1
|
Mantovani A, Marchesi F, Di Mitri D, Garlanda C. Macrophage diversity in cancer dissemination and metastasis. Cell Mol Immunol 2024; 21:1201-1214. [PMID: 39402303 DOI: 10.1038/s41423-024-01216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Invasion and metastasis are hallmarks of cancer. In addition to the well-recognized hematogenous and lymphatic pathways of metastasis, cancer cell dissemination can occur via the transcoelomic and perineural routes, which are typical of ovarian and pancreatic cancer, respectively. Macrophages are a universal major component of the tumor microenvironment and, in established tumors, promote growth and dissemination to secondary sites. Here, we review the role of tumor-associated macrophages (TAMs) in cancer cell dissemination and metastasis, emphasizing the diversity of myeloid cells in different tissue contexts (lungs, liver, brain, bone, peritoneal cavity, nerves). The generally used models of lung metastasis fail to capture the diversity of pathways and tissue microenvironments. A better understanding of TAM diversity in different tissue contexts may pave the way for tailored diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.
- William Harvey Research Institute, Queen Mary University, London, UK.
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Diletta Di Mitri
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| |
Collapse
|
2
|
Saadh MJ, Pallathadka H, Abed HS, Menon SV, Sivaprasad GV, Hjazi A, Rizaev J, Suri S, Jawad MA, Husseen B. Detailed role of SR-A1 and SR-E3 in tumor biology, progression, and therapy. Cell Biochem Biophys 2024; 82:1735-1750. [PMID: 38884861 DOI: 10.1007/s12013-024-01350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
The first host defense systems are the innate immune response and the inflammatory response. Among innate immune cells, macrophages, are crucial because they preserve tissue homeostasis and eradicate infections by phagocytosis, or the ingestion of particles. Macrophages exhibit phenotypic variability contingent on their stimulation state and tissue environment and may be detected in several tissues. Meanwhile, critical inflammatory functions are played by macrophage scavenger receptors, in particular, SR-A1 (CD204) and SR-E3 (CD206), in a variety of pathophysiologic events. Such receptors, which are mainly found on the surface of multiple types of macrophages, have different effects on processes, including atherosclerosis, innate and adaptive immunity, liver and lung diseases, and, more recently, cancer. Although macrophage scavenger receptors have been demonstrated to be active across the disease spectrum, conflicting experimental findings and insufficient signaling pathways have hindered our comprehension of the molecular processes underlying its array of roles. Herein, as SR-A1 and SR-E3 functions are often binary, either protecting the host or impairing the pathophysiology of cancers has been reviewed. We will look into their function in malignancies, with an emphasis on their recently discovered function in macrophages and the possible therapeutic benefits of SR-A1 and SR-E3 targeting.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Hussein Salim Abed
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Ramadi, Iraq.
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Sahil Suri
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140417, Punjab, India
| | | | - Beneen Husseen
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Lanman NA, Meco E, Fitchev P, Kolliegbo AK, Broman MM, Filipovich Y, Kothandaraman H, Cresswell GM, Talaty P, Antoniak M, Brumer S, Glaser AP, Higgins AM, Helfand BT, Franco OE, Crawford SE, Ratliff TL, Hayward SW, Vickman RE. Infiltrating lipid-rich macrophage subpopulations identified as a regulator of increasing prostate size in human benign prostatic hyperplasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597992. [PMID: 38915654 PMCID: PMC11195107 DOI: 10.1101/2024.06.07.597992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Macrophages exhibit marked phenotypic heterogeneity within and across disease states, with lipid metabolic reprogramming contributing to macrophage activation and heterogeneity. Chronic inflammation has been observed in human benign prostatic hyperplasia (BPH) tissues, however macrophage activation states and their contributions to this hyperplastic disease have not been defined. We postulated that a shift in macrophage phenotypes with increasing prostate size could involve metabolic alterations resulting in prostatic epithelial or stromal hyperplasia. Single-cell RNA-seq of CD45+ transition zone leukocytes from 10 large (>90 grams) and 10 small (<40 grams) human prostates was conducted. Macrophage subpopulations were defined using marker genes. BPH macrophages do not distinctly categorize into M1 and M2 phenotypes. Instead, macrophages with neither polarization signature preferentially accumulate in large versus small prostates. Specifically, macrophage subpopulations with altered lipid metabolism pathways, demarcated by TREM2 and MARCO expression, significantly accumulate with increased prostate volume. TREM2+ and MARCO+ macrophage abundance positively correlates with patient body mass index and urinary symptom scores. TREM2+ macrophages have significantly higher neutral lipid than TREM2- macrophages from BPH tissues. Lipid-rich macrophages were observed to localize within the stroma in BPH tissues. In vitro studies indicate that lipid-loaded macrophages increase prostate epithelial and stromal cell proliferation compared to control macrophages. These data define two new BPH immune subpopulations, TREM2+ and MARCO+ macrophages, and suggest that lipid-rich macrophages may exacerbate lower urinary tract symptoms in patients with large prostates. Further investigation is needed to evaluate the therapeutic benefit of targeting these cells in BPH.
Collapse
|
4
|
Li L, Ma SR, Yu ZL. Targeting the lipid metabolic reprogramming of tumor-associated macrophages: A novel insight into cancer immunotherapy. Cell Oncol (Dordr) 2024; 47:415-428. [PMID: 37776422 DOI: 10.1007/s13402-023-00881-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages, as the major immunocytes in solid tumors, show divided loyalty and remarkable plasticity in tumorigenesis. Once the M2-to-M1 repolarization is achieved, they could be switched from the supporters for tumor development into the guardians for host immunity. Meanwhile, Lipid metabolic reprogramming is demonstrated to be one of the most important hallmarks of tumor-associated macrophages, which plays a decisive role in regulating their phenotypes and functions to promote tumorigenesis and immunotherapy resistance. Therefore, targeting the lipid metabolism of TAMs may provide a new direction for anti-tumor strategies. CONCLUSION In this review, we first summarized the origins, classifications and general lipid metabolic process of TAMs. Then we discussed the currently available drugs and interventions that target lipid metabolic disorders of TAMs, including those targeting lipid uptake, efflux, lipolysis, FAO and lipid peroxidation. Besides, based on the recent research status, we summarized the present challenges for this cancer immunotherapy, including the precise drug delivery system, the lipid metabolic heterogeneity, and the intricate lipid metabolic interactions in the TME, and we also proposed corresponding possible solutions. Collectively, we hope this review will give researchers a better understanding of the lipid metabolism of TAMs and lead to the development of corresponding anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Liang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Si-Rui Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
5
|
Berrecoso G, Bravo SB, Arriaga I, Abrescia N, Crecente-Campo J, Alonso MJ. Controlling the protein corona of polymeric nanocapsules: effect of polymer shell on protein adsorption. Drug Deliv Transl Res 2024; 14:918-933. [PMID: 37805955 DOI: 10.1007/s13346-023-01441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Understanding the interactions between nanocarriers and plasma proteins is essential for controlling their biological fate. Based on the reported potential of polymeric nanocapsules (NCs) for the targeted delivery of oncological drugs, the main objective of this work has been to investigate how the surface chemical composition influences their protein corona fingerprint. Thus, we developed six NC prototypes with different polymer shells and physicochemical properties and quantified the amount of protein adsorbed upon incubation in human plasma. Using sequential window acquisition of all theoretical mass spectra (SWATH-MS) and following the Minimum Information about Nanomaterial Biocorona Experiments (MINBE) guidelines, we identified different protein corona patterns. As expected, the presence of polyethylene glycol (PEG) in the polymer shell reduced the protein corona, particularly the adsorption of immunoglobulins. However, by comparing the different prototypes, we concluded that the protein adsorption pattern was not exclusively driven by PEG. In fact, a highly PEGylated prototype exhibited intense apolipoprotein IV adsorption. On the other hand, we also observed that polymeric NCs containing 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) exhibited high adsorption of vitronectin, a protein that is known for enhancing the uptake of nanosystems by lung epithelium and several cancer cells. Overall, the gathered information allowed us to identify promising polymeric NCs with an expected prolonged circulation time, enhanced tumor targeting, liver accumulation, and preferential uptake by the immune system. In this sense, the analyses of the protein corona performed along this work will hopefully contribute to advancing a new generation of rationally designed nanometric drug delivery systems.
Collapse
Affiliation(s)
- Germán Berrecoso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- IDIS Research Institute, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Susana Belén Bravo
- IDIS Research Institute, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Proteomics Laboratory, CHUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Iker Arriaga
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Nicola Abrescia
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- IDIS Research Institute, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- IDIS Research Institute, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
6
|
Ravi S, Martin LC, Krishnan M, Kumaresan M, Manikandan B, Ramar M. Interactions between macrophage membrane and lipid mediators during cardiovascular diseases with the implications of scavenger receptors. Chem Phys Lipids 2024; 258:105362. [PMID: 38006924 DOI: 10.1016/j.chemphyslip.2023.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The onset and progression of cardiovascular diseases with the major underlying cause being atherosclerosis, occur during chronic inflammatory persistence in the vascular system, especially within the arterial wall. Such prolonged maladaptive inflammation is driven by macrophages and their key mediators are generally attributed to a disparity in lipid metabolism. Macrophages are the primary cells of innate immunity, endowed with expansive membrane domains involved in immune responses with their signalling systems. During atherosclerosis, the membrane domains and receptors control various active organisations of macrophages. Their scavenger/endocytic receptors regulate the trafficking of intracellular and extracellular cargo. Corresponding influence on lipid metabolism is mediated by their dynamic interaction with scavenger membrane receptors and their integrated mechanisms such as pinocytosis, phagocytosis, cholesterol export/import, etc. This interaction not only results in the functional differentiation of macrophages but also modifies their structural configurations. Here, we reviewed the association of macrophage membrane biomechanics and their scavenger receptor families with lipid metabolites during the event of atherogenesis. In addition, the membrane structure of macrophages and the signalling pathways involved in endocytosis integrated with lipid metabolism are detailed. This article establishes future insights into the scavenger receptors as potential targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Kumaresan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai 600 015, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
7
|
Chen S, Zhu F, Nie Z, Yang C, Yang J, He J, Tan X, Liu X, Zhang J, Zhao Y. pH-Activatable Charge-Reversal Polymer-Based Nanocarriers for Targeted Delivery of Antihepatoma Compound. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13588-13598. [PMID: 37703860 DOI: 10.1021/acs.langmuir.3c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Chemotherapy is one of the available cancer treatments which has been successfully employed to prolong the survival of cancer patients. However, it remains a major challenge to develop effective chemotherapeutic agents by reducing off-target toxicity, improving bioavailability, and effectively prolonging blood circulation. The pH profile of tumor cells is abnormal to that of normal cells, making it a potential breakthrough for designing effective chemotherapeutic drug agents. Here, the pH-activatable charge-reversal supramolecular nanocarriers, named MI7-β-CD/SA NPs, were prepared through a simple and "green" constructive process. MI7-β-CD/SA NPs possess both pH-induced charge-reversal and disassembly properties that were exploited to investigate the loading, delivery, and pH-responsive controlled release of the antitumor compound celastrol (CSL). CSL@MI7-β-CD/SA NPs displayed low hemolysis, good biocompatibility, and targeted uptake. Furthermore, CSL@MI7-β-CD/SA NPs exhibited superior apoptosis rates against SMMC-7721 cell lines compared with CSL, when CSL@MI7-β-CD/SA NPs and CSL were administered at a mass concentration of 5.0 μg/mL, i.e., the CSL content in CSL@MI7-β-CD/SA NPs was relatively lower than that of intact CSL. We expected that MI7-β-CD/SA NPs featuring pH-triggered charge reversal could offer a promising controlled release strategy that would then facilitate the clinical conversion of antitumor drugs.
