1
|
Cheng Q, Liu C, Zhao J, Guo F, Qin J, Wang Y. Hyaluronic acid promotes heat-induced gelation of ginkgo seed proteins. Food Chem 2025; 463:141114. [PMID: 39243628 DOI: 10.1016/j.foodchem.2024.141114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/27/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to investigate how varying concentrations (0.01-0.5 %, w/v) and molecular weights (50, 500, 1500 kDa) of hyaluronic acid (HA) affect the physicochemical properties of heat-induced ginkgo seed protein isolate (GSPI)-HA composite gel. Incorporating HA increased viscosity (up to 14 times) and charge (up to 23 %) of GSPI-HA aggregates, while reducing particle size (up to 31 %) and improving gel texture, particularly with high molecular weight HA. However, high concentrations (0.5 %, w/v) of HA weakened gel texture. Non-covalent bonds primarily drive the formation of a continuous gel network between HA and GSPI, resulting in small pores and enhanced hydration properties. With increasing HA molecular weight, non-covalent interactions between GSPI and HA increased, leading to improved gel thermal stability. Overall, the study suggests that manipulating the molecular weight and concentration of HA can enhance the gelling properties of GSPI, leading to the development of a diverse array of GSPI-HA composite gels with varied properties.
Collapse
Affiliation(s)
- Qiao Cheng
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Jing Zhao
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Fengxian Guo
- Fujian Province Key Laboratory for Development of Bioactive Material from Marine Algae, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Jiawei Qin
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yaosong Wang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Wang P, Zhang Q, Wang S, Wang D, Yip RCS, Xie W, Chen H. Injectable Salecan/hyaluronic acid-based hydrogels with antibacterial, rapid self-healing, pH-responsive and controllable drug release capability for infected wound repair. Carbohydr Polym 2025; 347:122750. [PMID: 39486979 DOI: 10.1016/j.carbpol.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Accepted: 09/12/2024] [Indexed: 11/04/2024]
Abstract
Designing materials for wound dressings with superior therapeutic benefits, self-healing and injectable characteristics is important in clinical practice. Herein, a new self-healing injectable hydrogel was prepared via thermal treatment and dynamic Schiff base reaction by mixing oxidized hyaluronic acid (OHA) and hydrazided Salecan (Sal-ADH). The versatility of the wound dressing was confirmed by studying the inherent rheological properties, high swelling rate, sustained-release behavior of the drug, pH/hyaluronidase-dependent biodegradation, in vitro antimicrobial as well as in vivo wound healing performance. The presence of the antimicrobial drug polyhexamethylene biguanide (PHMB) conferred good antimicrobial properties to the Sal-ADH/OHA/PHMB (SOP) hydrogel, which could effectively prevent wound infection (the width of the inhibition circle of SOP-0.20 hydrogel was 4.97 mm, 5.93 mm for Staphylococcus aureus and Escherichia coli, respectively). The findings suggested that SOP hydrogel exhibited remarkable self-healing and injectability properties, as well as excellent hemostasis and biocompatibility. In vivo experiments indicated that the application of SOP hydrogels would obviously accelerate wound healing and attenuate the inflammatory response while increasing collagen deposition and angiogenesis. Altogether, antibacterial SOP hydrogels with moderate mechanical properties, pH-responsive release, excellent injectability, exceptional self-healing ability and anti-inflammatory effects could expand potential applications of injectable hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Pu Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Qinling Zhang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China
| | - Shuxin Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Donghui Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.
| | - Weidong Xie
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Hao Chen
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University; Weihai Key Laboratory of Medical Conditioning Functional Food Processing Technology, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agro-Products Processing and Storage, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, P. R. China.
| |
Collapse
|
3
|
Zheng J, Chen R, Hao J, Yang Y, Xu S, Zhang F, Zhang F, Yao Y. Design and preparation of hydrogel microspheres for spinal cord injury repair. J Biomed Mater Res A 2024; 112:2358-2371. [PMID: 39169748 DOI: 10.1002/jbm.a.37788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
A severe disorder known as spinal cord damage causes both motor and sensory impairment in the limbs, significantly reducing the patients' quality of life. After a spinal cord injury, functional recovery and therapy have emerged as critical concerns. Hydrogel microspheres have garnered a lot of interest lately because of their enormous promise in the field of spinal cord injury rehabilitation. The material classification of hydrogel microspheres (natural and synthetic macromolecule polymers) and their synthesis methods are examined in this work. This work also covers the introduction of several kinds of hydrogel microspheres and their use as carriers in the realm of treating spinal cord injuries. Lastly, the study reviews the future prospects for hydrogel microspheres and highlights their limitations and problems. This paper can offer feasible ideas for researchers to advance the application of hydrogel microspheres in the field of spinal cord injury.
Collapse
Affiliation(s)
- Jian Zheng
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ruilin Chen
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jie Hao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yang Yang
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shaohu Xu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Feiyu Zhang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Feng Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yu Yao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
4
|
Prakash G, Clasky AJ, Gadani K, Nazeri M, Gu FX. Ion-Mediated Cross-Linking of Hyaluronic Acid into Hydrogels without Chemical Modification. Biomacromolecules 2024. [PMID: 39485907 DOI: 10.1021/acs.biomac.4c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Hyaluronic acid (HA) is a biomedically relevant polymer widely explored as a component of hydrogels. The prevailing approaches for cross-linking HA into hydrogels require chemically modifying the polymer, which can increase processing steps and complicate biocompatibility. Herein, we demonstrate an alternative approach to cross-link HA that eliminates the need for chemical modifications by leveraging the interactions between metal cations and the negatively charged, ionizable functional groups on HA. We demonstrate that HA can be cross-linked with the bivalent metal cations Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), and notably Mg(II). Using Mg(II) as a model, we show that ion-HA hydrogel rheological properties can be tuned by altering the HA molecular weight and concentrations of ions, NaOH, and HA. Mg(II)-HA hydrogels showed the potential for self-healing and stimulus response. Our findings lay the groundwork for developing a new class of HA-based hydrogels for use in biomedical applications and beyond.
Collapse
Affiliation(s)
- Gayatri Prakash
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Kunal Gadani
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mohammad Nazeri
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
5
|
Kim H, Song C, Min D, Yoo J, Choi J. Excipient-free nanotransformation of hydrophilic macromolecules using aqueous counter collision for enhanced bioavailability. Int J Biol Macromol 2024; 279:135416. [PMID: 39245092 DOI: 10.1016/j.ijbiomac.2024.135416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The demand for sustainable, eco-friendly biopolymer transdermal delivery systems has increased owing to growing environmental awareness. In this study, we used aqueous counter collision (ACC), a nontoxic nanotransformation method, to convert high- and ultrahigh-molecular-weight hydrophilic macromolecules into their corresponding nanoparticles (NPs). Hyaluronic acid (HA) and crosslinked HA (CLHA) were chosen as the model compounds. Their NPs exhibited particle sizes in the range of 10-100 nm and negative zeta potentials (-20 to -30 mV). Transmission electron microscopy revealed that the NPs were nearly spherical with smooth surfaces. Fourier-transform infrared and proton nuclear magnetic resonance spectroscopy and agarose gel electrophoresis confirmed that the structures and molecular weights of HA and CLHA remained unaltered after ACC. However, the storage and loss moduli of HANPs and CLHANPs were significantly lower than those of HA and CLHA, respectively. Furthermore, the permeation of HANPs and CLHANPs in reconstructed human skin and human cadaver skin was visualized and quantified. HANPs and CLHANPs penetrated deeper into the skin, whereas HA and CLHA were mainly found in the stratum corneum. The total skin absorption (permeation and deposition) of HANPs and CLHANPs was approximately 2.952 and 5.572 times those of HA and CLHA, respectively. Furthermore, HANPs and CLHANPs exhibited resistance to enzyme and free radical degradation. Our findings reveal ACC as a promising, sustainable hydrophilic macromolecule delivery system compared with the chemical hydrolysis of HA.
Collapse
Affiliation(s)
- Hyuk Kim
- AMOREPACIFIC Research and Innovation Center, 1920 Yonggu-daero, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Chaeyeon Song
- AMOREPACIFIC Research and Innovation Center, 1920 Yonggu-daero, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Daejin Min
- AMOREPACIFIC Research and Innovation Center, 1920 Yonggu-daero, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Jaewon Yoo
- AMOREPACIFIC Research and Innovation Center, 1920 Yonggu-daero, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Joonho Choi
- AMOREPACIFIC Research and Innovation Center, 1920 Yonggu-daero, Yongin-si, Gyeonggi-do 17074, Republic of Korea.
| |
Collapse
|
6
|
Di Meo C, Stellavato A, d'Agostino M, D'Agostino A, Schiraldi C, La Gatta A. Hyaluronan size and concentration: Effect on key biophysical and biochemical features. Int J Biol Macromol 2024:137125. [PMID: 39486705 DOI: 10.1016/j.ijbiomac.2024.137125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The effect of hyaluronan (HA) molecular weight (MW) and concentration (c) on key features of HA-formulations was systematically studied, in vitro, exploring the widest range/number of MW/c to date. Nine pharmaceutical-grade HA-samples (60-2500 kDa) were hydrodynamically characterized using Size-Exclusion-Chromatography-Triple-Detector-Array (SEC-TDA) also providing conformational data. HAs aqueous solutions (thirteen concentrations in the range 0.1-32 g/L) were tested for dynamic viscosity (η). η dependence on MW/c was analyzed providing mathematical correlations not only for the specific-zero-shear-viscosity, but also for the critical-shear-rate and the shear-thinning-extent. Besides confirming the dilute- and semi-dilute- c-regimes for the HAs, a third concentrated regime was evidenced for the 220-2500 kDa samples. Data on how MW affects the dependence of viscosity parameters on c and vice-versa were provided. The 60-90 kDa HAs proved stable to thermal sterilization and enzymatically catalyzed hydrolysis, while the 220-2500 kDa samples depolymerized to an extent depending, beyond concentration, on MW. HA size did not significantly affect fibroblasts behavior: under the conditions here tested, the HAs similarly sustained human-dermal-fibroblasts growth and wound-healing also showing comparable effect on collagen-I, elastin and hyaluronan-synthase-1 expression. Overall, results valuably contribute to the understanding of the HA MW/c impact on the rheological, stability and biochemical features of the final formulations also providing mathematical correlations allowing for their optimization towards specific performance.
Collapse
Affiliation(s)
- Celeste Di Meo
- Department of Experimental Medicine, Section of Biotechnology Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy.
| | - Antonietta Stellavato
- Department of Experimental Medicine, Section of Biotechnology Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy.
| | - Maria d'Agostino
- Department of Experimental Medicine, Section of Biotechnology Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy.
| | - Antonella D'Agostino
- Department of Experimental Medicine, Section of Biotechnology Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy.
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy.
| | - Annalisa La Gatta
- Department of Experimental Medicine, Section of Biotechnology Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
7
|
Jin C, Zhao R, Hu W, Wu X, Zhou L, Shan L, Wu H. Topical hADSCs-HA Gel Promotes Skin Regeneration and Angiogenesis in Pressure Ulcers by Paracrine Activating PPARβ/δ Pathway. Drug Des Devel Ther 2024; 18:4799-4824. [PMID: 39478872 PMCID: PMC11523932 DOI: 10.2147/dddt.s474628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Background Pressure ulcer is common in the bedridden elderly with high mortality and lack of effective treatment. In this study, human-adipose-derived-stem-cells-hyaluronic acid gel (hADSCs-HA gel) was developed and applied topically to treat pressure ulcers, of which efficacy and paracrine mechanisms were investigated through in vivo and in vitro experiments. Methods Pressure ulcers were established on the backs of C57BL/6 mice and treated topically with hADSCs-HA gel, hADSCs, hyaluronic acid, and normal saline respectively. The rate of wound closure was observed continuously during the following 14 days and the wound samples were obtained for Western blot, histopathology, immunohistochemistry, and proteomic analysis. Human dermal fibroblasts (HDFs) and human venous endothelial cells (HUVECs) under normal or hypoxic conditions were treated with conditioned medium of human ADSCs (ADSC-CM), then CCK-8, scratch test, tube formation, and Western blot were conducted to evaluate the paracrine effects of hADSCs and to explore the underlying mechanism. Results The in vivo data demonstrated that hADSCs-HA gel significantly accelerated the healing of pressure ulcers by enhancing collagen expression, angiogenesis, and skin proliferation. The in vitro data revealed that hADSCs strengthened the proliferation and wound healing capabilities of HDFs and HUVECs, meanwhile promoted collagen secretion and tube formation through paracrine mode. ADSC-CM was also proved to exert protective effects on hypoxic HDFs and HUVECs. Besides, the results of proteomic analysis and Western blot elucidated that lipid metabolism and PPARβ/δ pathway mediated the healing effect of hADSCs-HA gel on pressure ulcers. Conclusion Our research showed that topical application of hADSCs-HA gel played an important role in dermal regeneration and angiogenesis. Therefore, hADSCs-HA gel exhibited the potential as a novel stem-cell-based therapeutic strategy of treating pressure ulcers in clinical practices.
