1
|
Wang B, Bian Q. SATB1 prevents immune cell infiltration by regulating chromatin organization and gene expression of a chemokine gene cluster in T cells. Commun Biol 2024; 7:1304. [PMID: 39394451 PMCID: PMC11470149 DOI: 10.1038/s42003-024-07021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024] Open
Abstract
SATB1, a key regulator of T cell development, governs lineage-specific transcriptional programs upon T cell activation. The absence of SATB1 has been linked to the initiation and progression of autoimmunity. However, its precise roles in this process remain incompletely understood. Here we show that conditional knockout of Satb1 in CD4+ T cells in mice led to T cell hyperactivation and inflammatory cell infiltration across multiple organs. Transcriptional profiling on activated T cells revealed that the loss of SATB1 led to aberrant upregulation of CC chemokines. Treating Satb1 conditional knockout mice with CC chemokine receptor inhibitor alleviated inflammatory cell infiltration. Intriguingly, SATB1's transcriptional regulation of chemokine genes could not be attributed to its direct binding to chemokine promoters. Instead, SATB1 exerted its regulatory effects by controlling higher-order chromatin organization at a CC chemokine locus. The loss of SATB1 led to the emergence of a new chromatin domain encompassing the Ccl3, Ccl4, Ccl5, Ccl6, and Ccl9 genes and a distal enhancer, resulting in increased contacts between the enhancer and all five chemokine genes, thus inducing their upregulation. Collectively, these results demonstrate that SATB1 protects organs from immune cell infiltration by regulating chemokine expression, providing valuable insights into the development of autoimmunity-related phenotypes.
Collapse
Affiliation(s)
- Bao Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Qi WH, Hu LF, Gu YJ, Zhang XY, Jiang XM, Li WJ, Qi JS, Xiao GS, Jie H. Integrated mRNA-miRNA transcriptome profiling of blood immune responses potentially related to pulmonary fibrosis in forest musk deer. Front Immunol 2024; 15:1404108. [PMID: 38873601 PMCID: PMC11169664 DOI: 10.3389/fimmu.2024.1404108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 06/15/2024] Open
Abstract
Background Forest musk deer (FMD, Moschus Berezovskii) is a critically endangered species world-widely, the death of which can be caused by pulmonary disease in the farm. Pulmonary fibrosis (PF) was a huge threat to the health and survival of captive FMD. MicroRNAs (miRNAs) and messenger RNAs (mRNAs) have been involved in the regulation of immune genes and disease development. However, the regulatory profiles of mRNAs and miRNAs involved in immune regulation of FMD are unclear. Methods In this study, mRNA-seq and miRNA-seq in blood were performed to constructed coexpression regulatory networks between PF and healthy groups of FMD. The hub immune- and apoptosis-related genes in the PF blood of FMD were explored through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Further, protein-protein interaction (PPI) network of immune-associated and apoptosis-associated key signaling pathways were constructed based on mRNA-miRNA in the PF blood of the FMD. Immune hub DEGs and immune hub DEmiRNAs were selected for experimental verification using RT-qPCR. Results A total of 2744 differentially expressed genes (DEGs) and 356 differentially expressed miRNAs (DEmiRNAs) were identified in the PF blood group compared to the healthy blood group. Among them, 42 DEmiRNAs were negatively correlated with 20 immune DEGs from a total of 57 correlations. The DEGs were significantly associated with pathways related to CD molecules, immune disease, immune system, cytokine receptors, T cell receptor signaling pathway, Th1 and Th2 cell differentiation, cytokine-cytokine receptor interaction, intestinal immune network for IgA production, and NOD-like receptor signaling pathway. There were 240 immune-related DEGs, in which 186 immune-related DEGs were up-regulated and 54 immune-related DEGs were down-regulated. In the protein-protein interaction (PPI) analysis of immune-related signaling pathway, TYK2, TLR2, TLR4, IL18, CSF1, CXCL13, LCK, ITGB2, PIK3CB, HCK, CD40, CD86, CCL3, CCR7, IL2RA, TLR3, and IL4R were identified as the hub immune genes. The mRNA-miRNA coregulation analysis showed that let-7d, miR-324-3p, miR-760, miR-185, miR-149, miR-149-5p, and miR-1842-5p are key miRNAs that target DEGs involved in immune disease, immune system and immunoregulation. Conclusion The development and occurrence of PF were significantly influenced by the immune-related and apoptosis-related genes present in PF blood. mRNAs and miRNAs associated with the development and occurrence of PF in the FMD.
Collapse
Affiliation(s)
- Wen-Hua Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Li-Fan Hu
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yu-Jiawei Gu
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | | | - Xue-Mei Jiang
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Wu-Jiao Li
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jun-Sheng Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Guo-Sheng Xiao
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Hang Jie
- Jinfo Mountain Forest Ecosystem Field Scientific Observation and Research Station of Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| |
Collapse
|
3
|
Cecchinato V, Martini V, Pirani E, Ghovehoud E, Uguccioni M. The chemokine landscape: one system multiple shades. Front Immunol 2023; 14:1176619. [PMID: 37251376 PMCID: PMC10213763 DOI: 10.3389/fimmu.2023.1176619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Leukocyte trafficking is mainly governed by chemokines, chemotactic cytokines, which can be concomitantly produced in tissues during homeostatic conditions or inflammation. After the discovery and characterization of the individual chemokines, we and others have shown that they present additional properties. The first discoveries demonstrated that some chemokines act as natural antagonists on chemokine receptors, and prevent infiltration of leukocyte subsets in tissues. Later on it was shown that they can exert a repulsive effect on selective cell types, or synergize with other chemokines and inflammatory mediators to enhance chemokine receptors activities. The relevance of the fine-tuning modulation has been demonstrated in vivo in a multitude of processes, spanning from chronic inflammation to tissue regeneration, while its role in the tumor microenvironment needs further investigation. Moreover, naturally occurring autoantibodies targeting chemokines were found in tumors and autoimmune diseases. More recently in SARS-CoV-2 infection, the presence of several autoantibodies neutralizing chemokine activities distinguished disease severity, and they were shown to be beneficial, protecting from long-term sequelae. Here, we review the additional properties of chemokines that influence cell recruitment and activities. We believe these features need to be taken into account when designing novel therapeutic strategies targeting immunological disorders.
Collapse
|
4
|
Scherm MG, Wyatt RC, Serr I, Anz D, Richardson SJ, Daniel C. Beta cell and immune cell interactions in autoimmune type 1 diabetes: How they meet and talk to each other. Mol Metab 2022; 64:101565. [PMID: 35944899 PMCID: PMC9418549 DOI: 10.1016/j.molmet.2022.101565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022] Open
Abstract
Background Scope of review Major conclusions
Collapse
|
5
|
Agliano F, Karlinsey KS, Ragazzi M, Ménoret A, Vella AT. A benzimidazole inhibitor attenuates sterile inflammation induced in a model of systemic autoinflammation in female mice. Sci Rep 2020; 10:12100. [PMID: 32694575 PMCID: PMC7374700 DOI: 10.1038/s41598-020-68985-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
Sterile stimuli can trigger inflammatory responses, and in some cases can lead to a variety of acute or chronic diseases. In this study, we hypothesize that a benzimidazole inhibitor may be used as a therapeutic in the treatment of sterile inflammation. In vitro, this inhibitor blocks TLR signalling and inflammatory responses. The benzimidazole inhibitor does not prevent mouse macrophage activation after stimulation with 2,6,10,14-tetramethylpentadecane (TMPD, also known as pristane), a hydrocarbon oil that mimics features of sterile inflammation when injected in vivo. However, C57BL/6J female mice treated with the benzimidazole inhibitor exhibited a significant reduction of pristane-dependent induction of splenocyte number and weight. Conversely, no significant difference was observed in males. Using mass spectrometry, we found that the urine of pristane-injected mice contained increased levels of putative markers for several inflammatory diseases, which were reduced by the benzimidazole inhibitor. To study the mechanism, we showed that pristane-injected mice had increased cell free DNA in serum, which was not impacted by inhibitor treatment. However, chemokine release (e.g. MCP-1, RANTES and TARC) was significantly reduced in inhibitor-treated mice. Thus, the benzimidazole inhibitor might be used as a new drug to block the recruitment of immune cells during sterile inflammatory diseases in humans.
Collapse
Affiliation(s)
- Federica Agliano
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Keaton S Karlinsey
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Michael Ragazzi
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Antoine Ménoret
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA. .,Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| | - Anthony T Vella
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
6
|
Yahaya T, Salisu T. Genes predisposing to type 1 diabetes mellitus and pathophysiology: a narrative review. MEDICAL JOURNAL OF INDONESIA 2020. [DOI: 10.13181/mji.rev.203732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The possibility of targeting the causal genes along with the mechanisms of pathogenically complex diseases has led to numerous studies on the genetic etiology of some diseases. In particular, studies have added more genes to the list of type 1 diabetes mellitus (T1DM) suspect genes, necessitating an update for the interest of all stakeholders. Therefore this review articulates T1DM suspect genes and their pathophysiology. Notable electronic databases, including Medline, Scopus, PubMed, and Google-Scholar were searched for relevant information. The search identified over 73 genes suspected in the pathogenesis of T1DM, with human leukocyte antigen, insulin gene, and cytotoxic T lymphocyte-associated antigen 4 accounting for most of the cases. Mutations in these genes, along with environmental factors, may produce a defective immune response in the pancreas, resulting in β-cell autoimmunity, insulin deficiency, and hyperglycemia. The mechanisms leading to these cellular reactions are gene-specific and, if targeted in diabetic individuals, may lead to improved treatment. Medical practitioners are advised to formulate treatment procedures that target these genes in patients with T1DM.