Collapse
Affiliation(s)
- Shuai Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - FangDao Zhu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - ZhengQuan Nie
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - CuiTing Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - JianMei Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Junnan He
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - XiaoPing Tan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - XiaoQing Liu
- Shenzhen Kewode Technology Co., Ltd, Shenzhen 518028, People's Republic of China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| |
Collapse
|
8
|
Pankowska KA, Będkowska GE, Chociej-Stypułkowska J, Rusak M, Dąbrowska M, Osada J. Crosstalk of Immune Cells and Platelets in an Ovarian Cancer Microenvironment and Their Prognostic Significance. Int J Mol Sci 2023; 24:ijms24119279. [PMID: 37298230 DOI: 10.3390/ijms24119279] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological cancers, largely due to the fast development of metastasis and drug resistance. The immune system is a critical component of the OC tumor microenvironment (TME) and immune cells such as T cells, NK cells, and dendritic cells (DC) play a key role in anti-tumor immunity. However, OC tumor cells are well known for evading immune surveillance by modulating the immune response through various mechanisms. Recruiting immune-suppressive cells such as regulatory T cells (Treg cells), macrophages, or myeloid-derived suppressor cells (MDSC) inhibit the anti-tumor immune response and promote the development and progression of OC. Platelets are also involved in immune evasion by interaction with tumor cells or through the secretion of a variety of growth factors and cytokines to promote tumor growth and angiogenesis. In this review, we discuss the role and contribution of immune cells and platelets in TME. Furthermore, we discuss their potential prognostic significance to help in the early detection of OC and to predict disease outcome.
Collapse
Affiliation(s)
- Katarzyna Aneta Pankowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Grażyna Ewa Będkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Chociej-Stypułkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Małgorzata Rusak
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Milena Dąbrowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Osada
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| |
Collapse
|
9
|
Boucher Y, Posada JM, Subudhi S, Kumar AS, Rosario SR, Gu L, Kumra H, Mino-Kenudson M, Talele NP, Duda DG, Fukumura D, Wo JY, Clark JW, Ryan DP, Fernandez-Del Castillo C, Hong TS, Pittet MJ, Jain RK. Addition of Losartan to FOLFIRINOX and Chemoradiation Reduces Immunosuppression-Associated Genes, Tregs, and FOXP3+ Cancer Cells in Locally Advanced Pancreatic Cancer. Clin Cancer Res 2023; 29:1605-1619. [PMID: 36749873 PMCID: PMC10106451 DOI: 10.1158/1078-0432.ccr-22-1630] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/31/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE Adding losartan (LOS) to FOLFIRINOX (FFX) chemotherapy followed by chemoradiation (CRT) resulted in 61% R0 surgical resection in our phase II trial in patients with locally advanced pancreatic cancer (LAPC). Here we identify potential mechanisms of benefit by assessing the effects of neoadjuvant LOS on the tumor microenvironment. EXPERIMENTAL DESIGN We performed a gene expression and immunofluorescence (IF) analysis using archived surgical samples from patients treated with LOS+FFX+CRT (NCT01821729), FFX+CRT (NCT01591733), or surgery upfront, without any neoadjuvant therapy. We also conducted a longitudinal analysis of multiple biomarkers in the plasma of treated patients. RESULTS In comparison with FFX+CRT, LOS+FFX+CRT downregulated immunosuppression and pro-invasion genes. Overall survival (OS) was associated with dendritic cell (DC) and antigen presentation genes for patients treated with FFX+CRT, and with immunosuppression and invasion genes or DC- and blood vessel-related genes for those treated with LOS+FFX+CRT. Furthermore, LOS induced specific changes in circulating levels of IL-8, sTie2, and TGF-β. IF revealed significantly less residual disease in lesions treated with LOS+FFX+CRT. Finally, patients with a complete/near complete pathologic response in the LOS+FFX+CRT-treated group had reduced CD4+FOXP3+ regulatory T cells (Tregs), fewer immunosuppressive FOXP3+ cancer cells (C-FOXP3), and increased CD8+ T cells in pancreatic ductal adenocarcinoma lesions. CONCLUSIONS Adding LOS to FFX+CRT reduced pro-invasion and immunosuppression-related genes, which were associated with improved OS in patients with LAPC. Lesions from responders in the LOS+FFX+CRT-treated group had reduced Tregs, decreased C-FOXP3 and increased CD8+ T cells. These findings suggest that LOS may potentiate the benefit of FFX+CRT by reducing immunosuppression.
Collapse
Affiliation(s)
- Yves Boucher
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Jessica M. Posada
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Pathology, Brigham and Women’s Hospital, Boston, University of Geneva, CH-1211 Geneva, Switzerland
| | - Sonu Subudhi
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Ashwin S. Kumar
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
- Harvard–MIT Division of Health Sciences and Technology, Cambridge, University of Geneva, CH-1211 Geneva, Switzerland
| | - Spencer R. Rosario
- Department of Biostatistics and Bioinformatics, University of Geneva, CH-1211 Geneva, Switzerland
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, University of Geneva, CH-1211 Geneva, Switzerland
| | - Liqun Gu
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Heena Kumra
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Mari Mino-Kenudson
- Department of Pathology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Nilesh P. Talele
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Dan G. Duda
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Dai Fukumura
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Jennifer Y. Wo
- Department of Radiation Oncology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jeffrey W. Clark
- Department of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - David P. Ryan
- Department of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | | | - Theodore S. Hong
- Department of Radiation Oncology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Mikael J. Pittet
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland
- Ludwig Institute for Cancer Research, 1005 Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Rakesh K. Jain
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
10
|
Kazakova E, Iamshchikov P, Larionova I, Kzhyshkowska J. Macrophage scavenger receptors: Tumor support and tumor inhibition. Front Oncol 2023; 12:1096897. [PMID: 36686729 PMCID: PMC9853406 DOI: 10.3389/fonc.2022.1096897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 01/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are a heterogeneous population of myeloid cells that constitute up to 50% of the cell mass of human tumors. TAMs interact with the components of the tumor microenvironment (TME) by using scavenger receptors (SRs), a large superfamily of multifunctional receptors that recognize, internalize and transport to the endosomal/lysosomal pathway apoptotic cells, cytokines, matrix molecules, lipid modified lipoproteins and other unwanted-self ligands. In our review, we summarized state-of-the art for the role of macrophage scavenger receptors in tumor development and their significance as cancer biomarkers. In this review we focused on functional activity of TAM-expressing SRs in animal models and in patients, and summarized the data for different human cancer types about the prognostic significance of TAM-expressed SRs. We discussed the role of SRs in the regulation of cancer cell biology, cell-cell and cell-matrix interaction in TME, immune status in TME, angiogenesis, and intratumoral metabolism. Targeting of tumor-promoting SRs can be a promising therapeutic approach in anti-cancer therapy. In our review we provide evidence for both tumor supporting and tumor inhibiting functions of scavenger receptors expressed on TAMs. We focused on the key differences in the prognostic and functional roles of SRs that are specific for cancer types. We highlighted perspectives for inhibition of tumor-promoting SRs in anti-cancer therapy.
Collapse
Affiliation(s)
- Elena Kazakova
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Pavel Iamshchikov
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina Larionova
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia,Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia,Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany,German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany,*Correspondence: Julia Kzhyshkowska,
| |
Collapse
|
11
|
Zhang X, Bai W, Hu L, Ha H, Du Y, Xiong W, Wang H, Shang P. The pleiotropic mode and molecular mechanism of macrophages in promoting tumor progression and metastasis. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:91-104. [PMID: 36071369 DOI: 10.1007/s12094-022-02932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023]
Abstract
Macrophages are the most abundant immune cells in primary and metastatic tumor tissues. Studies have shown that macrophages mainly exhibit a tumor-promoting phenotype and play a key role in tumor progression and metastasis. Therefore, many macrophage-targeted drugs have entered clinical trials. However, compared to preclinical studies, some clinical trial results showed that macrophage-targeted therapy did not achieve the desired effect. This may be because most of what we know about macrophages comes from in vitro experiments and animal models, while macrophages in the more complex human microenvironment are still poorly understood. With the development of technologies such as single-cell RNA sequencing, we have gained a new understanding of the origin, classification and functional mechanism of tumor-associated macrophages. Therefore, this study reviewed the recent progress of macrophages in promoting tumor progression and metastasis, aiming to provide some help for the formulation of optimal strategies for macrophage-targeted therapy.
Collapse
Affiliation(s)
- Xingxing Zhang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wenxiu Bai
- Ultrasonic Special Examination Department, Tai An TSCM Hospital, Taian, 271000, Shandong, China
| | - Lisha Hu
- Ultrasonic Special Examination Department, Tai An TSCM Hospital, Taian, 271000, Shandong, China
| | - Hualan Ha
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yuelin Du
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wei Xiong
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hongbo Wang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Panfeng Shang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
12
|
Cang W, Wu A, Gu L, Wang W, Tian Q, Zheng Z, Qiu L. Erastin enhances metastatic potential of ferroptosis-resistant ovarian cancer cells by M2 polarization through STAT3/IL-8 axis. Int Immunopharmacol 2022; 113:109422. [PMID: 36410184 DOI: 10.1016/j.intimp.2022.109422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022]
Abstract
Erastin is a small molecule identified in chemical screen that is capable of inducing ferropotosis. There is collective evidence proving that erastin-induced ferroptosis exhibits anti-tumor potential within diverse caners, such as ovarian cancer (OC). However, most OC cells show relative resistance to ferroptosis induced by erastin. M2-polarized tumor-associated macrophages (TAMs) have an important effect on the OC tumor microenvironment (TME), which makes M2 polarization a noticeable part in the context of OC therapy. The immunomodulatory effects of erastin on ferroptosis-resistant OC cells remain poorly understood. Here, we found that low concentration of erastin greatly promoted ferroptosis-resistant OC cell invasion and migration via STAT3-mediated M2 polarization of macrophages. As revealed by in-vitro experimental results, erastin significantly increased metastases of ferroptosis-resistant OC, and the percentage of M2 macrophage infiltration was also raised after erastin treatment. Furthermore, erastin augmented IL-8 production of macrophages, and pharmacological blockage of IL-8 partially abrogated the stimulatory effect of erastin on ferroptosis-resistant OC cells. This study demonstrates a new mechanism undering the tumor-promoting activity of erastin and has implications for the STAT3/IL-8 axis as a potential target for ferroptosis-resistant OC cells to improve overall anti-tumor efficacy.
