1
|
Konkel JE, Cox JR, Wemyss K. Bite-sized immunology; damage and microbes educating immunity at the gingiva. Mucosal Immunol 2024; 17:1141-1150. [PMID: 39038755 DOI: 10.1016/j.mucimm.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Immune cells residing at the gingiva experience diverse and unique signals, tailoring their functions to enable them to appropriately respond to immunological challenges and maintain tissue integrity. The gingiva, defined as the mucosal barrier that surrounds and supports the teeth, is the only barrier site completely transected by a hard structure, the tooth. The tissue is damaged in early life during tooth eruption and chronically throughout life by the process of mastication. This occurs alongside challenges typical of barrier sites, including exposure to invading pathogens, the local commensal microbial community and environmental antigens. This review will focus on the immune network safeguarding gingival integrity, which is far less understood than that resident at other barrier sites. A detailed understanding of the gingiva-resident immune network is vital as it is the site of the inflammatory disease periodontitis, the most common chronic inflammatory condition in humans which has well-known detrimental systemic effects. Furthering our understanding of how the immune populations within the gingiva develop, are tailored in health, and how this is dysregulated in disease would further the development of effective therapies for periodontitis.
Collapse
Affiliation(s)
- Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Joshua R Cox
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Kelly Wemyss
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
McClure FA, Wemyss K, Cox JR, Bridgeman HM, Prise IE, King JI, Jaigirdar S, Whelan A, Jones GW, Grainger JR, Hepworth MR, Konkel JE. Th17-to-Tfh plasticity during periodontitis limits disease pathology. J Exp Med 2024; 221:e20232015. [PMID: 38819409 PMCID: PMC11143381 DOI: 10.1084/jem.20232015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Th17 cell plasticity is crucial for development of autoinflammatory disease pathology. Periodontitis is a prevalent inflammatory disease where Th17 cells mediate key pathological roles, yet whether they exhibit any functional plasticity remains unexplored. We found that during periodontitis, gingival IL-17 fate-mapped T cells still predominantly produce IL-17A, with little diversification of cytokine production. However, plasticity of IL-17 fate-mapped cells did occur during periodontitis, but in the gingiva draining lymph node. Here, some Th17 cells acquired features of Tfh cells, a functional plasticity that was dependent on IL-6. Notably, Th17-to-Tfh diversification was important to limit periodontitis pathology. Preventing Th17-to-Tfh plasticity resulted in elevated periodontal bone loss that was not simply due to increased proportions of conventional Th17 cells. Instead, loss of Th17-to-Tfh cells resulted in reduced IgG levels within the oral cavity and a failure to restrict the biomass of the oral commensal community. Thus, our data identify a novel protective function for a subset of otherwise pathogenic Th17 cells during periodontitis.
Collapse
Affiliation(s)
- Flora A. McClure
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Kelly Wemyss
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Joshua R. Cox
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Hayley M. Bridgeman
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Ian E. Prise
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - James I. King
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Shafqat Jaigirdar
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Annie Whelan
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Gareth W. Jones
- Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - John R. Grainger
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew R. Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Joanne E. Konkel
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Malmqvist S, Clark R, Johannsen G, Johannsen A, Boström EA, Lira-Junior R. Immune cell composition and inflammatory profile of human peri-implantitis and periodontitis lesions. Clin Exp Immunol 2024; 217:173-182. [PMID: 38616555 PMCID: PMC11239561 DOI: 10.1093/cei/uxae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024] Open
Abstract
Peri-implantitis (PI) and periodontitis (PD) are common oral inflammatory diseases, which seem to exhibit critical differences in some of their molecular features. Thus, we assessed the immune cell composition of PI and PD lesions and the corresponding inflammatory profile in soft tissues and crevicular fluid. PI, PD, and control patients were recruited (n = 62), and soft tissue biopsies were collected during surgery. Crevicular fluid around implant or tooth was collected. The proportions of major immune cell populations in tissues were analyzed by flow cytometry, and the inflammatory profile in tissue and crevicular fluid by a multiplex immunoassay. No significant difference was seen between PI and PD lesions in the proportions of immune cells. PI tissues showed an increased frequency of B cells in comparison with control tissues, along with higher levels of IL-1β, TNF-α, IL-4, and BAFF in tissue and crevicular fluid. Moreover, TNF-α, IL-17A, and BAFF were higher in PI tissues, but not in PD, than in control tissues. The immune cell composition did not differ significantly between PI and PD, but an enhanced inflammatory profile was seen in PI tissue. PI lesions were enriched in B cells, and displayed increased levels of IL-1β, TNF-α, IL-4, and BAFF in both tissue and crevicular fluid.
Collapse
Affiliation(s)
- Sebastian Malmqvist
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Reuben Clark
- Division of Oral Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Johannsen
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annsofi Johannsen
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisabeth A Boström
- Division of Oral Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Orofacial Medicine, Folktandvården Stockholms Län AB, Stockholm, Sweden
| | - Ronaldo Lira-Junior
- Division of Oral Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Dyab A, Emnegard A, Wänman M, Sjöström F, Kindstedt E. Human gingival fibroblasts are a source of B cell-activating factor during periodontal inflammation. J Periodontol 2024; 95:673-681. [PMID: 38088123 DOI: 10.1002/jper.23-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 07/24/2024]
Abstract
BACKGROUND Host-modulating therapy is a possible treatment for individuals that respond poorly to conventional periodontal therapy. B cells, abundant in periodontitis lesions, require the cytokines B cell-activating factor (BAFF) and A proliferation-inducing ligand (APRIL) for survival and maturation. Although mRNA levels of BAFF and APRIL are increased in tissue from periodontitis lesions, it is unknown if periodontal resident cells express BAFF and/or APRIL during periodontal inflammation. In this study, we aim to analyze the expression of BAFF and APRIL in human gingival fibroblasts after stimulation with proinflammatory cytokines. Furthermore, we perform protein analysis in tissues and serum from periodontitis patients and healthy controls. METHODS Human gingival fibroblasts were cultured and stimulated with the proinflammatory cytokines' tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). The mRNA expression of BAFF and APRIL was analyzed by real-time quantitative polymerase chain reaction (qPCR), and the protein was detected in tissue sections using immune staining. Serum levels of BAFF were analyzed with enzyme-linked immunosorbent assay (ELISA). RESULTS In gingival fibroblasts, TNF-α upregulated BAFF mRNA, but APRIL was unaffected. IL-1β affected neither BAFF nor APRIL expression. BAFF protein was detected in the oral epithelium and in cells of the underlying connective tissue in periodontitis tissue, and BAFF protein was increased in the serum of periodontitis patients. CONCLUSION Periodontal resident cells express BAFF during periodontal inflammation and participate in providing a favorable milieu for the survival and action of B cells.
Collapse
Affiliation(s)
- Ahed Dyab
- Department of Odontology, Section for Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Ava Emnegard
- Department of Odontology, Section for Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Magnus Wänman
- Department of Odontology, Section for Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Filippa Sjöström
- Department of Odontology, Section for Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Elin Kindstedt
- Department of Odontology, Section for Molecular Periodontology, Umeå University, Umeå, Sweden
- Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM), Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Abdallah AT, Konermann A. Unraveling Divergent Transcriptomic Profiles: A Comparative Single-Cell RNA Sequencing Study of Epithelium, Gingiva, and Periodontal Ligament Tissues. Int J Mol Sci 2024; 25:5617. [PMID: 38891804 PMCID: PMC11172200 DOI: 10.3390/ijms25115617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The periodontium comprising periodontal ligament (PDL), gingiva, and epithelium play crucial roles in maintaining tooth integrity and function. Understanding tissue cellular composition and gene expression is crucial for illuminating periodontal pathophysiology. This study aimed to identify tissue-specific markers via scRNA-Seq. Primary human PDL, gingiva, and epithelium tissues (n = 7) were subjected to cell hashing and sorting. scRNA-Seq library preparation using 10× Genomics protocol and Illumina sequencing was conducted. The analysis was performed using Cellranger (v3.1.0), with downstream analysis via R packages Seurat (v5.0.1) and SCORPIUS (v1.0.9). Investigations identified eight distinct cellular clusters, revealing the ubiquitous presence of epithelial and gingival cells. PDL cells evolved in two clusters with numerical superiority. The other clusters showed varied predominance regarding gingival and epithelial cells or an equitable distribution of both. The cluster harboring most cells mainly consisted of PDL cells and was present in all donors. Some of the other clusters were also tissue-inherent, while the presence of others was environmentally influenced, revealing variability across donors. Two clusters exhibited genetic profiles associated with tissue development and cellular integrity, respectively, while all other clusters were distinguished by genes characteristic of immune responses. Developmental trajectory analysis uncovered that PDL cells may develop after epithelial and gingival cells, suggesting the inherent PDL cell-dominated cluster as a final developmental stage. This single-cell RNA sequencing study delineates the hierarchical organization of periodontal tissue development, identifies tissue-specific markers, and reveals the influence of environmental factors on cellular composition, advancing our understanding of periodontal biology and offering potential insights for therapeutic interventions.
Collapse
Affiliation(s)
- Ali T. Abdallah
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, 50924 Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
- Interdisciplinary Center for Clinical Research, University Hospital RWTH, 52074 Aachen, Germany
| | - Anna Konermann
- Department of Orthodontics, University Hospital Bonn, 53111 Bonn, Germany
| |
Collapse
|
6
|
Li S, Su L, Luan Q, Liu G, Zeng W, Yu X. Regulatory B cells induced by interleukin-35 inhibit inflammation and alveolar bone resorption in ligature-induced periodontitis. J Periodontol 2023; 94:1376-1388. [PMID: 37086023 DOI: 10.1002/jper.23-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Regulatory B cells (Bregs) have been reported to suppress immune responses and alveolar bone loss in murine periodontitis models. These cells could be induced by interleukin (IL)-35 which is increased upon periodontal inflammation. Thus, this study aimed to explore the role of Bregs induced by IL-35 in periodontitis. METHODS Experimental periodontitis was induced in mice by ligature. Two weeks after ligation, the test group was systemically treated with IL-35 for 1 week. Four weeks after ligation, all mice were euthanized, and alveolar bone loss was evaluated by microcomputed tomography. Cytokines associated with periodontitis were analyzed using reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Bregs in spleens, cervical lymph nodes, and periodontal tissues were detected by flow cytometry and immunofluorescence staining. RESULTS In the mouse model of periodontitis, IL-35 induced the expansion of CD1dhi CD5+ B10 cells with increased interleukin-10 (IL-10) and IL-35 production. IL-35 administration also attenuated alveolar bone loss and reduced the levels of proinflammatory cytokines in situ. CONCLUSIONS Following ligature-induced periodontitis in mice, IL-35 inhibited periodontal inflammation and alveolar bone resorption at least partially through the induction of B10 cells and IL-35+ Bregs.