Collapse
|
7
|
Sandor AM, Jacobelli J, Friedman RS. Immune cell trafficking to the islets during type 1 diabetes. Clin Exp Immunol 2019; 198:314-325. [PMID: 31343073 PMCID: PMC6857188 DOI: 10.1111/cei.13353] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2019] [Indexed: 01/01/2023] Open
Abstract
Inhibition of immune cell trafficking to the pancreatic islets during type 1 diabetes (T1D) has therapeutic potential, since targeting of T cell and B cell trafficking has been clinically effective in other autoimmune diseases. Trafficking to the islets is characterized by redundancy in adhesion molecule and chemokine usage, which has not enabled effective targeting to date. Additionally, cognate antigen is not consistently required for T cell entry into the islets throughout the progression of disease. However, myeloid cells are required to enable T cell and B cell entry into the islets, and may serve as a convergence point in the pathways controlling this process. In this review we describe current knowledge of the factors that mediate immune cell trafficking to pancreatic islets during T1D progression.
Collapse
Affiliation(s)
- A. M. Sandor
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| | - J. Jacobelli
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| | - R. S. Friedman
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| |
Collapse
|
8
|
Sandor AM, Lindsay RS, Dyjack N, Whitesell JC, Rios C, Bradley BJ, Haskins K, Serreze DV, Geurts AM, Chen YG, Seibold MA, Jacobelli J, Friedman RS. CD11c + Cells Are Gatekeepers for Lymphocyte Trafficking to Infiltrated Islets During Type 1 Diabetes. Front Immunol 2019; 10:99. [PMID: 30766536 PMCID: PMC6365440 DOI: 10.3389/fimmu.2019.00099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease that affects more than 19 million people with incidence increasing rapidly worldwide. For T cells to effectively drive T1D, they must first traffic to the islets and extravasate through the islet vasculature. Understanding the cues that lead to T cell entry into inflamed islets is important because diagnosed T1D patients already have established immune infiltration of their islets. Here we show that CD11c+ cells are a key mediator of T cell trafficking to infiltrated islets in non-obese diabetic (NOD) mice. Using intravital 2-photon islet imaging we show that T cell extravasation into the islets is an extended process, with T cells arresting in the islet vasculature in close proximity to perivascular CD11c+ cells. Antigen is not required for T cell trafficking to infiltrated islets, but T cell chemokine receptor signaling is necessary. Using RNAseq, we show that islet CD11c+ cells express over 20 different chemokines that bind chemokine receptors expressed on islet T cells. One highly expressed chemokine-receptor pair is CXCL16-CXCR6. However, NOD. CXCR6-/- mice progressed normally to T1D and CXCR6 deficient T cells trafficked normally to the islets. Even with CXCR3 and CXCR6 dual deficiency, T cells trafficked to infiltrated islets. These data reinforce that chemokine receptor signaling is highly redundant for T cell trafficking to inflamed islets. Importantly, depletion of CD11c+ cells strongly inhibited T cell trafficking to infiltrated islets of NOD mice. We suggest that targeted depletion of CD11c+ cells associated with the islet vasculature may yield a therapeutic target to inhibit T cell trafficking to inflamed islets to prevent progression of T1D.
Collapse
Affiliation(s)
- Adam M Sandor
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Robin S Lindsay
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Nathan Dyjack
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | - Jennifer C Whitesell
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Cydney Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | - Brenda J Bradley
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
9
|
Burg AR, Tse HM. Redox-Sensitive Innate Immune Pathways During Macrophage Activation in Type 1 Diabetes. Antioxid Redox Signal 2018; 29:1373-1398. [PMID: 29037052 PMCID: PMC6166692 DOI: 10.1089/ars.2017.7243] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Type 1 diabetes (T1D) is an autoimmune disease resulting in β-cell destruction mediated by islet-infiltrating leukocytes. The role of oxidative stress in human and murine models of T1D is highly significant as these noxious molecules contribute to diabetic complications and β-cell lysis, but their direct impact on dysregulated autoimmune responses is highly understudied. Pro-inflammatory macrophages play a vital role in the initiation and effector phases of T1D by producing free radicals and pro-inflammatory cytokines to facilitate β-cell destruction and to present antigen to autoreactive T cells. Recent Advances: Redox modulation of macrophage functions may play critical roles in autoimmunity. These include enhancing pro-inflammatory innate immune signaling pathways in response to environmental triggers, enforcing an M1 macrophage differentiation program, controlling antigen processing, and altering peptide recognition by oxidative post-translational modification. Therefore, an oxidative environment may act on multiple macrophage functions to orchestrate T1D pathogenesis. CRITICAL ISSUES Mechanisms involved in the initiation of T1D remain unclear, making preventive and early therapeutics difficult to develop. Although many of these advances in the redox regulation of macrophages are in their infancy, they provide insight into how oxidative stress aids in the precipitating event of autoimmune activation. FUTURE DIRECTIONS Future studies should be aimed at mechanistically determining which redox-regulated macrophage functions are pertinent in T1D pathogenesis, as well as at investigating potential targetable therapeutics to halt and/or dampen innate immune activation in T1D.
Collapse
Affiliation(s)
- Ashley R Burg
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
10
|
Inhibition of macrophage inflammatory protein-1β improves endothelial progenitor cell function and ischemia-induced angiogenesis in diabetes. Angiogenesis 2018; 22:53-65. [PMID: 29987448 DOI: 10.1007/s10456-018-9636-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022]
Abstract
Systemic inflammation might contribute to the impairment of neovasculogenesis and endothelial progenitor cell (EPC) function in clinical diabetes mellitus (DM). Macrophage inflammatory protein-1β (MIP-1β) is an inflammatory chemokine that may be up-regulated in clinical DM. Its role in diabetic vasculopathy was not clarified. This study aimed to investigate the role of MIP-1β in human EPCs and in neovasculogenesis in different diabetic animal models with hindlimb ischemia. EPCs chamber assay and in vitro tube formation assay were used to estimate the degree of EPC migration and tube formation abilities. Leprdb/JNarl mice, C57BL/6 mice fed a high-fat diet, and streptozotocin-induced diabetic mice were used as different diabetic animal models. Laser Doppler imaging and flow cytometry were used to evaluate the degree of neovasculogenesis and the circulating levels of EPCs, respectively. MIP-1β impaired human EPC function for angiogenesis in vitro. Plasma MIP-1β levels were up-regulated in type 2 DM patients. MIP-1β inhibition enhanced the function and the C-X-C chemokine receptor type 4 expression of EPCs from type 2 diabetic patients, and improved EPC homing for ischemia-induced neovasculogenesis in different types of diabetic animals. MIP-1β directly impaired human EPC function. Inhibition of MIP-1β improved in vitro EPC function, and enhanced in vivo EPC homing and ischemia-induced neovasculogenesis, suggesting the critical role of MIP-1β for vasculopathy in the presence of DM.
Collapse
|
11
|
Karin N. Autoantibodies to Chemokines and Cytokines Participate in the Regulation of Cancer and Autoimmunity. Front Immunol 2018; 9:623. [PMID: 29651292 PMCID: PMC5884937 DOI: 10.3389/fimmu.2018.00623] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/13/2018] [Indexed: 01/27/2023] Open
Abstract
We have previously shown that predominant expression of key inflammatory cytokines and chemokines at autoimmune sites or tumor sites induces loss of B cells tolerance, resulting in autoantibody production against the dominant cytokine/chemokine that is largely expressed at these sites. These autoantibodies are high-affinity neutralizing antibodies. Based on animal models studies, we suggested that they participate in the regulation of cancer and autoimmunity, albeit at the level of their production cannot entirely prevent the development and progression of these diseases. We have, therefore, named this selective breakdown of tolerance as “Beneficial Autoimmunity.” Despite its beneficial outcome, this process is likely to be stochastic and not directed by a deterministic mechanism, and is likely to be associated with the dominant expression of these inflammatory mediators at sites that are partially immune privileged. A recent study conducted on autoimmune regulator-deficient patients reported that in human this type of breakdown of B cell tolerance is T cell dependent. This explains, in part, why the response is highly restricted, and includes high-affinity antibodies. The current mini-review explores this subject from different complementary perspectives. It also discusses three optional translational aspects: amplification of autoantibody production as a therapeutic approach, development of autoantibody based diagnostic tools, and the use of B cells from donors that produce these autoantibodies for the development of high-affinity human monoclonal antibodies.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
12
|
Kaminitz A, Ash S, Askenasy N. Neutralization Versus Reinforcement of Proinflammatory Cytokines to Arrest Autoimmunity in Type 1 Diabetes. Clin Rev Allergy Immunol 2018; 52:460-472. [PMID: 27677500 DOI: 10.1007/s12016-016-8587-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As physiological pathways of intercellular communication produced by all cells, cytokines are involved in the pathogenesis of inflammatory insulitis as well as pivotal mediators of immune homeostasis. Proinflammatory cytokines including interleukins, interferons, transforming growth factor-β, tumor necrosis factor-α, and nitric oxide promote destructive insulitis in type 1 diabetes through amplification of the autoimmune reaction, direct toxicity to β-cells, and sensitization of islets to apoptosis. The concept that neutralization of cytokines may be of therapeutic benefit has been tested in few clinical studies, which fell short of inducing sustained remission or achieving disease arrest. Therapeutic failure is explained by the redundant activities of individual cytokines and their combinations, which are rather dispensable in the process of destructive insulitis because other cytolytic pathways efficiently compensate their deficiency. Proinflammatory cytokines are less redundant in regulation of the inflammatory reaction, displaying protective effects through restriction of effector cell activity, reinforcement of suppressor cell function, and participation in islet recovery from injury. Our analysis suggests that the role of cytokines in immune homeostasis overrides their contribution to β-cell death and may be used as potent immunomodulatory agents for therapeutic purposes rather than neutralized.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Shifra Ash
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202.