Collapse
Affiliation(s)
- Wei Cang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China
| | - Anyue Wu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China
| | - Liying Gu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China
| | - Wenjing Wang
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China
| | - Qi Tian
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China
| | - Zhong Zheng
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Lihua Qiu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, China.
| |
Collapse
|
13
|
Cerro PA, Mascaraque M, Gallego-Rentero M, Almenara-Blasco M, Nicolás-Morala J, Santiago JL, González S, Gracia-Cazaña T, Juarranz Á, Gilaberte Y. Tumor microenvironment in non-melanoma skin cancer resistance to photodynamic therapy. Front Oncol 2022; 12:970279. [PMID: 36338755 PMCID: PMC9634550 DOI: 10.3389/fonc.2022.970279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Non-melanoma skin cancer has recently seen an increase in prevalence, and it is estimated that this grow will continue in the coming years. In this sense, the importance of therapy effectiveness has increased, especially photodynamic therapy. Photodynamic therapy has attracted much attention as a minimally invasive, selective and repeatable approach for skin cancer treatment and prevention. Although its high efficiency, this strategy has also faced problems related to tumor resistance, where the tumor microenvironment has gained a well-deserved role in recent years. Tumor microenvironment denotes a wide variety of elements, such as cancer-associated fibroblasts, immune cells, endothelial cells or the extracellular matrix, where their interaction and the secretion of a wide diversity of cytokines. Therefore, the need of designing new strategies targeting elements of the tumor microenvironment to overcome the observed resistance has become evident. To this end, in this review we focus on the role of cancer-associated fibroblasts and tumor-associated macrophages in the resistance to photodynamic therapy. We are also exploring new approaches consisting in the combination of new and old drugs targeting these cells with photodynamic therapy to enhance treatment outcomes of non-melanoma skin cancer.
Collapse
Affiliation(s)
- Paulina A. Cerro
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Marta Mascaraque
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - María Gallego-Rentero
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - Manuel Almenara-Blasco
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Jimena Nicolás-Morala
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - Juan Luis Santiago
- Servicio de Dermatología, Hospital General de Ciudad Real, Ciudad Real, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Universidad de Alcalá, Madrid, Spain
| | - Tamara Gracia-Cazaña
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Ángeles Juarranz
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
- *Correspondence: Ángeles Juarranz, ; Yolanda Gilaberte,
| | - Yolanda Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
- *Correspondence: Ángeles Juarranz, ; Yolanda Gilaberte,
| |
Collapse
|
14
|
Gudgeon J, Marín-Rubio JL, Trost M. The role of macrophage scavenger receptor 1 (MSR1) in inflammatory disorders and cancer. Front Immunol 2022; 13:1012002. [PMID: 36325338 PMCID: PMC9618966 DOI: 10.3389/fimmu.2022.1012002] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
Macrophage scavenger receptor 1 (MSR1), also named CD204, holds key inflammatory roles in multiple pathophysiologic processes. Present primarily on the surface of various types of macrophage, this receptor variably affects processes such as atherosclerosis, innate and adaptive immunity, lung and liver disease, and more recently, cancer. As highlighted throughout this review, the role of MSR1 is often dichotomous, being either host protective or detrimental to the pathogenesis of disease. We will discuss the role of MSR1 in health and disease with a focus on the molecular mechanisms influencing MSR1 expression, how altered expression affects disease process and macrophage function, the limited cell signalling pathways discovered thus far, the emerging role of MSR1 in tumour associated macrophages as well as the therapeutic potential of targeting MSR1.
Collapse
Affiliation(s)
| | - José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
15
|
Park K, Ahn JW, Kim JH, Kim JW. Tumor-associated macrophage-targeted photodynamic cancer therapy using a dextran sulfate-based nano-photosensitizer. Int J Biol Macromol 2022; 218:384-393. [PMID: 35902009 DOI: 10.1016/j.ijbiomac.2022.07.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
The M2-like phenotype of tumor-associated macrophages (TAMs) present in tumors promotes tumor growth and metastasis. Therefore, targeting M2-like TAMs is a potential strategy for cancer therapy. Herein, we fabricated a dextran sulfate-based nano-photosensitizer (dextran sulfate-conjugated chlorin e6, DS-Ce6) to specifically target M2-like TAMs for enhanced photodynamic therapy (PDT). DS-Ce6 was preferentially taken up by interleukin-4-derived M2 macrophages, which overexpressed scavenger receptor-A and selectively targeted macrophages in co-cultured 4T1 tumors/macrophages. The nano-photosensitizer also effectively induced the apoptosis of tumor cells in both monolayer co-culture and three-dimensional co-culture spheroids of tumors/macrophages under laser irradiation. Moreover, the nano-photosensitizer specifically targeted F4/80 and CD206 double-positive M2-like TAMs within tumor tissues. Therefore, the specifically targeted delivery of DS-Ce6 to M2-like TAMs prominently induced tumor apoptosis, leading to excellent phototherapeutic effects in 4T1 tumor-bearing mice after PDT, suggesting the potential of DS-Ce6 for specific targeting of M2-like TAMs and enhanced PDT.
Collapse
Affiliation(s)
- Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea.
| | - Jae Won Ahn
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Jin Hyuk Kim
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| | - Jin Won Kim
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| |
Collapse
|
16
|
Zheng Y, Yang X. Application and prospect of single-cell sequencing in cancer metastasis. Future Oncol 2022; 18:2723-2736. [PMID: 35686493 DOI: 10.2217/fon-2022-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cancer metastasis is a complicated process driven by internal genetic variations and developed through interactions with the external environment. This process usually causes therapeutic resistance and results in a low survival rate. In recent years, single-cell sequencing has become a popular method for revealing the tumor evolutionary genetic lineage, intra-tumoral heterogeneity and tumor microenvironment of the metastasis process. So as to find more therapeutic targets for clinical application, the spatial transcriptomics method has become a new rising field of cancer studies, which promotes the combination between clinical medicine and molecular biology. In future prospects, more accurate and personalized treatment models will come into reality.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Biochemistry & Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan City, Shanxi Province, 030000, China
| | - Xiaofeng Yang
- Department of Urology, First Hospital of Shanxi Medical University,Taiyuan City, Shanxi Province, 030000, China
| |
Collapse
|
17
|
Xie Y, Jia Y, Li Z, Hu F. Scavenger receptor A in immunity and autoimmune diseases: Compelling evidence for targeted therapy. Expert Opin Ther Targets 2022; 26:461-477. [PMID: 35510370 DOI: 10.1080/14728222.2022.2072729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Scavenger receptor A (SR-A) is reported to be involved in innate and adaptive immunity and in recent years, the soluble form of SR-A has also been identified. Intriguingly, SR-A displays double-edged sword features in different diseases. Moreover, targeted therapy on SR-A, including genetic modulation, small molecule inhibitor, inhibitory peptides, fucoidan, and blocking antibodies, provides potential strategies for treatment. Currently, therapeutics targeting SR-A are in preclinical studies and clinical trials, revealing great perspectives in future immunotherapy. AREAS COVERED Through searching PubMed (January 1979-March 2022) and clinicaltrials.gov, we review most of the research and clinical trials involving SR-A. This review briefly summarizes recent study advances on SR-A, with particular concern on its role in immunity and autoimmune diseases. EXPERT OPINION Given the emerging evidence of SR-A in immunity, its targeted therapy has been studied in various diseases, especially autoimmune diseases. However, many challenges still remain to be overcome, such as the double-sworded effects and the specific isoform targeting. For further clinical success of SR-A targeted therapy, the crystal structure illustration and the dual function discrimination of SR-A should be further investigated. Nevertheless, although challenging, targeting SR-A would be a potential effective strategy in the treatment of autoimmune diseases and other immune-related diseases.
Collapse
Affiliation(s)
- Yang Xie
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, Peking, China
| | - Yuan Jia
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, Peking, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, Peking, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Peking, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, Peking, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, Peking, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Peking, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, Peking, China
| |
Collapse
|
18
|
Ji Q, Huang K, Jiang Y, Lei K, Tu Z, Luo H, Zhu X. Comprehensive analysis of the prognostic and role in immune cell infiltration of MSR1 expression in lower-grade gliomas. Cancer Med 2022; 11:2020-2035. [PMID: 35142109 PMCID: PMC9089222 DOI: 10.1002/cam4.4603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The therapeutic effects of conventional treatment on gliomas are not promising. The tumor microenvironment (TME) has a close association with the invasiveness of multiple types of tumors, including low-grade gliomas (LGG). This study aims to validate the prognostic and immune-related role of macrophage scavenger receptor 1 (MSR1) in LGG patients. METHODS Data in this study were obtained from public databases. The differential expression of MSR1 was analyzed in LGG patients with different clinicopathological characteristics. Kaplan-Meier survival analysis, a time-dependent receiver operating characteristic (ROC) curve, and Cox regression analysis were used to assess the prognostic value of MSR1. Differentially expressed genes (DEGs) were screened between the high and low expression groups of MSR1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to annotate the function of these DEGs. Hallmark gene sets were identified based on MSR1 by Gene Set Enrichment Analysis (GSEA). Difference analysis and correlation analysis were used to study the relationship between MSR1 and TME-related scores, tumor-infiltrating immune cells (TIICs), immune-related gene sets, and immune checkpoints (ICPs). The single-cell sequencing data were processed to identify the cell types expressing MSR1. The quantification of TIICs in TME was calculated by single-sample gene set enrichment analysis (ssGSEA). The differential expression of MSR1 in LGG and control brain tissues was verified by experiments. RESULTS There were significant differences in the expression level of MSR1 in different types of tissues and cells. MSR1 has a high prognostic value in LGG patients and can be used as an independent prognostic factor. MSR1 is closely related to TME and may play an important role in the immunotherapy of LGG patients. CONCLUSIONS The result of our study demonstrated that MSR1 is an independent prognostic biomarker in LGG patients and may play an important role in the TME of LGGs.
Collapse
Affiliation(s)
- Qiankun Ji
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Kai Huang
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Institute of NeuroscienceNanchang UniversityNanchangJiangxiChina
| | - Yuan Jiang
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Institute of NeuroscienceNanchang UniversityNanchangJiangxiChina
| | - Kunjian Lei
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Institute of NeuroscienceNanchang UniversityNanchangJiangxiChina
| | - Zewei Tu
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Institute of NeuroscienceNanchang UniversityNanchangJiangxiChina
| | - Haitao Luo
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Institute of NeuroscienceNanchang UniversityNanchangJiangxiChina
| | - Xingen Zhu
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Institute of NeuroscienceNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
19
|
Lesire L, Leroux F, Deprez-Poulain R, Deprez B. Insulin-Degrading Enzyme, an Under-Estimated Potential Target to Treat Cancer? Cells 2022; 11:1228. [PMID: 35406791 PMCID: PMC8998118 DOI: 10.3390/cells11071228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Insulin-degrading enzyme (IDE) is a multifunctional protease due to the variety of its substrates, its various cellular locations, its conservation between species and its many non-proteolytic functions. Numerous studies have successfully demonstrated its implication in two main therapeutic areas: metabolic and neuronal diseases. In recent years, several reports have underlined the overexpression of this enzyme in different cancers. Still, the exact role of IDE in the physiopathology of cancer remains to be elucidated. Known as the main enzyme responsible for the degradation of insulin, an essential growth factor for healthy cells and cancer cells, IDE has also been shown to behave like a chaperone and interact with the proteasome. The pharmacological modulation of IDE (siRNA, chemical compounds, etc.) has demonstrated interesting results in cancer models. All these results point towards IDE as a potential target in cancer. In this review, we will discuss evidence of links between IDE and cancer development or resistance, IDE's functions, catalytic or non-catalytic, in the context of cell proliferation, cancer development and the impact of the pharmacomodulation of IDE via cancer therapeutics.
