, reducing inflammation, and promoting microangiogenesis. In summary, the excellent ROS scavenging and anti-inflammatory properties of SrR make the K/HA/SrR hydrogel a promising and effective strategy for wound healing.
Collapse
Affiliation(s)
- Cuicui Han
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Miaomiao Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - ShiXin Xu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chengwei Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Bo Li
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wen Zhao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
43
|
Skierska I, Górski B, Fus Ł. Tunnel technique and subepithelial connective tissue graft, with or without cross-linked hyaluronic acid, in the treatment of multiple gingival recessions: 12-month outcomes of a randomized clinical trial. J Periodontol 2024; 95:1060-1072. [PMID: 38808976 DOI: 10.1002/jper.24-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND This study evaluated the influence of the adjunctive application of a cross-linked hyaluronic acid (HA) in the treatment of multiple gingival recessions, using a modified coronally advanced tunnel (MCAT) technique and subepithelial connective tissue graft (SCTG) (MCAT+SCTG±HA). METHODS A randomized, split-mouth, double-masked comparison of the effects of MCAT+HA+SCTG (test) versus MCAT+SCTG (control) in the treatment of multiple, contralateral gingival recessions with clinical, esthetic, and histological evaluations was carried out. All samples were stained with hematoxylin and eosin, Masson's trichrome, Verhoeff-Van Gieson, and Alcian blue stain for semiquantitative evaluation. The primary outcome variable was 12-month mean root coverage (MRC). RESULTS Twenty-four patients with 266 gingival recessions received both control and test treatments (133 recessions per group). 12-month MRC of the MCAT+HA+SCTG group was not significantly different from the MCAT+SCTG group with 84.32%± 34.46% and 85.71%± 36.43%, respectively (p = 0.991). Both treatment modes produced favorable esthetic outcomes (root coverage esthetic score [RES] 9.51± 1.01 tests vs. 9.26± 1.10 controls, p = 0.7292). However, the application of HA improved soft tissue texture (p = 0.0091). The remaining end point measures did not differ significantly between groups. Histological evaluation showed a significantly greater number of elastic fibers and a moderate increase in collagen fiber density in biopsy samples taken from the test sides when compared to the control sides (p = 0.0419 and p = 0.300, respectively). CONCLUSIONS MCAT+SCTG is an effective procedure in the treatment of multiple recession Type 1 (RT1) and RT2 recessions. There were no statistically significant differences in evaluated clinical treatment outcomes in the MCAT+HA+SCTG group compared to the MCAT+SCTG group within a period of 12 months. The application of HA increased collagen and elastic fiber density.
Collapse
Affiliation(s)
- Izabela Skierska
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Bartłomiej Górski
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Fus
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
44
|
Kim H, Song C, Min D, Yoo J, Choi J. Excipient-free nanotransformation of hydrophilic macromolecules using aqueous counter collision for enhanced bioavailability. Int J Biol Macromol 2024; 279:135416. [PMID: 39245092 DOI: 10.1016/j.ijbiomac.2024.135416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The demand for sustainable, eco-friendly biopolymer transdermal delivery systems has increased owing to growing environmental awareness. In this study, we used aqueous counter collision (ACC), a nontoxic nanotransformation method, to convert high- and ultrahigh-molecular-weight hydrophilic macromolecules into their corresponding nanoparticles (NPs). Hyaluronic acid (HA) and crosslinked HA (CLHA) were chosen as the model compounds. Their NPs exhibited particle sizes in the range of 10-100 nm and negative zeta potentials (-20 to -30 mV). Transmission electron microscopy revealed that the NPs were nearly spherical with smooth surfaces. Fourier-transform infrared and proton nuclear magnetic resonance spectroscopy and agarose gel electrophoresis confirmed that the structures and molecular weights of HA and CLHA remained unaltered after ACC. However, the storage and loss moduli of HANPs and CLHANPs were significantly lower than those of HA and CLHA, respectively. Furthermore, the permeation of HANPs and CLHANPs in reconstructed human skin and human cadaver skin was visualized and quantified. HANPs and CLHANPs penetrated deeper into the skin, whereas HA and CLHA were mainly found in the stratum corneum. The total skin absorption (permeation and deposition) of HANPs and CLHANPs was approximately 2.952 and 5.572 times those of HA and CLHA, respectively. Furthermore, HANPs and CLHANPs exhibited resistance to enzyme and free radical degradation. Our findings reveal ACC as a promising, sustainable hydrophilic macromolecule delivery system compared with the chemical hydrolysis of HA.