Collapse
Affiliation(s)
- Chaoying Jin
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - Ruolin Zhao
- Yichen Biotechnology Co., Ltd, Hangzhou, Zhejiang, 311200, People’s Republic of China
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
| | - Weihang Hu
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, People’s Republic of China
| | - Xiaolong Wu
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, People’s Republic of China
| | - Letian Shan
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, People’s Republic of China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| |
Collapse
|
8
|
Han C, Zhang M, Xu S, Wang C, Li B, Zhao W. Strontium ranelate-loaded human hair keratin-hyaluronic acid hydrogel accelerates wound repair with anti-inflammatory and antioxidant properties. Int J Biol Macromol 2024; 281:136536. [PMID: 39396587 DOI: 10.1016/j.ijbiomac.2024.136536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Inflammation and reactive oxygen species (ROS) production often accompany the repair of severe skin wounds, and the management of wounds has always been a clinical challenge, so the design of a hydrogel wound dressing with antioxidant and anti-inflammatory properties is of significant importance. This work incorporated strontium ranelate (SrR) into the keratin/hyaluronic acid (K/HA) hydrogel, which could scavenge ROS and reduce inflammation. The optimized hydrogel exhibits large pore size (217.2 μm), high porosity (57 %), high swelling rate (1759.52 %), and an elastic modulus (3.41 kPa). In the in vitro study, incorporating SrR into hydrogel effectively inhibited oxidative damage in mouse fibroblasts (L929) and improved anti-inflammatory effect in RAW264.7 cells stimulated by lipopolysaccharide. The in vivo study showed that, compared with the control group, the expression of ROS, IL-6 and TNF - α in the K/HA/0.5 mM SrR group were significantly reduced to 31.6 %, 39.7 % and 61.1 %, respectively. The in vivo evaluation in a full-thickness wound defect model demonstrated that K/HA/0.5 mM SrR hydrogel promotes wound healing by attenuating ROS levels, reducing inflammation, and promoting microangiogenesis. In summary, the excellent ROS scavenging and anti-inflammatory properties of SrR make the K/HA/SrR hydrogel a promising and effective strategy for wound healing.
Collapse
Affiliation(s)
- Cuicui Han
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Miaomiao Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - ShiXin Xu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chengwei Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Bo Li
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wen Zhao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
9
|
Di Cicco G, Marzano E, Mastrostefano A, Pitocco D, Castilho RS, Zambelli R, Mascio A, Greco T, Cinelli V, Comisi C, Maccauro G, Perisano C. The Pathogenetic Role of RANK/RANKL/OPG Signaling in Osteoarthritis and Related Targeted Therapies. Biomedicines 2024; 12:2292. [PMID: 39457605 PMCID: PMC11505501 DOI: 10.3390/biomedicines12102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Osteoarthritis (OA) is the most common degenerative joint disease and affects millions of people worldwide, particularly the elderly population. The pathophysiology of OA is complex and involves multiple factors. Methods: Several studies have emphasized the crucial role of inflammation in this process. The receptor activator of NF-κB ligand (RANKL), the receptor activator of NF-κB (RANK), and osteoprotegerin (OPG) trigger a signaling cascade that leads to the excessive production of RANKL in the serum. Conclusions: The aim of this narrative review is (i) to assess the role of the RANK/RANKL/OPG signaling pathway in the context of OA progression, focusing especially on the physiopathology and on all the mechanisms leading to the activation of the inflammatory cascade, and (ii) to evaluate all the potential therapeutic strategies currently available that restore balance to bone formation and resorption, reducing structural abnormalities and relieving pain in patients with OA.
Collapse
Affiliation(s)
- Gabriele Di Cicco
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.D.C.)
| | - Emanuela Marzano
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.D.C.)
| | - Andrea Mastrostefano
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.D.C.)
| | - Dario Pitocco
- Diabetes Care Unit, Endocrinology, University Hospital “A. Gemelli”, Catholic University of the Sacred Heart, 00136 Rome, Italy
| | - Rodrigo Simões Castilho
- Department of Orthopaedics and Traumatology, Mater Dei Hospital, Belo Horizonte 30170-041, Brazil
| | - Roberto Zambelli
- Department of Orthopaedics and Traumatology, Mater Dei Hospital, Belo Horizonte 30170-041, Brazil
| | - Antonio Mascio
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Tommaso Greco
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
- Department of Life Sciences, Health, and Healthcare Professions, Link Campus University, 00165 Rome, Italy
| | - Virginia Cinelli
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Chiara Comisi
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Giulio Maccauro
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Carlo Perisano
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| |
Collapse
|
10
|
Zhang S, Zhong R, Younis MR, He H, Xu H, Li G, Yang R, Lui S, Wang Y, Wu M. Hydrogel Applications in the Diagnosis and Treatment of Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39366948 DOI: 10.1021/acsami.4c11855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Glioblastoma multiforme (GBM), a common malignant neurological tumor, has boundaries indistinguishable from those of normal tissue, making complete surgical removal ineffective. The blood-brain barrier (BBB) further impedes the efficacy of radiotherapy and chemotherapy, leading to suboptimal treatment outcomes and a heightened probability of recurrence. Hydrogels offer multiple advantages for GBM diagnosis and treatment, including overcoming the BBB for improved drug delivery, controlled drug release for long-term efficacy, and enhanced relaxation properties of magnetic resonance imaging (MRI) contrast agents. Hydrogels, with their excellent biocompatibility and customizability, can mimic the in vivo microenvironment, support tumor cell culture, enable drug screening, and facilitate the study of tumor invasion and metastasis. This paper reviews the classification of hydrogels and recent research for the diagnosis and treatment of GBM, including their applications as cell culture platforms and drugs including imaging contrast agents carriers. The mechanisms of drug release from hydrogels and methods to monitor the activity of hydrogel-loaded drugs are also discussed. This review is intended to facilitate a more comprehensive understanding of the current state of GBM research. It offers insights into the design of integrated hydrogel-based GBM diagnosis and treatment with the objective of achieving the desired therapeutic effect and improving the prognosis of GBM.
Collapse
Affiliation(s)
- Shuaimei Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Renming Zhong
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Chengdu, Sichuan 610041, P. R. China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Hualong He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ruiyan Yang
- Department of Biology, Macalester College, Saint Paul, Minnesota 55105, United States
| | - Su Lui
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
11
|
Ding Y, Jia Q, Su Z, Chen H, Ye J, Xie D, Wu Y, He H, Peng Y, Ni Y. Homologous cell membrane-based hydrogel creates spatiotemporal niches to improve outcomes of dysregulated chronic wound healing. Mater Today Bio 2024; 28:101243. [PMID: 39315394 PMCID: PMC11419813 DOI: 10.1016/j.mtbio.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
The (M2M + TGF-β)@HAMA hydrogel dressing improves the outcomes of dysregulated chronic wound healing by protecting the open wound from repeated bacterial infections, reprogramming endogenous monocytes and M1 macrophages into an M2-phenotype, as well as enhancing fibroblastic proliferation and migration for matrix remodeling and granulation tissue formation.Image 1.
Collapse
Affiliation(s)
| | | | - Ziwen Su
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Heying Chen
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jialing Ye
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Dafeng Xie
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yubo Wu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Haiyan He
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yanlin Peng
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yilu Ni
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
12
|
Gonçalves RR, Peixoto D, Costa RR, Franco AR, Castro VIB, Pires RA, Reis RL, Pashkuleva I, Maniglio D, Tirella A, Motta A, Alves NM. Antibacterial properties of photo-crosslinked chitosan/methacrylated hyaluronic acid nanoparticles loaded with bacitracin. Int J Biol Macromol 2024; 277:134250. [PMID: 39089541 DOI: 10.1016/j.ijbiomac.2024.134250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
The current treatments for wounds often fail to induce adequate healing, leaving wounds vulnerable to persistent infections and development of drug-resistant microbial biofilms. New natural-derived nanoparticles were studied to impair bacteria colonization and hinder the formation of biofilms in wounds. The nanoparticles were fabricated through polyelectrolyte complexation of chitosan (CS, polycation) and hyaluronic acid (HA, polyanion). UV-induced photo-crosslinking was used to enhance the stability of the nanoparticles. To achieve this, HA was methacrylated (HAMA, degree of modification of 20 %). Photo-crosslinked nanoparticles obtained from HAMA and CS had a diameter of 478 nm and a more homogeneous size distribution than nanoparticles assembled solely through complexation (742 nm). The nanoparticles were loaded with the antimicrobial agent bacitracin (BC), resulting in nanoparticles with a diameter of 332 nm. The encapsulation of BC was highly efficient (97 %). The BC-loaded nanoparticles showed significant antibacterial activity against gram-positive bacteria Staphylococcus aureus, Methicillin-resistant S. aureus and S. epidermidis. Photo-crosslinked HAMA/CS nanoparticles loaded with BC demonstrated inhibition of biofilm formation and a positive effect on the proliferation of mammalian cells (L929). These crosslinked nanoparticles have potential for the long-term treatment of wounds and controlled antibiotic delivery at the location of a lesion.
Collapse
Affiliation(s)
- Raquel R Gonçalves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; BIOtech Research Center, Department of Industrial Engineering, University of Trento, Via Delle Regole 101, 38123 Trento, Italy
| | - Daniela Peixoto
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui R Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albina R Franco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vânia I B Castro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Devid Maniglio
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, Via Delle Regole 101, 38123 Trento, Italy
| | - Annalisa Tirella
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, Via Delle Regole 101, 38123 Trento, Italy
| | - Antonella Motta
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, Via Delle Regole 101, 38123 Trento, Italy
| | - Natália M Alves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
13
|
Nacu I, Ghilan A, Rusu AG, Bercea M, Nita LE, Vereştiuc L, Chiriac AP. Hydrogels with Antioxidant Microparticles Systems Based on Hyaluronic Acid for Regenerative Wound Healing. Macromol Biosci 2024; 24:e2400153. [PMID: 39101693 DOI: 10.1002/mabi.202400153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Indexed: 08/06/2024]
Abstract
This research focuses on the synthesis of hydrogels exhibiting enhanced antioxidant properties derived from hyaluronic acid (HA) and poly(ethylene brassylate-co-squaric acid) (PEBSA), a copolymacrolactone that have the ability to be used in drug delivery applications. Quercetin (Q), a bioflavonoid with strong antioxidant properties, is employed as a bioactive compound. The biomolecule is encapsulated in the polymeric network using different entrapment techniques, including the initial formation of a complex between PEBSA and Q, which is demonstrated through the dynamic light scattering technique. Fourier transform infrared spectroscopy (FT-IR) and rheological studies confirm the formation of the hydrogels, revealing the occurrence of physical interactions between the synthetic polymer and the polysaccharide. Moreover, the hydrogels demonstrate biocompatible properties after direct contact with the HDFa cell line and antioxidant properties, as revealed by DPPH tests.
Collapse
Affiliation(s)
- Isabella Nacu
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Alina Ghilan
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Alina G Rusu
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Loredana E Nita
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Liliana Vereştiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Aurica P Chiriac
- "Petru Poni" Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| |
Collapse
|
14
|
Izutsu KI, Yoshida H, Abe Y, Yamamoto E, Sato Y, Ando D. Application of the Thermal Analysis of Frozen Aqueous Solutions to Assess the Miscibility of Hyaluronic Acid and Polymers Used for Dissolving Microneedles. Pharmaceutics 2024; 16:1280. [PMID: 39458610 PMCID: PMC11510125 DOI: 10.3390/pharmaceutics16101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The combination of multiple polymers is anticipated to serve as a means to diversify the physical properties and functionalities of dissolving microneedles. The mixing state of components is considered as a crucial factor in determining their suitability. Objectives: The purpose of this study was to elucidate whether thermal analysis of frozen aqueous solutions can appropriately predict the miscibility of hyaluronic acid (HA) and other polymers used for dissolving microneedles prepared by a micromolding method. Methods: Aliquots of aqueous polymer solutions were applied for thermal analysis by heating the samples from -70 °C at 5 °C/min to obtain the transition temperature of amorphous polymers and/or the crystallization/melting peaks of polymers (e.g., polyethylene glycol (PEG)). Films and dissolving microneedles were prepared by air-drying of the aqueous polymer solutions to assess the polymer miscibility in the solids. Results: The frozen aqueous single-solute HA solutions exhibited a clear Tg' (the glass transition temperature of maximally freeze-concentrated solutes) at approximately -20 °C. The combination of HA with several polymers (e.g., dextran FP40, DEAE-dextran, dextran sulfate, and gelatin) showed a single Tg' transition at temperatures that shifted according to their mass ratio, which strongly suggested the mixing of the freeze-concentrated solutes. By contrast, the observation of two Tg' transitions in a scan strongly suggested the separation of HA and polyvinylpyrrolidone (PVP) or HA and polyacrylic acid (PAA) into different freeze-concentrated phases, each of which was rich in an amorphous polymer. The combination of HA and PEG exhibited the individual physical changes of the polymers. The polymer combinations that showed phase separation in the frozen solution formed opaque films and microneedles upon their preparation by air-drying. Coacervation occurring in certain polymer combinations was also suggested as a factor contributing to the formation of cloudy films. Conclusions: Freezing aqueous polymer solutions creates a highly concentrated polymer environment that mimics the matrix of dissolving microneedles prepared through air drying. This study demonstrated that thermal analysis of the frozen solution offers insights into the mixing state of condensed polymers, which can be useful for predicting the physical properties of microneedles.