Collapse
Affiliation(s)
| | | | - Rebecca Deprez-Poulain
- INSERM U1177 Drugs and Molecules for Living Systems, Institut Pasteur de Lille, European Genomic Institute for Diabetes, University of Lille, F-59000 Lille, France; (L.L.); (F.L.); (B.D.)
| | | |
Collapse
|
20
|
Complement activation in cancer: Effects on tumor-associated myeloid cells and immunosuppression. Semin Immunol 2022; 60:101642. [PMID: 35842274 DOI: 10.1016/j.smim.2022.101642] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 01/15/2023]
Abstract
Cancer-related inflammation plays a central role in the establishment of tumor-promoting mechanisms. Tumor-associated myeloid cells, which engage in complex interactions with cancer cells, as well as stromal and tumor immune infiltrating cells, promote cancer cell proliferation and survival, angiogenesis, and the generation of an immunosuppressive microenvironment. The complement system is one of the inflammatory mechanisms activated in the tumor microenvironment. Beside exerting anti-tumor mechanisms such as complement-dependent cytotoxicity and phagocytosis induced by therapeutic monoclonal antibodies, the complement system may promote immunosuppression and tumor growth and invasiveness, in particular, through the anaphylatoxins which target both leukocytes and cancer cells. In this review, we will discuss complement-mediated mechanisms acting on leukocytes, in particular on cells of the myelomonocytic cell lineage (macrophages, neutrophils, myeloid derived suppressor cells), which promote myeloid cell recruitment and functional skewing, leading to immunosuppression and resistance to tumor-specific immunity. Pre-clinical studies, which have elucidated the role of complement in activating pro-tumor mechanisms in myeloid cells, showing the relevance of these mechanisms in human, and therapeutic approaches based on complement targeting support the hypothesis that complement directly and indirectly interferes with many of the effector pathways associated with the cancer-immunity cycle, suggesting the relevance of complement targeting to improve responses to immunotherapeutic approaches.
Collapse
|
21
|
Johnson RL, Cummings M, Thangavelu A, Theophilou G, de Jong D, Orsi NM. Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers (Basel) 2021; 13:6231. [PMID: 34944851 PMCID: PMC8699358 DOI: 10.3390/cancers13246231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
A lack of explicit early clinical signs and effective screening measures mean that ovarian cancer (OC) often presents as advanced, incurable disease. While conventional treatment combines maximal cytoreductive surgery and platinum-based chemotherapy, patients frequently develop chemoresistance and disease recurrence. The clinical application of immune checkpoint blockade (ICB) aims to restore anti-cancer T-cell function in the tumour microenvironment (TME). Disappointingly, even though tumour infiltrating lymphocytes are associated with superior survival in OC, ICB has offered limited therapeutic benefits. Herein, we discuss specific TME features that prevent ICB from reaching its full potential, focussing in particular on the challenges created by immune, genomic and metabolic alterations. We explore both recent and current therapeutic strategies aiming to overcome these hurdles, including the synergistic effect of combination treatments with immune-based strategies and review the status quo of current clinical trials aiming to maximise the success of immunotherapy in OC.
Collapse
Affiliation(s)
- Racheal Louise Johnson
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Michele Cummings
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| | - Amudha Thangavelu
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Georgios Theophilou
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Diederick de Jong
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Nicolas Michel Orsi
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| |
Collapse
|
22
|
|
23
|
Shi B, Chu J, Huang T, Wang X, Li Q, Gao Q, Xia Q, Luo S. The Scavenger Receptor MARCO Expressed by Tumor-Associated Macrophages Are Highly Associated With Poor Pancreatic Cancer Prognosis. Front Oncol 2021; 11:771488. [PMID: 34778091 PMCID: PMC8586414 DOI: 10.3389/fonc.2021.771488] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
Macrophage-targeting therapies have become attractive strategies for immunotherapy. Deficiency of MARCO significantly inhibits tumor progression and metastasis in murine models of pancreatic cancer. However, the role of MARCO in patients with pancreatic cancer remains unclear. In the present study, we analyzed tumor-associated macrophage (TAM)-related changes using the Cancer Genome Atlas database. We observed a significant enrichment of M2 macrophages in pancreatic cancer tissues. We found that several pro-tumor markers are increased in cancer tissues, including CD163, CD206, SIRPα, LILRB1, SIGLEC10, AXL, MERTK, and MARCO. Crucially, MARCO is highly or exclusively expressed in pancreatic cancer across many types of solid tumors, suggesting its significant role in pancreatic cancer. Next, we investigated the expression of MARCO in relation to the macrophage marker CD163 in a treatment-naïve pancreatic cancer cohort after surgery (n = 65). MARCO and CD163 were analyzed using immunohistochemistry. We observed increased expression of CD163 and MARCO in pancreatic cancer tissues compared with paracancerous tissues. Furthermore, we observed a large variation in CD163 and MARCO expression in pancreatic cancer tissues among cases, suggesting the heterogeneous expression of these two markers among patients. Correlation to clinical data indicated a strong trend toward worse survival for patients with high CD163 and MARCO macrophage infiltration. Moreover, high CD163 and MARCO expression negatively affected the disease-free survival and overall survival rates of patients with pancreatic cancer. Univariate and multivariate analysis revealed that CD163 and MARCO expression was an independent indicator of pancreatic cancer prognosis. In conclusion, high CD163 and MARCO expression in cancer tissues is a negative prognostic marker for pancreatic cancer after surgery. Furthermore, anti-MARCO may be a novel therapy that is worth studying in depth.
Collapse
Affiliation(s)
- Bian Shi
- Department of Integrated Traditional Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfeng Chu
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Huang
- Department of Hepatopancreatobiliary Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoqian Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiujian Li
- Department of Integrated Traditional Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Qilong Gao
- Department of Integrated Traditional Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingxin Xia
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Suxia Luo
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Lin X, Fang Y, Jin X, Zhang M, Shi K. Modulating Repolarization of Tumor-Associated Macrophages with Targeted Therapeutic Nanoparticles as a Potential Strategy for Cancer Therapy. ACS APPLIED BIO MATERIALS 2021; 4:5871-5896. [PMID: 35006894 DOI: 10.1021/acsabm.1c00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are always some components in the tumor microenvironment (TME), such as tumor-associated macrophages (TAMs), that help tumor cells escape the body's immune surveillance. Therefore, this situation can lead to tumor growth, progression, and metastasis, resulting in low response rates for cancer therapy. Macrophages play an important role with strong plasticity and functional diversity. Facing different microenvironmental stimulations, macrophages undergo a dynamic change in phenotype and function into two major macrophage subpopulations, namely classical activation/inflammation (M1) and alternative activation/regeneration (M2) type. Through various signaling pathways, macrophages polarize into complex groups, which can perform different immune functions. In this review, we emphasize the use of nanopreparations for macrophage related immunotherapy based on the pathological knowledge of TAMs phenotype. These macrophages targeted nanoparticles re-edit and re-educate macrophages by attenuating M2 macrophages and reducing aggregation to the TME, thereby relieving or alleviating immunosuppression. Among them, we describe in detail the cellular mechanisms and regulators of several major signaling pathways involved in the plasticity and polarization functions of macrophages. The advantages and challenges of those nanotherapeutics for these pathways have been elucidated, providing the basis and insights for the diagnosis and treatment strategies of various diseases centered on macrophages.
Collapse
Affiliation(s)
- Xiaojie Lin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Yan Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Xuechao Jin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Mingming Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Kai Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300350 Tianjin, China
| |
Collapse
|
25
|
Zhao L, Giannou AD, Xu Y, Shiri AM, Liebold I, Steglich B, Bedke T, Zhang T, Lücke J, Scognamiglio P, Kempski J, Woestemeier A, Chen J, Agalioti T, Zazara DE, Lindner D, Janning M, Hennigs JK, Jagirdar RM, Kotsiou OS, Zarogiannis SG, Kobayashi Y, Izbicki JR, Ghosh S, Rothlin CV, Bosurgi L, Huber S, Gagliani N. Efferocytosis fuels malignant pleural effusion through TIMP1. SCIENCE ADVANCES 2021; 7:7/33/eabd6734. [PMID: 34389533 PMCID: PMC8363144 DOI: 10.1126/sciadv.abd6734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 06/24/2021] [Indexed: 06/03/2023]
Abstract
Malignant pleural effusion (MPE) results from the capacity of several human cancers to metastasize to the pleural cavity. No effective treatments are currently available, reflecting our insufficient understanding of the basic mechanisms leading to MPE progression. Here, we found that efferocytosis through the receptor tyrosine kinases AXL and MERTK led to the production of interleukin-10 (IL-10) by four distinct pleural cavity macrophage (Mφ) subpopulations characterized by different metabolic states and cell chemotaxis properties. In turn, IL-10 acts on dendritic cells (DCs) inducing the production of tissue inhibitor of metalloproteinases 1 (TIMP1). Genetic ablation of Axl and Mertk in Mφs or IL-10 receptor in DCs or Timp1 substantially reduced MPE progression. Our results delineate an inflammatory cascade-from the clearance of apoptotic cells by Mφs, to production of IL-10, to induction of TIMP1 in DCs-that facilitates MPE progression. This inflammatory cascade offers a series of therapeutic targets for MPE.
Collapse
Affiliation(s)
- Lilan Zhao
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of General Thoracic Surgery, Fujian Provincial Hospital, Fujian Medical University, 350003 Fuzhou, People's Republic of China
| | - Anastasios D Giannou
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Yang Xu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Imke Liebold
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Babett Steglich
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tanja Bedke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Pasquale Scognamiglio
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jing Chen
- Department of Pharmacy, Dong Fang Hospital (900 Hospital of the Joint Logistics Team), School of Medicine, Xiamen University, 350025 Fuzhou, People's Republic of China
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dimitra E Zazara
- Center for Obstetrics and Pediatrics, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Diana Lindner
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 33 280, 69120 Heidelberg, Germany
| | - Melanie Janning
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim and Medical Faculty Mannheim, University of Heidelberg Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Jan K Hennigs
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Rajesh M Jagirdar
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Ourania S Kotsiou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Yasushi Kobayashi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jacob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sourav Ghosh
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carla V Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lidia Bosurgi
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Protozoa Immunology, Bernard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
26
|
Serini S, Cassano R, Bruni M, Servidio C, Calviello G, Trombino S. Characterization of a hyaluronic acid and folic acid-based hydrogel for cisplatin delivery: Antineoplastic effect in human ovarian cancer cells in vitro. Int J Pharm 2021; 606:120899. [PMID: 34324990 DOI: 10.1016/j.ijpharm.2021.120899] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/01/2023]
Abstract
We successfully prepared and characterized a hyaluronic acid- and folic acid-based hydrogel for the delivery of cisplatin (GEL-CIS) with the aim to induce specific and efficient incorporation of CIS into ovarian cancer (OC) cells, improve its antineoplastic effect and avoid CIS-resistance. The slow and controlled release of the drug from the polymeric network and its swelling degree at physiologic pH suggested its suitability for CIS delivery in OC. We compared here the effects of pure CIS to that of GEL-CIS on human OC cell lines, either wild type or CIS-resistant, in basal conditions and in the presence of macrophage-derived conditioned medium, mimicking the action of tumor-associated macrophages in vivo. GEL-CIS inhibited OC cell growth and migration more efficiently than pure CIS and modulated the expression of proteins involved in the Epithelial Mesenchymal Transition, a process playing a key role in OC metastatic spread and resistance to CIS.