Collapse
Affiliation(s)
- Hyuk Kim
- AMOREPACIFIC Research and Innovation Center, 1920 Yonggu-daero, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Chaeyeon Song
- AMOREPACIFIC Research and Innovation Center, 1920 Yonggu-daero, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Daejin Min
- AMOREPACIFIC Research and Innovation Center, 1920 Yonggu-daero, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Jaewon Yoo
- AMOREPACIFIC Research and Innovation Center, 1920 Yonggu-daero, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Joonho Choi
- AMOREPACIFIC Research and Innovation Center, 1920 Yonggu-daero, Yongin-si, Gyeonggi-do 17074, Republic of Korea.
| |
Collapse
|
45
|
Di Meo C, Stellavato A, d'Agostino M, D'Agostino A, Schiraldi C, La Gatta A. Hyaluronan size and concentration: Effect on key biophysical and biochemical features. Int J Biol Macromol 2024; 282:137125. [PMID: 39486705 DOI: 10.1016/j.ijbiomac.2024.137125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The effect of hyaluronan (HA) molecular weight (MW) and concentration (c) on key features of HA-formulations was systematically studied, in vitro, exploring the widest range/number of MW/c to date. Nine pharmaceutical grade HA samples (60-2500 kDa) were hydrodynamically characterized using Size Exclusion Chromatography-Triple Detector Array (SEC-TDA) also providing conformational data. HAs aqueous solutions (thirteen concentrations in the range 0.1-32 g/L) were tested for dynamic viscosity (η). η dependence on MW/c was analyzed providing mathematical correlations not only for the specific zero-shear viscosity, but also for the critical shear rate and the shear-thinning-extent. Besides confirming the dilute and semi-dilute c-regimes for the HAs, a third concentrated regime was evidenced for the 220-2500 kDa samples. Data on how MW affects the dependence of viscosity parameters on c and vice-versa were provided. The 60-90 kDa HAs proved stable to thermal sterilization and enzymatically catalyzed hydrolysis, while the 220-2500 kDa samples depolymerized to an extent depending, beyond concentration, on MW. HA size did not significantly affect fibroblasts behavior: under the conditions here tested, the HAs similarly sustained human dermal fibroblasts growth and wound healing also showing comparable effect on collagen-I, elastin and hyaluronan synthase-1 expression. Overall, results valuably contribute to the understanding of the HA MW/c impact on the rheological, stability and biochemical features of the final formulations, also providing mathematical correlations allowing for their optimization towards specific performance.
Collapse
Affiliation(s)
- Celeste Di Meo
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy.
| | - Antonietta Stellavato
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy.
| | - Maria d'Agostino
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy.
| | - Antonella D'Agostino
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy.
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy.
| | - Annalisa La Gatta
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
46
|
Jin C, Zhao R, Hu W, Wu X, Zhou L, Shan L, Wu H. Topical hADSCs-HA Gel Promotes Skin Regeneration and Angiogenesis in Pressure Ulcers by Paracrine Activating PPARβ/δ Pathway. Drug Des Devel Ther 2024; 18:4799-4824. [PMID: 39478872 PMCID: PMC11523932 DOI: 10.2147/dddt.s474628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Background Pressure ulcer is common in the bedridden elderly with high mortality and lack of effective treatment. In this study, human-adipose-derived-stem-cells-hyaluronic acid gel (hADSCs-HA gel) was developed and applied topically to treat pressure ulcers, of which efficacy and paracrine mechanisms were investigated through in vivo and in vitro experiments. Methods Pressure ulcers were established on the backs of C57BL/6 mice and treated topically with hADSCs-HA gel, hADSCs, hyaluronic acid, and normal saline respectively. The rate of wound closure was observed continuously during the following 14 days and the wound samples were obtained for Western blot, histopathology, immunohistochemistry, and proteomic analysis. Human dermal fibroblasts (HDFs) and human venous endothelial cells (HUVECs) under normal or hypoxic conditions were treated with conditioned medium of human ADSCs (ADSC-CM), then CCK-8, scratch test, tube formation, and Western blot were conducted to evaluate the paracrine effects of hADSCs and to explore the underlying mechanism. Results The in vivo data demonstrated that hADSCs-HA gel significantly accelerated the healing of pressure ulcers by enhancing collagen expression, angiogenesis, and skin proliferation. The in vitro data revealed that hADSCs strengthened the proliferation and wound healing capabilities of HDFs and HUVECs, meanwhile promoted collagen secretion and tube formation through paracrine mode. ADSC-CM was also proved to exert protective effects on hypoxic HDFs and HUVECs. Besides, the results of proteomic analysis and Western blot elucidated that lipid metabolism and PPARβ/δ pathway mediated the healing effect of hADSCs-HA gel on pressure ulcers. Conclusion Our research showed that topical application of hADSCs-HA gel played an important role in dermal regeneration and angiogenesis. Therefore, hADSCs-HA gel exhibited the potential as a novel stem-cell-based therapeutic strategy of treating pressure ulcers in clinical practices.