Collapse
Affiliation(s)
- Ken-ichi Izutsu
- School of Pharmacy at Narita, International University of Health and Welfare, Kozunomori 4-3, Narita 286-8686, Japan
- Division of Drugs, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan; (H.Y.); (Y.A.); (Y.S.); (D.A.)
| | - Hiroyuki Yoshida
- Division of Drugs, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan; (H.Y.); (Y.A.); (Y.S.); (D.A.)
| | - Yasuhiro Abe
- Division of Drugs, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan; (H.Y.); (Y.A.); (Y.S.); (D.A.)
| | - Eiichi Yamamoto
- Division of Medical Devices, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan;
| | - Yoji Sato
- Division of Drugs, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan; (H.Y.); (Y.A.); (Y.S.); (D.A.)
| | - Daisuke Ando
- Division of Drugs, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan; (H.Y.); (Y.A.); (Y.S.); (D.A.)
| |
Collapse
|
15
|
Hong GW, Wan J, Park Y, Yoo J, Cartier H, Garson S, Haykal D, Yi KH. Manufacturing Process of Hyaluronic Acid Dermal Fillers. Polymers (Basel) 2024; 16:2739. [PMID: 39408450 PMCID: PMC11479139 DOI: 10.3390/polym16192739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Hyaluronic acid (HA) fillers are extensively utilized in aesthetic medicine due to their biocompatibility, reversibility, and effectiveness in enhancing skin hydration, volume, and overall appearance. These fillers are predominantly produced through microbial fermentation, followed by a critical cross-linking process that enhances their longevity by resisting enzymatic degradation. This review provides a thorough examination of the manufacturing processes that differentiate HA fillers, with particular attention to the distinctions between biphasic and monophasic variants. Unlike previous studies, this review emphasizes the specific cross-linking techniques and their substantial impact on the fillers' rheological properties, such as elasticity and cohesiveness, which are crucial to their clinical performance and patient outcomes. Additionally, the review offers a comprehensive comparison of HA fillers with non-HA alternatives, including calcium hydroxylapatite, poly-l-lactic acid, and polymethyl methacrylate, highlighting the unique advantages and potential complications associated with each type. By presenting novel insights into the latest advancements and challenges in filler technology, this review aims to provide clinicians with a deeper understanding of filler properties, thereby guiding them in making informed decisions to optimize patient safety and aesthetic results.
Collapse
Affiliation(s)
- Gi-Woong Hong
- Samskin Plastic Surgery Clinic, Seoul 06577, Republic of Korea;
| | - Jovian Wan
- Asia Pacific Aesthetic Academy, Hong Kong;
| | | | - Jane Yoo
- Department of Dermatology, Mount Sinai School of Medicine, New York, NY 10029, USA;
| | | | | | - Diala Haykal
- Centre Laser Palaiseau, 91120 Palaiseau, France;
| | - Kyu-Ho Yi
- BK21 FOUR Project, Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Maylin Clinic (Apgujeong), Seoul 06005, Republic of Korea
| |
Collapse
|
16
|
Senobari F, Abolmaali SS, Farahavr G, Tamaddon AM. Targeting inflammation with hyaluronic acid-based micro- and nanotechnology: A disease-oriented review. Int J Biol Macromol 2024; 280:135923. [PMID: 39322155 DOI: 10.1016/j.ijbiomac.2024.135923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Inflammation is a pivotal immune response in numerous diseases and presents therapeutic challenges. Traditional anti-inflammatory drugs and emerging cytokine inhibitors encounter obstacles such as limited bioavailability, poor tissue distribution, and adverse effects. Hyaluronic acid (HA), a versatile biopolymer, is widely employed to deliver therapeutic agents, including anti-inflammatory drugs, genes, and cell therapies owing to its unique properties, such as hydrophilicity, biodegradability, and safety. HA interacts with cell receptors to initiate processes such as angiogenesis, cell proliferation, and immune regulation. HA-based drug delivery systems offer dual strategies for effective inflammation management, capitalizing on passive and active mechanisms. This synergy permits the mitigation of inflammation by lowering the doses of anti-inflammatory drugs and their off-target adverse effects. A diverse array of micro- and nanotechnology techniques enable the fabrication of tailored HA-engineered systems, including hydrogels, microgels, nanogels, microneedles, nanofibers, and 3D-printed scaffolds, for diverse formulations and administration routes. This review explores recent insights into HA pharmacology in inflammatory conditions, material design, and fabrication methods, as well as its applications across a spectrum of inflammatory diseases, such as atherosclerosis, psoriasis, dermatitis, wound healing, rheumatoid arthritis, osteoarthritis, inflammatory bowel disease, and colitis, highlighting its potential for clinical translation.
Collapse
Affiliation(s)
- Fatemeh Senobari
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Samira Sadat Abolmaali
- Associate Professor, Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ghazal Farahavr
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ali Mohammad Tamaddon
- Professor, Pharmaceutics and Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| |
Collapse
|
17
|
Küper D, Klos J, Kühl F, Attili R, Brand K, Weissenborn K, Lichtinghagen R, Huber R. Influence of Anticoagulants and Heparin Contaminants on the Suitability of MMP-9 as a Blood-Derived Biomarker. Int J Mol Sci 2024; 25:10106. [PMID: 39337591 PMCID: PMC11432500 DOI: 10.3390/ijms251810106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
In contrast to other common anticoagulants such as citrate and low-molecular-weight heparin (LMWH), high-molecular-weight heparin (HMWH) induces the expression of matrix metalloproteinase (MMP)-9, which is also measured as a biomarker for stroke in blood samples. Mechanistically, HMWH-stimulated T cells produce cytokines that induce monocytic MMP-9 expression. Here, the influence of further anticoagulants (Fondaparinux, Hirudin, and Alteplase) and the heparin-contaminating glycosaminoglycans (GAG) hyaluronic acid (HA), dermatan sulfate (DS), chondroitin sulfate (CS), and over-sulfated CS (OSCS) on MMP-9 was analyzed to assess its suitability as a biomarker under various conditions. Therefore, starved Jurkat T cells were stimulated with anticoagulants/contaminants. Subsequently, starved monocytic THP-1 cells were incubated with the conditioned Jurkat supernatant, and MMP-9 mRNA levels were monitored (quantitative (q)PCR). Jurkat-derived mediators secreted in response to anticoagulants/contaminants were also assessed (proteome profiler array). The supernatants of HMWH-, Hirudin-, CS-, and OSCS-treated Jurkat cells comprised combinations of activating mediators and led to a significant (in the case of OSCS, dramatic) MMP-9 induction in THP-1. HA induced MMP-9 only in high concentrations, while LMWH, Fondaparinux, Alteplase, and DS had no effect. This indicates that depending on molecular weight and charge (but independent of anticoagulant activity), anticoagulants/contaminants provoke the expression of T-cell-derived cytokines/chemokines that induce monocytic MMP-9 expression, thus potentially impairing the diagnostic validity of MMP-9.
Collapse
Affiliation(s)
- Daniela Küper
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| | - Josefin Klos
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| | - Friederike Kühl
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| | - Rozan Attili
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
- Faculty of Pharmacy and Medical Sciences, Hebron University, Hebron 711, Palestine
| | - Korbinian Brand
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| | - Karin Weissenborn
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| | - René Huber
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (D.K.); (J.K.); (F.K.); (R.A.); (K.B.); (R.L.)
| |
Collapse
|
18
|
Khan M. Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules. Polymers (Basel) 2024; 16:2629. [PMID: 39339093 PMCID: PMC11435517 DOI: 10.3390/polym16182629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns and acquired diseases. There are two major groups of vectors for gene therapy: viral vector gene therapy and non-viral vector gene therapy. This review examines the role of a macromolecule's chemical and physical architecture in non-viral gene delivery, including their design and synthesis. Polymers can boost circulation, improve delivery, and control cargo release through various methods. The prominent examples discussed include poly-L-lysine, polyethyleneimine, comb polymers, brush polymers, and star polymers, as well as hydrogels and natural polymers and their modifications. While significant progress has been made, challenges still exist in gene stabilization, targeting specificity, and cellular uptake. Overcoming cytotoxicity, improving delivery efficiency, and utilizing natural polymers and hybrid systems are vital factors for prospects. This comprehensive review provides an illuminating overview of the field, guiding the way toward innovative non-viral-based gene delivery solutions.
Collapse
Affiliation(s)
- Majad Khan
- Department of Chemistry, King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-CRAC), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
19
|
Nguyen HT, Pham TT, Nguyen PT, Le-Buanec H, Rabetafika HN, Razafindralambo HL. Advances in Microbial Exopolysaccharides: Present and Future Applications. Biomolecules 2024; 14:1162. [PMID: 39334928 PMCID: PMC11430787 DOI: 10.3390/biom14091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Microbial exopolysaccharides (EPSs) are receiving growing interest today, owing to their diversity in chemical structure and source, multiple functions, and immense potential applications in many food and non-food industries. Their health-promoting benefits for humans deserve particular attention because of their various biological activities and physiological functions. The aim of this paper is to provide a comprehensive review of microbial EPSs, covering (1) their chemical and biochemical diversity, including composition, biosynthesis, and bacterial sources belonging mainly to lactic acid bacteria (LAB) or probiotics; (2) their technological and analytical aspects, especially their production mode and characterization; (3) their biological and physiological aspects based on their activities and functions; and (4) their current and future uses in medical and pharmaceutical fields, particularly for their prebiotic, anticancer, and immunobiotic properties, as well as their applications in other industrial and agricultural sectors.
Collapse
Affiliation(s)
- Huu-Thanh Nguyen
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Thuy-Trang Pham
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Phu-Tho Nguyen
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Hélène Le-Buanec
- INSERM U976-HIPI Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | | | - Hary L Razafindralambo
- ProBioLab, 5004 Namur, Belgium
- TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté 2B, 5030 Gembloux, Belgium
| |
Collapse
|
20
|
Picciotti SL, El-Ahmad H, Bucci MP, Grayton QE, Wallet SM, Schoenfisch MH. Delivery of Nitric Oxide by Chondroitin Sulfate C Increases the Rate of Wound Healing through Immune Modulation. ACS APPLIED BIO MATERIALS 2024; 7:6152-6161. [PMID: 39159191 DOI: 10.1021/acsabm.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Chronic wounds impact 2.5% of the United States population and will continue to be a major clinical challenge due to increases in population age, chronic disease diagnoses, and antibiotic-resistant infection. Nitric oxide (NO) is an endogenous signaling molecule that represents an attractive, simple therapeutic for chronic wound treatment due to its innate antibacterial and immunomodulatory function. Unfortunately, modulating inflammation for extended periods by low levels of NO is not possible with NO gas. Herein, we report the utility of a NO-releasing glycosaminoglycan biopolymer (GAG) for promoting wound healing. GAGs are naturally occurring biopolymers that are immunomodulatory and known to be involved in the native wound healing process. Thus, the combination of NO and GAG biopolymers represents an attractive wound therapeutic due to these known independent roles. The influence and contribution of chondroitin sulfate C (CSC) modified to facilitate controlled and targeted delivery of NO (CSC-HEDA/NO) was evaluated using in vitro cell proliferation and migration assays and an in vivo wound model.
Collapse
Affiliation(s)
- Samantha L Picciotti
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Heba El-Ahmad
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - Madelyn P Bucci
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - Quincy E Grayton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shannon M Wallet
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
21
|
Balblanc M, Lohse A, Meyer F, Rapp C, Bourgoin C, Balblanc JC, Conrozier T. Predictors of Satisfaction in Patients with Knee Osteoarthritis Treated with a Single Injection of Mannitol-Modified Crosslinked Hyaluronate Derivative. J Clin Med 2024; 13:5372. [PMID: 39336860 PMCID: PMC11432354 DOI: 10.3390/jcm13185372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: There is a gap between the very positive opinion of patients and doctors regarding knee viscosupplementation (VS) and the contrasting results of controlled studies. The objective of this study was to evaluate the overall satisfaction and predictors of satisfaction with VS in patients with knee osteoarthritis treated with VS. Methods: Post-hoc analysis of a cross-sectional study in patients with knee OA treated with one injection of a mannitol-modified cross-linked HA (HANOX-M-XL). The primary outcome was satisfaction, self-assessed semi-quantitatively by the patients. Demographics, radiological features, comorbidities, OA and comorbidities treatments, and lifestyle associated with satisfaction were studied in bivariate and multivariate analysis. Results: 89 patients (124 knees) were analyzed. A total of 88.7% were satisfied with the treatment. Satisfaction was correlated with duration of effectiveness (DoE) and negatively correlated with BMI. Satisfaction was higher in active versus sedentary patients, in tibiofemoral involvement, in Kellgren-Lawrence grade 1-3 versus 4, and in subjects not requiring intraarticular corticosteroid (IACS) concomitantly to VS. Satisfied subjects were older than dissatisfied ones. In multivariate analysis, older age, K-L grade < 4, absence of IACS, and longer DoE were associated with higher rates of satisfaction. Conclusions: We identified several predictive factors of patient satisfaction after VS of the knee. Alongside these objective factors, there are probably subjective factors linked to patient beliefs, fears, and expectations impacting satisfaction.