Collapse
Affiliation(s)
- Simona Serini
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Matilde Bruni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Camilla Servidio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Gabriella Calviello
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy.
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
27
|
Okubo S, Suzuki T, Hioki M, Shimizu Y, Toyama H, Morinaga S, Gotohda N, Uesaka K, Ishii G, Takahashi S, Kojima M. The immunological impact of preoperative chemoradiotherapy on the tumor microenvironment of pancreatic cancer. Cancer Sci 2021; 112:2895-2904. [PMID: 33931909 PMCID: PMC8253289 DOI: 10.1111/cas.14914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Several therapeutic regimens, including neoadjuvant chemoradiation therapy (NACRT), have been reported to serve as anticancer immune effectors. However, there remain insufficient data regarding the immune response after NACRT in pancreatic ductal adenocarcinoma (PDAC) patients. Data from 40 PDAC patients that underwent surgical resection after NACRT (NACRT group) and 30 PDAC patients that underwent upfront surgery (US group) were analyzed to examine alterations in immune cell counts/distribution using a multiplexed fluorescent immunohistochemistry system. All immune cells were more abundant in the cancer stroma than in the cancer cell nest regardless of preoperative therapy. Although the stromal counts of CD4+ T cells, CD20+ B cells, and Foxp3+ T cells in the NACRT group were drastically decreased in comparison with those of the US group, counts of these cell types in the cancer cell nest were not significantly different between the two groups. In contrast, CD204+ macrophage counts in the cancer stroma were similar between the NACRT and US groups, while those in the cancer cell nests were significantly reduced in the NACRT group. Following multivariate analysis, only a high CD204+ macrophage count in the cancer cell nest remained an independent predictor of shorter relapse-free survival (odds ratio = 2.37; P = .033). NACRT for PDAC decreased overall immune cell counts, but these changes were heterogeneous within the cancer cell nests and cancer stroma. The CD204+ macrophage count in the cancer cell nest is an independent predictor of early disease recurrence in PDAC patients after NACRT.
Collapse
Affiliation(s)
- Satoshi Okubo
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan.,Hepato-Biliary-Pancreatic Surgery Division, Department of Gastroenterological Surgery, Toranomon Hospital, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan.,General Medicinal Education and Research Center, Teikyo University, Tokyo, Japan
| | - Masayoshi Hioki
- Department of Gastroenterological Surgery, Fukuyama City Hospital, Hiroshima, Japan
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Aichi, Japan
| | - Hirochika Toyama
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Soichiro Morinaga
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Kanagawa, Japan
| | - Naoto Gotohda
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Shinichiro Takahashi
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Motohiro Kojima
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| |
Collapse
|
28
|
Cotechini T, Atallah A, Grossman A. Tissue-Resident and Recruited Macrophages in Primary Tumor and Metastatic Microenvironments: Potential Targets in Cancer Therapy. Cells 2021; 10:960. [PMID: 33924237 PMCID: PMC8074766 DOI: 10.3390/cells10040960] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages within solid tumors and metastatic sites are heterogenous populations with different developmental origins and substantially contribute to tumor progression. A number of tumor-promoting phenotypes associated with both tumor- and metastasis-associated macrophages are similar to innate programs of embryonic-derived tissue-resident macrophages. In contrast to recruited macrophages originating from marrow precursors, tissue-resident macrophages are seeded before birth and function to coordinate tissue remodeling and maintain tissue integrity and homeostasis. Both recruited and tissue-resident macrophage populations contribute to tumor growth and metastasis and are important mediators of resistance to chemotherapy, radiation therapy, and immune checkpoint blockade. Thus, targeting various macrophage populations and their tumor-promoting phenotypes holds therapeutic promise. Here, we discuss various macrophage populations as regulators of tumor progression, immunity, and immunotherapy. We provide an overview of macrophage targeting strategies, including therapeutics designed to induce macrophage depletion, impair recruitment, and induce repolarization. We also provide a perspective on the therapeutic potential for macrophage-specific acquisition of trained immunity as an anti-cancer agent and discuss the therapeutic potential of exploiting macrophages and their traits to reduce tumor burden.
Collapse
Affiliation(s)
- Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.A.); (A.G.)
| | | | | |
Collapse
|
29
|
Golabek A, Kaczmarek M, Dondajewska E, Sakrajda K, Mackiewicz A, Dams-Kozlowska H. Application of a three-dimensional (3D) breast cancer model to study macrophage polarization. Exp Ther Med 2021; 21:482. [PMID: 33790991 PMCID: PMC8005691 DOI: 10.3892/etm.2021.9913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Knowledge of the tumor microenvironment is crucial for developing an effective strategy to treat cancer. Recently, anticancer therapies targeting macrophages have been intensively investigated. Increased understanding of the importance of the tumor microenvironment has led to the development of three-dimensional (3D) in vitro tumor models. However, established techniques for studying tumor-associated macrophages in vitro are limited. We have previously characterized a 3D breast cancer model consisting of breast cancer cells and fibroblasts cocultured on a silk scaffold. In the present study, the influence of this model on macrophage polarization was investigated. The expression of macrophage markers was studied using reverse transcription-quantitative PCR and flow cytometry. The activity of nitric oxide synthase and arginase in macrophages was also measured. The presented model appeared to induce the polarization of macrophages towards an M2 phenotype. In this 3D tumor model, the in vivo behavior of macrophages could be reproduced. This model may be beneficial for the study of tumor biology and for screening drugs.
Collapse
Affiliation(s)
- Agata Golabek
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland.,Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Ewelina Dondajewska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Kosma Sakrajda
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Andrzej Mackiewicz
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland.,Department of Cancer Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland.,Department of Cancer Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
30
|
Donadon M, Torzilli G, Cortese N, Soldani C, Di Tommaso L, Franceschini B, Carriero R, Barbagallo M, Rigamonti A, Anselmo A, Colombo FS, Maggi G, Lleo A, Cibella J, Peano C, Kunderfranco P, Roncalli M, Mantovani A, Marchesi F. Macrophage morphology correlates with single-cell diversity and prognosis in colorectal liver metastasis. J Exp Med 2021; 217:152014. [PMID: 32785653 PMCID: PMC7596819 DOI: 10.1084/jem.20191847] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/28/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
It has long been known that in vitro polarized macrophages differ in morphology. Stemming from a conventional immunohistology observation, we set out to test the hypothesis that morphology of tumor-associated macrophages (TAMs) in colorectal liver metastasis (CLM) represents a correlate of functional diversity with prognostic significance. Density and morphological metrics of TAMs were measured and correlated with clinicopathological variables. While density of TAMs did not correlate with survival of CLM patients, the cell area identified small (S-TAM) and large (L-TAM) macrophages that were associated with 5-yr disease-free survival rates of 27.8% and 0.2%, respectively (P < 0.0001). RNA sequencing of morphologically distinct macrophages identified LXR/RXR as the most enriched pathway in large macrophages, with up-regulation of genes involved in cholesterol metabolism, scavenger receptors, MERTK, and complement. In single-cell analysis of mononuclear phagocytes from CLM tissues, S-TAM and L-TAM signatures were differentially enriched in individual clusters. These results suggest that morphometric characterization can serve as a simple readout of TAM diversity with strong prognostic significance.
Collapse
Affiliation(s)
- Matteo Donadon
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biomedical Science, Humanitas University, Rozzano, Italy
| | - Guido Torzilli
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biomedical Science, Humanitas University, Rozzano, Italy
| | - Nina Cortese
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Luca Di Tommaso
- Department of Biomedical Science, Humanitas University, Rozzano, Italy.,Department of Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Roberta Carriero
- Bioinformatics Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Marialuisa Barbagallo
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Alessandra Rigamonti
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biotechnology and Translational Medicine, University of Milan, Italy
| | - Achille Anselmo
- Flow Cytometry Core, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | | | - Giulia Maggi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biotechnology and Translational Medicine, University of Milan, Italy
| | - Ana Lleo
- Department of Biomedical Science, Humanitas University, Rozzano, Italy.,Division of Internal Medicine and Hepathology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Javier Cibella
- Genomic Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Clelia Peano
- Genomic Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatics Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Massimo Roncalli
- Department of Biomedical Science, Humanitas University, Rozzano, Italy.,Department of Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Alberto Mantovani
- Department of Biomedical Science, Humanitas University, Rozzano, Italy.,Department of Immunology and Inflammation, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Federica Marchesi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biotechnology and Translational Medicine, University of Milan, Italy
| |
Collapse
|
31
|
Yang S, Liu Q, Liao Q. Tumor-Associated Macrophages in Pancreatic Ductal Adenocarcinoma: Origin, Polarization, Function, and Reprogramming. Front Cell Dev Biol 2021; 8:607209. [PMID: 33505964 PMCID: PMC7829544 DOI: 10.3389/fcell.2020.607209] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy. PDAC is only cured by surgical resection in its early stage, but there remains a relatively high possibility of recurrence. The development of PDAC is closely associated with the tumor microenvironment. Tumor-associated macrophages (TAMs) are one of the most abundant immune cell populations in the pancreatic tumor stroma. TAMs are inclined to M2 deviation in the tumor microenvironment, which promotes and supports tumor behaviors, including tumorigenesis, immune escape, metastasis, and chemotherapeutic resistance. Herein, we comprehensively reviewed the latest researches on the origin, polarization, functions, and reprogramming of TAMs in PDAC.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Modeling the Early Steps of Ovarian Cancer Dissemination in an Organotypic Culture of the Human Peritoneal Cavity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1330:75-94. [PMID: 34339031 DOI: 10.1007/978-3-030-73359-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The majority of ovarian cancer patients present clinically with wide-spread metastases throughout the peritoneal cavity, metastasizing to the mesothelium-lined peritoneum and visceral adipose depots within the abdomen. This unique metastatic tumor microenvironment is comprised of multiple cell types, including mesothelial cells, fibroblasts, adipocytes, macrophages, neutrophils, and T lymphocytes. Modeling advancements, including complex 3D systems and organoids, coupled with 2D cocultures, in vivo mouse models, and ex vivo human tissue cultures have greatly enhanced our understanding of the tumor-stroma interactions that are required for successful metastasis of ovarian cancer cells. However, advanced multifaceted model systems that incorporate frequency and spatial distribution of all cell types present in the tumor microenvironment of ovarian cancer are needed to enhance our knowledge of ovarian cancer biology in order to identify methods for preventing and treating metastatic disease. This review highlights the utility of recently developed modeling approaches, summarizes some of the resulting progress using these techniques, and suggests how these strategies may be implemented to elucidate signaling processes among cell types of the tumor microenvironment that promote ovarian cancer metastasis.