Collapse
Affiliation(s)
- Chaoying Jin
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - Ruolin Zhao
- Yichen Biotechnology Co., Ltd, Hangzhou, Zhejiang, 311200, People’s Republic of China
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
| | - Weihang Hu
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, People’s Republic of China
| | - Xiaolong Wu
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, People’s Republic of China
| | - Letian Shan
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, People’s Republic of China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| |
Collapse
|
47
|
Di Cicco G, Marzano E, Mastrostefano A, Pitocco D, Castilho RS, Zambelli R, Mascio A, Greco T, Cinelli V, Comisi C, Maccauro G, Perisano C. The Pathogenetic Role of RANK/RANKL/OPG Signaling in Osteoarthritis and Related Targeted Therapies. Biomedicines 2024; 12:2292. [PMID: 39457605 PMCID: PMC11505501 DOI: 10.3390/biomedicines12102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Osteoarthritis (OA) is the most common degenerative joint disease and affects millions of people worldwide, particularly the elderly population. The pathophysiology of OA is complex and involves multiple factors. Methods: Several studies have emphasized the crucial role of inflammation in this process. The receptor activator of NF-κB ligand (RANKL), the receptor activator of NF-κB (RANK), and osteoprotegerin (OPG) trigger a signaling cascade that leads to the excessive production of RANKL in the serum. Conclusions: The aim of this narrative review is (i) to assess the role of the RANK/RANKL/OPG signaling pathway in the context of OA progression, focusing especially on the physiopathology and on all the mechanisms leading to the activation of the inflammatory cascade, and (ii) to evaluate all the potential therapeutic strategies currently available that restore balance to bone formation and resorption, reducing structural abnormalities and relieving pain in patients with OA.
Collapse
Affiliation(s)
- Gabriele Di Cicco
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.D.C.)
| | - Emanuela Marzano
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.D.C.)
| | - Andrea Mastrostefano
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.D.C.)
| | - Dario Pitocco
- Diabetes Care Unit, Endocrinology, University Hospital “A. Gemelli”, Catholic University of the Sacred Heart, 00136 Rome, Italy
| | - Rodrigo Simões Castilho
- Department of Orthopaedics and Traumatology, Mater Dei Hospital, Belo Horizonte 30170-041, Brazil
| | - Roberto Zambelli
- Department of Orthopaedics and Traumatology, Mater Dei Hospital, Belo Horizonte 30170-041, Brazil
| | - Antonio Mascio
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Tommaso Greco
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
- Department of Life Sciences, Health, and Healthcare Professions, Link Campus University, 00165 Rome, Italy
| | - Virginia Cinelli
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Chiara Comisi
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Giulio Maccauro
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Carlo Perisano
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| |
Collapse
|
48
|
Ding Y, Jia Q, Su Z, Chen H, Ye J, Xie D, Wu Y, He H, Peng Y, Ni Y. Homologous cell membrane-based hydrogel creates spatiotemporal niches to improve outcomes of dysregulated chronic wound healing. Mater Today Bio 2024; 28:101243. [PMID: 39315394 PMCID: PMC11419813 DOI: 10.1016/j.mtbio.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
The (M2M + TGF-β)@HAMA hydrogel dressing improves the outcomes of dysregulated chronic wound healing by protecting the open wound from repeated bacterial infections, reprogramming endogenous monocytes and M1 macrophages into an M2-phenotype, as well as enhancing fibroblastic proliferation and migration for matrix remodeling and granulation tissue formation.Image 1.