Collapse
Affiliation(s)
- Martin Balblanc
- General Medicine, Paris-Saclay University, 90014 Le Kremelin-Bicêtre, France;
| | - Anne Lohse
- Department of Rheumatology, Hôpital Nord Franche-Comté, 90015 Belfort, France; (A.L.); (C.R.); (J.-C.B.)
| | - Frederic Meyer
- Department of Rheumatology, Hôpital Nord Franche-Comté, 90015 Belfort, France; (A.L.); (C.R.); (J.-C.B.)
| | - Charles Rapp
- Department of Rheumatology, Hôpital Nord Franche-Comté, 90015 Belfort, France; (A.L.); (C.R.); (J.-C.B.)
| | - Charlotte Bourgoin
- Clinical Research Unit, Hôpital Nord Franche-Comté, 90014 Belfort, France;
| | - Jean-Charles Balblanc
- Department of Rheumatology, Hôpital Nord Franche-Comté, 90015 Belfort, France; (A.L.); (C.R.); (J.-C.B.)
| | - Thierry Conrozier
- Department of Rheumatology, Hôpital Nord Franche-Comté, 90015 Belfort, France; (A.L.); (C.R.); (J.-C.B.)
- Clinical Research Unit, Hôpital Nord Franche-Comté, 90014 Belfort, France;
| |
Collapse
|
22
|
Milne C, Song R, Zhu R, Johnson M, Zhao C, Ferrer FS, A S, Lyu J, Wang W. Fast one-step acrylate functionalization of hyaluronic acid via Williamson ether synthesis. Chem Commun (Camb) 2024; 60:9946-9949. [PMID: 39171691 DOI: 10.1039/d4cc03655g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The synthetic route presented for acrylate-modified hyaluronic acid (HA-A-BEA) offers a simple and efficient process, reducing reaction time and purification steps while retaining biocompatibility. This study demonstrates the ability of HA-A-BEA to form tunable hydrogels via versatile techniques suitable for biomedical applications.
Collapse
Affiliation(s)
- Cameron Milne
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Rijian Song
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Runqi Zhu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Chunyu Zhao
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Francesca Santoro Ferrer
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Sigen A
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Jing Lyu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
- Research and Clinical Translation Center of Gene Medicine and Tissue Engineering, School of Public Health, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
23
|
Gallina MF, Santos IFCD, Silva BMD, Pereira GCC, Gushiken LFS, Pellizzon CH, Tsunemi MH, Schons SDV, Silva FDC, Sena KD, Rosa VDS. Evaluation of enteral and parenteral hyaluronic acid in induced ischemic skin flaps in rats: a double-blinded and randomized study. Acta Cir Bras 2024; 39:e395924. [PMID: 39258619 PMCID: PMC11383195 DOI: 10.1590/acb395924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/15/2024] [Indexed: 09/12/2024] Open
Abstract
PURPOSE To evaluate exogenous hyaluronic acid (HA) derived from bacterial fermentation through enteral and parenteral routes in ischemic skin flaps induced in rats, using clinical and histological exams; and interleukins (IL) as tissue inflammatory biomarkers. METHODS Sixty-four male adults Wistar rats with ischemic skin flaps on the dorsum were randomized into four groups, based on the treatment protocol: subcutaneous administration of saline solution (0.9%) (GI); oral administration of distilled water (GII); subcutaneous administration of HA (0.3%) (GIII); and oral administration of HA (1%) (GIV). Flaps of all groups were comparable regarding clinical and macroscopic evaluation, histological examination, pro-inflammatory cytokines (IL-1β, IL-6, and tumor necrosis factor-α) and anti-inflammatory cytokine IL-10. RESULTS A lower percentage of necrosis was identified in flaps treated with subcutaneous administration of HA (0.3%). The pro- and anti-inflammatory cytokines, epidermis thickness, blood vessels, and inflammatory cells showed statistically significant inter-group and intra-group differences (p < 0.05). CONCLUSIONS High molecular HA (1,400 ~ 2,000 kDa) administrated by subcutaneous or oral route exhibited beneficial effects in ischemic skin flaps of rats. However, subcutaneous administration of HA (0.3%) showed better results in terms of the percentage of necrosis and epithelialization.
Collapse
Affiliation(s)
- Marina Frazatti Gallina
- Universidade Estadual Paulista - School of Veterinary Medicine and Animal Science - Postgraduate Program in Animal Biotechnology - Botucatu (SP) -Brazil
| | | | - Bruna Martins da Silva
- Universidade Cruzeiro do Sul - Department of Veterinary Medicine - São Paulo (SP) - Brazil
| | | | | | - Claudia Helena Pellizzon
- Universidade Estadual Paulista - Institute of Biosciences - Department of Structural and Functional Biology - Botucatu (SP) - Brazil
| | - Miriam Harumi Tsunemi
- Universidade Estadual Paulista - Institute of Biosciences - Department of Biostatistics - Botucatu (SP) - Brazil
| | - Sandro de Vargas Schons
- Universidade Federal de Rondônia - Department of Veterinary Medicine - Rolim de Moura (RO) - Brazil
| | - Fernando do Carmo Silva
- Universidade Federal de Rondônia - Department of Veterinary Medicine - Rolim de Moura (RO) - Brazil
| | - Kamile Daguano Sena
- Universidade do Oeste Paulista - Department of Veterinary Medicine - Presidente Prudente (SP) - Brazil
| | - Vinicius Dos Santos Rosa
- Universidade do Oeste Paulista - Department of Veterinary Medicine - Presidente Prudente (SP) - Brazil
| |
Collapse
|
24
|
Achmad AA, Tangdilintin F, Stephanie, Enggi CK, Sulistiawati, Rifai Y, Aliyah, Permana AD, Manggau MA. Development of dissolving microneedles loaded with fucoidan for enhanced anti-aging activity: An in vivo study in mice animal model. Eur J Pharm Biopharm 2024; 202:114362. [PMID: 38871091 DOI: 10.1016/j.ejpb.2024.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Skin aging occurs naturally as essential skin components gradually decline, leading to issues such as fine lines, wrinkles, and pigmentation. Fucoidan, a natural bioactive compound, holds potential for addressing these age-related concerns. However, its hydrophilic nature and substantial molecular weight hinder its absorption into the skin. In this study, we utilized polyvinyl pyrrolidone K30 (PVP) and polyvinyl alcohol (PVA) as polymers to fabricate dissolving microneedles loaded with fucoidan (DMN-F). The DMN-F formulations were examined for physical characteristics, stability, permeability, toxicity, and efficacy in animal models. These formulations exhibited consistent polymer blends with a conical structure and uniform cone-shaped design. Microneedle structure and penetration capability gradually decreased with increasing fucoidan concentration, with storage recommended at approximately 33 % relative humidity (RH). Ex vivo studies showed that DMN-F efficiently delivered up to 95.03 ± 2.36 % of the total fucoidan concentration into the skin. In vivo investigations revealed that DMN-F effectively reduced wrinkles, improved skin elasticity, maintained moisture levels, and increased epidermal thickness. Histological images provided additional evidence of DMN-F's positive effects on these aging parameters. The results confirm that the DMN-F formulation effectively delivers fucoidan into the skin, allowing it to treat and mitigate signs of aging.
Collapse
Affiliation(s)
| | | | - Stephanie
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Sulistiawati
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Yusnita Rifai
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Aliyah
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| | | |
Collapse
|
25
|
Lu X, Fan M, Ma Y, Feng Y, Pan L. Redox-sensitive hydrogel based on hyaluronic acid with selenocystamine cross-linking for the delivery of Limosilactobacillus reuteri in a DSS-induced colitis mouse model. Int J Biol Macromol 2024; 276:133855. [PMID: 39032895 DOI: 10.1016/j.ijbiomac.2024.133855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Disrupted gut microbiota homeostasis is an important cause of inflammatory colitis. Studies have shown that effective supplementation with probiotics can maintain microbial homeostasis and alleviate colitis. Here, to increase the viability of probiotics in the harsh gastrointestinal environments and enable targeted delivery, a redox-sensitive selenium hyaluronic acid (HA-Se) hydrogel encapsulating probiotics was developed. HA was modified with selenocystamine dihydrochloride and crosslinked by an amide reaction to generate a redox-sensitive hydrogel with stable mechanical properties, a low hemolysis rate and satisfactory biocompatibility. The HA-Se hydrogel exhibited suitable sensitivity to 10 mM GSH or 100 μM H2O2. The encapsulation of Limosilactobacillus reuteri (LR) in the HA-Se hydrogel (HA-Se-LR) significantly increased the survival rate of the probiotics in simulated gastric and intestinal fluid. HA-Se-LR administration increased the survival rate of mice with dextran sulfate sodium (DSS)-induced colitis, significantly alleviated oxidative stress and inflammation, and increased the effect of LR on microbiota α diversity. These results indicate that the HA-Se hydrogel constructed in this study can be used as a delivery platform to treat colitis, expanding the targeted applications of the natural polymer HA in disease treatment and the administration of probiotics as drugs to alleviate disease symptoms.
Collapse
Affiliation(s)
- Xi Lu
- College of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China.
| | - Mingming Fan
- College of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Yuzhe Ma
- College of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Yimeng Feng
- Mathematics Teaching and Research Group, Dajindian Town Junior High School, Zhengzhou 450000, China
| | - Lei Pan
- Tangdu Hospital, Air Force Military Medical University, Xi'an 710000, China
| |
Collapse
|
26
|
Mariwalla K, Zeichner J, Folsom-Kovarik M, Yousefian O, Arrowitz C, Lain E. Significantly Enhanced Improvement in Dryness, Roughness, Fine Lines and Radiance Following Daily Use of a Novel Multi-Weight Hyaluronic Acid Plus Antioxidant Complex-Based Lotion Compared to a Single-Weight HA Plus Ceramide-Based Lotion. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2024; 17:44-47. [PMID: 39263267 PMCID: PMC11386971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Objective Hyaluronic acid (HA) has become a commonly used ingredient in topical moisturizing products; however, limitations of delivery of HA to only the surface of skin have hindered leveraging the full capacity of HA for skin rejuvenation. Here, we aimed to evaluate the clinical benefits of a multi-weight HA plus antioxidant complex-based lotion with SPF 30 compared to a single-weight HA plus ceramide-based lotion with SPF 30. Methods A double-blind comparative study was conducted on 70 female subjects, aged 25 to 65 years with mild-to-moderate facial dryness and visible fine lines and wrinkles, divided evenly into two groups (n=35 per group). Clinical grading of the face, including dryness, roughness, and fine lines, was assessed after once-daily application for up to eight weeks. Results Daily use of the multi-weight HA plus antioxidant lotion demonstrated significant improvements in all clinical grading assessments (dryness, roughness, and fine lines) as early as Week 2 compared to baseline. Statistically significant improvements in visible dryness, roughness, and fine lines were greater for the multi-weight HA plus antioxidant lotion compared to the single-weight HA plus ceramide-based lotion. Limitations The overall small sample size. Conclusion This study showed the enhanced improvement in dryness, roughness, and fine lines following daily utilization of a novel multi-weight HA plus antioxidant complex-based lotion compared to a single-weight HA plus ceramide-based lotion. These improvements may be attributed to the ability of multi-weight HAs to moisturize the skin surface and penetrate the upper surface layers of the skin, combined with the added benefits of key antioxidants.