Collapse
Affiliation(s)
- Shiyi Li
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Li Su
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Guojing Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenmin Zeng
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoqian Yu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
7
|
Hajishengallis G. Illuminating the oral microbiome and its host interactions: animal models of disease. FEMS Microbiol Rev 2023; 47:fuad018. [PMID: 37113021 PMCID: PMC10198557 DOI: 10.1093/femsre/fuad018] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis and caries are driven by complex interactions between the oral microbiome and host factors, i.e. inflammation and dietary sugars, respectively. Animal models have been instrumental in our mechanistic understanding of these oral diseases, although no single model can faithfully reproduce all aspects of a given human disease. This review discusses evidence that the utility of an animal model lies in its capacity to address a specific hypothesis and, therefore, different aspects of a disease can be investigated using distinct and complementary models. As in vitro systems cannot replicate the complexity of in vivo host-microbe interactions and human research is typically correlative, model organisms-their limitations notwithstanding-remain essential in proving causality, identifying therapeutic targets, and evaluating the safety and efficacy of novel treatments. To achieve broader and deeper insights into oral disease pathogenesis, animal model-derived findings can be synthesized with data from in vitro and clinical research. In the absence of better mechanistic alternatives, dismissal of animal models on fidelity issues would impede further progress to understand and treat oral disease.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA 19104-6030, USA
| |
Collapse
|
8
|
Chen Y, Wang H, Ni Q, Wang T, Bao C, Geng Y, Lu Y, Cao Y, Li Y, Li L, Xu Y, Sun W. B-Cell-Derived TGF-β1 Inhibits Osteogenesis and Contributes to Bone Loss in Periodontitis. J Dent Res 2023:220345231161005. [PMID: 37082865 DOI: 10.1177/00220345231161005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
B cells play a vital role in the elimination of periodontal pathogens, the regulation of the immune response, and the induction of tissue destruction. However, the role of B cells in the dysfunction of mesenchymal stem cell (MSC) differentiation to osteoblasts in periodontitis (PD) has been poorly studied. Here we show that the frequency of CD45-CD105+CD73+ MSCs in inflamed periodontal tissues is significantly decreased in patients with PD compared with that of healthy controls. CD19+ B cells dominate the infiltrated immune cells in periodontal tissues of patients with PD. Besides, B-cell depletion therapy reduces the alveolar bone loss in a ligature-induced murine PD model. B cells from PD mice express a high level of TGF-β1 and inhibit osteoblast differentiation by upregulating p-Smad2/3 expression and downregulating Runx2 expression. The inhibitory effect of PD B cells on osteoblast differentiation is reduced by TGF-β1 neutralization or Smad2/3 inhibitor. Importantly, B-cell-specific knockout of TGF-β1 in PD mice significantly increases the number of CD45-CD105+Sca1+ MSCs, ALP-positive osteoblast activity, and alveolar bone volume but decreases TRAP-positive osteoclast activity compared with that from control littermates. Lastly, CD19+CD27+CD38- memory B cells dominate the B-cell infiltrates in periodontal tissues from both patients with PD and patients with PD after initial periodontal therapy. Memory B cells in periodontal tissues of patients with PD express a high level of TGF-β1 and inhibit MSC differentiation to osteoblasts. Thus, TGF-β1 produced by B cells may contribute to alveolar bone loss in periodontitis, in part, by suppressing osteoblast activity.
Collapse
Affiliation(s)
- Y Chen
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - H Wang
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Q Ni
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - T Wang
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - C Bao
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Y Geng
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Y Lu
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Y Cao
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Y Li
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - L Li
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Y Xu
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - W Sun
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Cruz A, Gascón LG, Palafox-Sánchez CA, Flores-García C, Espinoza-García N, Sagrero-Fabela N, Cintra LTA, Mejía-Flores R, Salazar-Camarena DC. TNFSF13B rs9514828 gene polymorphism and soluble B cell activating factor levels: Association with apical periodontitis. Int Endod J 2023; 56:419-431. [PMID: 36508294 DOI: 10.1111/iej.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
AIM The aim of this case-control study was to evaluate the association between the TNFSF13B rs9514828 (-871 C > T) polymorphism and soluble BAFF (sBAFF) in apical periodontitis (AP) patients. METHODOLOGY Two hundred and sixty one healthy subjects (HS) and 158 patients with AP classified as: 46 acute apical abscess (AAA), 81 primary AP (pAP) and 31 secondary AP (sAP) patients were included. Genomic DNA (gDNA) was extracted from peripheral blood cells according to the salting out method. The TNFSF13B rs9514828 (NC_000013.11:g.108269025C > T) were identified using polymerase chain reaction (PCR) followed by restriction fragment length polymorphisms (RFLP). Serum sBAFF levels were measured by ELISA test. The chi-squared or Fisher's exact test was performed. Odds ratios (OR) and 95% confidence intervals (95% CI) were calculated to evaluate the risk of AP associated with the rs9514828. The Mann-Whitney U test and Kruskal-Wallis analysis were used for non-normally distributed data. Differences were considered significant with a p-value <.05. RESULTS No differences in the genotype/allele frequencies were shown between HS and patients with AAA. However, the TT genotype (OR = 2.68, 95% CI: 1.10-6.53; p = .025) and T allele (OR = 1.46, 95% CI: 1.00-2.12; p = .045) were associated with increased risk of pAP. In contrast, the minor allele T significantly decreased the risk of sAP (OR = 0.49, 95% CI: 0.024-0.99; p = .043). sBAFF serum levels were increased in AAA and pAP compared with HS (p < .01 and p = .021, respectively). The AAA patients had higher sBAFF serum levels than pAP (p = .034) and sAP (p < .01). CONCLUSIONS These results suggest that the TNFSF13B rs9514828 (-871 C > T) polymorphism is associated with pAP susceptibility and that BAFF is a cytokine that might be involved in acute and chronic AP. The future exploration of the rs9514828 polymorphism in other AP cohorts is recommended.
Collapse
Affiliation(s)
- Alvaro Cruz
- Posgrado en Endodoncia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (UDG), Guadalajara, Mexico.,Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (UDG), Guadalajara, Mexico.,Laboratorio de Investigación en Biomateriales Odontológicos, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (UDG), Guadalajara, Mexico
| | - Luis Gerardo Gascón
- Posgrado en Endodoncia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (UDG), Guadalajara, Mexico
| | - Claudia Azucena Palafox-Sánchez
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (UDG), Guadalajara, Mexico.,Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (UDG), Guadalajara, Mexico
| | - Christian Flores-García
- Laboratorio de Investigación en Biomateriales Odontológicos, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (UDG), Guadalajara, Mexico
| | - Noemí Espinoza-García
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (UDG), Guadalajara, Mexico
| | - Nefertari Sagrero-Fabela
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (UDG), Guadalajara, Mexico
| | - Luciano Tavares Angelo Cintra
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,School of Dentistry, Dental Assistance Center for Disabled Persons (CAOE) of the São Paulo State University (UNESP), Araçatuba, Brazil
| | - Rocío Mejía-Flores
- Posgrado en Endodoncia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (UDG), Guadalajara, Mexico
| | - Diana Celeste Salazar-Camarena
- Posgrado en Endodoncia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (UDG), Guadalajara, Mexico.,Laboratorio de Investigación en Biomateriales Odontológicos, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (UDG), Guadalajara, Mexico.,Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara (UDG), Guadalajara, Mexico
| |
Collapse
|
10
|
Grčević D, Sanjay A, Lorenzo J. Interactions of B-lymphocytes and bone cells in health and disease. Bone 2023; 168:116296. [PMID: 34942359 PMCID: PMC9936888 DOI: 10.1016/j.bone.2021.116296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/09/2023]
Abstract
Bone remodeling occurs through the interactions of three major cell lineages, osteoblasts, which mediate bone formation, osteocytes, which derive from osteoblasts, sense mechanical force and direct bone turnover, and osteoclasts, which mediate bone resorption. However, multiple additional cell types within the bone marrow, including macrophages, T lymphocytes and B lymphocytes influence the process. The bone marrow microenvironment, which is supported, in part, by bone cells, forms a nurturing network for B lymphopoiesis. In turn, developing B lymphocytes influence bone cells. Bone health during homeostasis depends on the normal interactions of bone cells with other lineages in the bone marrow. In disease state these interactions become pathologic and can cause abnormal function of bone cells and inadequate repair of bone after a fracture. This review summarizes what is known about the development of B lymphocytes and the interactions of B lymphocytes with bone cells in both health and disease.
Collapse
Affiliation(s)
- Danka Grčević
- Department of Physiology and Immunology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.
| | - Archana Sanjay
- Department of Orthopaedics, UConn Health, Farmington, CT, USA.
| | - Joseph Lorenzo
- Departments of Medicine and Orthopaedics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
11
|
Ando Y, Tsukasaki M. [RANKL and periodontitis]. Nihon Yakurigaku Zasshi 2023; 158:263-268. [PMID: 37121710 DOI: 10.1254/fpj.22122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Periodontal disease is characterized by inflammation of the periodontal tissue and subsequent destruction of the alveolar bone. It is one of the most common infectious diseases in humans, being the leading cause of tooth loss in adults. Recently, it has been shown that the receptor activator of NF-κB ligand (RANKL) produced by osteoblasts and periodontal ligament fibroblasts critically contributes to the bone destruction caused by periodontal disease. Activation of the immune system plays an important role in the induction of RANKL during periodontal inflammation. Here we discuss the molecular mechanisms of periodontal bone destruction by focusing on the osteoimmune molecule RANKL.