Collapse
Affiliation(s)
| | | | - Ziwen Su
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Heying Chen
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jialing Ye
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Dafeng Xie
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yubo Wu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Haiyan He
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yanlin Peng
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yilu Ni
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
49
|
Gonçalves RR, Peixoto D, Costa RR, Franco AR, Castro VIB, Pires RA, Reis RL, Pashkuleva I, Maniglio D, Tirella A, Motta A, Alves NM. Antibacterial properties of photo-crosslinked chitosan/methacrylated hyaluronic acid nanoparticles loaded with bacitracin. Int J Biol Macromol 2024; 277:134250. [PMID: 39089541 DOI: 10.1016/j.ijbiomac.2024.134250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
The current treatments for wounds often fail to induce adequate healing, leaving wounds vulnerable to persistent infections and development of drug-resistant microbial biofilms. New natural-derived nanoparticles were studied to impair bacteria colonization and hinder the formation of biofilms in wounds. The nanoparticles were fabricated through polyelectrolyte complexation of chitosan (CS, polycation) and hyaluronic acid (HA, polyanion). UV-induced photo-crosslinking was used to enhance the stability of the nanoparticles. To achieve this, HA was methacrylated (HAMA, degree of modification of 20 %). Photo-crosslinked nanoparticles obtained from HAMA and CS had a diameter of 478 nm and a more homogeneous size distribution than nanoparticles assembled solely through complexation (742 nm). The nanoparticles were loaded with the antimicrobial agent bacitracin (BC), resulting in nanoparticles with a diameter of 332 nm. The encapsulation of BC was highly efficient (97 %). The BC-loaded nanoparticles showed significant antibacterial activity against gram-positive bacteria Staphylococcus aureus, Methicillin-resistant S. aureus and S. epidermidis. Photo-crosslinked HAMA/CS nanoparticles loaded with BC demonstrated inhibition of biofilm formation and a positive effect on the proliferation of mammalian cells (L929). These crosslinked nanoparticles have potential for the long-term treatment of wounds and controlled antibiotic delivery at the location of a lesion.
Collapse
Affiliation(s)
- Raquel R Gonçalves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; BIOtech Research Center, Department of Industrial Engineering, University of Trento, Via Delle Regole 101, 38123 Trento, Italy
| | - Daniela Peixoto
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui R Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albina R Franco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vânia I B Castro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Devid Maniglio
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, Via Delle Regole 101, 38123 Trento, Italy
| | - Annalisa Tirella
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, Via Delle Regole 101, 38123 Trento, Italy
| | - Antonella Motta
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, Via Delle Regole 101, 38123 Trento, Italy
| | - Natália M Alves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
50
|
Nacu I, Ghilan A, Rusu AG, Bercea M, Nita LE, Vereştiuc L, Chiriac AP. Hydrogels with Antioxidant Microparticles Systems Based on Hyaluronic Acid for Regenerative Wound Healing. Macromol Biosci 2024; 24:e2400153. [PMID: 39101693 DOI: 10.1002/mabi.202400153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Indexed: 08/06/2024]
Abstract
This research focuses on the synthesis of hydrogels exhibiting enhanced antioxidant properties derived from hyaluronic acid (HA) and poly(ethylene brassylate-co-squaric acid) (PEBSA), a copolymacrolactone that have the ability to be used in drug delivery applications. Quercetin (Q), a bioflavonoid with strong antioxidant properties, is employed as a bioactive compound. The biomolecule is encapsulated in the polymeric network using different entrapment techniques, including the initial formation of a complex between PEBSA and Q, which is demonstrated through the dynamic light scattering technique. Fourier transform infrared spectroscopy (FT-IR) and rheological studies confirm the formation of the hydrogels, revealing the occurrence of physical interactions between the synthetic polymer and the polysaccharide. Moreover, the hydrogels demonstrate biocompatible properties after direct contact with the HDFa cell line and antioxidant properties, as revealed by DPPH tests.
Collapse
Affiliation(s)
- Isabella Nacu
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Alina Ghilan
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Alina G Rusu
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Loredana E Nita
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Liliana Vereştiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Aurica P Chiriac
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| |
Collapse
|