Collapse
Affiliation(s)
- Kavita Mariwalla
- Dr. Mariwalla is with Mariwalla Dermatology in West Islip, New York
| | - Joshua Zeichner
- Dr. Zeichner is with the Department of Dermatology at Mount Sinai Hospital in New York, New York
| | - Michael Folsom-Kovarik
- Messrs. Folsom-Kovarik and Arrowitz and Dr. Yousefian are with Beiersdorf, Inc. in Florham Park, New Jersey
| | - Omid Yousefian
- Messrs. Folsom-Kovarik and Arrowitz and Dr. Yousefian are with Beiersdorf, Inc. in Florham Park, New Jersey
| | - Craig Arrowitz
- Messrs. Folsom-Kovarik and Arrowitz and Dr. Yousefian are with Beiersdorf, Inc. in Florham Park, New Jersey
| | - Edward Lain
- Dr. Lain is with Sanova Dermatology in Austin, Texas
| |
Collapse
|
27
|
Costa FR, Pires L, Martins RA, Costa BR, Santos GS, Lana JF. ViSCNOVAS: A Novel Classification System for Hyaluronic Acid-Based Gels in Orthobiologic Products and Regenerative Medicine. Gels 2024; 10:510. [PMID: 39195039 DOI: 10.3390/gels10080510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Hyaluronic acid (HA), a naturally occurring polysaccharide, holds immense potential in regenerative medicine due to its diverse biological functions and clinical applications, particularly in gel formulations. This paper presents a comprehensive exploration of HA, encompassing its origins, molecular characteristics, and therapeutic roles in gel-based interventions. Initially identified in bovine vitreous humor, HA has since been found in various tissues and fluids across vertebrate organisms and bacterial sources, exhibiting consistent physicochemical properties. The synthesis of HA by diverse cell types underscores its integral role in the extracellular matrix and its relevance to tissue homeostasis and repair. Clinical applications of HA, particularly in addressing musculoskeletal ailments such as osteoarthritis, are examined, highlighting its efficacy and safety in promoting tissue regeneration and pain relief. Building upon this foundation, a novel classification system for HA-based interventions is proposed, aiming to standardize treatment protocols and optimize patient outcomes. The ViSCNOVAS classification system refers to viscosity, storage, chain, number, origin, volume, amount, and size. This classification is specifically designed for HA-based orthobiologic products used in regenerative medicine, including orthopedics, sports medicine, aesthetics, cosmetic dermatology, and wound healing. It aims to provide clinicians with a structured framework for personalized treatment strategies. Future directions in HA research are also discussed, emphasizing the need for further validation and refinement of the proposed classification system to advance the field of regenerative medicine. Overall, this manuscript elucidates the biological functions of hyaluronic acid and its potential in clinical practice while advocating for standardization to enhance patient care in various regenerative applications.
Collapse
Affiliation(s)
- Fábio Ramos Costa
- Department of Orthopedics, FC Sports Traumatology, Salvador 40296-210, BA, Brazil
| | - Luyddy Pires
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
| | | | | | - Gabriel Silva Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
| | - José Fábio Lana
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Medical School, Jaguariúna University Center (UniFAJ), Jaguariúna 13911-094, SP, Brazil
| |
Collapse
|
28
|
Contreras Mendoza J, Arriola Guevara E, Suarez Hernández LA, Toriz G, Guatemala-Morales GM, Corona-González RI. Evaluation of mango residues to produce hyaluronic acid by Streptococcus zooepidemicus. Folia Microbiol (Praha) 2024; 69:847-856. [PMID: 38180724 DOI: 10.1007/s12223-023-01123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024]
Abstract
Mango processing generates significant amounts of residues (35-65%) that may represent environmental problems owed to improper disposal. The use of mango byproducts as substrates to produce hyaluronic acid (HA) is an attractive alternative to reduce the cost of substrate. In this study, we evaluated the potential of hydrolyzates from mango peels and seeds to produce HA by Streptococcus equi. subsp. zooepidemicus. The physicochemical characterization of mango residues showed that the seeds contain a higher amount of holocellulose (cellulose and hemicellulose), which amounts 54.2% (w/w) whereas it only represents 15.5% (w/w) in the peels. Mango peels, however, are composed mainly of hot water-extractives (62% w/w, that include sucrose, fructose, glucose and organic acids). A higher concentration of monosaccharides (39.8 g/L) was obtained from the enzymatic hydrolysis (with Macerex) of peels as compared to seeds (24.8 g/L with Celuzyme). From mango peels, hydrolyzates were obtained 0.6 g/L HA, while 0.9 g/L HA were obtained with hydrolyzates from mango seeds. These results demonstrate that mango byproducts have the potential to be used for production of HA.
Collapse
Affiliation(s)
- Jesús Contreras Mendoza
- Unidad de Tecnología Agroalimentaria, Centro de Investigación y Asistencia en, Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), A.C Av. Normalistas 800, Colinas de la Normal, C.P 44270, Guadalajara, Jalisco, Mexico
| | - Enrique Arriola Guevara
- Departamento de Ingeniería Química, Laboratory of Procesos Biotecnológicos, CUCEI-Universidad de Guadalajara, Blvd. M. García Barragán 1421, C.P. 44430, Guadalajara, Jal., Mexico
| | - Luis Antonio Suarez Hernández
- Departamento de Ingeniería Química, Laboratory of Procesos Biotecnológicos, CUCEI-Universidad de Guadalajara, Blvd. M. García Barragán 1421, C.P. 44430, Guadalajara, Jal., Mexico
| | - Guillermo Toriz
- Departamento de Madera Celulosa y Papel, Universidad de Guadalajara, Km. 15.5 Carretera Guadalajara-Nogales, C.P. 45110, Zapopan, Jalisco, Mexico
| | - Guadalupe María Guatemala-Morales
- Unidad de Tecnología Agroalimentaria, Centro de Investigación y Asistencia en, Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), A.C Av. Normalistas 800, Colinas de la Normal, C.P 44270, Guadalajara, Jalisco, Mexico
| | - Rosa Isela Corona-González
- Departamento de Ingeniería Química, Laboratory of Procesos Biotecnológicos, CUCEI-Universidad de Guadalajara, Blvd. M. García Barragán 1421, C.P. 44430, Guadalajara, Jal., Mexico.
| |
Collapse
|
29
|
Medic N, Boldin I, Berisha B, Matijak-Kronschachner B, Aminfar H, Schwantzer G, Müller-Lierheim WGK, van Setten GB, Horwath-Winter J. Application frequency - key indicator for the efficiency of severe dry eye disease treatment - evidence for the importance of molecular weight of hyaluronan in lubricating agents. Acta Ophthalmol 2024; 102:e663-e671. [PMID: 38131131 DOI: 10.1111/aos.16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Lubricant eye drops are the main therapeutic resource for dry eye disease (DED), with each drop representing the equivalent of ocular surface disease treatment. Thus, any reduction in the frequency of eye drop application reflects a degree of therapeutic success. Considering also the socioeconomic burden of DED, we investigated eye drop application frequency (DF) as a parameter to potentially track the success of therapy in severe DED. Hyaluronan (HA)-containing eye drops have become the first choice for tear substitution in many countries, and recent data indicate that the average molecular weight (Mw) of HA determines the therapeutic efficacy of such eye drops. This post-hoc subgroup analysis of a previously published multicentre prospective randomized open-label study, HYLAN M, is set out to compare the effects of very high Mw HA (hylan A) eye drops to comparator eye drops, containing lower Mw HA (control). METHODS Patients with severe DED (n = 47), recruited as part of the larger HYLAN M prospective, multicentre, open-label study, were randomized into two groups: hylan A and control group. In the hylan A group, 24 patients replaced their HA-containing eye drops with eye drops containing 0.15% hylan A, whereas the 23 control patients continued to use comparator HA eye drops. The DF was recorded daily by all participants over 8 weeks, and other subjective and objective parameters of DED were assessed at the time of inclusion (baseline), as well as at week 4 and 8. RESULTS There was a significant decrease in DF in the hylan A users between the baseline and week 4 (p = 0.004), remaining stable until week 8. Indeed, in contrast to the baseline, the hylan A group had a significantly lower DF than the control group at weeks 4 (p = 0.018) and 8 (p = 0.008). Likewise, the ocular surface disease index (OSDI) improved significantly between the time of inclusion and week 4 (p < 0.001) in hylan A users, remaining stable until week 8. The OSDI was similar in both groups at the baseline but it was significantly lower in the hylan A group than in the control group at week 4 (p = 0.002), remaining lower at week 8. Such a decrease in the DF and OSDI was not witnessed in the control group at any time point. The objective parameters assessed did not differ significantly within or between the two groups. CONCLUSION When treating severe DED, the DF can be significantly reduced by using very high Mw HA (3 MDa) lubricant eye drops, which better alleviate DED symptoms and decrease the OSDI scores. These drops not only provide an attractive and comfortable alternative for patients with severe DED but also offer the possibility of reducing the disease's socioeconomic burden, both for affected individuals and society as a whole.
Collapse
Affiliation(s)
- Nika Medic
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Ingrid Boldin
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Bujar Berisha
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | | | - Haleh Aminfar
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Gerold Schwantzer
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | | | - Gysbert-Botho van Setten
- Department of Clinical Neuroscience, St. Eriks Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
30
|
Liu X, Sun X, Zhu H, Yan R, Xu C, Zhu F, Xu R, Xia J, Dong H, Yi B, Zhou Q. A mosquito proboscis-inspired cambered microneedle patch for ophthalmic regional anaesthesia. J Adv Res 2024:S2090-1232(24)00304-7. [PMID: 39067695 DOI: 10.1016/j.jare.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION One of the methods for pain management involves the use of local anesthesia, which numbs sensations in specific body regions while maintaining consciousness. OBJECTIVES Considering the certain limitations (e.g., pain, the requirement of skilled professionals, or slow passive diffusion) of conventional delivery methods of local anesthetics, developing alternative strategies that offer minimally invasive yet therapeutically effective delivery systems is of great concern for ophthalmic regional anesthesia. METHODS AND RESULTS In this study, a rapidly dissolving cambered microneedle (MNs) patch, composed of poly(vinylpyrrolidone) (PVP) and hyaluronic acid (HA) and served as a delivery system for lidocaine (Lido) in local anesthesia, was developed taking inspiration from the mosquito proboscis's ability to extract blood unnoticed. The lidocaine-containing MNs patch (MNs@Lido) consisted of 25 microneedles with a four-pronged cone structure (height: 500 μm, base width: 275 μm), arranged in a concentric circle pattern on the patch, and displays excellent dissolubility for effective drug delivery of Lido. After confirming good cytocompatibility, MNs@Lido was found to possess adequate rigidity to penetrate the cornea without causing any subsequent injury, and the created corneal pinhole channels completely self-healed within 24 h. Interestingly, MNs@Lido exhibited effective analgesic effects for local anesthesia on both heel skin and eyeball, with the sustained anesthetic effect lasting for at least 30 min. CONCLUSIONS These findings indicate that the mosquito proboscis-inspired cambered MNs patch provides rapid and painless local anesthesia, overcoming the limitations of conventional delivery methods of local anesthetics, thus opening up new possibilities in the treatment of ophthalmic diseases.
Collapse
Affiliation(s)
- Xuequan Liu
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Science and Engineering, Qingdao 266113, China; Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Xuequan Sun
- Weifang Eye Hospital, Zhengda Guangming Eye Group, Weifang 261041, China; Zhengda Guangming International Eye Research Center, Qingdao Zhengda Guangming Eye Hospital, Qingdao University, Qingdao 266000, China
| | - Hongyu Zhu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Rubing Yan
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Chang Xu
- Weifang Eye Hospital, Zhengda Guangming Eye Group, Weifang 261041, China; Zhengda Guangming International Eye Research Center, Qingdao Zhengda Guangming Eye Hospital, Qingdao University, Qingdao 266000, China
| | - Fangxing Zhu
- Weifang Eye Hospital, Zhengda Guangming Eye Group, Weifang 261041, China; Zhengda Guangming International Eye Research Center, Qingdao Zhengda Guangming Eye Hospital, Qingdao University, Qingdao 266000, China
| | - Ruijie Xu
- School of Electronic Information, Qingdao University, Qingdao 266023, China
| | - Jing Xia
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - He Dong
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China.
| | - Bingcheng Yi
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Science and Engineering, Qingdao 266113, China.
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Science and Engineering, Qingdao 266113, China.
| |
Collapse
|
31
|
Onishi BD, Carvalho RS, Bortoletto-Santos R, Santagneli SH, Barreto ARJ, Santos AM, Cremona M, Pandoli OG, Junior MNB, Faraco TA, Barud HS, de Farias RL, Ribeiro SJL, Legnani C. Laponite-Modified Biopolymers as a Conformable Substrate for Optoelectronic Devices. ACS OMEGA 2024; 9:31855-31863. [PMID: 39072077 PMCID: PMC11270560 DOI: 10.1021/acsomega.4c03463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Biopolymers such as carboxymethyl cellulose and hyaluronic acid are alternative substrates for conformable organic light-emitting diodes (OLEDs). However, drawbacks such as mechanical stress susceptibility can hinder the device's performance under stretched conditions. To overcome these limitations, herein, we developed a nanocomposite based on CMC/HA (carboxymethyl cellulose/hyaluronic acid) and synthetic Laponite, intending to improve the mechanical strength without compromising the film flexibility and transparency (transmittance >80%; 380-700 nm) as substrates for conformable OLEDs. From XRD, FTIR, CP-MAS NMR, and TGA/DTG characterization techniques, it was possible to conclude the presence of Laponite randomly dispersed between the polymer chains. CMC/HA with 5% (w/w) Laponite, CMC/HA 5, presented a higher tensile strength (370.6 MPa) and comparable Young's modulus (51.0 ± 1.2 MPa) in comparison to the nanocomposites and pristine films, indicating a better candidate for the device's substrates. To produce the OLED, the multilayer structure ITO/MoO3/NPB/TCTA:Ir(ppy)3/TPBi:Ir(ppy)3/BPhen/LiF was deposited onto the CMC/HA 5 substrate. The OLEDs fabricated using CMC/HA 5 substrates showed higher luminance (12 kcd/m2) and irradiance (0.9 mW/cm2) values when compared with those based on commercial bacterial cellulose. However, the same device presented a lower efficiency (3.2 cd/A) due to a higher current density. Moreover, the OLED fabricated onto the Laponite-modified biopolymer presented reproducible behavior when submitted to continuous bending stress. Thus, CMC/HA 5 demonstrates potential as a transparent conductor substrate for biopolymer-based OLEDs with comparable performance to commercial bacterial cellulose features.