Collapse
Affiliation(s)
- Yutaro Ando
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo
- Department of Microbiology, Tokyo Dental College
| | - Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo
| |
Collapse
|
12
|
Zhou M, Graves DT. Impact of the host response and osteoblast lineage cells on periodontal disease. Front Immunol 2022; 13:998244. [PMID: 36304447 PMCID: PMC9592920 DOI: 10.3389/fimmu.2022.998244] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Periodontitis involves the loss of connective tissue attachment and alveolar bone. Single cell RNA-seq experiments have provided new insight into how resident cells and infiltrating immune cells function in response to bacterial challenge in periodontal tissues. Periodontal disease is induced by a combined innate and adaptive immune response to bacterial dysbiosis that is initiated by resident cells including epithelial cells and fibroblasts, which recruit immune cells. Chemokines and cytokines stimulate recruitment of osteoclast precursors and osteoclastogenesis in response to TNF, IL-1β, IL-6, IL-17, RANKL and other factors. Inflammation also suppresses coupled bone formation to limit repair of osteolytic lesions. Bone lining cells, osteocytes and periodontal ligament cells play a key role in both processes. The periodontal ligament contains cells that exhibit similarities to tendon cells, osteoblast-lineage cells and mesenchymal stem cells. Bone lining cells consisting of mesenchymal stem cells, osteoprogenitors and osteoblasts are influenced by osteocytes and stimulate formation of osteoclast precursors through MCSF and RANKL, which directly induce osteoclastogenesis. Following bone resorption, factors are released from resorbed bone matrix and by osteoclasts and osteal macrophages that recruit osteoblast precursors to the resorbed bone surface. Osteoblast differentiation and coupled bone formation are regulated by multiple signaling pathways including Wnt, Notch, FGF, IGF-1, BMP, and Hedgehog pathways. Diabetes, cigarette smoking and aging enhance the pathologic processes to increase bone resorption and inhibit coupled bone formation to accelerate bone loss. Other bone pathologies such as rheumatoid arthritis, post-menopausal osteoporosis and bone unloading/disuse also affect osteoblast lineage cells and participate in formation of osteolytic lesions by promoting bone resorption and inhibiting coupled bone formation. Thus, periodontitis involves the activation of an inflammatory response that involves a large number of cells to stimulate bone resorption and limit osseous repair processes.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Dana T. Graves,
| |
Collapse
|
13
|
Lobognon VD, Alard JE. Could AMPs and B-cells be the missing link in understanding periodontitis? Front Immunol 2022; 13:887147. [PMID: 36211356 PMCID: PMC9532695 DOI: 10.3389/fimmu.2022.887147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Periodontal diseases are common inflammatory conditions characterized by bone loss in response to simultaneous bacterial aggression and host defenses. The etiology of such diseases is still not completely understood, however. It has been shown that specific pathogens involved in the build-up of dysbiotic biofilms participate actively in the establishment of periodontitis. This multifactorial pathology also depends on environmental factors and host characteristics, especially defenses. The immune response to the pathogens seems to be critical in preventing the disease from starting but also contributes to tissue damage. It is known that small molecules known as antimicrobial peptides (AMPs) are key actors in the innate immune response. They not only target microbes, but also act as immuno-modulators. They can help to recruit or activate cells such as neutrophils, monocytes, dendritic cells, or lymphocytes. AMPs have already been described in the periodontium, and their expression seems to be connected to disease activity. Alpha and beta defensins and LL37 are the AMPs most frequently linked to periodontitis. Additionally, leukocyte infiltrates, especially B-cells, have also been linked to the severity of periodontitis. Indeed, the particular subpopulations of B-cells in these infiltrates have been linked to inflammation and bone resorption. A link between B-cells and AMP could be relevant to understanding B-cells' action. Some AMP receptors, such as chemokines receptors, toll-like receptors, or purinergic receptors, have been shown to be expressed by B-cells. Consequently, the action of AMPs on B-cell subpopulations could participate to B-cell recruitment, their differentiation, and their implication in both periodontal defense and destruction.
Collapse
Affiliation(s)
- Vanessa Dominique Lobognon
- B lymphocytes, Autoimmunity and Immunotherapies (LBAI), Mixed Research Unit (UMR)1227 INSERM, University of Brest, Brest, France
| | - Jean-Eric Alard
- B lymphocytes, Autoimmunity and Immunotherapies (LBAI), Mixed Research Unit (UMR)1227 INSERM, University of Brest, Brest, France,Service d’Odontologie, University Hospital (CHU) de Brest, Brest, France,*Correspondence: Jean-Eric Alard,
| |
Collapse
|
14
|
Molecular Biomarkers in Peri-Implant Health and Disease: A Cross-Sectional Pilot Study. Int J Mol Sci 2022; 23:ijms23179802. [PMID: 36077204 PMCID: PMC9456434 DOI: 10.3390/ijms23179802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The aim of this feasibility study was to investigate the concentration level of CCL-20/MIP-3α, BAFF/BLyS, IL-23, RANKL, and Osteoprotegerin in the Peri-Implant Crevicular Fluid (PICF), from patients diagnosed with peri-implant mucositis and peri-implantitis, and to compare them with PICF from patients with healthy implants. Methods: Participants with at least one dental implant with healthy peri-implant tissues, peri-implant mucositis, or peri-implantitis were included. PICF was collected using paper strips from healthy and diseased peri-implant sites (n = 19). Biomarker levels were analyzed using a custom Multiplex ELISA Assay Kit. Results: In comparison to peri-implant health, the peri-implant mucositis group showed an increased concentration of CCL-20 MIP-3α, BAFF/BLyS, IL-23, RANKL, and Osteoprotegerin. The peri-implantitis group had the lowest median concentration of Osteoprotegerin (1963 ng/mL); this group had a similar concentration of RANKL (640.84 ng/mL) when compared to the peri-implant health group. BAFF/BLyS (17.06 ng/mL) showed the highest concentration in the peri-implantitis group. Conclusions: This feasibility study suggests that IL-23 and RANKL may help to elucidate the pathogenesis during the conversion from peri-implant health to peri-implantitis. Further research is required in BAFF/BLyS for the early diagnosis of peri-implantitis.
Collapse
|
15
|
Flores V, Venegas B, Donoso W, Ulloa C, Chaparro A, Sousa V, Beltrán V. Histological and Immunohistochemical Analysis of Peri-Implant Soft and Hard Tissues in Patients with Peri-Implantitis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148388. [PMID: 35886240 PMCID: PMC9321452 DOI: 10.3390/ijerph19148388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/26/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
Currently, researchers are focused on the study of cytokines as predictive biomarkers of peri-implantitis (PI) in order to obtain an early diagnosis and prognosis, and for treatment of the disease. The aim of the study was to characterize the peri-implant soft and hard tissues in patients with a peri-implantitis diagnosis. A descriptive observational study was conducted. Fifteen soft tissue (ST) samples and six peri-implant bone tissue (BT) samples were obtained from 13 patients who were diagnosed with peri-implantitis. All the samples were processed and embedded in paraffin for histological and immunohistochemical analyses. A descriptive and quantitative analysis of mast cells and osteocytes, A proliferation-inducing ligand (APRIL), B-cell activating factor (BAFF), osteonectin (ON), and ∝-smooth muscle actin (∝-SMA) was performed. We observed the presence of mast cells in peri-implant soft tissue in all samples (mean 9.21 number of mast cells) and osteocytes in peri-implant hard tissue in all samples (mean 37.17 number of osteocytes). The expression of APRIL-ST was 32.17% ± 6.39%, and that of APRIL-BT was 7.09% ± 5.94%. The BAFF-ST expression was 17.26 ± 12.90%, and the BAFF-BT was 12.16% ± 6.30%. The mean percentage of ON was 7.93% ± 3.79%, and ∝-SMA was 1.78% ± 3.79%. It was concluded that the expression of APRIL and BAFF suggests their involvement in the bone resorption observed in peri-implantitis. The lower expression of osteonectin in the peri-implant bone tissue can also be associated with a deficiency in the regulation of bone remodeling and the consequent peri-implant bone loss.
Collapse
Affiliation(s)
- Valentina Flores
- Program of Master in Dental Sciences, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Bernardo Venegas
- Department of Stomatology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; (B.V.); (W.D.)
| | - Wendy Donoso
- Department of Stomatology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; (B.V.); (W.D.)
| | - Camilo Ulloa
- Department of Surgical Stomatology, Postgraduate Program in Periodontology, School of Dentistry, Universidad de Concepción, Concepción 4070386, Chile;
| | - Alejandra Chaparro
- Department of Oral Pathology and Conservative Dentistry, Faculty of Dentistry, Universidad de Los Andes, Santiago 7620001, Chile;
| | - Vanessa Sousa
- Periodontology and Periodontal Medicine, Center for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Víctor Beltrán
- Program of Master in Dental Sciences, Universidad de La Frontera, Temuco 4780000, Chile;
- Clinical Investigation and Dental Innovation Center (CIDIC), Dental School and Center for Translational Medicine (CEMT-BIOREN), Universidad de La Frontera, Temuco 4780000, Chile
- Correspondence:
| |
Collapse
|
16
|
Quach SS, Zhu A, Lee RSB, Seymour GJ. Immunomodulation—What to Modulate and Why? Potential Immune Targets. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.883342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite over 50 years of research into the immunology of periodontal disease, the precise mechanisms and the role of many cell types remains an enigma. Progress has been limited by the inability to determine disease activity clinically. Understanding the immunopathogenesis of periodontal disease however is fundamental if immunomodulation is to be used as a therapeutic strategy. It is important for the clinician to understand what could be modulated and why. In this context, potential targets include different immune cell populations and their subsets, as well as various cytokines. The aim of this review is to examine the role of the principal immune cell populations and their cytokines in the pathogenesis of periodontal disease and their potential as possible therapeutic targets.
Collapse
|
17
|
Periodontal Disease Augments Cardiovascular Disease Risk Biomarkers in Rheumatoid Arthritis. Biomedicines 2022; 10:biomedicines10030714. [PMID: 35327515 PMCID: PMC8945365 DOI: 10.3390/biomedicines10030714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Objectives: Periodontal disease (PD) and rheumatoid arthritis (RA) are known chronic conditions with sustained inflammation leading to osteolysis. Cardiovascular diseases (CVD) are frequent comorbidities that may arise from sustained inflammation associated with both PD and RA. In order to determine CVD risk, alterations at the molecular level need to be identified. The objective of this study, therefore, was to assess the relationship of CVD associated biomarkers in RA patients and how it is influenced by PD. Methods: The study consisted of patient (26 RA with PD, 21 RA without PD, 51 patients with PD only) and systemically and periodontally healthy control (n = 20) groups. Periodontal parameters bleeding on probing, probing pocket depth, and marginal bone loss were determined to characterize the patient groups. Proteomic analysis of 92 CVD-related protein biomarkers was performed using a multiplex proximity extension assay. Biomarkers were clustered using the search tool for retrieval of interacting genes (STRING) to determine protein−protein interaction (PPI) networks. Results: RA patients with PD had higher detection levels for 47% of the measured markers (ANGPT1, BOC, CCL17, CCL3, CD4, CD84, CTRC, FGF-21, FGF-23, GLO1, HAOX1, HB-EGF, hOSCAR, HSP 27, IL16, IL-17D, IL18, IL-27, IL6, LEP, LPL, MERTK, MMP12, MMP7, NEMO, PAPPA, PAR-1, PARP-1, PD-L2, PGF, PIgR, PRELP, RAGE, SCF, SLAMF7, SRC, THBS2, THPO, TNFRSF13B, TRAIL-R2, VEGFD, VSIG2, and XCL1) as compared to RA without PD. Furthermore, a strong biological network was identified amongst these proteins (clustering coefficient = 0.52, PPI enrichment p-value < 0.0001). Coefficients for protein clusters involved in CVD (0.59), metabolic (0.53), and skeletal (0.51) diseases were strongest in the PD group. Conclusion: Periodontal disease augments CVD-related biomarkers in RA through shared pathological clusters, concurrently enhancing metabolic and skeletal disease protein interactions, independent of autoimmune status.
Collapse
|
18
|
Elebyary O, Barbour A, Fine N, Tenenbaum HC, Glogauer M. The Crossroads of Periodontitis and Oral Squamous Cell Carcinoma: Immune Implications and Tumor Promoting Capacities. FRONTIERS IN ORAL HEALTH 2022; 1:584705. [PMID: 35047982 PMCID: PMC8757853 DOI: 10.3389/froh.2020.584705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Periodontitis (PD) is increasingly considered to interact with and promote a number of inflammatory diseases, including cancer. In the case of oral squamous cell carcinoma (OSCC) the local inflammatory response associated with PD is capable of triggering altered cellular events that can promote cancer cell invasion and proliferation of existing primary oral carcinomas as well as supporting the seeding of metastatic tumor cells into the gingival tissue giving rise to secondary tumors. Both the immune and stromal components of the periodontium exhibit phenotypic alterations and functional differences during PD that result in a microenvironment that favors cancer progression. The inflammatory milieu in PD is ideal for cancer cell seeding, migration, proliferation and immune escape. Understanding the interactions governing this attenuated anti-tumor immune response is vital to unveil unexplored preventive or therapeutic possibilities. Here we review the many commonalities between the oral-inflammatory microenvironment in PD and oral-inflammatory responses that are associated with OSCC progression, and how these conditions can act to promote and sustain the hallmarks of cancer.