Collapse
|
33
|
Attri A, Thakur D, Kaur T, Sensale S, Peng Z, Kumar D, Singh RP. Nanoparticles Incorporating a Fluorescence Turn-on Reporter for Real-Time Drug Release Monitoring, a Chemoenhancer and a Stealth Agent: Poseidon's Trident against Cancer? Mol Pharm 2020; 18:124-147. [PMID: 33346663 DOI: 10.1021/acs.molpharmaceut.0c00730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rate and extent of drug release under physiological conditions is a key factor influencing the therapeutic activity of a formulation. Real-time detection of drug release by conventional pharmacokinetics approaches is confounded by low sensitivity, particularly in the case of tissue-targeted novel drug delivery systems, where low concentrations of the drug reach systemic circulation. We present a novel fluorescence turn-on platform for real-time monitoring of drug release from nanoparticles based on reversible fluorescence quenching in fluorescein esters. Fluorescein-conjugated carbon nanotubes (CNTs) were esterified with methotrexate in solution and solid phase, followed by supramolecular functionalization with a chemoenhancer (suramin) or/and a stealth agent (dextran sulfate). Suramin was found to increase the cytotoxicity of methotrexate in A549 cells. On the other hand, dextran sulfate exhibited no effect on cytotoxicity or cellular uptake of CNTs by A549 cells, while a decrease in cellular uptake of CNTs and cytotoxicity of methotrexate was observed in macrophages (RAW 264.7 cells). Similar results were also obtained when CNTs were replaced with graphene. Docking studies revealed that the conjugates are not internalized by folate receptors/transporters. Further, docking and molecular dynamics studies revealed the conjugates do not exhibit affinity toward the methotrexate target, dihydrofolate reductase. Molecular dynamics studies also revealed that distinct features of dextran-CNT and suramin-CNT interactions, characterized by π-π interactions between CNTs and dextran/suramin. Our study provides a simple, cost-effective, and scalable method for the synthesis of nanoparticles conferred with the ability to monitor drug release in real-time. This method could also be extended to other drugs and other types of nanoparticles.
Collapse
Affiliation(s)
- Arjun Attri
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173 221, India
| | - Deepak Thakur
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173 221, India
| | - Taranpreet Kaur
- Department of Biotechnology, Government Mohindra College, Patiala, Punjab 147 001, India
| | - Sebastian Sensale
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637, United States
| | - Zhangli Peng
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Bioengineering, University of Illinois, Chicago, Illinois 60612, United States
| | - Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173 221, India
| | - Raman Preet Singh
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173 221, India.,Department of Pharmacy, Government Polytechnic College, Bathinda, Punjab 151 001, India
| |
Collapse
|
34
|
Chen YC, Gonzalez ME, Burman B, Zhao X, Anwar T, Tran M, Medhora N, Hiziroglu AB, Lee W, Cheng YH, Choi Y, Yoon E, Kleer CG. Mesenchymal Stem/Stromal Cell Engulfment Reveals Metastatic Advantage in Breast Cancer. Cell Rep 2020; 27:3916-3926.e5. [PMID: 31242423 DOI: 10.1016/j.celrep.2019.05.084] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/18/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Twenty percent of breast cancer (BC) patients develop distant metastasis for which there is no cure. Mesenchymal stem/stromal cells (MSCs) in the tumor microenvironment were shown to stimulate metastasis, but the mechanisms are unclear. Here, we identified and quantified cancer cells engulfing stromal cells in clinical samples of BC metastasis by dual immunostaining for EZH2 and ALDH1 expression. Using flow cytometry and a microfluidic single-cell paring and retrieval platform, we show that MSC engulfment capacity is associated with BC cell metastatic potential and generates cells with mesenchymal-like, invasion, and stem cell traits. Whole-transcriptome analyses of selectively retrieved engulfing BC cells identify a gene signature of MSC engulfment consisting of WNT5A, MSR1, ELMO1, IL1RL2, ZPLD1, and SIRPB1. These results delineate a mechanism by which MSCs in the tumor microenvironment promote metastasis and provide a microfluidic platform with the potential to predict BC metastasis in clinical samples.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA; Forbes Institute for Cancer Discovery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria E Gonzalez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Boris Burman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xintao Zhao
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Talha Anwar
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Molecular Cellular and Pathology Training Program, University of Michigan, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mai Tran
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natasha Medhora
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayse B Hiziroglu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Woncheol Lee
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-Heng Cheng
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yehyun Choi
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Alginate-zinc (II) phthalocyanine conjugates: Synthesis, characterization and tumor-associated macrophages-targeted photodynamic therapy. Carbohydr Polym 2020; 240:116239. [DOI: 10.1016/j.carbpol.2020.116239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 11/18/2022]
|
36
|
The Role of Tumor-Associated Macrophages in the Progression and Chemoresistance of Ovarian Cancer. Cells 2020; 9:cells9051299. [PMID: 32456078 PMCID: PMC7290435 DOI: 10.3390/cells9051299] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 01/11/2023] Open
Abstract
Tumor-associated macrophages (TAMs) constitute the main population of immune cells present in the ovarian tumor microenvironment. These cells are characterized by high plasticity and can be easily polarized by colony-stimulating factor-1, which is released by tumor cells, into an immunosuppressive M2-like phenotype. These cells are strongly implicated in both the progression and chemoresistance of ovarian cancer. The main pro-tumoral function of M2-like TAMs is the secretion of a variety of cytokines, chemokines, enzymes and exosomes that reach microRNAs, directly inducing the invasion potential and chemoresistance of ovarian cancer cells by triggering their pro-survival signaling pathways. The M2-like TAMs are also important players in the metastasis of ovarian cancer cells in the peritoneum through their assistance in spheroid formation and attachment of cancer cells to the metastatic area—the omentum. Moreover, TAMs interplay with other immune cells, such as lymphocytes, natural killer cells, and dendritic cells, to inhibit their responsiveness, resulting in the development of immunosuppression. The detrimental character of the M2-like type of TAMs in ovarian tumors has been confirmed by a number of studies, demonstrating the positive correlation between their high level in tumors and low overall survival of patients.
Collapse
|
37
|
Hoffmann EJ, Ponik SM. Biomechanical Contributions to Macrophage Activation in the Tumor Microenvironment. Front Oncol 2020; 10:787. [PMID: 32509583 PMCID: PMC7251173 DOI: 10.3389/fonc.2020.00787] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Alterations in extracellular matrix composition and organization are known to promote tumor growth and metastatic progression in breast cancer through interactions with tumor cells as well as stromal cell populations. Macrophages display a spectrum of behaviors from tumor-suppressive to tumor-promoting, and their function is spatially and temporally dependent upon integrated signals from the tumor microenvironment including, but not limited to, cytokines, metabolites, and hypoxia. Through years of investigation, the specific biochemical cues that recruit and activate tumor-promoting macrophage functions within the tumor microenvironment are becoming clear. In contrast, the impact of biomechanical stimuli on macrophage activation has been largely underappreciated, however there is a growing body of evidence that physical cues from the extracellular matrix can influence macrophage migration and behavior. While the complex, heterogeneous nature of the extracellular matrix and the transient nature of macrophage activation make studying macrophages in their native tumor microenvironment challenging, this review highlights the importance of investigating how the extracellular matrix directly and indirectly impacts tumor-associated macrophage activation. Additionally, recent advances in investigating macrophages in the tumor microenvironment and future directions regarding mechano-immunomodulation in cancer will also be discussed.
Collapse
Affiliation(s)
- Erica J. Hoffmann
- Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Suzanne M. Ponik
- Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
38
|
Baci D, Bosi A, Gallazzi M, Rizzi M, Noonan DM, Poggi A, Bruno A, Mortara L. The Ovarian Cancer Tumor Immune Microenvironment (TIME) as Target for Therapy: A Focus on Innate Immunity Cells as Therapeutic Effectors. Int J Mol Sci 2020; 21:ijms21093125. [PMID: 32354198 PMCID: PMC7247443 DOI: 10.3390/ijms21093125] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer (OvCA) accounts for one of the leading causes of death from gynecologic malignancy. Despite progress in therapy improvements in OvCA, most patients develop a recurrence after first-line treatments, dependent on the tumor and non-tumor complexity/heterogeneity of the neoplasm and its surrounding tumor microenvironment (TME). The TME has gained greater attention in the design of specific therapies within the new era of immunotherapy. It is now clear that the immune contexture in OvCA, here referred as tumor immune microenvironment (TIME), acts as a crucial orchestrator of OvCA progression, thus representing a necessary target for combined therapies. Currently, several advancements of antitumor immune responses in OvCA are based on the characterization of tumor-infiltrating lymphocytes, which have been shown to correlate with a significantly improved clinical outcome. Here, we reviewed the literature on selected TIME components of OvCA, such as macrophages, neutrophils, γδ T lymphocytes, and natural killer (NK) cells; these cells can have a role in either supporting or limiting OvCA, depending on the TIME stimuli. We also reviewed and discussed the major (immune)-therapeutic approaches currently employed to target and/or potentiate macrophages, neutrophils, γδ T lymphocytes, and NK cells in the OvCA context.
Collapse
Affiliation(s)
- Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| | - Annalisa Bosi
- Laboratory of Pharmacology, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Matteo Gallazzi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| | - Manuela Rizzi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| | - Douglas M. Noonan
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
- IRCCS MultiMedica, 20138 Milan, Italy;
| | - Alessandro Poggi
- UOSD Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | | | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
- Correspondence:
| |
Collapse
|
39
|
Yousefzadeh Y, Hallaj S, Baghi Moornani M, Asghary A, Azizi G, Hojjat-Farsangi M, Ghalamfarsa G, Jadidi-Niaragh F. Tumor associated macrophages in the molecular pathogenesis of ovarian cancer. Int Immunopharmacol 2020; 84:106471. [PMID: 32305830 DOI: 10.1016/j.intimp.2020.106471] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
The tumor microenvironment is a critical factor that enhances cancer progression, drug resistance, and failure of therapeutic approaches. Several cellular and non-cellular factors are involved in cancer promotion. Among the several cell populations in the tumor microenvironment, macrophages, as one of the most abundant innate immune cells within the tumor milieu, have attracted extensive attention among several researchers because of their critical role in innate pathophysiology of multiple disorders, as well as ovarian cancer. High plasticity and consequent high ability to adapt to environmental alternations by adjusting their cellular metabolism and immunological phenotype is the notable characteristic of macrophages. Therefore, the critical function of tumor-associated macrophages in ovarian cancer is highlighted in the growing body of recent studies. In this article, we will comprehensively focus on significant impacts of the macrophages on ovarian cancer progression, by discussing the role of macrophages as one of the fundamental immune cells present in tumor milieu, in metabolic reprogramming of transformed cells, and involvement of these cells in the ovarian cancer initiation, progression, invasion, and angiogenesis. Moreover, we will summarise recent studies evaluating the effects of targeting macrophages in ovarian cancer.