| |
Collapse
|
13
|
Mallol C, Casana E, Jimenez V, Casellas A, Haurigot V, Jambrina C, Sacristan V, Morró M, Agudo J, Vilà L, Bosch F. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice. Mol Metab 2017; 6:664-680. [PMID: 28702323 PMCID: PMC5485311 DOI: 10.1016/j.molmet.2017.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
Objective Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Methods Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28–30 weeks. Results In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Conclusions Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a therapeutic strategy for autoimmune diabetes in humans. Local pancreatic IGF1 expression prevents spontaneous autoimmune diabetes. Protection achieved after one-time local administration of IGF1-encoding AAV vectors. Efficacious in animals treated early or once autoimmunity is already established. Protection through maintenance of β-cell mass and endogenous insulin secretion. Treatment leads to reduced infiltration and expression of immunity genes in islets.
Collapse
Affiliation(s)
- Cristina Mallol
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Estefania Casana
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Virginia Haurigot
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Claudia Jambrina
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Meritxell Morró
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Judith Agudo
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Laia Vilà
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| |
Collapse
|
14
|
Chang TT, Chen JW. Emerging role of chemokine CC motif ligand 4 related mechanisms in diabetes mellitus and cardiovascular disease: friends or foes? Cardiovasc Diabetol 2016; 15:117. [PMID: 27553774 PMCID: PMC4995753 DOI: 10.1186/s12933-016-0439-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/12/2016] [Indexed: 12/14/2022] Open
Abstract
Chemokines are critical components in pathology. The roles of chemokine CC motif ligand 4 (CCL4) and its receptor are associated with diabetes mellitus (DM) and atherosclerosis cardiovascular diseases. However, due to the complexity of these diseases, the specific effects of CCL4 remain unclear, although recent reports have suggested that multiple pathways are related to CCL4. In this review, we provide an overview of the role and potential mechanisms of CCL4 and one of its major receptors, fifth CC chemokine receptor (CCR5), in DM and cardiovascular diseases. CCL4-related mechanisms, including CCL4 and CCR5, might provide potential therapeutic targets in DM and/or atherosclerosis cardiovascular diseases.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Jaw-Wen Chen
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, R.O.C. .,Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C. .,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan, R.O.C. .,Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C.
| |
Collapse
|
15
|
Bogdani M. Thinking Outside the Cell: A Key Role for Hyaluronan in the Pathogenesis of Human Type 1 Diabetes. Diabetes 2016; 65:2105-14. [PMID: 27456615 DOI: 10.2337/db15-1750] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/16/2016] [Indexed: 11/13/2022]
Affiliation(s)
- Marika Bogdani
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA
| |
Collapse
|
16
|
Ju SM, Youn GS, Cho YS, Choi SY, Park J. Celastrol ameliorates cytokine toxicity and pro-inflammatory immune responses by suppressing NF-κB activation in RINm5F beta cells. BMB Rep 2015; 48:172-7. [PMID: 25059279 PMCID: PMC4453024 DOI: 10.5483/bmbrep.2015.48.3.147] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 01/09/2023] Open
Abstract
Upregulation of pro-inflammatory mediators contributes to β-cell destruction and enhanced infiltration of immune cells into pancreatic islets during development of type 1 diabetes mellitus. In this study, we examined the regulatory effects and the mechanisms of action of celastrol against cytotoxicity and pro-inflammatory immune responses in the RINm5F rat pancreatic β-cell line stimulated with a combination of interleukin-1 beta, tumor necrosis factor-alpha, and interferon-γ. Celastrol significantly restored cytokine-induced cell death and significantly inhibited cytokine-induced nitric oxide production. In addition, the protective effect of celastrol was correlated with a reduction in pro-inflammatory mediators, such as inducible nitric oxide synthase, cyclooxygenase-2, and CC chemokine ligand 2. Furthermore, celastrol significantly suppressed cytokine-induced signaling cascades leading to nuclear factor kappa B (NF-κB) activation, including IκB-kinase (IKK) activation, IκB degradation, p65 phosphorylation, and p65 DNA binding activity. These results suggest that celastrol may exert its cytoprotective activity by suppressing cytokine-induced expression of pro-inflammatory mediators by inhibiting activation of NF-κB in RINm5F cells. [BMB Reports 2015; 48(3): 172-177]
Collapse
Affiliation(s)
- Sung Mi Ju
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Gi Soo Youn
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Yoon Shin Cho
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 200-702, Korea
| |
Collapse
|
17
|
The role of chemokines in adjusting the balance between CD4+ effector T cell subsets and FOXp3-negative regulatory T cells. Int Immunopharmacol 2015; 28:829-35. [DOI: 10.1016/j.intimp.2015.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/28/2015] [Indexed: 12/24/2022]
|
18
|
Chien SC, Wu YC, Chen ZW, Yang WC. Naturally occurring anthraquinones: chemistry and therapeutic potential in autoimmune diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:357357. [PMID: 25866536 PMCID: PMC4381678 DOI: 10.1155/2015/357357] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/10/2014] [Indexed: 11/29/2022]
Abstract
Anthraquinones are a class of aromatic compounds with a 9,10-dioxoanthracene core. So far, 79 naturally occurring anthraquinones have been identified which include emodin, physcion, cascarin, catenarin, and rhein. A large body of literature has demonstrated that the naturally occurring anthraquinones possess a broad spectrum of bioactivities, such as cathartic, anticancer, anti-inflammatory, antimicrobial, diuretic, vasorelaxing, and phytoestrogen activities, suggesting their possible clinical application in many diseases. Despite the advances that have been made in understanding the chemistry and biology of the anthraquinones in recent years, research into their mechanisms of action and therapeutic potential in autoimmune disorders is still at an early stage. In this paper, we briefly introduce the etiology of autoimmune diabetes, an autoimmune disorder that affects as many as 10 million worldwide, and the role of chemotaxis in autoimmune diabetes. We then outline the chemical structure and biological properties of the naturally occurring anthraquinones and their derivatives with an emphasis on recent findings about their immune regulation. We discuss the structure and activity relationship, mode of action, and therapeutic potential of the anthraquinones in autoimmune diabetes, including a new strategy for the use of the anthraquinones in autoimmune diabetes.
Collapse
Affiliation(s)
- Shih-Chang Chien
- Department of Forestry, National Chung-Hsing University, Taichung 402, Taiwan
| | - Yueh-Chen Wu
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Academia Sinica Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | | | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Academia Sinica Road, Sec. 2, Nankang, Taipei 115, Taiwan
- Animal Technology Institute, Chunan 350, Taiwan
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Institute of Pharmacology, Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
19
|
Sumners LH, Zhang W, Zhao X, Honaker CF, Zhang S, Cline MA, Siegel PB, Gilbert ER. Chickens from lines artificially selected for juvenile low and high body weight differ in glucose homeostasis and pancreas physiology. Comp Biochem Physiol A Mol Integr Physiol 2014; 172:57-65. [PMID: 24614025 DOI: 10.1016/j.cbpa.2014.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/11/2014] [Accepted: 02/26/2014] [Indexed: 11/18/2022]
Abstract
Artificial selection of White Plymouth Rock chickens for juvenile (day 56) body weight resulted in two divergent genetic lines: hypophagic low weight (LWS) chickens and hyperphagic obese high weight (HWS) chickens, with the latter more than 10-fold heavier than the former at selection age. A study was designed to investigate glucose regulation and pancreas physiology at selection age in LWS chickens and HWS chickens. Oral glucose tolerance and insulin sensitivity tests revealed differences in threshold sensitivity to insulin and glucose clearance rate between the lines. Results from real-time PCR showed greater pancreatic mRNA expression of four glucose regulatory genes (preproinsulin, PPI; preproglucagon, PPG; glucose transporter 2, GLUT2; and pancreatic duodenal homeobox 1, Pdx1) in LWS chickens, than HWS chickens. Histological analysis of the pancreas revealed that HWS chickens have larger pancreatic islets, less pancreatic islet mass, and more pancreatic inflammation than LWS chickens, all of which presumably contribute to impaired glucose metabolism.