Collapse
Affiliation(s)
- Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Howard C Tenenbaum
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
19
|
Ptasiewicz M, Grywalska E, Mertowska P, Korona-Głowniak I, Poniewierska-Baran A, Niedźwiedzka-Rystwej P, Chałas R. Armed to the Teeth-The Oral Mucosa Immunity System and Microbiota. Int J Mol Sci 2022; 23:882. [PMID: 35055069 PMCID: PMC8776045 DOI: 10.3390/ijms23020882] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
The oral cavity is inhabited by a wide spectrum of microbial species, and their colonization is mostly based on commensalism. These microbes are part of the normal oral flora, but there are also opportunistic species that can cause oral and systemic diseases. Although there is a strong exposure to various microorganisms, the oral mucosa reduces the colonization of microorganisms with high rotation and secretion of various types of cytokines and antimicrobial proteins such as defensins. In some circumstances, the imbalance between normal oral flora and pathogenic flora may lead to a change in the ratio of commensalism to parasitism. Healthy oral mucosa has many important functions. Thanks to its integrity, it is impermeable to most microorganisms and constitutes a mechanical barrier against their penetration into tissues. Our study aims to present the role and composition of the oral cavity microbiota as well as defense mechanisms within the oral mucosa which allow for maintaining a balance between such numerous species of microorganisms. We highlight the specific aspects of the oral mucosa protecting barrier and discuss up-to-date information on the immune cell system that ensures microbiota balance. This study presents the latest data on specific tissue stimuli in the regulation of the immune system with particular emphasis on the resistance of the gingival barrier. Despite advances in understanding the mechanisms regulating the balance on the microorganism/host axis, more research is still needed on how the combination of these diverse signals is involved in the regulation of immunity at the oral mucosa barrier.
Collapse
Affiliation(s)
- Maja Ptasiewicz
- Department of Oral Medicine, Medical University of Lublin, 6 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (R.C.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland;
| | | | | | - Renata Chałas
- Department of Oral Medicine, Medical University of Lublin, 6 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (R.C.)
| |
Collapse
|
20
|
Gao X, Jiang C, Yao S, Ma L, Wang X, Cao Z. Identification of hub genes related to immune cell infiltration in periodontitis using integrated bioinformatic analysis. J Periodontal Res 2022; 57:392-401. [PMID: 34993975 DOI: 10.1111/jre.12970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is an inflammatory disease of the periodontium. However, the hub genes in periodontitis and their correlation with immune cells are not clear. This study aimed to identify hub genes and immune infiltration properties in periodontitis and to explore the correlation between hub genes and immune cells. MATERIAL AND METHODS Differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA) were performed both on GSE10334 and GSE173078 datasets. Hub genes were identified via WGCNA and DEGs. The proportions of infiltrating immune cells were calculated by CIBERSORT algorithm, and single-cell RNA-sequencing dataset GSE164241 was used to explore cell-type-specific expression profiles of hub genes. RESULTS Eight hub genes (DERL3, FKBP11, LAX1, CD27, SPAG4, ST6GAL1, MZB1, and SEL1L3) were selected via WGCNA and DEGs by combining GSE10334 and GSE173078 datasets. CIBERSORT analysis showed a significant difference in the proportion of B cells, dendritic cells resting, and neutrophils in the gingival tissues between healthy and periodontitis patients, and expressions of these genes were highly correlated with the infiltration of B cells in periodontitis. Furthermore, real-time quantitative PCR results further confirmed the overexpression of hub genes. Analysis of GSE164241dataset further identified that most of hub genes were mainly expressed in B cells. CONCLUSIONS By integrating WGCNA, DEGs, and CIBERSORT analysis, eight genes were identified to be the hub genes of periodontitis and most of them were mainly expressed in B cells encouraging further researches on B cells in periodontitis pathogenesis.
Collapse
Affiliation(s)
- Xudong Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chenxi Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Siqi Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Update on B Cell Response in Periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:175-193. [DOI: 10.1007/978-3-030-96881-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Li N, Fu L, Li Z, Ke Y, Wang Y, Wu J, Yu J. The Role of Immune Microenvironment in Maxillofacial Bone Homeostasis. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.780973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maxillofacial bone defects are common medical problems caused by congenital defects, necrosis, trauma, tumor, inflammation, and fractures non-union. Maxillofacial bone defects often need bone graft, which has many difficulties, such as limited autogenous bone supply and donor site morbidity. Bone tissue engineering is a promising strategy to overcome the above-mentioned problems. Osteoimmunology is the inter-discipline that focuses on the relationship between the skeletal and immune systems. The immune microenvironment plays a crucial role in bone healing, tissue repair and regeneration in maxillofacial region. Recent studies have revealed the vital role of immune microenvironment and bone homeostasis. In this study, we analyzed the complex interaction between immune microenvironment and bone regeneration process in oral and maxillofacial region, which will be important to improve the clinical outcome of the bone injury treatment.
Collapse
|
23
|
Settem RP, Honma K, Chinthamani S, Kawai T, Sharma A. B-Cell RANKL Contributes to Pathogen-Induced Alveolar Bone Loss in an Experimental Periodontitis Mouse Model. Front Physiol 2021; 12:722859. [PMID: 34594237 PMCID: PMC8476884 DOI: 10.3389/fphys.2021.722859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a bacterially-induced inflammatory disease that leads to tooth loss. It results from the damaging effects of a dysregulated immune response, mediated largely by neutrophils, macrophages, T cells and B cells, on the tooth-supporting tissues including the alveolar bone. Specifically, infiltrating B cells at inflamed gingival sites with an ability to secrete RANKL and inflammatory cytokines are thought to play roles in alveolar bone resorption. However, the direct contribution of B cells in alveolar bone resorption has not been fully appreciated. In this study we sought to define the contribution of RANKL expressing B cells in periodontitis by employing a mouse model of pathogen-induced periodontitis that used conditional knockout mice with B cell-targeted RANKL deletion. Briefly, alveolar bone loss was assessed in the wild-type, B-cell deficient (Jh), or B-cell-RANKL deleted (RANKLΔB) mice orally infected with the periodontal pathogen Tannerella forsythia. The RANKLΔB mice were obtained by crossing Cd19-Cre knock-in mice with mice homozygous for conditional RANKL-flox allele (RANKLflox/flox). The alveolar bone resorption was determined by morphometric analysis and osteoclastic activity of the jaw bone. In addition, the bone resorptive potential of the activated effector B cells was assessed ex vivo. The data showed that the RANKL producing B cells increased significantly in the T. forsythia-infected wild-type mice compared to the sham-infected mice. Moreover, T. forsythia-infection induced higher alveolar bone loss in the wild-type and RANKLflox/flox mice compared to infection either in the B cell deficient (Jh) or the B-cell specific RANKL deletion (RANKLΔB) mice. These data established that the oral-pathogen activated B cells contribute significantly to alveolar bone resorption via RANKL production.
Collapse
Affiliation(s)
- Rajendra P. Settem
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Kiyonobu Honma
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | | | - Toshihisa Kawai
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University (NSU), Fort Lauderdale, FL, United States
| | - Ashu Sharma
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
24
|
Wang L, Zhang T, Zhang Z, Wang Z, Zhou YJ, Wang Z. B cell activating factor regulates periodontitis development by suppressing inflammatory responses in macrophages. BMC Oral Health 2021; 21:426. [PMID: 34481478 PMCID: PMC8418735 DOI: 10.1186/s12903-021-01788-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/28/2021] [Indexed: 01/02/2023] Open
Abstract
Background B cell activating factor (BAFF) is a member of the tumor necrosis factor (TNF) superfamily with immunomodulatory effects on both innate and adaptive immune responses. Periodontitis is an inflammatory disease characterized by periodontal soft tissue inflammation and the progressive loss of periodontal ligament and alveolar bone. Macrophages are closely related to periodontitis progression. However, the role of BAFF in periodontitis development and macrophage polarization and the underlying mechanism remain unknown. Methods In vivo, a ligation-induced mouse model of periodontitis for BAFF blockade was established to investigate the expression of inducible nitric oxide synthase (iNOS) through real-time PCR (RT-PCR) and immunohistochemistry. In addition, the level of TNF-α in the periodontium, the number of osteoclasts, and alveolar bone resorption were observed. In vitro, RAW 264.7 macrophage cells were treated with 100 ng/mL Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) in either the presence or absence of 50 nM small interfering RNA (siRNA) targeting BAFF, followed by further incubation for 24 h. These cells and supernatants were collected and stored for RT-PCR, enzyme-linked immunosorbent assay, western blotting and immunofluorescence microscopy. Results In vivo, BAFF blockade decreased the levels of TNF-α in the periodontium in a ligature-induced mouse periodontitis model. Reduced osteoclast formation and lower alveolar bone loss were also observed. In addition, BAFF blockade was related to the expression of polarization signature molecules in macrophages. In vitro, BAFF knockdown notably suppressed the production of TNF-α in RAW 264.7 cells stimulated by P. gingivalis LPS. Moreover, BAFF knockdown attenuated the polarization of RAW 264.7 cells into classically activated macrophages (M1), with reduced expression of iNOS. Conclusions Based on our limited evidence, we showed BAFF blockade exhibits potent anti-inflammatory properties in mice experimental periodontitis in vivo and in P. gingivalis LPS-treated RAW 264.7 cells in vitro, and macrophage polarization may be responsible for this effect. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01788-6.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8th Gongti South Road, Beijing, 100020, China.,International Medical Center, Tianjin Stomatological Hospital, School Medicine, Nankai University, 75th Dagu North Road, Tianjin, 300041, China.,Tianjin Key Laboratory of Oral Maxillofacial Function Reconstruction, 75th Dagu North Road, Tianjin, 300041, China
| | - Tianyi Zhang
- Department of Stomatology, School of Stomatology, Shanxi Medical University, 56 Xinjian South Road, Yingze, Taiyuan, 030001, Shaanxi, China
| | - Zheng Zhang
- International Medical Center, Tianjin Stomatological Hospital, School Medicine, Nankai University, 75th Dagu North Road, Tianjin, 300041, China.,Tianjin Key Laboratory of Oral Maxillofacial Function Reconstruction, 75th Dagu North Road, Tianjin, 300041, China
| | - Zihan Wang
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China
| | - Yu-Jie Zhou
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing, China.