Collapse
Affiliation(s)
- Bruno
S. D. Onishi
- Institute
of Chemistry, São Paulo State University
(UNESP), Araraquara, SP 14800-060, Brazil
| | - Rafael S. Carvalho
- Departamento
de Física, Pontifícia Univ.
Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Ricardo Bortoletto-Santos
- Postgraduate
Program in Environmental Technology, University
of Ribeirão Preto (UNAERP), Ribeirão Preto 14096-900, Brazil
| | - Silvia H. Santagneli
- Institute
of Chemistry, São Paulo State University
(UNESP), Araraquara, SP 14800-060, Brazil
| | - Arthur R. J. Barreto
- Departamento
de Física, Pontifícia Univ.
Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Aline M. Santos
- Departamento
de Física, Pontifícia Univ.
Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Marco Cremona
- Departamento
de Física, Pontifícia Univ.
Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Omar G. Pandoli
- Departamento
de Química, Pontifícia Univ.
Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
- Departamento
de Engenharia Química e de Materiais, Pontifícia Univ. Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Mario N. B. Junior
- Departamento
de Engenharia Química e de Materiais, Pontifícia Univ. Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Thales A. Faraco
- Departamento
de Física, Laboratório de Eletrônica Orgânica
(LEO), Univ. Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-330, Brazil
| | - Hernane S. Barud
- Laboratório
de biopolímeros e Biomateriais (BIOPOLMAt), Univ. de Araraquara (UNIARA), Araraquara 14801-340, Brazil
| | - Renan L. de Farias
- Departamento
de Química, Pontifícia Univ.
Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Sidney J. L. Ribeiro
- Institute
of Chemistry, São Paulo State University
(UNESP), Araraquara, SP 14800-060, Brazil
| | - Cristiano Legnani
- Departamento
de Física, Laboratório de Eletrônica Orgânica
(LEO), Univ. Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-330, Brazil
| |
Collapse
|
32
|
Lorenzetti WR, Ibelli AMG, Peixoto JDO, Savoldi IR, Mores MAZ, de Souza Romano G, do Carmo KB, Ledur MC. The downregulation of genes encoding muscle proteins have a potential role in the development of scrotal hernia in pigs. Mol Biol Rep 2024; 51:822. [PMID: 39023774 DOI: 10.1007/s11033-024-09766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Testicular descent is a physiological process regulated by many factors. Eventually, disturbances in the embryological/fetal development path facilitate the occurrence of scrotal hernia, a congenital malformation characterized by the presence of intestinal portions within the scrotal sac due to the abnormal expansion of the inguinal ring. In pigs, some genes have been related to this anomaly, but the genetic mechanisms involved remain unclear. This study aimed to investigate the expression profile of a set of genes potentially involved with the manifestation of scrotal hernia in the inguinal ring tissue. METHODS AND RESULTS Tissue samples from the inguinal ring/canal of normal and scrotal hernia-affected male pigs with approximately 30 days of age were used. Relative expression analysis was performed using qPCR to confirm the expression profile of 17 candidate genes previously identified in an RNA-Seq study. Among them, the Myosin heavy chain 1 (MYH1), Desmin (DES), and Troponin 1 (TNNI1) genes were differentially expressed between groups and had reduced levels of expression in the affected animals. These genes encode proteins involved in the formation of muscle tissue, which seems to be important for increasing the resistance of the inguinal ring to the abdominal pressure, which is essential to avoid the occurrence of scrotal hernia. CONCLUSIONS The downregulation of muscular candidate genes in the inguinal tissue clarifies the genetic mechanisms involved with this anomaly in its primary site, providing useful information for developing strategies to control this malformation in pigs and other mammals.
Collapse
Affiliation(s)
- William Raphael Lorenzetti
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil
- Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, São Carlos, São Paulo, 13560-970, Brazil
| | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil
| | - Igor Ricardo Savoldi
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil
- Laudo laboratório Avícola, Rodovia BR-365, Morumbi, Uberlândia, Minas Gerais, 38407180, Brazil
| | - Marcos Antônio Zanella Mores
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil
| | | | - Kamilla Bleil do Carmo
- Universidade do Contestado, Concórdia, Santa Catarina, Brazil
- Instituto Federal Catarinense, Rodovia SC 283, km 17, Concórdia, Santa Catarina, 89703-720, Brazil
| | - Mônica Corrêa Ledur
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil.
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil.
| |
Collapse
|
33
|
Eckert JV, Moshal KS, Burge K, Wilson A, Chaaban H. Endogenous Hyaluronan Promotes Intestinal Homeostasis and Protects against Murine Necrotizing Enterocolitis. Cells 2024; 13:1179. [PMID: 39056761 PMCID: PMC11274784 DOI: 10.3390/cells13141179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a complex, multifactorial gastrointestinal disorder predominantly affecting preterm infants. The pathogenesis of this condition involves a complex interplay between intestinal barrier dysfunction, microbial dysbiosis, and an altered immune response. This study investigates the potential role of endogenous hyaluronan (HA) in both the early phases of intestinal development and in the context of NEC-like intestinal injury. We treated neonatal CD-1 mouse pups with PEP1, a peptide inhibiting HA receptor interactions, from postnatal days 8 to 12. We evaluated postnatal intestinal developmental indicators, such as villi length, crypt depth, epithelial cell proliferation, crypt fission, and differentiation of goblet and Paneth cells, in PEP1-treated animals compared with those treated with scrambled peptide. PEP1 treatment significantly impaired intestinal development, as evidenced by reductions in villi length, crypt depth, and epithelial cell proliferation, along with a decrease in crypt fission activity. These deficits in PEP1-treated animals correlated with increased susceptibility to NEC-like injuries, including higher mortality rates, and worsened histological intestinal injury. These findings highlight the role of endogenous HA in supporting intestinal development and protecting against NEC.
Collapse
Affiliation(s)
| | | | | | | | - Hala Chaaban
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.V.E.); (K.S.M.); (K.B.); (A.W.)
| |
Collapse
|
34
|
Le HP, Hassan K, Ramezanpour M, Campbell JA, Tung TT, Vreugde S, Losic D. Development of novel iron(III) crosslinked bioinks comprising carboxymethyl cellulose, xanthan gum, and hyaluronic acid for soft tissue engineering applications. J Mater Chem B 2024; 12:6627-6642. [PMID: 38752707 DOI: 10.1039/d4tb00142g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The advent of three-dimensional (3D) bioprinting offers a feasible approach to construct complex structures for soft tissue regeneration. Carboxymethyl cellulose (CMC) has been emerging as a very promising biomaterial for 3D bioprinting. However, due to the inability to maintain the post-printed stability, CMC needs to be physically blended and/or chemically crosslinked with other polymers. In this context, this study presents the combination of CMC with xanthan gum (XG) and hyaluronic acid (HA) to formulate a multicomponent bioink, leveraging the printability of CMC and XG, as well as the cellular support properties of HA. The ionic crosslinking of printed constructs with iron(III) via the metal-ion coordination between ferric cations and carboxylate groups of the three polymers was introduced to induce improved mechanical strength and long-term stability. Moreover, immortalized human epidermal keratinocytes (HaCaT) and human foreskin fibroblasts (HFF) encapsulated within iron-crosslinked printed hydrogels exhibited excellent cell viability (more than 95%) and preserved morphology. Overall, the presented study highlights that the combination of these three biopolymers and the ionic crosslinking with ferric ions is a valuable strategy to be considered for the development of new and advanced hydrogel-based bioinks for soft tissue engineering applications.
Collapse
Affiliation(s)
- Hien-Phuong Le
- School of Chemical Engineering, The University of Adelaide, South Australia, 5005, Australia.
| | - Kamrul Hassan
- School of Chemical Engineering, The University of Adelaide, South Australia, 5005, Australia.
| | - Mahnaz Ramezanpour
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia
| | - Jonathan A Campbell
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5041, Australia
| | - Tran Thanh Tung
- School of Chemical Engineering, The University of Adelaide, South Australia, 5005, Australia.
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
35
|
Hamed M, Kotob MH, Abou Khalil NS, Anwari EA, El Gazzar WB, Idriss SKA, Fakhry ME, Farag AA, Sabra MS, Salaah SM, Abdel-Zaher S, Yehia Saad FA, Naguib M, Lee JS, Sayed AEDH. Hyaluronic acid impacts hematological endpoints and spleen histological features in African catfish (Clarias gariepinus). BMC Vet Res 2024; 20:294. [PMID: 38970005 PMCID: PMC11225171 DOI: 10.1186/s12917-024-04113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024] Open
Abstract
Since its identification in the vitreous humour of the eye and laboratory biosynthesis, hyaluronic acid (HA) has been a vital component in several pharmaceutical, nutritional, medicinal, and cosmetic uses. However, little is known about its potential toxicological impacts on aquatic inhabitants. Herein, we investigated the hematological response of Clarias gariepinus to nominal doses of HA. To achieve this objective, 72 adult fish were randomly and evenly distributed into four groups: control, low-dose (0.5 mg/l HA), medium-dose (10 mg/l HA), and high-dose (100 mg/l HA) groups for two weeks each during both the exposure and recovery periods. The findings confirmed presence of anemia, neutrophilia, leucopoenia, lymphopenia, and eosinophilia at the end of exposure to HA. In addition, poikilocytosis and a variety of cytomorphological disturbances were observed. Dose-dependent histological alterations in spleen morphology were observed in the exposed groups. After HA removal from the aquarium for 2 weeks, the groups exposed to the two highest doses still exhibited a notable decline in red blood cell count, hemoglobin concentration, mean corpuscular hemoglobin concentration, and an increase in mean corpuscular volume. Additionally, there was a significant rise in neutrophils, eosinophils, cell alterations, and nuclear abnormalities percentages, along with a decrease in monocytes, coupled with a dose-dependent decrease in lymphocytes. Furthermore, only the highest dose of HA in the recovered groups continued to cause a significant increase in white blood cells. White blood cells remained lower, and the proportion of apoptotic RBCs remained higher in the high-dose group. The persistence of most of the haematological and histological disorders even after recovery period indicates a failure of physiological compensatory mechanisms to overcome the HA-associated problems or insufficient duration of recovery. Thus, these findings encourage the inclusion of this new hazardous agent in the biomonitoring program and provide a specific pattern of hematological profile in HA-challenged fish. Further experiments are highly warranted to explore other toxicological hazards of HA using dose/time window protocols.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Mohamed H Kotob
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Nasser S Abou Khalil
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University, Assuit, Egypt
- Department of Medical Physiology, Faculty of Medicine, Assuit University, Assiut, 71516, Egypt
| | - Esraa A Anwari
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, the Hashemite University, Zarqa, 13133, Jordan
- 9Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha City, 13518, Egypt
| | - Shaimaa K A Idriss
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Michel E Fakhry
- Department of Medical Biochemistry and molecular biology, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Amina A Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha City, 13518, Egypt
| | - Mahmoud S Sabra
- Department of Pharmacology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Sally M Salaah
- Fresh Water Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Souzan Abdel-Zaher
- Department of Molecular Biology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt
| | - Fatma Alzahraa Yehia Saad
- Department of Biotechnology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt
| | - Mervat Naguib
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Department of Molecular Biology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
36
|
Zhang H, Li Y, Fu Y, Jiao H, Wang X, Wang Q, Zhou M, Yong YC, Liu J. A structure-functionality insight into the bioactivity of microbial polysaccharides toward biomedical applications: A review. Carbohydr Polym 2024; 335:122078. [PMID: 38616098 DOI: 10.1016/j.carbpol.2024.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Microbial polysaccharides (MPs) are biopolymers secreted by microorganisms such as bacteria and fungi during their metabolic processes. Compared to polysaccharides derived from plants and animals, MPs have advantages such as wide sources, high production efficiency, and less susceptibility to natural environmental influences. The most attractive feature of MPs lies in their diverse biological activities, such as antioxidative, anti-tumor, antibacterial, and immunomodulatory activities, which have demonstrated immense potential for applications in functional foods, cosmetics, and biomedicine. These bioactivities are precisely regulated by their sophisticated molecular structure. However, the mechanisms underlying this precise regulation are not yet fully understood and continue to evolve. This article presents a comprehensive review of the most representative species of MPs, including their fermentation and purification processes and their biomedical applications in recent years. In particular, this work presents an in-depth analysis into the structure-activity relationships of MPs across multiple molecular levels. Additionally, this review discusses the challenges and prospects of investigating the structure-activity relationships, providing valuable insights into the broad and high-value utilization of MPs.