Collapse
Affiliation(s)
- L H Sumners
- Dept. of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - W Zhang
- Dept. of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - X Zhao
- Sichuan Agricultural University, Sichuan, China.
| | - C F Honaker
- Dept. of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - S Zhang
- Dept. of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - M A Cline
- Dept. of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - P B Siegel
- Dept. of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - E R Gilbert
- Dept. of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
20
|
Kochupurakkal NM, Kruger AJ, Tripathi S, Zhu B, Adams LT, Rainbow DB, Rossini A, Greiner DL, Sayegh MH, Wicker LS, Guleria I. Blockade of the programmed death-1 (PD1) pathway undermines potent genetic protection from type 1 diabetes. PLoS One 2014; 9:e89561. [PMID: 24586872 PMCID: PMC3938467 DOI: 10.1371/journal.pone.0089561] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/22/2014] [Indexed: 01/07/2023] Open
Abstract
Aims/Hypothesis Inhibition of PD1-PDL1 signaling in NOD mice accelerates onset of type 1 diabetes implicating this pathway in suppressing the emergence of pancreatic beta cell reactive T-cells. However, the molecular mechanism by which PD1 signaling protects from type 1 diabetes is not clear. We hypothesized that differential susceptibility of Idd mouse strains to type 1 diabetes when challenged with anti PDL1 will identify genomic loci that collaborate with PD1 signaling in suppressing type 1 diabetes. Methods Anti PDL1 was administered to NOD and various Idd mouse strains at 10 weeks of age and onset of disease was monitored by measuring blood glucose levels. Additionally, histological evaluation of the pancreas was performed to determine degree of insulitis. Statistical analysis of the data was performed using Log-Rank and Student's t-test. Results Blockade of PDL1 rapidly precipitated type 1 diabetes in nearly all NOD Idd congenic strains tested, despite the fact that all are moderately (Idd5, Idd3 and Idd10/18) or highly (Idd3/10/18 and Idd9) protected from spontaneous type 1 diabetes by virtue of their protective Idd genes. Only the Idd3/5 strain, which is nearly 100% protected from spontaneous disease, remained normoglycemic following PDL1 blockade. Conclusions These results indicate that multiple Idd loci collaborate with PD1 signaling. Anti PDL1 treatment undermines a large portion of the genetic protection mediated by Idd genes in the NOD model of type 1 diabetes. Basal insulitis correlated with higher susceptibility to type 1 diabetes. These findings have important implications since the PD1 pathway is a target for immunotherapy.
Collapse
Affiliation(s)
- Nora M. Kochupurakkal
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School Renal Division, Boston, Massachusetts, United States of America
| | - Annie J. Kruger
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sudipta Tripathi
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School Renal Division, Boston, Massachusetts, United States of America
| | - Bing Zhu
- Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - La Tonya Adams
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School Renal Division, Boston, Massachusetts, United States of America
| | - Daniel B. Rainbow
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Aldo Rossini
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Dale L. Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Mohamed H. Sayegh
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School Renal Division, Boston, Massachusetts, United States of America
| | - Linda S. Wicker
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Indira Guleria
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School Renal Division, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ashenafi S, Aderaye G, Bekele A, Zewdie M, Aseffa G, Hoang ATN, Carow B, Habtamu M, Wijkander M, Rottenberg M, Aseffa A, Andersson J, Svensson M, Brighenti S. Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clin Immunol 2014; 151:84-99. [PMID: 24584041 DOI: 10.1016/j.clim.2014.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/08/2014] [Accepted: 01/30/2014] [Indexed: 02/06/2023]
Abstract
In this study, we explored the local cytokine/chemokine profiles in patients with active pulmonary or pleural tuberculosis (TB) using multiplex protein analysis of bronchoalveolar lavage and pleural fluid samples. Despite increased pro-inflammation compared to the uninfected controls; there was no up-regulation of IFN-γ or the T cell chemoattractant CCL5 in the lung of patients with pulmonary TB. Instead, elevated levels of IL-4 and CCL4 were associated with high mycobacteria-specific IgG titres as well as SOCS3 (suppressors of cytokine signaling) mRNA and progression of moderate-to-severe disease. Contrary, IL-4, CCL4 and SOCS3 remained low in patients with extrapulmonary pleural TB, while IFN-γ, CCL5 and SOCS1 were up-regulated. Both SOCS molecules were induced in human macrophages infected with Mycobacterium tuberculosis in vitro. The Th2 immune response signature found in patients with progressive pulmonary TB could result from inappropriate cytokine/chemokine responses and excessive SOCS3 expression that may represent potential targets for clinical TB management.
Collapse
Affiliation(s)
- Senait Ashenafi
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden; Black Lion University Hospital and Addis Ababa University, Department of Pathology, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Getachew Aderaye
- Black Lion University Hospital and Addis Ababa University, Department of Internal Medicine, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Amsalu Bekele
- Black Lion University Hospital and Addis Ababa University, Department of Internal Medicine, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Martha Zewdie
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Getachew Aseffa
- Black Lion University Hospital and Addis Ababa University, Department of Radiology, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Anh Thu Nguyen Hoang
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Berit Carow
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Stockholm, Sweden
| | - Meseret Habtamu
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Maria Wijkander
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Martin Rottenberg
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Stockholm, Sweden
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Jan Andersson
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden; Karolinska University Hospital Huddinge, Department of Medicine, Division of Infectious Diseases, Stockholm, Sweden
| | - Mattias Svensson
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Susanna Brighenti
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
22
|
Rydén A, Faresjö M. Altered immune profile from pre-diabetes to manifestation of type 1 diabetes. Diabetes Res Clin Pract 2013; 100:74-84. [PMID: 23485080 DOI: 10.1016/j.diabres.2013.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 12/05/2012] [Accepted: 01/14/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND While the mechanisms leading to β-cell destruction and clinical onset of T1D are still unclear, the composition of the immune profile is probably important for the outcome of immune activity. The aim of this study was to investigate the composition and possible changes of the immunological profile, spontaneously and following stimulation with the autoantigens GAD65, and HSP60, at high-risk and T1D onset and further to 8 months post diagnosis. METHODS Fifteen first-degree relatives of T1D patients with a high risk of developing the disease within five years, 25 children approximately four days and 8 months after diagnosis of T1D and 16 healthy children were included in the study. Cytokines (IL-1β, -6, -7, -10, -13, -17, IFN-γ and TNF-α) and chemokines (CCL2, -3, -4, -5 and CXCL10) associated with Th1, Th2, Tr1 and inflammatory cells were detected in cell culture supernatants by Luminex-technique, and markers associated with regulatory T-cells (FOXP3, CTLA-4 and TGF-β) by real-time RT-PCR. RESULTS High-risk individuals differed in immunity from that seen in healthy and T1D children. High-risk individuals had a low TNF-α response and fewer responders from mitogen exposure as well as low spontaneous secretions of IL-13 compared to healthy children. High-risk individuals that later developed T1D, had a lower FOXP3 and CTLA-4 mRNA expression, following stimulation with GAD65, in combination with higher secretion of the pro-inflammatory chemokine CCL4. CONCLUSION Changes in immunity seen in individuals with high risk of developing T1D points to alterations/actions in the immune system already early in the pre-diabetic phase.
Collapse
Affiliation(s)
- Anna Rydén
- Division of Paediatrics & Diabetes Research Centre, Department of Clinical & Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | | |
Collapse
|
23
|
Chandrasekar B, Deobagkar-Lele M, Victor ES, Nandi D. Regulation of Chemokines, CCL3 and CCL4, by Interferon γ and Nitric Oxide Synthase 2 in Mouse Macrophages and During Salmonella enterica Serovar Typhimurium Infection. J Infect Dis 2013; 207:1556-68. [DOI: 10.1093/infdis/jit067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
24
|
Huang G, Mo X, Li M, Xiang Y, Li X, Luo S, Zhou Z. Autoantibodies to CCL3 are of low sensitivity and specificity for the diagnosis of type 1 diabetes. Acta Diabetol 2012; 49:395-9. [PMID: 22350136 DOI: 10.1007/s00592-012-0380-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
Type 1 diabetes (T1D) is a T cell-dependent tissue-specific autoimmune disease, characterized by the selective destruction of the β cells of the pancreatic islets of Langerhans. Recently, contradictory findings have been reported about the relationship of autoantibodies to CC chemokine 3 (CCL3) and T1D, which need to be confirmed by more investigations in larger cohorts. The aim of our research was to investigate whether autoantibodies to CCL3 are useful markers for T1D in a large cohort of Chinese patients. We analyzed autoantibodies to CCL3, glutamic acid decarboxylase(GADA), insulinoma-associated protein-2 (IA-2A), and zinc transporter-8 (ZnT8A) by a radioimmunoprecipitation assay in 290 T1D subjects, 200 subjects with type 2 diabetes (T2D), 210 subjects with other diseases, and 178 healthy control subjects. Results showed that the frequencies of autoantibodies to CCL3 in subjects with T1D, T2D, and healthy control subjects were similar [3.10% (9/290), 2.50% (5/200), and 0.56% (1/178), respectively, P = 0.189]. Autoantibodies to CCL3 were not significantly different between T1D patients with or without GADA, IA-2A, or ZnT8A antibodies (2.7% vs. 3.9%, P = 0.725). In contrast, patients with systemic lupus erythematosus and rheumatoid arthritis showed higher positivity for autoantibodies to CCL3 than healthy control subjects [15.6% (5/32) and 12.5% (8/64) vs. 0.56% (1/178), all P = 0.000], and higher titer of autoantibodies to CCL3 than T1D patients (median 0.9633 and 0.4095 vs. 0.0873, P = 0.012 and P = 0.034, respectively). We conclude that autoantibodies to CCL3 are of low sensitivity and specificity for T1D and cannot be used in the diagnosis of T1D.