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8th Gongti South Road, Beijing, 100020, China.
| |
Collapse
|
25
|
Lin P, Niimi H, Ohsugi Y, Tsuchiya Y, Shimohira T, Komatsu K, Liu A, Shiba T, Aoki A, Iwata T, Katagiri S. Application of Ligature-Induced Periodontitis in Mice to Explore the Molecular Mechanism of Periodontal Disease. Int J Mol Sci 2021; 22:ijms22168900. [PMID: 34445604 PMCID: PMC8396362 DOI: 10.3390/ijms22168900] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease characterized by the destruction of the periodontium. In the last decade, a new murine model of periodontitis has been widely used to simulate alveolar bone resorption and periodontal soft tissue destruction by ligation. Typically, 3-0 to 9-0 silks are selected for ligation around the molars in mice, and significant bone loss and inflammatory infiltration are observed within a week. The ligature-maintained period can vary according to specific aims. We reviewed the findings on the interaction of systemic diseases with periodontitis, periodontal tissue destruction, the immunological and bacteriological responses, and new treatments. In these studies, the activation of osteoclasts, upregulation of pro-inflammatory factors, and excessive immune response have been considered as major factors in periodontal disruption. Multiple genes identified in periodontal tissues partly reflect the complexity of the pathogenesis of periodontitis. The effects of novel treatment methods on periodontitis have also been evaluated in a ligature-induced periodontitis model in mice. This model cannot completely represent all aspects of periodontitis in humans but is considered an effective method for the exploration of its mechanisms. Through this review, we aimed to provide evidence and enlightenment for future studies planning to use this model.
Collapse
Affiliation(s)
- Peiya Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Hiromi Niimi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
- Correspondence: (H.N.); (Y.O.); Tel.: +81-3-5803-5488 (H.N. & Y.O.)
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
- Correspondence: (H.N.); (Y.O.); Tel.: +81-3-5803-5488 (H.N. & Y.O.)
| | - Yosuke Tsuchiya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Tsuyoshi Shimohira
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Keiji Komatsu
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| | - Anhao Liu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| |
Collapse
|
26
|
Zidar A, Kristl J, Kocbek P, Zupančič Š. Treatment challenges and delivery systems in immunomodulation and probiotic therapies for periodontitis. Expert Opin Drug Deliv 2021; 18:1229-1244. [PMID: 33760648 DOI: 10.1080/17425247.2021.1908260] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Periodontitis is a widespread illness that arises due to disrupted interplay between the oral microbiota and the host immune response. In some cases, conventional therapies can provide temporary remission, although this is often followed by disease relapse. Recent studies of periodontitis pathology have promoted the development of new therapeutics to improve treatment options, together with local application using advanced drug delivery systems.Areas covered: This paper provides a critical review of the status of current treatment approaches to periodontitis, with a focus on promising immunomodulation and probiotic therapies. These are based on delivery of small molecules, peptides, proteins, DNA or RNA, and probiotics. The key findings on novel treatment strategies and formulation of advanced delivery systems, such as nanoparticles and nanofibers, are highlighted.Expert opinion: Multitarget therapy based on antimicrobial, immunomodulatory, and probiotic active ingredients incorporated into advanced delivery systems for application to the periodontal pocket can improve periodontitis treatment outcomes. Translation of such adjuvant therapy from laboratory to patient is expected in the future.
Collapse
Affiliation(s)
- Anže Zidar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Julijana Kristl
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Kocbek
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
27
|
Cross-Talk among Polymorphonuclear Neutrophils, Immune, and Non-Immune Cells via Released Cytokines, Granule Proteins, Microvesicles, and Neutrophil Extracellular Trap Formation: A Novel Concept of Biology and Pathobiology for Neutrophils. Int J Mol Sci 2021; 22:ijms22063119. [PMID: 33803773 PMCID: PMC8003289 DOI: 10.3390/ijms22063119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are traditionally regarded as professional phagocytic and acute inflammatory cells that engulf the microbial pathogens. However, accumulating data have suggested that PMNs are multi-potential cells exhibiting many important biological functions in addition to phagocytosis. These newly found novel activities of PMN include production of different kinds of cytokines/chemokines/growth factors, release of neutrophil extracellular traps (NET)/ectosomes/exosomes and trogocytosis (membrane exchange) with neighboring cells for modulating innate, and adaptive immune responses. Besides, PMNs exhibit potential heterogeneity and plasticity in involving antibody-dependent cellular cytotoxicity (ADCC), cancer immunity, autoimmunity, inflammatory rheumatic diseases, and cardiovascular diseases. Interestingly, PMNs may also play a role in ameliorating inflammatory reaction and wound healing by a subset of PMN myeloid-derived suppressor cells (PMN-MDSC). Furthermore, PMNs can interact with other non-immune cells including platelets, epithelial and endothelial cells to link hemostasis, mucosal inflammation, and atherogenesis. The release of low-density granulocytes (LDG) from bone marrow initiates systemic autoimmune reaction in systemic lupus erythematosus (SLE). In clinical application, identification of certain PMN phenotypes may become prognostic factors for severe traumatic patients. In the present review, we will discuss these newly discovered biological and pathobiological functions of the PMNs.
Collapse
|
28
|
Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000 2021; 86:157-187. [PMID: 33690918 DOI: 10.1111/prd.12368] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar bone is a unique osseous tissue due to the proximity of dental plaque biofilms. Periodontal health and homeostasis are mediated by a balanced host immune response to these polymicrobial biofilms. Dysbiotic shifts within dental plaque biofilms can drive a proinflammatory immune response state in the periodontal epithelial and gingival connective tissues, which leads to paracrine signaling to subjacent bone cells. Sustained chronic periodontal inflammation disrupts "coupled" osteoclast-osteoblast actions, which ultimately result in alveolar bone destruction. This chapter will provide an overview of alveolar bone physiology and will highlight why the oral microbiota is a critical regulator of alveolar bone remodeling. The ecology of dental plaque biofilms will be discussed in the context that periodontitis is a polymicrobial disruption of host homeostasis. The pathogenesis of periodontal bone loss will be explained from both a historical and current perspective, providing the opportunity to revisit the role of fibrosis in alveolar bone destruction. Periodontal immune cell interactions with bone cells will be reviewed based on our current understanding of osteoimmunological mechanisms influencing alveolar bone remodeling. Lastly, probiotic and prebiotic interventions in the oral microbiota will be evaluated as potential noninvasive therapies to support alveolar bone homeostasis and prevent periodontal bone loss.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
29
|
Jansson L, Lundmark A, Modin C, Abadji D, Yucel-Lindberg T. Intra-individual cytokine profile in peri-implantitis and periodontitis: A cross-sectional study. Clin Oral Implants Res 2021; 32:559-568. [PMID: 33595852 DOI: 10.1111/clr.13725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 12/27/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022]
Abstract
AIM To study cytokine profiles and intra-individual correlations in crevicular fluid samples at periodontitis, peri-implantitis, and healthy sites. MATERIALS AND METHODS Samples from gingival crevicular fluid (GCF) and peri-implant crevicular fluid (PICF) were collected from healthy and diseased sites in patients who had had dental implants for a minimum of 10 years. Cytokine levels were analyzed using the Bio-Plex Pro Human inflammation kit, which included biomarkers for the tumor necrosis factor-α (TNF-α) superfamily, regulatory T Cell (Treg) cytokines, and interferon (IFN) proteins. RESULTS Gingival crevicular fluid/PICF cytokine levels, determined in samples from 163 patients, were frequently lower for healthy tooth and implant sites compared to sites with periodontitis or peri-implantitis. In contrast, there were no significant differences in cytokine levels between peri-implant sites and periodontitis sites. Intra-individual correlations between cytokines at peri-implant sites were frequently significant. In addition, the cytokines IFN-λ1 and TNFSF12 were significantly correlated with the presence of peri-implantitis. CONCLUSION Within the limits of this study, the intra-individual cytokine profile did not differ between sites diagnosed with periodontitis and those diagnosed with peri-implantitis, but did differ between healthy tooth and healthy implant sites. Studying intra-individual cytokine profiles is a method to elucidate possible differences between the etiopathogeneses of periodontitis and peri-implantitis, since it is well known that immune responses to dysbiosis vary between individuals according to host factors. Thus, the findings of the present study are potentially relevant to the advancement of knowledge in this field.
Collapse
Affiliation(s)
- Leif Jansson
- Department of Periodontology, Folktandvården Eastmaninstitutet, Folktandvården Stockholms län AB, Stockholm, Sweden.,Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lundmark
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Modin
- Department of Periodontology, Folktandvården Eastmaninstitutet, Folktandvården Stockholms län AB, Stockholm, Sweden.,Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Denise Abadji
- Department of Periodontology, Folktandvården Eastmaninstitutet, Folktandvården Stockholms län AB, Stockholm, Sweden
| | - Tülay Yucel-Lindberg
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Caetano AJ, Yianni V, Volponi A, Booth V, D'Agostino EM, Sharpe P. Defining human mesenchymal and epithelial heterogeneity in response to oral inflammatory disease. eLife 2021; 10:62810. [PMID: 33393902 PMCID: PMC7781605 DOI: 10.7554/elife.62810] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
Human oral soft tissues provide the first barrier of defence against chronic inflammatory disease and hold a remarkable scarless wounding phenotype. Tissue homeostasis requires coordinated actions of epithelial, mesenchymal, and immune cells. However, the extent of heterogeneity within the human oral mucosa and how tissue cell types are affected during the course of disease progression is unknown. Using single-cell transcriptome profiling we reveal a striking remodelling of the epithelial and mesenchymal niches with a decrease in functional populations that are linked to the aetiology of the disease. Analysis of ligand–receptor interaction pairs identify potential intercellular hubs driving the inflammatory component of the disease. Our work establishes a reference map of the human oral mucosa in health and disease, and a framework for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Ana J Caetano
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Val Yianni
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Ana Volponi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Veronica Booth
- Department of Periodontology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Eleanor M D'Agostino
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedfordshire, Bedford, United Kingdom
| | - Paul Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
31
|
Abstract
Periodontitis, one of the most common infectious diseases in humans, is characterized by inflammation of the periodontal tissue and subsequent destruction of the alveolar bone, which ultimately leads to tooth loss. Recently, it was revealed that the osteoclastic bone damage that occurs during periodontitis is dependent on the receptor activator of NF-kB ligand (RANKL) produced by osteoblastic cells and periodontal ligament cells. Immune cells provide essential cues for the RANKL induction that takes place during periodontal inflammation. The knowledge accumulated and experimental tools established in the field of "osteoimmunology" have made crucial contributions to a better understanding of periodontitis pathogenesis and, reciprocally, the investigation of periodontitis has provided important insights into the field. This review discusses the molecular mechanisms underlying periodontal bone loss by focusing on the osteoimmune interactions and RANKL.