Collapse
Affiliation(s)
- Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Mengbo Zhou
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
37
|
Wang TJ, Rethi L, Ku MY, Nguyen HT, Chuang AEY. A review on revolutionizing ophthalmic therapy: Unveiling the potential of chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer in eye disease treatments. Int J Biol Macromol 2024; 273:132700. [PMID: 38879998 DOI: 10.1016/j.ijbiomac.2024.132700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
Ocular disorders, encompassing both common ailments like dry eye syndrome and more severe situations for instance age-related macular degeneration, present significant challenges to effective treatment due to the intricate architecture and physiological barriers of the eye. Polysaccharides are emerging as potential solutions for drug delivery to the eyes due to their compatibility with living organisms, natural biodegradability, and adhesive properties. In this review, we explore not only the recent advancements in polysaccharide-based technologies and their transformative potential in treating ocular illnesses, offering renewed optimism for both patients and professionals but also anatomy of the eye and the significant obstacles hindering drug transportation, followed by an investigation into various drug administration methods and their ability to overcome ocular-specific challenges. Our focus lies on biological adhesive polymers, including chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer, known for their adhesive characteristics enhancing drug retention on ocular surfaces and increasing bioavailability. A detailed analysis of material designs used in ophthalmic formulations, such as gels, lenses, eye drops, nanofibers, microneedles, microspheres, and nanoparticles, their advantages and limitations, the potential of formulations in improving therapeutic outcomes for various eye conditions. Moreover, we underscore the discovery of novel polysaccharides and their potential uses in ocular drug delivery.
Collapse
Affiliation(s)
- Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Min-Yi Ku
- School of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
38
|
Miescher I, Schaffner N, Rieber J, Bürgisser GM, Ongini E, Yang Y, Milionis A, Vogel V, Snedeker JG, Calcagni M, Buschmann J. Hyaluronic acid/PEO electrospun tube reduces tendon adhesion to levels comparable to native tendons - An in vitro and in vivo study. Int J Biol Macromol 2024; 273:133193. [PMID: 38885859 DOI: 10.1016/j.ijbiomac.2024.133193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
A major problem after tendon injury is adhesion formation to the surrounding tissue leading to a limited range of motion. A viable strategy to reduce adhesion extent is the use of physical barriers that limit the contact between the tendon and the adjacent tissue. The purpose of this study was to fabricate an electrospun bilayered tube of hyaluronic acid/polyethylene oxide (HA/PEO) and biodegradable DegraPol® (DP) to improve the anti-adhesive effect of the implant in a rabbit Achilles tendon full laceration model compared to a pure DP tube. Additionally, the attachment of rabbit tenocytes on pure DP and HA/PEO containing scaffolds was tested and Scanning Electron Microscopy, Fourier-transform Infrared Spectroscopy, Differential Scanning Calorimetry, Water Contact Angle measurements, and testing of mechanical properties were used to characterize the scaffolds. In vivo assessment after three weeks showed that the implant containing a second HA/PEO layer significantly reduced adhesion extent reaching levels comparable to native tendons, compared with a pure DP implant that reduced adhesion formation only by 20 %. Tenocytes were able to attach to and migrate into every scaffold, but cell number was reduced over two weeks. Implants containing HA/PEO showed better mechanical properties than pure DP tubes and with the ability to entirely reduce adhesion extent makes this implant a promising candidate for clinical application in tendon repair.
Collapse
Affiliation(s)
- Iris Miescher
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Nicola Schaffner
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Julia Rieber
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Gabriella Meier Bürgisser
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Esteban Ongini
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008 Zurich, Switzerland.
| | - Yao Yang
- Department of Health Sciences & Technology & Department of Materials, Schmelzbergstrasse 9, LFO, 8092 Zürich, Switzerland.
| | - Athanasios Milionis
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland.
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Jess G Snedeker
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008 Zurich, Switzerland.
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| |
Collapse
|
39
|
McGuire J, Taguchi T, Tombline G, Paige V, Janelsins M, Gilmore N, Seluanov A, Gorbunova V. Hyaluronidase inhibitor delphinidin inhibits cancer metastasis. Sci Rep 2024; 14:14958. [PMID: 38942920 PMCID: PMC11213947 DOI: 10.1038/s41598-024-64924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
Cancer remains a formidable global health challenge, with metastasis being a key contributor to its lethality. Abundant high molecular mass hyaluronic acid, a major non-protein component of extracellular matrix, protects naked mole rats from cancer and reduces cancer incidence in mice. Hyaluronidase plays a critical role in degrading hyaluronic acid and is frequently overexpressed in metastatic cancer. Here we investigated the potential of targeting hyaluronidases to reduce metastasis. A high throughput screen identified delphinidin, a natural plant compound found in fruits and vegetables, as a potent hyaluronidase inhibitor. Delphinidin-mediated inhibition of hyaluronidase activity led to an increase in high molecular weight hyaluronic acid in cell culture and in mouse tissues, and reduced migration and invasion behavior of breast, prostate, and melanoma cancer cells. Moreover, delphinidin treatment suppressed melanoma metastasis in mice. Our study provides a proof of principle that inhibition of hyaluronidase activity suppresses cancer cell migration, invasion and metastasis. Furthermore, we identified a natural compound delphinidin as a potential anticancer therapeutic. Thus, we have identified a path for clinical translation of the cancer resistance mechanism identified in the naked mole rat.
Collapse
Affiliation(s)
- Jeremy McGuire
- Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA
| | - Taketo Taguchi
- Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Gregory Tombline
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Victoria Paige
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Michelle Janelsins
- Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Nikesha Gilmore
- Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
40
|
Calvi A, Bongrani A, Verzicco I, Figus G, Vicini V, Coghi P, Montanari A, Cabassi A. Urinary hyaluronidase activity is closely related to vasopressinergic system following an oral water load in men: a potential role in blood pressure regulation and early stages of hypertension development. Front Endocrinol (Lausanne) 2024; 15:1346082. [PMID: 38982989 PMCID: PMC11231081 DOI: 10.3389/fendo.2024.1346082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Blood pressure (BP) regulation is a complex process involving several factors, among which water-sodium balance holds a prominent place. Arginin-vasopressin (AVP), a key player in water metabolism, has been evoked in hypertension development since the 1980s, but, to date, the matter is still controversial. Hyaluronic acid metabolism has been reported to be involved in renal water management, and AVP appears to increase hyaluronidase activity resulting in decreased high-molecular-weight hyaluronan content in the renal interstitium, facilitating water reabsorption in collecting ducts. Hence, our aim was to evaluate urinary hyaluronidase activity in response to an oral water load in hypertensive patients (HT, n=21) compared to normotensive subjects with (NT+, n=36) and without (NT-, n=29) a family history of hypertension, and to study its association with BP and AVP system activation, expressed by serum copeptin levels and urine Aquaporin 2 (AQP2)/creatinine ratio. Methods Eighty-six Caucasian men were studied. Water load test consisted in oral administration of 15-20 ml of water/kg body weight over 40-45 min. BP, heart rate, serum copeptin, urine hyaluronidase activity and AQP2 were monitored for 4 hours. Results In response to water drinking, BP raised in all groups with a peak at 20-40 min. Baseline levels of serum copeptin, urinary hyaluronidase activity and AQP2/creatinine ratio were similar among groups and all decreased after water load, reaching their nadir at 120 min and then gradually recovering to baseline values. Significantly, a blunted reduction in serum copeptin, urinary hyaluronidase activity and AQP2/creatinine ratio was observed in NT+ compared to NT- subjects. A strong positive correlation was also found between urinary hyaluronidase activity and AQP2/creatinine ratio, and, although limited to the NT- group, both parameters were positively associated with systolic BP. Discussion Our results demonstrate for the first time the existence in men of a close association between urinary hyaluronidase activity and vasopressinergic system and suggest that NT+ subjects have a reduced ability to respond to water loading possibly contributing to the blood volume expansion involved in early-stage hypertension. Considering these data, AVP could play a central role in BP regulation by affecting water metabolism through both hyaluronidase activity and AQP2 channel expression.
Collapse
Affiliation(s)
- Anna Calvi
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Alice Bongrani
- Cardiorenal and Hypertension Research Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ignazio Verzicco
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Giuliano Figus
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Vanni Vicini
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Pietro Coghi
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Alberto Montanari
- Cardiorenal and Hypertension Research Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Aderville Cabassi
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
- Cardiorenal and Hypertension Research Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
41
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
42
|
Zhu X, Sculean A, Eick S. In-vitro effects of different hyaluronic acids on periodontal biofilm-immune cell interaction. Front Cell Infect Microbiol 2024; 14:1414861. [PMID: 38938883 PMCID: PMC11208323 DOI: 10.3389/fcimb.2024.1414861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Recent studies have demonstrated a positive role of hyaluronic acid (HA) on periodontal clinical outcomes. This in-vitro study aimed to investigate the impact of four different HAs on interactions between periodontal biofilm and immune cells. Methods The four HAs included: high-molecular-weight HA (HHA, non-cross-linked), low-molecular-weight HA (LHA), oligomers HA (OHA), and cross-linked high-molecular-weight HA (CHA). Serial experiments were conducted to verify the influence of HAs on: (i) 12-species periodontal biofilm (formation and pre-existing); (ii) expression of inflammatory cytokines and HA receptors in monocytic (MONO-MAC-6) cells and periodontal ligament fibroblasts (PDLF) with or without exposure to periodontal biofilms; (iii) generation of reactive oxygen species (ROS) in MONO-MAC-6 cells and PDLF with presence of biofilm and HA. Results The results indicated that HHA and CHA reduced the bacterial counts in a newly formed (4-h) biofilm and in a pre-existing five-day-old biofilm. Without biofilm challenge, OHA triggered inflammatory reaction by increasing IL-1β and IL-10 levels in MONO-MAC cells and IL-8 in PDLF in a time-dependent manner, whereas CHA suppressed this response by inhibiting the expression of IL-10 in MONO-MAC cells and IL-8 in PDLF. Under biofilm challenge, HA decreased the expression of IL-1β (most decreasing HHA) and increased IL-10 levels in MONO-MAC-6 cells in a molecular weight dependent manner (most increasing CHA). The interaction between HA and both cells may occur via ICAM-1 receptor. Biofilm stimulus increased ROS levels in MONO-MAC-6 cells and PDLF, but only HHA slightly suppressed the high generation of ROS induced by biofilm stimulation in both cells. Conclusion Overall, these results indicate that OHA induces inflammation, while HHA and CHA exhibit anti-biofilm, primarily anti-inflammatory, and antioxidant properties in the periodontal environment.
Collapse
Affiliation(s)
- Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
43
|
Zhu T, Wan L, Li R, Zhang M, Li X, Liu Y, Cai D, Lu H. Janus structure hydrogels: recent advances in synthetic strategies, biomedical microstructure and (bio)applications. Biomater Sci 2024; 12:3003-3026. [PMID: 38695621 DOI: 10.1039/d3bm02051g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Janus structure hydrogels (JSHs) are novel materials. Their primary fabrication methods and various applications have been widely reported. JSHs are primarily composed of Janus particles (JNPs) and polysaccharide components. They exhibit two distinct physical or chemical properties, generating intriguing characteristics due to their asymmetric structure. Normally, one side (adhesive interface) is predominantly constituted of polysaccharide components, primarily serving excellent adhesion. On the other side (functional surface), they integrate diverse functionalities, concurrently performing a plethora of synergistic functions. In the biomedical field, JSHs are widely applied in anti-adhesion, drug delivery, wound healing, and other areas. It also exhibits functions in seawater desalination and motion sensing. Thus, JSHs hold broad prospects for applications, and they possess significant research value in nanotechnology, environmental science, healthcare, and other fields. Additionally, this article proposes the challenges and future work facing these fields.
Collapse
Affiliation(s)
- Taifu Zhu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Lei Wan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Ruiqi Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Mu Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Xiaoling Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Yilong Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Dingjun Cai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Haibin Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
- Department of Stomatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China.
| |
Collapse
|
44
|
Yang F, Chen Y, Zhang W, Gu S, Liu Z, Chen M, Chen L, Chen F, Zhang H, Ding Y, Liu Y, Chen J, Wang L. Tunable and fast-cured hyaluronic acid hydrogel inspired on catechol architecture for enhanced adhesion property. Int J Biol Macromol 2024; 271:132119. [PMID: 38816297 DOI: 10.1016/j.ijbiomac.2024.132119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
Hyaluronic acid-based hydrogels have been broadly used in medical applications due to their remarkable properties such as biocompatibility, biodegradability, super hydroscopicity, non-immunogenic effect, etc. However, the inherent weak and hydrophilic polysaccharide structure of pure hyaluronic acid (HA) hydrogels has limited their potential use in muco-adhesiveness, wound dressing, and 3D printing. In this research, we developed in-situ forming of catechol-modified HA hydrogels with improved mechanical properties involving blue-light curing crosslinking reaction. The effect of catechol structure on the physicochemical properties of HA hydrogels was evaluated by varying the content (0-40 %). The as-synthesized hydrogel demonstrated rapid prototyping, excellent wetting adhesiveness, and good biocompatibility. Furthermore, an optimized hydrogel precursor solution was used as a blue light-cured bio-ink with high efficiency and good precision and successfully prototyped a microstructure that mimicked the human hepatic lobule by using DLP 3D printing method. This catechol-modified HA hydrogel with tunable physicochemical and rapid prototyping properties has excellent potential in biomedical engineering.