Collapse
Affiliation(s)
- Gan Huang
- Diabetes Center, 2nd Xiangya Hospital, Institute of Metabolism and Endocrinology, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Axelsson S, Hjorth M, Ludvigsson J, Casas R. Decreased GAD(65)-specific Th1/Tc1 phenotype in children with Type 1 diabetes treated with GAD-alum. Diabet Med 2012; 29:1272-8. [PMID: 22587593 DOI: 10.1111/j.1464-5491.2012.03710.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM The balance between T helper cell subsets is an important regulator of the immune system and is often examined after immune therapies. We aimed to study the immunomodulatory effect of glutamic acid decarboxylase (GAD) 65 formulated with aluminium hydroxide (GAD-alum) in children with Type 1 diabetes, focusing on chemokines and their receptors. METHODS Blood samples were collected from 70 children with Type 1 diabetes included in a phase II clinical trial with GAD-alum. Expression of CC chemokine receptor 5 (CCR5) and CCR4 was analysed on CD4+ and CD8+ lymphocytes after in vitro stimulation with GAD(65) using flow cytometry, and secretion of the chemokines CCL2, CCL3 and CCL4 was detected in peripheral blood mononuclear cell supernatants with Luminex. RESULTS Expression of Th1-associated CCR5 was down-regulated following antigen challenge, together with an increased CCR4/CCR5 ratio and CCL2 secretion in GAD-alum-treated patients, but not in the placebo group. CONCLUSION Our results suggest that GAD-alum treatment has induced a favourable immune modulation associated with decreased Th1/Tc1 phenotypes upon antigen re-challenge, which may be of importance for regulating GAD(65) immunity.
Collapse
Affiliation(s)
- S Axelsson
- Division of Paediatrics, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
26
|
Lee JS, Scandiuzzi L, Ray A, Wei J, Hofmeyer KA, Abadi YM, Loke P, Lin J, Yuan J, Serreze DV, Allison JP, Zang X. B7x in the periphery abrogates pancreas-specific damage mediated by self-reactive CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:4165-74. [PMID: 22972920 DOI: 10.4049/jimmunol.1201241] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B7x (B7-H4 or B7S1) is the seventh member of the B7 family, and its in vivo function remains largely unknown. Despite new genetic data linking the B7x gene with autoimmune diseases, how exactly it contributes to peripheral tolerance and autoimmunity is unclear. In this study, we showed that B7x protein was not detected on APCs or T cells in both human and mice, which is unique in the B7 family. Because B7x protein is expressed in some peripheral cells such as pancreatic β cells, we used a CD8 T cell-mediated diabetes model (AI4αβ) in which CD8 T cells recognize an endogenous self-Ag, and found that mice lacking B7x developed more severe diabetes than control AI4αβ mice. Conversely, mice overexpressing B7x in the β cells (Rip-B7xAI4αβ) were diabetes free. Furthermore, adoptive transfer of effector AI4αβ CD8 T cells induced diabetes in control mice, but not in Rip-B7xAI4αβ mice. Mechanistic studies revealed that pathogenic effector CD8 T cells were capable of migrating to the pancreas but failed to robustly destroy tissue when encountering local B7x in Rip-B7xAI4αβ mice. Although AI4αβ CD8 T cells in Rip-B7xAI4αβ and AI4αβ mice showed similar cytotoxic function, cell death, and global gene expression profiles, these cells had greater proliferation in AI4αβ mice than in RIP-B7xAI4αβ mice. These results suggest that B7x in nonlymphoid organs prevents peripheral autoimmunity partially through inhibiting proliferation of tissue-specific CD8 T cells, and that local overexpression of B7x on pancreatic β cells is sufficient to abolish CD8 T cell-induced diabetes.
Collapse
Affiliation(s)
- Jun Sik Lee
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Catenarin Prevents Type 1 Diabetes in Nonobese Diabetic Mice via Inhibition of Leukocyte Migration Involving the MEK6/p38 and MEK7/JNK Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:982396. [PMID: 22454693 PMCID: PMC3291164 DOI: 10.1155/2012/982396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/11/2011] [Indexed: 01/16/2023]
Abstract
Inflammation contributes to leukocyte migration, termed insulitis, and β-cell loss in type 1 diabetes (T1D). Naturally occurring anthraquinones are claimed as anti-inflammatory compounds; however, their actions are not clear. This study aimed to investigate the effect and mechanism of catenarin on the inflammatory disease, T1D. Catenarin and/or its anthraquinone analogs dose-dependently suppressed C-X-C chemokine receptor type 4 (CXCR4)- and C-C chemokine receptor type 5 (CCR5)-implicated chemotaxis in leukocytes. Catenarin, the most potent anthraquinone tested in the study, prevented T1D in nonobese diabetic mice. Mechanistic study showed that catenarin did not act on the expression of CCR5 and CXCR4. On the contrary, catenarin inhibited CCR5- and CXCR4-mediated chemotaxis via the reduction of the phosphorylation of mitogen-activated protein kinases (p38 and JNK) and their upstream kinases (MKK6 and MKK7), and calcium mobilization. Overall, the data demonstrate the preventive effect and molecular mechanism of action of catenarin on T1D, suggesting its novel use as a prophylactic agent in T1D.
Collapse
|
28
|
Sarkar SA, Lee CE, Victorino F, Nguyen TT, Walters JA, Burrack A, Eberlein J, Hildemann SK, Homann D. Expression and regulation of chemokines in murine and human type 1 diabetes. Diabetes 2012; 61:436-46. [PMID: 22210319 PMCID: PMC3266427 DOI: 10.2337/db11-0853] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
More than one-half of the ~50 human chemokines have been associated with or implicated in the pathogenesis of type 1 diabetes, yet their actual expression patterns in the islet environment of type 1 diabetic patients remain, at present, poorly defined. Here, we have integrated a human islet culture system, murine models of virus-induced and spontaneous type 1 diabetes, and the histopathological examination of pancreata from diabetic organ donors with the goal of providing a foundation for the informed selection of potential therapeutic targets within the chemokine/receptor family. Chemokine (C-C motif) ligand (CCL) 5 (CCL5), CCL8, CCL22, chemokine (C-X-C motif) ligand (CXCL) 9 (CXCL9), CXCL10, and chemokine (C-X3-C motif) ligand (CX3CL) 1 (CX3CL1) were the major chemokines transcribed (in an inducible nitric oxide synthase-dependent but not nuclear factor-κB-dependent fashion) and translated by human islet cells in response to in vitro inflammatory stimuli. CXCL10 was identified as the dominant chemokine expressed in vivo in the islet environment of prediabetic animals and type 1 diabetic patients, whereas CCL5, CCL8, CXCL9, and CX3CL1 proteins were present at lower levels in the islets of both species. Of importance, additional expression of the same chemokines in human acinar tissues emphasizes an underappreciated involvement of the exocrine pancreas in the natural course of type 1 diabetes that will require consideration for additional type 1 diabetes pathogenesis and immune intervention studies.