Collapse
Affiliation(s)
- Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
32
|
Li W, Zhang Z, Wang ZM. Differential immune cell infiltrations between healthy periodontal and chronic periodontitis tissues. BMC Oral Health 2020; 20:293. [PMID: 33109155 PMCID: PMC7590666 DOI: 10.1186/s12903-020-01287-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background Host immunity plays an important role against oral microorganisms in periodontitis. Methods This study assessed the infiltrating immune cell subtypes in 133 healthy periodontal and 210 chronic periodontitis tissues from Gene Expression Omnibus (GEO) datasets using the CIBERSORT gene signature files. Results Plasma cells, naive B cells and neutrophils were all elevated in periodontitis tissues, when compared to those in healthy controls. In contrast, memory B cells, resting dendritic, mast cells and CD4 memory cells, as well as activated mast cells, M1 and M2 macrophages, and follicular helper T cells, were mainly present in healthy periodontal tissues. Furthermore, these periodontitis tissues generally contained a higher proportion of activated CD4 memory T cells, while the other subtypes of T cells, including resting CD4 memory T cells, CD8 T cells, follicular helper T cells (TFH) and regulatory T cells (Tregs), were relatively lower in periodontitis tissues, when compared to healthy tissues. The ratio of dendritic and mast cells and macrophages was lower in periodontitis tissues, when compared to healthy tissues. In addition, there was a significant negative association of plasma cells with most of the other immune cells, such as plasma cells vs. memory B cells (γ = − 0.84), plasma cells vs. resting dendritic cells (γ = − 0.64), plasma cells vs. resting CD4 memory T cells (γ = 0.50), plasma cells versus activated dendritic cells (γ = − 0.46), plasma cells versus TFH (γ = − 0.46), plasma cells versus macrophage M2 cells (γ = − 0.43), or plasma cells versus macrophage M1 cells (γ = − 0.40), between healthy control and periodontitis tissues. Conclusion Plasma cells, naive B cells and neutrophils were all elevated in periodontitis tissues. The infiltration of different immune cell subtypes in the periodontitis site could lead the host immunity against periodontitis.
Collapse
Affiliation(s)
- Wei Li
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8th Gongti South Road, Beijing, 100020, China
| | - Zheng Zhang
- Department of Periodontology, Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral Function Reconstruction, Hospital of Stomatology, Nankai University, 75th Dagu North Road, Tianjin, 300000, China.
| | - Zuo-Min Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8th Gongti South Road, Beijing, 100020, China.
| |
Collapse
|
33
|
Hajishengallis G, Chavakis T, Lambris JD. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontol 2000 2020; 84:14-34. [PMID: 32844416 DOI: 10.1111/prd.12331] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances indicate that periodontitis is driven by reciprocally reinforced interactions between a dysbiotic microbiome and dysregulated inflammation. Inflammation is not only a consequence of dysbiosis but, via mediating tissue dysfunction and damage, fuels further growth of selectively dysbiotic communities of bacteria (inflammophiles), thereby generating a self-sustained feed-forward loop that perpetuates the disease. These considerations provide a strong rationale for developing adjunctive host-modulation therapies for the treatment of periodontitis. Such host-modulation approaches aim to inhibit harmful inflammation and promote its resolution or to interfere directly with downstream effectors of connective tissue and bone destruction. This paper reviews diverse strategies targeted to modulate the host periodontal response and discusses their mechanisms of action, perceived safety, and potential for clinical application.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Cavalla F, Letra A, Silva RM, Garlet GP. Determinants of Periodontal/Periapical Lesion Stability and Progression. J Dent Res 2020; 100:29-36. [PMID: 32866421 DOI: 10.1177/0022034520952341] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Periodontal and periapical lesions are infectious inflammatory osteolitytic conditions in which a complex inflammatory immune response mediates bone destruction. However, the uncertainty of a lesion's progressive or stable phenotype complicates understanding of the cellular and molecular mechanisms triggering lesion activity. Evidence from clinical and preclinical studies of both periodontal and periapical lesions points to a high receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) ratio as the primary determinant of osteolytic activity, while a low RANKL/OPG ratio is often observed in inactive lesions. Proinflammatory cytokines directly modulate RANKL/OPG expression and consequently drive lesion progression, along with pro-osteoclastogenic support provided by Th1, Th17, and B cells. Conversely, the cooperative action between Th2 and Tregs subsets creates an anti-inflammatory and proreparative milieu associated with lesion stability. Interestingly, the trigger for lesion status switch from active to inactive can originate from an unanticipated RANKL immunoregulatory feedback, involving the induction of Tregs and a host response outcome with immunological tolerance features. In this context, dendritic cells (DCs) appear as potential determinants of host response switch, since RANKL imprint a tolerogenic phenotype in DCs, described to be involved in both Tregs and immunological tolerance generation. The tolerance state systemically and locally suppresses the development of exacerbated and pathogenic responses and contributes to lesions stability. However, immunological tolerance break by comorbidities or dysbiosis could explain lesions relapse toward activity. Therefore, this article will provide a critical review of the current knowledge concerning periodontal and periapical lesions activity and the underlying molecular mechanisms associated with the host response. Further studies are required to unravel the role of immunological responsiveness or tolerance in the determination of lesion status, as well as the potential cooperative and/or inhibitory interplay among effector cells and their impact on RANKL/OPG balance and lesion outcome.
Collapse
Affiliation(s)
- F Cavalla
- Department of Conservative Dentistry, School of Dentistry, University of Chile, Santiago, Chile
| | - A Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry, Houston, TX, USA.,Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, TX, USA.,Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - R M Silva
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, TX, USA.,Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.,Department of Endodontics, University of Texas Health Science Center School of Dentistry, Houston, TX, USA
| | - G P Garlet
- OSTEOimmunology Laboratory, Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University-FOB/USP, Bauru, SP, Brazil
| |
Collapse
|
35
|
Hetta HF, Mwafey IM, Batiha GES, Alomar SY, Mohamed NA, Ibrahim MA, Elkady A, Meshaal AK, Alrefai H, Khodeer DM, Zahran AM. CD19 + CD24 hi CD38 hi Regulatory B Cells and Memory B Cells in Periodontitis: Association with Pro-Inflammatory and Anti-Inflammatory Cytokines. Vaccines (Basel) 2020; 8:vaccines8020340. [PMID: 32604936 PMCID: PMC7350217 DOI: 10.3390/vaccines8020340] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Regulatory B cells (Bregs) are unique subpopulations of B cells with immune-regulating or immune-suppressing properties and play a role in peripheral tolerance. Due to the current limitations of human Breg studies among periodontal diseases, in the present study, we tried to analyze the change in circulating Bregs, pro-inflammatory, and anti-inflammatory cytokines in patients with periodontitis. Peripheral blood from 55 patients with stage 2 periodontitis and 20 healthy controls was analyzed using flow cytometry to evaluate the frequency of CD19+CD24+CD38+ Breg cells. ELISA was used to assess the serum levels of the pro-inflammatory cytokines, including interleukins (IL)-1β, IL-6, TNF-α, and anti-inflammatory cytokines including IL-10, IL-35, and TGF-β. Increased proportions of Breg cells were observed in patients with stage 2 periodontitis compared to controls. Serum levels of cytokines were significantly higher in patients with periodontitis compared to controls. A significant positive correlation was observed between the frequencies of Breg cells and IL35 levels, IL10 levels, and TGF-β. In conclusion, our results suggest that the increase in peripheral Breg cells and serum cytokine levels among periodontitis patients seems to be closely associated with disease progression, a possible link between periodontitis, and systemic inflammatory process.
Collapse
Affiliation(s)
- Helal F. Hetta
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, USA
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Correspondence:
| | - Ibrahim M. Mwafey
- Department of Oral Medicine and Periodontology Diagnosis and Oral Radiology, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhour 22511, Egypt;
| | - Suliman Y. Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Nahed A. Mohamed
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Maggie A. Ibrahim
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Abeer Elkady
- Department of Clinical and Chemical Pathology, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Ahmed Kh. Meshaal
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
| | - Hani Alrefai
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Dina M. Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Asmaa M. Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut 71524, Egypt;
| |
Collapse
|
36
|
Drumond MHF, Puhl LE, Duarte PM, Miranda TSD, Clemente-Napimoga JT, Peruzzo DC, Martinez EF, Napimoga MH. Preliminary findings on the possible role of B-lymphocyte stimulator (BLyS) on diabetes-related periodontitis. Braz Oral Res 2020; 34:e038. [PMID: 32374812 DOI: 10.1590/1807-3107bor-2020.vol34.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/23/2020] [Indexed: 11/21/2022] Open
Abstract
The possible role of B-cell growth and differentiation-related cytokines on the pathogenesis of diabetes-related periodontitis has not been addressed so far. The aim of this study was to evaluate the effects of diabetes mellitus (DM) on the gene expression of proliferation-inducing ligand (APRIL) and B-lymphocyte stimulator (BLyS), two major cytokines associated to survival, differentiation and maturation of B cells in biopsies from gingival tissue with periodontitis. Gingival biopsies were obtained from subjects with periodontitis (n = 17), with periodontitis and DM (n = 19) as well as from periodontally and systemically healthy controls (n = 10). Gene expressions for APRIL, BLyS, RANKL, OPG, TRAP and DC-STAMP were evaluated using qPCR. The expressions APRIL, BLyS, RANKL, OPG, TRAP and DC-STAMP were all higher in both periodontitis groups when compared to the control group (p < 0.05). Furthermore, the expressions of BLyS, TRAP and RANKL were significantly higher in the subjects with periodontitis and DM when compared to those with periodontitis alone (p < 0.05). The mRNA levels of BLyS correlated positively with RANKL in the subjects with periodontitis and DM (p < 0.05). BLyS is overexpressed in periodontitis tissues of subjects with type 2 DM, suggesting a possible role of this cytokine on the pathogenesis DM-related periodontitis.
Collapse
Affiliation(s)
| | - Luciano Eduardo Puhl
- Faculdade São Leopoldo Mandic , Instituto de Pesquisas São Leopoldo Mandic , Campinas , SP , Brazil
| | - Poliana Mendes Duarte
- University of Florida , College of Dentistry , Department of Periodontology , Gainesville , FL , USA
| | | | | | - Daiane Cristina Peruzzo
- Faculdade São Leopoldo Mandic , Instituto de Pesquisas São Leopoldo Mandic , Campinas , SP , Brazil
| | | | | |
Collapse
|
37
|
Immunopathogenesis of canine chronic ulcerative stomatitis. PLoS One 2020; 15:e0227386. [PMID: 31923271 PMCID: PMC6953816 DOI: 10.1371/journal.pone.0227386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/17/2019] [Indexed: 11/25/2022] Open
Abstract
Canine Chronic Ulcerative Stomatitis is a spontaneously occurring inflammatory disease of the oral mucosa. An immune-mediated pathogenesis is suspected though not yet proven. We have recently reported on the clinical and histologic features, and identification of select leukocyte cell populations within the lesion. A clinical and histologic similarity to oral lichen planus of people was proposed. In the present study, these initial observations are extended by examining lesions from 24 dogs with clinical evidence of chronic ulcerative stomatitis. Because dogs with chronic ulcerative stomatitis often have concurrent periodontal disease, we wondered if dental plaque/biofilm may be a common instigator of inflammation in both lesions. We hypothesized that dogs with chronic ulcerative stomatitis would exhibit a spectrum of pathologic changes and phenotype of infiltrating leukocytes that would inform lesion pathogenesis and that these changes would differ from inflammatory phenotypes in periodontitis. Previously we identified chronic ulcerative stomatitis lesions to be rich in FoxP3+ and IL17+ cells. As such, we suspect that these leukocytes play an important role in lesion pathogenesis. The current study confirms the presence of moderate to large numbers of FoxP3+ T cells and IL17+ cells in all ulcerative stomatitis lesions using confocal immunofluorescence. Interestingly, the majority of IL17+ cells were determined to be non-T cells and IL17+ cell frequencies were negatively correlated with severity on the clinical scoring system. Three histologic subtypes of ulcerative stomatitis were determined; lichenoid, deep stomatitis and granulomatous. Periodontitis lesions, like stomatitis lesions, were B cell and plasma cell rich, but otherwise differed from the stomatitis lesions. Direct immunofluorescence results did not support an autoantibody-mediated autoimmune disease process. This investigation contributes to the body of literature regarding leukocyte involvement in canine idiopathic inflammatory disease pathogenesis.