Collapse
Affiliation(s)
- Fan Yang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China
| | - Yunlu Chen
- Clinical Research Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310014, PR China
| | - Wentao Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China
| | - Shaochun Gu
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, PR China.
| | - Maohu Chen
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Leidan Chen
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Feng Chen
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Huicong Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China
| | - Yude Ding
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China
| | - Yanshan Liu
- Clinical Research Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310014, PR China
| | - Jinyi Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, PR China
| | - Linhong Wang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China.
| |
Collapse
|
45
|
Zhang M, Han F, Duan X, Zheng D, Cui Q, Liao W. Advances of biological macromolecules hemostatic materials: A review. Int J Biol Macromol 2024; 269:131772. [PMID: 38670176 DOI: 10.1016/j.ijbiomac.2024.131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Achieving hemostasis is a necessary intervention to rapidly and effectively control bleeding. Conventional hemostatic materials currently used in clinical practice may aggravate the damage at the bleeding site due to factors such as poor adhesion and poor adaptation. Compared to most traditional hemostatic materials, polymer-based hemostatic materials have better biocompatibility and offer several advantages. They provide a more effective method of stopping bleeding and avoiding additional damage to the body in case of excessive blood loss. Various hemostatic materials with greater functionality have been developed in recent years for different organs using diverse design strategies. This article reviews the latest advances in the development of polymeric hemostatic materials. We introduce the coagulation cascade reaction after bleeding and then discuss the hemostatic mechanisms and advantages and disadvantages of various polymer materials, including natural, synthetic, and composite polymer hemostatic materials. We further focus on the design strategies, properties, and characterization of hemostatic materials, along with their applications in different organs. Finally, challenges and prospects for the application of hemostatic polymeric materials are summarized and discussed. We believe that this review can provide a reference for related research on hemostatic materials, contributing to the further development of polymer hemostatic materials.
Collapse
Affiliation(s)
- Mengyang Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Dongxi Zheng
- School of Mechanical and Intelligent Manufacturing, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qiuyan Cui
- The Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
| |
Collapse
|
46
|
Chang W, Chen L, Chen K. The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int J Biol Macromol 2024; 270:132454. [PMID: 38763255 DOI: 10.1016/j.ijbiomac.2024.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The multifaceted role of hyaluronic acid (HA) across diverse biomedical disciplines underscores its versatility in tissue regeneration and repair. HA hydrogels employ different crosslinking including chemical (chitosan, collagen), photo- initiation (riboflavin, LAP), enzymatic (HRP/H2O2), and physical interactions (hydrogen bonds, metal coordination). In biophysics and biochemistry, HA's signaling pathways, primarily through CD44 and RHAMM receptors, modulate cell behavior (cell migration; internalization of HA), inflammation, and wound healing. Particularly, smaller HA fragments stimulate inflammatory responses through toll-like receptors, impacting macrophages and cytokine expression. HA's implications in oncology highlight its involvement in tumor progression, metastasis, and treatment. Elevated HA in tumor stroma impacts apoptosis resistance and promotes tumor growth, presenting potential therapeutic targets to halt tumor progression. In orthopedics, HA's presence in synovial fluid aids in osteoarthritis management, as its supplementation alleviates pain, enhances synovial fluid's viscoelastic properties, and promotes cartilage integrity. In ophthalmology, HA's application in dry eye syndrome addresses symptoms by moisturizing the eyes, replenishing tear film deficiencies, and facilitating wound healing. Intravitreal injections and hydrogel-based systems offer versatile approaches for drug delivery and vitreous humor replacement. For skin regeneration and wound healing, HA hydrogel dressings exhibit exceptional properties by promoting moist wound healing and facilitating tissue repair. Integration of advanced regenerative tools like stem cells and solubilized amnion membranes into HA-based systems accelerates wound closure and tissue recovery. Overall, HA's unique properties and interactions render it a promising candidate across diverse biomedical domains, showcasing immense potentials in tissue regeneration and therapeutic interventions. Nevertheless, many detailed cellular and molecular mechanisms of HA and its applications remain unexplored and warrant further investigation.
Collapse
Affiliation(s)
- WeiTing Chang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - LiRu Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei, Taiwan; Department of Mechanical Engineering, National YangMing ChiaoTung University, Hsinchu, Taiwan
| | - KuoHu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan; School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
47
|
Skierska I, Górski B, Fus Ł. Tunnel technique and subepithelial connective tissue graft, with or without cross-linked hyaluronic acid, in the treatment of multiple gingival recessions: 12-month outcomes of a randomized clinical trial. J Periodontol 2024. [PMID: 38808976 DOI: 10.1002/jper.24-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND This study evaluated the influence of the adjunctive application of a cross-linked hyaluronic acid (HA) in the treatment of multiple gingival recessions, using a modified coronally advanced tunnel (MCAT) technique and subepithelial connective tissue graft (SCTG) (MCAT+SCTG±HA). METHODS A randomized, split-mouth, double-masked comparison of the effects of MCAT+HA+SCTG (test) versus MCAT+SCTG (control) in the treatment of multiple, contralateral gingival recessions with clinical, esthetic, and histological evaluations was carried out. All samples were stained with hematoxylin and eosin, Masson's trichrome, Verhoeff-Van Gieson, and Alcian blue stain for semiquantitative evaluation. The primary outcome variable was 12-month mean root coverage (MRC). RESULTS Twenty-four patients with 266 gingival recessions received both control and test treatments (133 recessions per group). 12-month MRC of the MCAT+HA+SCTG group was not significantly different from the MCAT+SCTG group with 84.32%± 34.46% and 85.71%± 36.43%, respectively (p = 0.991). Both treatment modes produced favorable esthetic outcomes (root coverage esthetic score [RES] 9.51± 1.01 tests vs. 9.26± 1.10 controls, p = 0.7292). However, the application of HA improved soft tissue texture (p = 0.0091). The remaining end point measures did not differ significantly between groups. Histological evaluation showed a significantly greater number of elastic fibers and a moderate increase in collagen fiber density in biopsy samples taken from the test sides when compared to the control sides (p = 0.0419 and p = 0.300, respectively). CONCLUSIONS MCAT+SCTG is an effective procedure in the treatment of multiple recession Type 1 (RT1) and RT2 recessions. There were no statistically significant differences in evaluated clinical treatment outcomes in the MCAT+HA+SCTG group compared to the MCAT+SCTG group within a period of 12 months. The application of HA increased collagen and elastic fiber density.
Collapse
Affiliation(s)
- Izabela Skierska
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Bartłomiej Górski
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Fus
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
48
|
Porcello A, Chemali M, Marques C, Scaletta C, Lourenço K, Abdel-Sayed P, Raffoul W, Hirt-Burri N, Applegate LA, Laurent A. Dual Functionalization of Hyaluronan Dermal Fillers with Vitamin B3: Efficient Combination of Bio-Stimulation Properties with Hydrogel System Resilience Enhancement. Gels 2024; 10:361. [PMID: 38920908 PMCID: PMC11203111 DOI: 10.3390/gels10060361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Hyaluronic acid (HA) hydrogels are commonly used for facial dermal filling and for alternative medical aesthetic purposes. High diversity exists in commercial formulations, notably for the optimization of finished product stability, functionality, and performance. Polyvalent ingredients such as calcium hydroxylapatite (CaHA) or vitamin B3 (niacinamide) are notably used as bio-stimulants to improve skin quality attributes at the administration site. The aim of the present study was to perform multi-parametric characterization of two novel cross-linked dermal filler formulas (HAR-1 "Instant Refine" and HAR-3 "Maxi Lift") for elucidation of the various functional impacts of vitamin B3 incorporation. Therefore, the HAR products were firstly comparatively characterized in terms of in vitro rheology, cohesivity, injectability, and resistance to chemical or enzymatic degradation (exposition to H2O2, AAPH, hyaluronidases, or xanthine oxidase). Then, the HAR products were assessed for cytocompatibility and in vitro bio-stimulation attributes in a primary dermal fibroblast model. The results showed enhanced resilience of the cohesive HAR hydrogels as compared to JUVÉDERM® VOLBELLA® and VOLUMA® reference products in a controlled degradation assay panel. Furthermore, significant induction of total collagen synthesis in primary dermal fibroblast cultures was recorded for HAR-1 and HAR-3, denoting intrinsic bio-stimulatory effects comparable or superior to those of the Radiesse® and Sculptra™ reference products. Original results of high translational relevance were generated herein using robust and orthogonal experimental methodologies (hydrogel degradation, functional benchmarking) and study designs. Overall, the reported results confirmed the dual functionalization role of vitamin B3 in cross-linked HA dermal fillers, with a significant enhancement of hydrogel system stability attributes and the deployment of potent bio-stimulatory capacities.
Collapse
Affiliation(s)
- Alexandre Porcello
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (K.L.)
| | - Michèle Chemali
- Plastic and Reconstructive Surgery, Ensemble Hospitalier de la Côte, CH-1110 Morges, Switzerland; (M.C.); (W.R.)
| | - Cíntia Marques
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (K.L.)
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
| | - Kelly Lourenço
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (K.L.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
- STI School of Engineering, Federal Polytechnical School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Wassim Raffoul
- Plastic and Reconstructive Surgery, Ensemble Hospitalier de la Côte, CH-1110 Morges, Switzerland; (M.C.); (W.R.)
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
| |
Collapse
|
49
|
Joshi N, Yan J, Dang M, Slaughter K, Wang Y, Wu D, Ung T, Pandya V, Chen MX, Kaur S, Bhagchandani S, Alfassam HA, Joseph J, Gao J, Dewani M, Yip RCS, Weldon E, Shah P, Shukla C, Sherman NE, Luo JN, Conway T, Eickhoff JP, Botelho L, Alhasan AH, Karp JM, Ermann J. A Mechanically Resilient Soft Hydrogel Improves Drug Delivery for Treating Post-Traumatic Osteoarthritis in Physically Active Joints. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594611. [PMID: 38826308 PMCID: PMC11142096 DOI: 10.1101/2024.05.16.594611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Intra-articular delivery of disease-modifying osteoarthritis drugs (DMOADs) is likely to be most effective in early post-traumatic osteoarthritis (PTOA) when symptoms are minimal and patients are physically active. DMOAD delivery systems therefore must withstand repeated mechanical loading without affecting the drug release kinetics. Although soft materials are preferred for DMOAD delivery, mechanical loading can compromise their structural integrity and disrupt drug release. Here, we report a mechanically resilient soft hydrogel that rapidly self-heals under conditions resembling human running while maintaining sustained release of the cathepsin-K inhibitor L-006235 used as a proof-of-concept DMOAD. Notably, this hydrogel outperformed a previously reported hydrogel designed for intra-articular drug delivery, used as a control in our study, which neither recovered nor maintained drug release under mechanical loading. Upon injection into mouse knee joints, the hydrogel showed consistent release kinetics of the encapsulated agent in both treadmill-running and non-running mice. In a mouse model of aggressive PTOA exacerbated by treadmill running, L-006235 hydrogel markedly reduced cartilage degeneration. To our knowledge, this is the first hydrogel proven to withstand human running conditions and enable sustained DMOAD delivery in physically active joints, and the first study demonstrating reduced disease progression in a severe PTOA model under rigorous physical activity, highlighting the hydrogel's potential for PTOA treatment in active patients.
Collapse
|
50
|
Perera GGG, Argenta DF, Caon T. The rheology of injectable hyaluronic acid hydrogels used as facial fillers: A review. Int J Biol Macromol 2024; 268:131880. [PMID: 38677707 DOI: 10.1016/j.ijbiomac.2024.131880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Injectable hyaluronic acid (HA) hydrogels have been popularized in facial aesthetics as they provide a long-lasting effect, low risk of complications, allergenicity tests are not required before application and can be easily removed by the action of hyaluronidases. On the other hand, the development of these systems requires in-depth studies of chemical mechanisms involved in hydrogel formation. Ideal dermal fillers should temporarily fluidize during extrusion through the needle and quickly recover their original shape after application. Hydrogels with more elastic properties, for example, are difficult to inject while viscous materials are too liquid. A balance between both properties should be achieved. Each region of the face requires products with distinct rheological properties. High G' dermal fillers are preferable for deeper wrinkles whereas the counterpart with lower values of G' is more indicated in superficial wrinkles or lip augmentation. Factors such as molecular weight and concentration of HA, pH, type and concentration of the crosslinking agent, particle size, crosslinking reaction time and crosslinking agent/polysaccharide ratio should be modulated to achieve specific rheological properties. In this review, the effect of each variable is discussed in detail to guide the rational development of new dermal fillers.
Collapse
Affiliation(s)
- Giordana Gabriela Guilande Perera
- Laboratory of Cosmetic & Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Debora Fretes Argenta
- Laboratory of Cosmetic & Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Thiago Caon
- Laboratory of Cosmetic & Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil.
| |
Collapse
|