Collapse
Affiliation(s)
- Suparna A. Sarkar
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Catherine E. Lee
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Francisco Victorino
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado
| | - Tom T. Nguyen
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Jay A. Walters
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Adam Burrack
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado
| | - Jens Eberlein
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | | | - Dirk Homann
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
- Corresponding author: Dirk Homann,
| |
Collapse
|
29
|
Lewis EC, Blaabjerg L, Størling J, Ronn SG, Mascagni P, Dinarello CA, Mandrup-Poulsen T. The oral histone deacetylase inhibitor ITF2357 reduces cytokines and protects islet β cells in vivo and in vitro. Mol Med 2010; 17:369-77. [PMID: 21193899 DOI: 10.2119/molmed.2010.00152] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/21/2010] [Indexed: 01/28/2023] Open
Abstract
In type 1 diabetes, inflammatory and immunocompetent cells enter the islet and produce proinflammatory cytokines such as interleukin-1β (IL-1β), IL-12, tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ); each contribute to β-cell destruction, mediated in part by nitric oxide. Inhibitors of histone deacetylases (HDAC) are used commonly in humans but also possess antiinflammatory and cytokine-suppressing properties. Here we show that oral administration of the HDAC inhibitor ITF2357 to mice normalized streptozotocin (STZ)-induced hyperglycemia at the clinically relevant doses of 1.25-2.5 mg/kg. Serum nitrite levels returned to nondiabetic values, islet function improved and glucose clearance increased from 14% (STZ) to 50% (STZ + ITF2357). In vitro, at 25 and 250 nmol/L, ITF2357 increased islet cell viability, enhanced insulin secretion, inhibited MIP-1α and MIP-2 release, reduced nitric oxide production and decreased apoptosis rates from 14.3% (vehicle) to 2.6% (ITF2357). Inducible nitric oxide synthase (iNOS) levels decreased in association with reduced islet-derived nitrite levels. In peritoneal macrophages and splenocytes, ITF2357 inhibited the production of nitrite, as well as that of TNFα and IFNγ at an IC(50) of 25-50 nmol/L. In the insulin-producing INS cells challenged with the combination of IL-1β plus IFNγ, apoptosis was reduced by 50% (P < 0.01). Thus at clinically relevant doses, the orally active HDAC inhibitor ITF2357 favors β-cell survival during inflammatory conditions.
Collapse
Affiliation(s)
- Eli C Lewis
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Interference with islet-specific homing of autoreactive T cells: an emerging therapeutic strategy for type 1 diabetes. Drug Discov Today 2010; 15:531-9. [PMID: 20685342 DOI: 10.1016/j.drudis.2010.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 05/11/2010] [Accepted: 05/21/2010] [Indexed: 11/21/2022]
Abstract
Pathogenesis of type 1 diabetes involves the activation of autoimmune T cells, consequent homing of activated lymphocytes to the pancreatic islets and ensuing destruction of insulin-producing b cells. Interaction between activated lymphocytes and endothelial cells in the islets is the hallmark of the homing process. Initial adhesion, firm adhesion and diapedesis of lymphocytes are the three crucial steps involved in the homing process. Cell-surface receptors including integrins, selectins and hyaluronate receptor CD44 mediate the initial steps of homing. Diapedesis relies on a series of proteolytic events mediated by matrix metalloproteinases. Here, molecular mechanisms governing transendothelial migration of the diabetogenic effector cells are discussed and resulting pharmacological strategies are considered.
Collapse
|
31
|
Meagher C, Beilke J, Arreaza G, Mi QS, Chen W, Salojin K, Horst N, Cruikshank WW, Delovitch TL. Neutralization of interleukin-16 protects nonobese diabetic mice from autoimmune type 1 diabetes by a CCL4-dependent mechanism. Diabetes 2010; 59:2862-71. [PMID: 20693344 PMCID: PMC2963545 DOI: 10.2337/db09-0131] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The progressive infiltration of pancreatic islets by lymphocytes is mandatory for development of autoimmune type 1 diabetes. This inflammatory process is mediated by several mediators that are potential therapeutic targets to arrest development of type 1 diabetes. In this study, we investigate the role of one of these mediators, interleukin-16 (IL-16), in the pathogenesis of type 1 diabetes in NOD mice. RESEARCH DESIGN AND METHODS At different stages of progression of type 1 diabetes, we characterized IL-16 in islets using GEArray technology and immunoblot analysis and also quantitated IL-16 activity in cell migration assays. IL-16 expression was localized in islets by immunofluorescence and confocal imaging. In vivo neutralization studies were performed to assess the role of IL-16 in the pathogenesis of type 1 diabetes. RESULTS The increased expression of IL-16 in islets correlated with the development of invasive insulitis. IL-16 immunoreactivity was found in islet infiltrating T-cells, B-cells, NK-cells, and dendritic cells, and within an insulitic lesion, IL-16 was derived from infiltrating cells. CD4(+) and CD8(+) T-cells as well as B220(+) B-cells were identified as sources of secreted IL-16. Blockade of IL-16 in vivo protected against type 1 diabetes by interfering with recruitment of CD4(+) T-cells to the pancreas, and this protection required the activity of the chemokine CCL4. CONCLUSIONS IL-16 production by leukocytes in islets augments the severity of insulitis during the onset of type 1 diabetes. IL-16 and CCL4 appear to function as counterregulatory proteins during disease development. Neutralization of IL-16 may represent a novel therapy for the prevention of type 1 diabetes.
Collapse
Affiliation(s)
- Craig Meagher
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, London, Ontario, Canada
| | - Josh Beilke
- Department of Immunology, University of California, San Francisco, California
| | - Guillermo Arreaza
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, London, Ontario, Canada
| | - Qing-Sheng Mi
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, London, Ontario, Canada
| | - Wei Chen
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, London, Ontario, Canada
| | - Konstantin Salojin
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, London, Ontario, Canada
| | - Noah Horst
- Department of Immunology, University of California, San Francisco, California
| | | | - Terry L. Delovitch
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, London, Ontario, Canada
- Corresponding author: Terry L. Delovitch,
| |
Collapse
|
32
|
Yang K, Wang XQ, He YS, Lu L, Chen QJ, Liu J, Shen WF. Advanced glycation end products induce chemokine/cytokine production via activation of p38 pathway and inhibit proliferation and migration of bone marrow mesenchymal stem cells. Cardiovasc Diabetol 2010; 9:66. [PMID: 20969783 PMCID: PMC2987998 DOI: 10.1186/1475-2840-9-66] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 10/22/2010] [Indexed: 02/07/2023] Open
Abstract
Background Advanced glycation products (AGEs), as endogenous inflammatory mediator, compromise the physiological function of mesenchymal stem cells (MSCs). MSCs have a potential role in cell replacement therapy in acute myocardial infarction and ischemic cardiomyopathy. However, mechanisms of AGEs on MSCs are still not unveiled. Methods Reactive oxygen species (ROS), genes regulation, cell proliferation and migration have been detected by AGE-BSA stimulated MSCs. Results We found that in vitro stimulation with AGE-BSA induced generation of reactive oxygen species (ROS), and inhibited dose-dependently proliferation and migration of MSCs. Microarray and molecular biological assessment displayed an increased expression and secretion of Ccl2, Ccl3, Ccl4 and Il1b in a dose- and time-dependent manner. These chemokines/cytokines of equivalent concentration to those in conditioned medium exerted an inhibitory effect on MSC proliferation and migration after stimulation for 24 h. Transient elevation of phospho-p38 in MSCs upon AGE-BSA stimulation was blocked with p38 inhibitor. Conclusions The study indicates that AGE-BSA induces production of chemokines/cytokines in a dose- and time-dependent manner via activation of ROS-p38 mediated pathway. These chemokines/cytokines exert an inhibitory effect on MSC growth and migration, suggesting an amplified dysfunction of MSCs by AGEs.
Collapse
Affiliation(s)
- Ke Yang
- Department of Cardiology, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, P.R. China
| | | | | | | | | | | | | |
Collapse
|
33
|
Chatzigeorgiou A, Harokopos V, Mylona-Karagianni C, Tsouvalas E, Aidinis V, Kamper EF. The pattern of inflammatory/anti-inflammatory cytokines and chemokines in type 1 diabetic patients over time. Ann Med 2010; 42:426-38. [PMID: 20568978 DOI: 10.3109/07853890.2010.495951] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS To evaluate the profile of pro- and anti-inflammatory cytokines in type 1 diabetes mellitus (T1DM) and the way they are connected in co-regulated networks and determine whether disease duration influences their pattern. METHODS Plasma levels of 20 cytokines and soluble CD40 (sCD40) from 44 uncomplicated patients and 22 healthy controls (HCs) were measured using enzyme-linked immunosorbent assay (ELISA) and protein array technology. RESULTS Patients showed significantly higher levels of sCD40, IL-1a, IL-2, IL-4, IL-5, IL-10, granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage inflammatory protein (MIP)-1a, MIP-1b, regulated on activation normal T cell expressed and secreted (RANTES), matrix metalloproteinase (MMP)-9, and a trend to higher IL-6 than did HCs. RANTES and sCD40 discriminated significantly between diabetics and HCs. In patients with disease duration >6 months, cytokines were organized in two clusters mainly regulated by Th17 and Th1/Th2 cells respectively, while in those with disease duration <or=6 months a set of Th1-cytokines was separated apart from the second cluster. Monocyte chemotactic protein (MCP)-1 was revealed as the most discriminant factor between patients with disease duration of more than and less than 6 months. CONCLUSIONS A parallel elevation of both inflammatory and anti-inflammatory cytokines was observed in patients compared with HCs. In T1DM patients with disease duration <or=6 months, Th1-cytokines were organized on a separate cluster, suggesting a possible role of Th1 cells in the progress of beta-cell destruction during the first period of the disease.