Collapse
|
38
|
Hajishengallis G. New developments in neutrophil biology and periodontitis. Periodontol 2000 2019; 82:78-92. [DOI: 10.1111/prd.12313] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- George Hajishengallis
- Department of Microbiology Penn Dental Medicine University of Pennsylvania Philadelphia Pennsylvania, USA
| |
Collapse
|
39
|
Gruber R. Osteoimmunology: Inflammatory osteolysis and regeneration of the alveolar bone. J Clin Periodontol 2019; 46 Suppl 21:52-69. [PMID: 30623453 DOI: 10.1111/jcpe.13056] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/09/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
Abstract
AIM Osteoimmunology covers the cellular and molecular mechanisms responsible for inflammatory osteolysis that culminates in the degradation of alveolar bone. Osteoimmunology also focuses on the interplay of immune cells with bone cells during bone remodelling and regeneration. The aim of this review was to provide insights into how osteoimmunology affects alveolar bone health and disease. METHOD This review is based on a narrative approach to assemble mouse models that provide insights into the cellular and molecular mechanisms causing inflammatory osteolysis and on the impact of immune cells on alveolar bone regeneration. RESULTS Mouse models have revealed the molecular pathways by which microbial and other factors activate immune cells that initiate an inflammatory response. The inflammation-induced alveolar bone loss occurs with the concomitant suppression of bone formation. Mouse models also showed that immune cells contribute to the resolution of inflammation and bone regeneration, even though studies with a focus on alveolar socket healing are rare. CONCLUSIONS Considering that osteoimmunology is evolutionarily conserved, osteolysis removes the cause of inflammation by provoking tooth loss. The impact of immune cells on bone regeneration is presumably a way to reinitiate the developmental mechanisms of intramembranous and endochondral bone formation.
Collapse
Affiliation(s)
- Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
40
|
Figueredo CM, Lira-Junior R, Love RM. T and B Cells in Periodontal Disease: New Functions in A Complex Scenario. Int J Mol Sci 2019; 20:ijms20163949. [PMID: 31416146 PMCID: PMC6720661 DOI: 10.3390/ijms20163949] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Periodontal disease is characterised by a dense inflammatory infiltrate in the connective tissue. When the resolution is not achieved, the activation of T and B cells is crucial in controlling chronic inflammation through constitutive cytokine secretion and modulation of osteoclastogenesis. The present narrative review aims to overview the recent findings of the importance of T and B cell subsets, as well as their cytokine expression, in the pathogenesis of the periodontal disease. T regulatory (Treg), CD8+ T, and tissue-resident γδ T cells are important to the maintenance of gingival homeostasis. In inflamed gingiva, however, the secretion of IL-17 and secreted osteoclastogenic factor of activated T cells (SOFAT) by activated T cells is crucial to induce osteoclastogenesis via RANKL activation. Moreover, the capacity of mucosal-associated invariant T cells (MAIT cells) to produce cytokines, such as IFN-γ, TNF-α, and IL-17, might indicate a critical role of such cells in the disease pathogenesis. Regarding B cells, low levels of memory B cells in clinically healthy periodontium seem to be important to avoid bone loss due to the subclinical inflammation that occurs. On the other hand, they can exacerbate alveolar bone loss in a receptor activator of nuclear factor kappa-B ligand (RANKL)-dependent manner and affect the severity of periodontitis. In conclusion, several new functions have been discovered and added to the complex knowledge about T and B cells, such as possible new functions for Tregs, the role of SOFAT, and MAIT cells, as well as B cells activating RANKL. The activation of distinct T and B cell subtypes is decisive in defining whether the inflammatory lesion will stabilise as chronic gingivitis or will progress to a tissue destructive periodontitis.
Collapse
Affiliation(s)
- C M Figueredo
- School of Dentistry and Oral Health, Griffith University, Queensland 4222, Australia.
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.
| | - R Lira-Junior
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 141 04 Stockholm, Sweden
| | - R M Love
- School of Dentistry and Oral Health, Griffith University, Queensland 4222, Australia
| |
Collapse
|
41
|
Palioto DB, Finoti LS, Kinane DF, Benakanakere M. Epigenetic and inflammatory events in experimental periodontitis following systemic microbial challenge. J Clin Periodontol 2019; 46:819-829. [PMID: 31131910 PMCID: PMC6641985 DOI: 10.1111/jcpe.13151] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/10/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
AIM The purpose of this study was to determine inflammatory and epigenetic features following induction of oral and gut dysbiosis in experimental periodontitis in order to examine the interplay between oral and systemic infection. MATERIALS AND METHODS Periodontitis was induced in 6- to 8-week-old C57BL/6 mice by (a) Ligature placement (Lig group) (oral challenge); (b) P. gingivalis gavage (Pg group) (systemic challenge); and (c) the combination of the two models oral and systemic challenge (Pg + Lig). The duration of the experiment was 60 days, and the animals were then sacrificed for analyses. Alveolar bone loss was assessed, and a multiplex immunoassay was performed. Maxillae and gut tissues were immunostained for DNMT3b (de novo methylation marker), B and T lymphocyte attenuator (BTLA) and IL-18R1 (inflammation markers). RESULTS Pg and Pg + Lig groups exhibited higher bone loss when compared to Sham. BAFF, VEGF, RANKL, RANTES and IP-10 were significantly higher with Pg gavage. Likewise, DNMT3b was overexpressed in both gut and maxilla after the Pg administration. The same pattern was observed for BTLA and IL-18R1 in gut tissues. CONCLUSIONS The systemic microbial challenge either alone or in combination with local challenge leads to distinct patterns of inflammatory and epigenetic features when compared to simply locally induced experimental periodontitis.
Collapse
Affiliation(s)
- Daniela B. Palioto
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of OMS and Periodontology, University of São Paulo - School of Dentistry of Ribeirão Preto. Brazil
| | - Livia S. Finoti
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Denis F. Kinane
- Division of Periodontology, School of Dental Medicine, University of Geneva, Switzerland
| | - Manjunatha Benakanakere
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Alvarez C, Monasterio G, Cavalla F, Córdova LA, Hernández M, Heymann D, Garlet GP, Sorsa T, Pärnänen P, Lee HM, Golub LM, Vernal R, Kantarci A. Osteoimmunology of Oral and Maxillofacial Diseases: Translational Applications Based on Biological Mechanisms. Front Immunol 2019; 10:1664. [PMID: 31379856 PMCID: PMC6657671 DOI: 10.3389/fimmu.2019.01664] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/03/2019] [Indexed: 12/23/2022] Open
Abstract
The maxillofacial skeleton is highly dynamic and requires a constant equilibrium between the bone resorption and bone formation. The field of osteoimmunology explores the interactions between bone metabolism and the immune response, providing a context to study the complex cellular and molecular networks involved in oro-maxillofacial osteolytic diseases. In this review, we present a framework for understanding the potential mechanisms underlying the immuno-pathobiology in etiologically-diverse diseases that affect the oral and maxillofacial region and share bone destruction as their common clinical outcome. These otherwise different pathologies share similar inflammatory pathways mediated by central cellular players, such as macrophages, T and B cells, that promote the differentiation and activation of osteoclasts, ineffective or insufficient bone apposition by osteoblasts, and the continuous production of osteoclastogenic signals by immune and local stromal cells. We also present the potential translational applications of this knowledge based on the biological mechanisms involved in the inflammation-induced bone destruction. Such applications can be the development of immune-based therapies that promote bone healing/regeneration, the identification of host-derived inflammatory/collagenolytic biomarkers as diagnostics tools, the assessment of links between oral and systemic diseases; and the characterization of genetic polymorphisms in immune or bone-related genes that will help diagnosis of susceptible individuals.
Collapse
Affiliation(s)
- Carla Alvarez
- Forsyth Institute, Cambridge, MA, United States
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Franco Cavalla
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis A. Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, San Jose's Hospital and Clínica Las Condes, Universidad de Chile, Santiago, Chile
| | - Marcela Hernández
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Dominique Heymann
- INSERM, UMR 1232, LabCT, CRCINA, Institut de Cancérologie de l'Ouest, Université de Nantes, Université d'Angers, Saint-Herblain, France
| | - Gustavo P. Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Department of Oral Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Lorne M. Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | | |
Collapse
|
43
|
Periodontal Health and Oral Microbiota in Patients with Rheumatoid Arthritis. J Clin Med 2019; 8:jcm8050630. [PMID: 31072030 PMCID: PMC6572048 DOI: 10.3390/jcm8050630] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate the periodontal health of patients with established rheumatoid arthritis (RA) in relation to oral microbiota, systemic and oral inflammatory mediators, and RA disease activity. Forty patients underwent full-mouth dental/periodontal and rheumatological examination, including collection of blood, saliva, gingival crevicular fluid (GCF) and subgingival plaque. Composition of plaque and saliva microbiota were analysed using 16S rRNA sequencing and levels of inflammatory mediators by multiplex-immunoassay. The majority of the patients (75%) had moderate or severe periodontitis and the rest had no/mild periodontitis. Anti-citrullinated protein antibody (ACPA) positivity was significantly more frequent in the moderate/severe periodontitis (86%) compared to the no/mild group (50%). No significance between groups was observed for RA disease duration or activity, or type of medication. Levels of sCD30/TNFRSF8, IFN-α2, IL-19, IL-26, MMP-1, gp130/sIL-6Rß, and sTNF-R1 were significantly higher in serum or GCF, and April/TNFSF13 was significantly higher in serum and saliva samples in moderate/severe periodontitis. The microbial composition in plaque also differed significantly between the two groups. In conclusion, the majority of RA patients had moderate/severe periodontitis and that this severe form of the disease was significantly associated with ACPA positivity, an altered subgingival microbial profile, and increased levels of systemic and oral inflammatory mediators.