Collapse
Affiliation(s)
- Yousef Yousefzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Hallaj
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Baghi Moornani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Asghary
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Hashimoto R, Kakigi R, Miyamoto Y, Nakamura K, Itoh S, Daida H, Okada T, Katoh Y. JAK-STAT-dependent regulation of scavenger receptors in LPS-activated murine macrophages. Eur J Pharmacol 2020; 871:172940. [PMID: 31968212 DOI: 10.1016/j.ejphar.2020.172940] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/23/2019] [Accepted: 01/17/2020] [Indexed: 12/17/2022]
Abstract
In atherosclerosis progression, atherosclerotic plaques develop upon accumulated foam cells derived from macrophages that take up modified low-density lipoprotein (LDL). CD36 and CD204 are the principal scavenger receptors responsible for the uptake of modified LDL. Lipopolysaccharide (LPS) exacerbates atherosclerosis by enhancing the expression of scavenger receptors and thus increasing the uptake of modified LDL into macrophages. However, the signaling pathways that mediate LPS and scavenger receptor expression have not been fully elucidated. We used mouse bone marrow-derived macrophages and investigated the effects of LPS in vitro. LPS enhanced the phosphorylation of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription-1 (STAT-1). Inhibitors of the mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) pathway (U0126 and PD0325901) suppressed the uptake of acetylated-LDL (Ac-LDL) and the expression of CD204 but not CD36 in LPS-activated macrophages. Inhibitors of the Janus tyrosine kinase (JAK)-STAT pathway (ruxolitinib and tofacitinib) suppressed the uptake of Ac-LDL and the expression of both CD36 and CD204 in LPS-activated macrophages. We next injected LPS into the peritoneal cavity of mice and analyzed the effects of LPS. MEK inhibitor U0126 suppressed the uptake of Ac-LDL and the expression of CD204 but not CD36 in LPS-activated macrophages. JAK inhibitor ruxolitinib suppressed the uptake of Ac-LDL and the expression of both CD36 and CD204 in LPS-activated macrophages. These results suggest that scavenger receptors in LPS-activated mouse macrophages are regulated through a JAK-STAT-dependent pathway. Although further evaluation is necessary, JAK-STAT inhibition could be useful in atherosclerosis therapy, at least for atherosclerosis exacerbated by LPS.
Collapse
Affiliation(s)
- Ryota Hashimoto
- Laboratory of Molecular and Biochemical Research, Research Support Center, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan; Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Ryo Kakigi
- Department of Management Science, Josai International University, 1 Gumyo, Togane, Chiba, 283-8555, Japan
| | - Yuki Miyamoto
- Department of Cardiology, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kyoko Nakamura
- Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Seigo Itoh
- Department of Cardiology, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroyuki Daida
- Department of Cardiology, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takao Okada
- Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Youichi Katoh
- Department of Cardiology, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan; Juntendo University Faculty of International Liberal Arts, Hongo 2-1-1, Bunkyo-ku, Tokyo, 112-8421, Japan.
| |
Collapse
|
41
|
He Y, Zhou S, Deng F, Zhao S, Chen W, Wang D, Chen X, Hou J, Zhang J, Zhang W, Ding L, Tang J, Zhou Z. Clinical and transcriptional signatures of human CD204 reveal an applicable marker for the protumor phenotype of tumor-associated macrophages in breast cancer. Aging (Albany NY) 2019; 11:10883-10901. [PMID: 31799941 PMCID: PMC6932883 DOI: 10.18632/aging.102490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/17/2019] [Indexed: 12/14/2022]
Abstract
Background: Tumor-associated macrophages in human breast cancer are poorly understood. Specific tumor-associated macrophage-related molecular mechanisms among different intrinsic molecular subtypes remain unclear. Here, we have identified and explored the roles of the tumor-associated macrophages novel marker: CD204 in different subtypes of breast cancer. Results: CD204 was upregulated in four subtypes of breast cancer, and this was associated with poor survival outcomes. CD204 could promote tumor cell proliferation, migration, and invasion and was involved in immune system-related pathways among all subtypes. Special pathways in each subtype were also found. High CD204 mRNA expressions were associated with high proportions of protumor immune cell populations, and most immunoinhibitors positive correlated with CD204 expression in all subtypes. Conclusions: These findings contribute to a better understanding and managing the protumor phenotype of tumor-associated macrophages in different subtypes of breast cancer. Methods: The expression of CD204 and its clinical outcome were analyzed. The roles of CD204 in the regulation of tumor cell proliferation, migration, and invasion were studied. Potential pathways influenced by CD204 were displayed. Immune cell infiltration in different CD204 mRNA expression status and correlations between CD204 and immunoinhibitors were also analyzed.
Collapse
Affiliation(s)
- Yunjie He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Siying Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Fei Deng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Shujie Zhao
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210019, P.R. China
| | - Wenquan Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Dandan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Xiu Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Juncheng Hou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Wei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Li Ding
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
42
|
Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol 2019; 17:1-12. [PMID: 31611651 DOI: 10.1038/s41423-019-0306-1] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023] Open
Abstract
Tumor-promoting inflammation and the avoidance of immune destruction are hallmarks of cancer. While innate immune cells, such as neutrophils, monocytes, and macrophages, are critical mediators for sterile and nonsterile inflammation, persistent inflammation, such as that which occurs in cancer, is known to disturb normal myelopoiesis. This disturbance leads to the generation of immunosuppressive myeloid cells, such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). Due to their potent suppressive activities against effector lymphocytes and their abundance in the tumor microenvironment, immunosuppressive myeloid cells act as a major barrier to cancer immunotherapy. Indeed, various therapeutic approaches directed toward immunosuppressive myeloid cells are actively being tested in preclinical and clinical studies. These include anti-inflammatory agents, therapeutic blockade of the mobilization and survival of myeloid cells, and immunostimulatory adjuvants. More recently, immune checkpoint molecules expressed on tumor-infiltrating myeloid cells have emerged as potential therapeutic targets to redirect these cells to eliminate tumor cells. In this review, we discuss the complex crosstalk between cancer-related inflammation and immunosuppressive myeloid cells and possible therapeutic strategies to harness antitumor immune responses.
Collapse
|
43
|
Wang G, Serkova NJ, Groman EV, Scheinman RI, Simberg D. Feraheme (Ferumoxytol) Is Recognized by Proinflammatory and Anti-inflammatory Macrophages via Scavenger Receptor Type AI/II. Mol Pharm 2019; 16:4274-4281. [PMID: 31556296 PMCID: PMC7513579 DOI: 10.1021/acs.molpharmaceut.9b00632] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Feraheme (ferumoxytol), a negatively charged, carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticle (USPIO, 30 nm, -16 mV), is clinically approved as an iron supplement and is used off-label for magnetic resonance imaging (MRI) of macrophage-rich lesions, but the mechanism of recognition is not known. We investigated mechanisms of uptake of Feraheme by various types of macrophages in vitro and in vivo. The uptake by mouse peritoneal macrophages was not inhibited in complement-deficient serum. In contrast, the uptake of larger and less charged SPIO nanoworms (60 nm, -5 mV; 120 nm, -5 mV, respectively) was completely inhibited in complement deficient serum, which could be attributed to more C3 molecules bound per nanoparticle than Feraheme. The uptake of Feraheme in vitro was blocked by scavenger receptor (SR) inhibitor polyinosinic acid (PIA) and by antibody against scavenger receptor type A I/II (SR-AI/II). Antibodies against other SRs including MARCO, CD14, SR-BI, and CD11b had no effect on Feraheme uptake. Intraperitoneally administered PIA inhibited the peritoneal macrophage uptake of Feraheme in vivo. Nonmacrophage cells transfected with SR-AI plasmid efficiently internalized Feraheme but not noncharged ultrasmall SPIO of the same size (26 nm, -6 mV), suggesting that the anionic carboxymethyl groups of Feraheme are responsible for the SR-AI recognition. The uptake by nondifferentiated bone marrow derived macrophages (BMDM) and by BMDM differentiated into M1 (proinflammatory) and M2 (anti-inflammatory) types was efficiently inhibited by PIA and anti-SR-AI/II antibody. Interestingly, all BMDM types expressed similar levels of SR-AI/II. In conclusion, Feraheme is efficiently recognized via SR-AI/II but not via complement by different macrophage types. The recognition by the common phagocytic receptor has implications for specificity of imaging of macrophage subtypes.
Collapse
Affiliation(s)
- Guankui Wang
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Natalie J. Serkova
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Departments of Radiology, Radiation Oncology, and Medicine/Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Ernest V. Groman
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Robert I. Scheinman
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Corresponding Author:
| |
Collapse
|
44
|
Wang X, Gong Y, Deng T, Zhang L, Liao X, Han C, Yang C, Huang J, Wang Q, Song X, Zhang T, Yu T, Zhu G, Ye X, Peng T. Diagnostic and prognostic significance of mRNA expressions of apolipoprotein A and C family genes in hepatitis B virus-related hepatocellular carcinoma. J Cell Biochem 2019; 120:18246-18265. [PMID: 31211449 DOI: 10.1002/jcb.29131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is among the most common and lethal malignancies worldwide. Apolipoproteins (APOs) have been reported increasingly for their relationships with tumors. We aim at exploring the potential relationships of apolipoprotein A (APOA) and apolipoprotein C (APOC) family members with HCC. METHODS A data set, containing 212 hepatitis B virus-related HCC patients, was used for analysis. The diagnostic and prognostic ability of APOA and APOC family genes was figured out. Risk score models and nomograms were developed for the HCC prognosis prediction. Moreover, molecular mechanism exploration were identified biological processes and metabolic pathways of these genes involved in. Validation analysis was carried out using online website. RESULTS APOA1, APOC1, APOC3, and APOC4 showed robust diagnosis significance (all P < 0.05). APOA4, APOC3, and APOC4 were associated with the overall survival (OS) while APOA4 and APOC4 were linked to recurrence-free survival (RFS, all P ≤ 0.05). Risk score models and nomograms had the advantage of predicting OS and RFS for HCC. Molecular mechanism exploration indicated that these genes were involved in the steroid metabolic process, the PPAR signaling pathway, and fatty acid metabolism. Besides that, validation analysis revealed that APOC1 and APOC4 had an association with OS; and APOC3 was associated with OS and RFS (all P ≤ 0.05). CONCLUSIONS APOA1, APOC1, APOC3, and APOC4 are likely to be potential diagnostic biomarkers and APOC3 and APOC4 are likely to be potential prognostic biomarkers for hepatitis B virus-related HCC. They may be involved in the steroid metabolic process, PPAR signaling pathway, and fatty acid metabolism.