Collapse
Affiliation(s)
- Antonios Chatzigeorgiou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, GR-11527, Athens, Greece
| | | | | | | | | | | |
Collapse
|
34
|
Sapir Y, Vitenshtein A, Barsheshet Y, Zohar Y, Wildbaum G, Karin N. A Fusion Protein Encoding the Second Extracellular Domain of CCR5 Arrests Chemokine-Induced Cosignaling and Effectively Suppresses Ongoing Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2010; 185:2589-99. [DOI: 10.4049/jimmunol.1000666] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Yi H, Zhao Y. Chemokines, chemokine receptors and CD4+CD25+ regulatory T cells. Expert Rev Clin Immunol 2010; 3:343-9. [PMID: 20477678 DOI: 10.1586/1744666x.3.3.343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The fields of regulatory T (Treg) cells and chemokines/chemokine receptors have progressed rapidly in the last few years. Treg cells, especially CD4(+)CD25(+) Treg cells, play a critical role in maintaining self-tolerance and immune homeostasis. Chemokines and chemokine receptors are crucial for lymphoid development, homing and immunological regulation. This review will discuss the biological effects of chemokines and chemokine receptors on regulating the migration and development of CD4(+)CD25(+) Treg cells, and the potential clinical implications of these findings when considering chemokine receptors as therapeutic targets.
Collapse
Affiliation(s)
- Huanfa Yi
- Chinese Academy of Sciences, Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Beijing, China.
| | | |
Collapse
|
36
|
Wong MS, Hawthorne WJ, Manolios N. Gene therapy in diabetes. SELF NONSELF 2010; 1:165-175. [PMID: 21487475 DOI: 10.4161/self.1.3.12643] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 06/09/2010] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease, whereby auto-reactive cytotoxic T cells target and destroy insulin-secreting β-cells in pancreatic islets leading to insulin deficiency and subsequent hyperglycemia. These individuals require multiple daily insulin injections every day of their life without which they will develop life-threatening diabetic ketoacidosis (DKA) and die. Gene therapy by viral vector and non-viral transduction may be useful techniques to treat T1D as it can be applied from many different angles; such as the suppression of autoreactive T cells to prevent islet destruction (prophylactic) or the replacement of the insulin gene (post-disease). The need for a better method for providing euglycemia arose from insufficient numbers of cadaver islets for transplantation and the immunosuppression required post-transplant. Ectopic expression of insulin or islet modification have been examined, but not perfected. This review examines the various gene transfer methods, gene therapy techniques used to date and promising novel techniques for the maintenance of euglycemia in the treatment of T1D.
Collapse
Affiliation(s)
- Mary S Wong
- Department of Rheumatology; University of Sydney; Sydney, NSW Australia
| | | | | |
Collapse
|
37
|
Karin N. The multiple faces of CXCL12 (SDF-1alpha) in the regulation of immunity during health and disease. J Leukoc Biol 2010; 88:463-73. [PMID: 20501749 DOI: 10.1189/jlb.0909602] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemokines are a group of small, structurally related molecules that regulate the trafficking of various types of leukocytes through interactions with a subset of 7-transmembrane G-protein-coupled receptors. As key chemoattractants of inflammatory leukocytes, chemokines have been marked as potential targets for neutralization in autoimmune diseases. Cancer cells also express chemokines, where they function as survival/growth factors and/or angiogenic factors that promote tumor development and angiogenesis. Accordingly, these functions make them attractive targets for therapy of these diseases. Recently, we reported that one of these chemokines CXCL12 (SDF-1alpha) functions as an anti-inflammatory chemokine during autoimmune inflammatory responses and explored the mechanistic basis of this function. As a pleiotropic chemokine, CXCL12 participates in the regulation of tissue homeostasis, immune surveillance, autoimmunity, and cancer. This chemokine is constitutively expressed in the BM and various tissues, which enables it to regulate the trafficking and localization of immature and maturing leukocytes, including BM stem cells, neutrophils, T cells, and monocytic cells. We have shown recently that CXCL12 increases immunological tolerance in autoimmune diseases by polarizing Tregs and by doing so, restrains the progression of these diseases. This finding suggests a possible use of stabilized rCXCL12 as a potential drug for therapy of these diseases and targeted neutralization of CXCL12 for therapy of cancer diseases. The current review explores the different biological properties of CXCL12 and discusses the implications of CXCL12-based therapies for autoimmunity and cancer diseases.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Bruce Rappaport Faculty of Medicine and Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 1 Efron St., Haifa 31096, Israel.
| |
Collapse
|
38
|
Solomon M, Balasa B, Sarvetnick N. CCR2 and CCR5 chemokine receptors differentially influence the development of autoimmune diabetes in the NOD mouse. Autoimmunity 2010; 43:156-63. [PMID: 19824873 DOI: 10.3109/08916930903246464] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The infiltration of monocytes represents an important early event in the development of autoimmune diabetes in NOD mice. Given that chemokines are key regulators of leukocyte trafficking, we examined the requirement for the chemokine receptors beta(CC)-chemokine receptor-5 (CCR5) and beta(CC)-chemokine receptor-2 (CCR2), which recruit monocytes, in disease development in the NOD mouse. Whereas the onset of diabetes was significantly delayed in CCR2-/-NOD mice (25% at 30 weeks) compared to NOD mice (50% at 28 weeks), the pathogenesis of diabetes was accelerated in CCR5-/-NOD mice (75% at 23 weeks). The rapid development of diabetes in CCR5-/-NOD mice was associated with aggressive destructive insulitis and was accompanied by altered leukocyte migration into islets. In contrast, CCR2-/- NOD mice exhibited delayed inflammatory cell recruitment. Nevertheless, total diabetogenic splenocytes from CCR2-/-NOD and CCR5-/-NOD showed similar capability to adoptively transfer diabetes into NOD.scid recipients. Importantly, our data suggest that targeting of CCR2 may lead to therapies against Type 1 diabetes.
Collapse
Affiliation(s)
- Michelle Solomon
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
39
|
Izhak L, Wildbaum G, Weinberg U, Uri W, Shaked Y, Alami J, Dumont D, Friedman B, Stein A, Karin N. Predominant expression of CCL2 at the tumor site of prostate cancer patients directs a selective loss of immunological tolerance to CCL2 that could be amplified in a beneficial manner. THE JOURNAL OF IMMUNOLOGY 2009; 184:1092-101. [PMID: 19995900 DOI: 10.4049/jimmunol.0902725] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that, during inflammatory autoimmune diseases in humans, the immune system develops a neutralizing auto-Ab-based response to a very limited number of inflammatory mediators, and that amplification of each response could be beneficial for the host. Our working hypothesis has been that this selective breakdown of immunological tolerance is due to a predominant expression of an inflammatory mediator at an immune-restricted site undergoing a destructive process. All three conditions also take place in cancer diseases. In this study, we delineate this hypothesis for the first time in a human cancer disease and then explore its clinical implications. We show that in primary tumor sections of prostate cancer subjects, CCL2 is predominantly expressed at the tumor site over other chemokines that have been associated with tumor development, including: CXCL12, CXCL10, CXCL8, CCL3, and CCL5. Subsequently, the immune response selectivity mounts an Ab-based response to CCL2. These Abs are neutralizing Abs. These findings hold diagnostic and therapeutic implications. The current diagnosis of prostate cancer is based on prostate-specific Ag measurements that do not distinguish benign hypertrophy from malignancy. We show in this study that development of anti-CCL2 Abs is selective to the malignant stage. From a clinically oriented perspective, we show, in an experimental model of the disease, that DNA-based amplification of this response suppresses disease, which has implications for a novel way of therapy in humans.
Collapse
Affiliation(s)
- Liat Izhak
- Department of Immunology, the Ruth and Bruce Rappaport Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Technion-Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lin CC, Boyer PD, Aimetti AA, Anseth KS. Regulating MCP-1 diffusion in affinity hydrogels for enhancing immuno-isolation. J Control Release 2009; 142:384-91. [PMID: 19951731 DOI: 10.1016/j.jconrel.2009.11.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/06/2009] [Accepted: 11/22/2009] [Indexed: 11/28/2022]
Abstract
Delivering cells using semi-permeable hydrogels is becoming an increasingly important direction in cell based therapies and regenerative medicine applications. Synthetic hydrogels have been functionalized with bioactive motifs to render otherwise inert polymer networks responsive. However, little effort has been focused on creating immuno-isolating materials capable of retarding the transport of small antigenic molecules secreted from the cells delivered with the synthetic carriers. Toward the goal of developing a complete immuno-isolation polymeric barrier, affinity peptide-functionalized PEG hydrogels were developed with the ability to sequester monocyte chemotactic protein 1 (MCP-1), a chemokine known to induce the chemotaxis of monocytes, dendritic cells, and memory T-cells. Affinity peptides capable of sequestering MCP-1 were identified from CCR2 (a G protein-coupled receptor for MCP-1) and incorporated within PEG hydrogels via a thiol-acrylate photopolymerization. The release of encapsulated recombinant MCP-1 from PEG hydrogels is readily tuned by: (1) incorporating affinity peptides within the network; and/or (2) altering the spacer distance between the affinity peptide and the crosslinking site. Furthermore, when pancreatic beta-cells were encapsulated within these novel peptide-functionalized hydrogels, the release of cell-secreted MCP-1 was significantly reduced, demonstrating the potential of this new gel formulation to reduce the host innate immune response to transplanted cells by decreasing the recruitment and activation of host monocytes and other immune cells.