Collapse
|
44
|
Antiperiodontitis Effects of Magnolia biondii Extract on Ligature-Induced Periodontitis in Rats. Nutrients 2019; 11:nu11040934. [PMID: 31027223 PMCID: PMC6521203 DOI: 10.3390/nu11040934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 12/25/2022] Open
Abstract
Over the past decades, periodontitis has become a rising health problem and caused various diseases. In the many studies shows that some extracts and compound to the prevention and treatment of periodontitis. This study focuses on the effects of inhibition of gingival damage and alveolar bone loss. The aim of this study was to evaluate the protective effects of Magnolia biondii extract (MBE) against ligature-induced periodontitis in rats. A ligature was placed around the molar teeth for 8 weeks, and MBE was administered for 8 weeks. Gingival tissue damage and alveolar bone loss were measured by microcomputed tomography (CT) analysis and histopathological examination. Serum Interluekin-1 β (IL-1β), tumor necrosis factor-α (TNF-α), cyclooxygenases-2 (COX-2), and receptor activator of nuclear factor-κB ligand (RANKL) levels were investigated using commercial kits to confirm the antiperiodontitis effects of MBE. We confirmed that ligature-induced periodontitis resulted in gingival tissue damage and alveolar bone loss. However, treatment for 8 weeks with MBE protected from periodontal tissue damage and downregulated serum inflammatory cytokine factors and RANKL levels. These results suggest that MBE exerts antiperiodontitis effects by inhibiting gingival tissue destruction and alveolar bone loss through regulation of anti-inflammatory cytokines in periodontitis-induced rats.
Collapse
|
45
|
Alyami HM, Finoti LS, Teixeira HS, Aljefri A, Kinane DF, Benakanakere MR. Role of NOD1/NOD2 receptors in Fusobacterium nucleatum mediated NETosis. Microb Pathog 2019; 131:53-64. [PMID: 30940608 DOI: 10.1016/j.micpath.2019.03.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/23/2022]
Abstract
Polymorphonuclear neutrophils (PMNs) are indispensable in fighting infectious microbes by adopting various antimicrobial strategies including phagocytosis and neutrophil extracellular traps (NETs). Although the role and importance of PMNs in periodontal disease are well established, the specific molecular mechanisms involved in NET formation are yet to be characterized. In the present study, we sought to determine the role of periodontal pathogen on NET formation by utilizing Fusobacterium nucleatum. Our data demonstrates that F. nucleatum activates neutrophils and induces robust NETosis in a time-dependent manner via the upregulation of the Nucleotide oligomerization domain 1 (NOD1) and NOD2 receptors. Furthermore, CRISPR/Cas9 knockout of HL-60 cells and the use of ligands/inhibitors confirmed the involvement of NOD1 and NOD2 receptors in F. nucleatum-mediated NET formation. When treated with NOD1 and NOD2 inhibitors, we observed a significant downregulation of peptidylarginine deiminase 4 (PAD4) activity. In addition, neutrophils showed a significant increase and decrease of myeloperoxidase (MPO) and neutrophil elastase (NE) when treated with NOD1/NOD2 ligands and inhibitors, respectively. Taken together, CRISPR/Cas9 knockout of NOD1/NOD2 HL-60 cells and inhibitors of NOD signaling confirmed the role of NLRs in F. nucleatum-mediated NETosis. Our data demonstrates an important pathway linking NOD1 and NOD2 to NETosis by F. nucleatum, a prominent microbe in periodontal biofilms. This is the first study to elucidate the role of NOD-like receptors in NETosis and their downstream signaling network.
Collapse
Affiliation(s)
- Hanadi M Alyami
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Dentistry Department, King Fahad Medical City, P.O. Box. 59046, Riyadh, 11525, Saudi Arabia
| | - Livia S Finoti
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hellen S Teixeira
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Abdulelah Aljefri
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Denis F Kinane
- Division of Periodontology, School of Dental Medicine, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Manjunatha R Benakanakere
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Nikolajczyk BS, Dawson DR. Origin of Th17 Cells in Type 2 Diabetes-Potentiated Periodontal Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:45-54. [DOI: 10.1007/978-3-030-28524-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat Immunol 2018; 20:40-49. [PMID: 30455459 PMCID: PMC6291356 DOI: 10.1038/s41590-018-0249-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
Resolution of inflammation is essential for tissue homeostasis and a promising approach to inflammatory disorders. Here we found that DEL-1, a secreted protein inhibiting leukocyte-endothelial adhesion and inflammation initiation, also functions as a non-redundant downstream effector in inflammation clearance. In human and murine periodontitis, waning of inflammation correlated with DEL-1 upregulation, whereas resolution of experimental periodontitis failed in DEL-1 deficiency. This concept was mechanistically substantiated in acute monosodium urate crystal-induced inflammation, where the pro-resolution function of DEL-1 was attributed to effective apoptotic neutrophil clearance (efferocytosis). DEL-1-mediated efferocytosis induced liver-X-receptor-dependent macrophage reprogramming to pro-resolving phenotype and was required for optimal production of at least certain specific pro-resolving mediators. Experiments in transgenic mice with cell-specific overexpression of DEL-1 linked its anti-leukocyte recruitment action to endothelial-derived DEL-1 and its efferocytic/pro-resolving action to macrophage-derived DEL-1. Thus, the compartmentalized expression of DEL-1 facilitates distinct homeostatic functions in an appropriate context that can be harnessed therapeutically.
Collapse
|
48
|
Thrombospondin-1 Production Regulates the Inflammatory Cytokine Secretion in THP-1 Cells Through NF-κB Signaling Pathway. Inflammation 2018. [PMID: 28634844 DOI: 10.1007/s10753-017-0601-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thrombospondin-1 (TSP-1) is upregulated in several inflammatory diseases. Recent data have shown that macrophages from TSP-1-deficient mice have a reduced inflammatory phenotype, suggesting that TSP-1 plays a part in macrophage activation. DNA microarray approach revealed that Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) may induce the enhanced TSP-1 expression in human monocytes, suggesting a role of TSP-1-mediated pathogenesis in periodontitis. Until recently, the function of TSP-1 has been a matter of debate. In this study, we explored the role of TSP-1 in inflammatory cytokine secretions and its putative mechanism in pathogenesis of periodontitis. We demonstrated that TSP-1 expression was significantly upregulated in gingival tissues with periodontitis and in P. gingivalis LPS-stimulated THP-1 cells. Deficiency of TSP-1 by transfecting siRNAs decreased IL-6, IL-1β, and TNF-α secretions in THP-1 cells, whereas overexpression of TSP-1 resulted in an upregulation of IL-6, IL-1β, and TNF-α productions. Additional experiments showed that Pyrrolidine dithiocarbamate (PDTC) inhibited IL-6, IL-1β, and TNF-α expression induced by overexpression of TSP-1, accompanying with downregulation of phosphorylated p65 and IκBα protein levels in response to P. gingivalis LPS. These results indicated that TSP-1 played a significant role in P. gingivalis LPS-initiated inflammatory cytokines (IL-6, IL-1β, and TNF-α) secretions of THP-1 cells, and the NF-κB signaling is involved in its induction of expression. Thus, TSP-1 effectively elevated P. gingivalis LPS-induced inflammation mediated by the NF-κB pathway and may be critical for pathology of periodontitis.
Collapse
|
49
|
Hajishengallis G, Korostoff JM. Revisiting the Page & Schroeder model: the good, the bad and the unknowns in the periodontal host response 40 years later. Periodontol 2000 2018; 75:116-151. [PMID: 28758305 DOI: 10.1111/prd.12181] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In their classic 1976 paper, Page & Schroeder described the histopathologic events and the types of myeloid cells and lymphocytes involved in the initiation and progression of inflammatory periodontal disease. The staging of periodontal disease pathogenesis as 'initial', 'early', 'established' and 'advanced' lesions productively guided subsequent research in the field and remains fundamentally valid. However, major advances regarding the cellular and molecular mechanisms underlying the induction, regulation and effector functions of immune and inflammatory responses necessitate a reassessment of their work and its integration with emerging new concepts. We now know that each type of leukocyte is actually represented by functionally distinct subsets with different, or even conflicting, roles in immunity and inflammation. Unexpectedly, neutrophils, traditionally regarded as merely antimicrobial effectors in acute conditions and protagonists of the 'initial' lesion, are currently appreciated for their functional versatility and critical roles in chronic inflammation. Moreover, an entirely new field of study, osteoimmunology, has emerged and sheds light on the impact of immunoinflammatory events on the skeletal system. These developments and the molecular dissection of crosstalk interactions between innate and adaptive leukocytes, as well as between the immune system and local homeostatic mechanisms, offer a more nuanced understanding of the host response in periodontitis, with profound implications for treatment. At the same time, deeper insights have generated new questions, many of which remain unanswered. In this review, 40 years after Page & Schroeder proposed their model, we summarize enduring and emerging advances in periodontal disease pathogenesis.
Collapse
|
50
|
Demoersman J, Pochard P, Framery C, Simon Q, Boisramé S, Soueidan A, Pers JO. B cell subset distribution is altered in patients with severe periodontitis. PLoS One 2018; 13:e0192986. [PMID: 29447240 PMCID: PMC5814041 DOI: 10.1371/journal.pone.0192986] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/01/2018] [Indexed: 01/10/2023] Open
Abstract
Several studies have recently highlighted the implication of B cells in physiopathogenesis of periodontal disease by showing that a B cell deficiency leads to improved periodontal parameters. However, the detailed profiles of circulating B cell subsets have not yet been investigated in patients with severe periodontitis (SP). We hypothesised that an abnormal distribution of B cell subsets could be detected in the blood of patients with severe periodontal lesions, as already reported for patients with chronic inflammatory diseases as systemic autoimmune diseases. Fifteen subjects with SP and 13 subjects without periodontitis, according to the definition proposed by the CDC periodontal disease surveillance work group, were enrolled in this pilot observational study. Two flow cytometry panels were designed to analyse the circulating B and B1 cell subset distribution in association with the RANKL expression. A significantly higher percentage of CD27+ memory B cells was observed in patients with SP. Among these CD27+ B cells, the proportion of the switched memory subset was significantly higher. At the same time, human B1 cells, which were previously associated with a regulatory function (CD20+CD69-CD43+CD27+CD11b+), decreased in SP patients. The RANKL expression increased in every B cell subset from the SP patients and was significantly greater in activated B cells than in the subjects without periodontitis. These preliminary results demonstrate the altered distribution of B cells in the context of severe periodontitis. Further investigations with a larger cohort of patients can elucidate if the analysis of the B cell compartment distribution can reflect the periodontal disease activity and be a reliable marker for its prognosis (clinical trial registration number: NCT02833285, B cell functions in periodontitis).
Collapse
Affiliation(s)
- Julien Demoersman
- UMR1227, Université de Brest, Inserm, Brest, France
- LabEx IGO, Brest, France
| | - Pierre Pochard
- UMR1227, Université de Brest, Inserm, Brest, France
- LabEx IGO, Brest, France
| | | | - Quentin Simon
- UMR1227, Université de Brest, Inserm, Brest, France
- LabEx IGO, Brest, France
| | | | - Assem Soueidan
- Department of Periodontology, CHU de Nantes, Nantes, France
- Rmes Inserm U1229/UIC11, Université de Nantes, Nantes, France
| | - Jacques-Olivier Pers
- UMR1227, Université de Brest, Inserm, Brest, France
- LabEx IGO, Brest, France
- Service d’odontologie, CHU Brest, Brest, France
- * E-mail:
| |
Collapse
|