Collapse
Affiliation(s)
- Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yizhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Teng Deng
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Linbo Zhang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianlu Huang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiaoqi Wang
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaowei Song
- Department of Gastrointestinal Glands, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tengfang Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
45
|
Cheng H, Wang Z, Fu L, Xu T. Macrophage Polarization in the Development and Progression of Ovarian Cancers: An Overview. Front Oncol 2019; 9:421. [PMID: 31192126 PMCID: PMC6540821 DOI: 10.3389/fonc.2019.00421] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy worldwide. Most patients are diagnosed at late stages because of atypical symptoms and the lack of effective early diagnostic measures. The mechanisms underlying the oncogenesis and development of ovarian cancer are not clear. Macrophages, immune cells derived from the innate immune system, have two states of polarization (M1 and M2) that develop in response to different stimuli. The polarization and differentiation of macrophages into the cancer-inhibiting M1 and cancer-promoting M2 types represent the two states of macrophages in the tumor microenvironment. The interaction of polarized macrophages with cancer cells plays a crucial role in a variety of cancers. However, the effects of macrophage M1/M2 polarization on ovarian cancer have not yet been systematically and fully discussed. In this review, we discuss not only the occurrence, development and influences of macrophage polarization but also the association between macrophage polarization and ovarian cancer. The polarization of macrophages into the M1 and M2 phenotypes plays a pivotal role in ovarian cancer initiation, progression, and metastasis, and provides targets for macrophage-centered treatment in the cancer microenvironment for ovarian cancer therapy. We also addressed the regulation of macrophage polarization in ovarian cancer via noncoding RNAs, exosomes, and epigenetics.
Collapse
Affiliation(s)
- Huiyan Cheng
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China.,Department of Gynecology and Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Zhichao Wang
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, China
| | - Li Fu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
46
|
Zeng XY, Xie H, Yuan J, Jiang XY, Yong JH, Zeng D, Dou YY, Xiao SS. M2-like tumor-associated macrophages-secreted EGF promotes epithelial ovarian cancer metastasis via activating EGFR-ERK signaling and suppressing lncRNA LIMT expression. Cancer Biol Ther 2019; 20:956-966. [PMID: 31062668 PMCID: PMC6606001 DOI: 10.1080/15384047.2018.1564567] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/07/2018] [Accepted: 12/25/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Ovarian cancer (OC) is the gynecologic malignant tumor with high mortality. Accumulating evidence indicates that M2-like tumor-associated macrophages (TAMs) can secret EGF to participate in ovarian cancer growth, migration, and metastasis. An EGF-downregulated lncRNA, LIMT (lncRNA inhibiting metastasis), was identified as a critical regulator of mammary cell migration and invasion. Nevertheless, whether EGF secreted from M2-like TAMs regulates LIMT expression in ovarian cancer progression remains largely unknown. Methods: The human OC cell lines OV90 and OVCA429 were recruited in this study. The differentiation of the human monocyte cell line THP-1 into M2-like TAMs was confirmed using flow cytometry within the application of phorbol 12-myristate 13-acetate (PMA). ELISA was performed to detect EGF concentration in co-culture system of M2-like TAMs and OC cell lines. Moreover, CCK-8, flow cytometry and immunofluorescence staining of Ki67 were performed to assess the capacity of cell proliferation. Besides, cell migration and invasion were determined by wound healing and transwell assays. Furthermore, the expression levels of epithelial-mesenchymal transition (EMT) markers and EGFR/ERK signals were analyzed by qRT-PCR and western blot. Female athymic nude mice (8-12 weeks of age; n = 8 for each group) were recruited for in vivo study. Results: In the present study, THP-1 cells exhibited the phenotype markers of M2-like TAMs with low proportion of CD14+ marker and high proportion of CD68+, CD204+, CD206+ markers within the application of PMA. After co-culturing with M2-like TAMs, EGF concentration in the supernatants was significantly increased in a time-dependent manner. Besides, OC cells presented better cell viability, higher cell proliferation, and stronger migration and invasion. The expression of EMT-related markers N-cadherin, Vimentin and EGFR/ERK signals were markedly up-regulated, while E-cadherin was significantly decreased. However, these effects induced by co-culture system were reversed by the application of AG1478 (an EGFR inhibitor) or LIMT overexpression. Furthermore, the endogenous expression of LIMT was decreased in OC cell lines compared with the control group. Also, the in vivo experiments verified that the inhibition of EGFR signaling by AG1478 or overexpression of LIMT effectively repressed the tumor growth. Conclusion: Taken together, we demonstrated that EGF secreted by M2-like TAMs might suppress LIMT expression via activating EGFR-ERK signaling pathway to promote the progression of OC.
Collapse
Affiliation(s)
- Xiang-Yang Zeng
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Hui Xie
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Jing Yuan
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Xiao-Yan Jiang
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Jia-Hui Yong
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Da Zeng
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Ying-Yu Dou
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Song-Shu Xiao
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, P.R. China
| |
Collapse
|
47
|
Ovais M, Guo M, Chen C. Tailoring Nanomaterials for Targeting Tumor-Associated Macrophages. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808303. [PMID: 30883982 DOI: 10.1002/adma.201808303] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/07/2019] [Indexed: 05/17/2023]
Abstract
Advances in the field of nanotechnology together with an increase understanding of tumor immunology have paved the way for the development of more personalized cancer immuno-nanomedicines. Nanovehicles, due to their specific physicochemical properties, are emerging as key translational moieties in tackling tumor-promoting, M2-like tumor-associated macrophages (TAMs). Cancer immuno-nanomedicines target TAMs primarily by blocking M2-like TAM survival or affecting their signaling cascades, restricting macrophage recruitment to tumors and re-educating tumor-promoting M2-like TAMs to the tumoricidal, M1-like phenotype. Here, the TAM effector mechanisms and strategies for targeting TAMs are summarized, followed by a focus on the mechanistic considerations in the development of novel immuno-nanomedicines. Furthermore, imaging TAMs with nanoparticles so as to forecast a patient's clinical outcome, describing treatment options, and observing therapy responses is also discussed. At present, strategies that target TAMs are being investigated not only at the basic research level but also in early clinical trials. The significance of TAM-targeting biomaterials is highlighted, with the goal of facilitating future clinical translation.
Collapse
Affiliation(s)
- Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- School of Nanoscience and Technology, College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- School of Nanoscience and Technology, College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- School of Nanoscience and Technology, College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
48
|
Guo M, Härtlova A, Gierliński M, Prescott A, Castellvi J, Losa JH, Petersen SK, Wenzel UA, Dill BD, Emmerich CH, Ramon Y Cajal S, Russell DG, Trost M. Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J 2019; 38:embj.2018100299. [PMID: 31028084 PMCID: PMC6545745 DOI: 10.15252/embj.2018100299] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022] Open
Abstract
Alternatively activated M2 macrophages play an important role in maintenance of tissue homeostasis by scavenging dead cells, cell debris and lipoprotein aggregates via phagocytosis. Using proteomics, we investigated how alternative activation, driven by IL‐4, modulated the phagosomal proteome to control macrophage function. Our data indicate that alternative activation enhances homeostatic functions such as proteolysis, lipolysis and nutrient transport. Intriguingly, we identified the enhanced recruitment of the TAK1/MKK7/JNK signalling complex to phagosomes of IL‐4‐activated macrophages. The recruitment of this signalling complex was mediated through K63 polyubiquitylation of the macrophage scavenger receptor 1 (MSR1). Triggering of MSR1 in IL‐4‐activated macrophages leads to enhanced JNK activation, thereby promoting a phenotypic switch from an anti‐inflammatory to a pro‐inflammatory state, which was abolished upon MSR1 deletion or JNK inhibition. Moreover, MSR1 K63 polyubiquitylation correlated with the activation of JNK signalling in ovarian cancer tissue from human patients, suggesting that it may be relevant for macrophage phenotypic shift in vivo. Altogether, we identified that MSR1 signals through JNK via K63 polyubiquitylation and provides evidence for the receptor's involvement in macrophage polarization.
Collapse
Affiliation(s)
- Manman Guo
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Anetta Härtlova
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK .,Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marek Gierliński
- Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alan Prescott
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Josep Castellvi
- Department of Pathology, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Javier Hernandez Losa
- Department of Pathology, Hospital Universitario Vall d'Hebron, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Sine K Petersen
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf A Wenzel
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Brian D Dill
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Christoph H Emmerich
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Santiago Ramon Y Cajal
- Department of Pathology, Hospital Universitario Vall d'Hebron, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK .,Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
49
|
Cho Y, Milane L, Amiji MM. Genetic and epigenetic strategies for advancing ovarian cancer immunotherapy. Expert Opin Biol Ther 2019; 19:547-560. [DOI: 10.1080/14712598.2019.1602605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Youngwoo Cho
- School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Lara Milane
- Department of Pharmaceutical Science, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Mansoor M. Amiji
- Department of Pharmaceutical Science, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
50
|
Palchetti S, Caputo D, Digiacomo L, Capriotti AL, Coppola R, Pozzi D, Caracciolo G. Protein Corona Fingerprints of Liposomes: New Opportunities for Targeted Drug Delivery and Early Detection in Pancreatic Cancer. Pharmaceutics 2019; 11:E31. [PMID: 30650541 PMCID: PMC6358751 DOI: 10.3390/pharmaceutics11010031] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth cause of cancer-related mortality in the Western world and is envisaged to become the second cause by 2030. Although our knowledge about the molecular biology of PDAC is continuously increasing, this progress has not been translated into better patients' outcome. Liposomes have been used to circumvent concerns associated with the low efficiency of anticancer drugs such as severe side effects and damage of healthy tissues, but they have not resulted in improved efficacy as yet. Recently, the concept is emerging that the limited success of liposomal drugs in clinical practice is due to our poor knowledge of the nano⁻bio interactions experienced by liposomes in vivo. After systemic administration, lipid vesicles are covered by plasma proteins forming a biomolecular coating, referred to as the protein corona (PC). Recent studies have clarified that just a minor fraction of the hundreds of bound plasma proteins, referred to as "PC fingerprints" (PCFs), enhance liposome association with cancer cells, triggering efficient particle internalization. In this study, we synthesized a library of 10 liposomal formulations with systematic changes in lipid composition and exposed them to human plasma (HP). Size, zeta-potential, and corona composition of the resulting liposome⁻protein complexes were thoroughly characterized by dynamic light scattering (DLS), micro-electrophoresis, and nano-liquid chromatography tandem mass spectrometry (nano-LC MS/MS). According to the recent literature, enrichment in PCFs was used to predict the targeting ability of synthesized liposomal formulations. Here we show that the predicted targeting capability of liposome⁻protein complexes clearly correlate with cellular uptake in pancreatic adenocarcinoma (PANC-1) and insulinoma (INS-1) cells as quantified by flow-assisted cell sorting (FACS). Of note, cellular uptake of the liposomal formulation with the highest abundance of PCFs was much larger than that of Onivyde®, an Irinotecan liposomal drug approved by the Food and Drug Administration in 2015 for the treatment of metastatic PDAC. Given the urgent need of efficient nanocarriers for the treatment of PDAC, we envision that our results will pave the way for the development of more efficient PC-based targeted nanomaterials. Here we also show that some BCs are enriched with plasma proteins that are associated with the onset and progression of PDAC (e.g., sex hormone-binding globulin, Ficolin-3, plasma protease C1 inhibitor, etc.). This could open the intriguing possibility to identify novel biomarkers.
Collapse
Affiliation(s)
- Sara Palchetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Damiano Caputo
- Department of General Surgery, University Campus-Biomedico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy.
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Roberto Coppola
- Department of General Surgery, University Campus-Biomedico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy.
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
- Istituti Fisioterapici Ospitalieri, Istituto Regina Elena, Via Elio Chianesi 53, 00144 Rome, Italy.
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|