Collapse
Affiliation(s)
- Chien-Chi Lin
- Department of Chemical and Biological Engineering, University of Colorado, 424 UCB, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
41
|
Penaranda C, Bluestone JA. Is antigen specificity of autoreactive T cells the key to islet entry? Immunity 2009; 31:534-6. [PMID: 19833083 DOI: 10.1016/j.immuni.2009.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It has been widely hypothesized that pancreatic islet infiltrates include both islet-antigen-specific and nonspecific T cells. In this issue of Immunity, Lennon et al. (2009) demonstrate that islet-antigen specificity is required for accumulation in the islets.
Collapse
Affiliation(s)
- Cristina Penaranda
- Department of Medicine, Diabetes Center, University of California, San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
42
|
Regulation of type 1 diabetes, tuberculosis, and asthma by parasites. J Mol Med (Berl) 2009; 88:27-38. [PMID: 19844667 DOI: 10.1007/s00109-009-0546-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 07/27/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
Abstract
Helminth infection is a worldwide health problem. In addition to directly causing disease, helminthic infection also affects the incidence and progression of other diseases by exerting immune modulatory effects. In animal models, infection with helminthic parasites can prevent autoimmune diseases and allergic inflammatory diseases, but worsens protective immunity to certain infectious pathogens. In this review, we summarize current findings regarding the effects of helminth infection on type 1 diabetes, tuberculosis, and asthma and discuss possible mechanisms through which helminthic parasites modulate host immunity. Investigating these mechanisms could lead to treatment strategies that specifically modulate the immune response as well as address fundamental questions in immunobiology.
Collapse
|
43
|
Bergman R, Ramon M, Wildbaum G, Avitan-Hersh E, Mayer E, Shemer A, Karin N. Psoriasis patients generate increased serum levels of autoantibodies to tumor necrosis factor-alpha and interferon-alpha. J Dermatol Sci 2009; 56:163-7. [PMID: 19800767 DOI: 10.1016/j.jdermsci.2009.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/25/2009] [Accepted: 08/29/2009] [Indexed: 11/17/2022]
Abstract
BACKGROUND It has been shown in experimental animal models that were extended to humans that during autoimmune conditions, the immune system generates beneficial autoantibody (auto Ab) response to a limited number of inflammatory mediators that drive the pathogenesis of the disease. OBJECTIVE To investigate the presence of auto Abs to cytokines and chemokines in psoriasis. METHODS Sera were obtained from patients with psoriasis (n=37), atopic dermatitis (AD) (n=18) and healthy volunteers (n=56). The titers of auto (Abs) to TNF-alpha, interferon-alpha (IFN-alpha), interleukin-17 (IL-17), and chemokines CCL2, CCL3 and CCL5 were determined using enzyme-linked immunosorbant assay. Neutralizing activities of high-titer auto Abs to TNF-alpha and IFN-alpha were determined using functional in vitro assays. RESULTS Highly significant increased titers of auto Abs to TNF-alpha and IFN-alpha were detected in patients with psoriasis compared with healthy subjects and patients with AD (mean titers more than fourfold). These auto Abs demonstrated some neutralizing activity in vitro, but their serum levels did not correlate with the intensity and duration of the disease and with phototherapy induced remissions. Significantly increased titers albeit to a lesser extent, of auto Abs to CCL3 were detected in AD. CONCLUSIONS Psoriasis patients produce markedly increased levels of auto Abs to TNF-alpha and IFN-alpha which are two of the key cytokines in this disorder. The presence of these auto Abs which possess some neutralizing activity in vitro, may be an epiphenomenon or might play a role in attempting to suppress the ongoing inflammatory process.
Collapse
Affiliation(s)
- R Bergman
- Department of Dermatology, Rambam Medical Center, Israel.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
BACKGROUND Islet transplantation success depends on the number and quality of islets transplanted. This study aimed at exploring the molecular mechanisms associated with cold pancreas preservation and their impact on islet cell survival and function. METHODS Rat pancreata were stored in cold University of Wisconsin preservation solution for short (3 hr; control) or long (18 hr) cold ischemia times (CIT). RESULTS Pancreata exposed to long CIT yielded lower islet numbers and showed reduced cellular viability; isolated islets displayed higher levels of phosphorylated stress-activated protein kinase (c-jun N-terminal Kinase and Mitogen-Activated Protein Kinase-p38), and chemokine (C-C) ligand-3, and lower levels of vascular endothelial growth factor, interleukins (IL)-9 and IL-10. Islets obtained from long-CIT pancreata were functionally impaired after transplantation. Differential proteomic expression in pancreatic tissue after CIT included increased eukaryotic translation elongation factor-1-alpha-1 (apoptosis related) and reduced Clade-B (serine protease inhibitor). CONCLUSIONS Our study indicates that cold ischemia stimulates inflammatory pathways (chemokine (c-c)ligand-3, phosphorylation of c-jun N-terminal Kinase and mitogen-activated protein kinase-p38, and eukaryotic translation elongation factor-1-alpha-1) and decreases repair/cytoprotective pathways (IL-10, vascular endothelial growth factor, and Clade-B), all of which may negatively affect the quality and mass of islets obtained from a donor pancreas.
Collapse
|
45
|
Christensen UB, Larsen PM, Fey S, Karlsen AE, Pociot F, Nerup J, Sparre T. Different islet protein expression profiles during spontaneous diabetes development vs. allograft rejection in BB-DP rats. Autoimmunity 2009; 39:315-21. [PMID: 16891220 DOI: 10.1080/08916930600648269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Type 1 diabetes (T1D) is characterized by selective autoimmune destruction of the insulin producing beta-cells in the islets of Langerhans. When the beta-cells are destroyed exogenous administration of insulin is necessary for maintenance of glucose homeostasis. Allogeneic islet transplantation has been used as a means to circumvent the need for insulin administration and has in some cases been able to restore endogenous insulin production for years. However, long life immunosuppression is needed to prevent the graft from being rejected and destroyed. Changes in protein expression pattern during spontaneous diabetes development in the diabetes prone BioBreeding rat (BB-DP) have previously been described. In the present study, we have investigated if any of the changes seen in the protein expression pattern during spontaneous diabetes development are also present during allograft rejection of BB-DP rat islets. Two hundred neonatal islets were syngeneically transplanted under the kidney capsule of 30 day old BB-DP rats and removed prior to and at onset of diabetes. Allogeneically transplanted islets from BB-DP rats were removed before onset of allograft rejection and at maximal islet graft inflammation (rejection). The protein expression profiles of the transplants were visualised by two-dimensional gel (2-DG) electrophoresis, analysed and compared. In total, 2590 protein spots were visualised and of these 310 changed expression (p < 0.01) in syngeneic islet transplants in the BB-DP rats from 7 days after transplantation until onset of diabetes. In BB-DP islets transplanted to WK rats 53 protein spots (p < 0.01) showed changes in expression when comparing islet grafts removed 7 days after transplantation with islet grafts removed 12 days after transplantation where mononuclear cell infiltration is at its maximum. Only four protein spots (1%) were significantly changed in both syngeneic (autoimmune) and allogeneic islet destruction. When comparing protein expression changes in syngeneic BB-DP islet transplants from 37 days after transplantation to onset of diabetes with protein expression changes in allografts from day 7 to 12 after transplantation only three spot were found to commonly change expression in both situations. In conclusion, a large number of protein expression changes were detected in both autoimmune islet destruction and allogeneic islet rejection, only two overlaps were detected, suggesting that autoimmune islet destruction and allogeneic islet rejection may result from different target cell responses to signals induced by the cellular infiltrate. Whether this reflects activation of distinct signalling pathways in islet cells is currently unknown and need to be further investigated.
Collapse
|
46
|
Shehadeh N, Pollack S, Wildbaum G, Zohar Y, Shafat I, Makhoul R, Daod E, Hakim F, Perlman R, Karin N. Selective autoantibody production against CCL3 is associated with human type 1 diabetes mellitus and serves as a novel biomarker for its diagnosis. THE JOURNAL OF IMMUNOLOGY 2009; 182:8104-9. [PMID: 19494336 DOI: 10.4049/jimmunol.0803348] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently demonstrated that patients suffering from chronic autoimmune diseases develop an autoantibody response against key mediators that participate in the initiation and progression of these diseases. In this paper, we show that patients with type 1 diabetes mellitus (T1DM), but not those suffering from several other inflammatory autoimmune diseases, display a selective autoantibody titer to a single CC chemokine named CCL3. From the diagnostic point we show that this response could be used as a biomarker for diagnosis of T1DM, a disease that is currently diagnosed by autoantibodies to competitive anti-insulin Abs, islet cell Abs, and glutamic acid decarboxylase Abs. We show that our currently suggested biomarker is more reliable than each of the above alone, including diagnosis of T1DM at its preclinical stage, and could therefore be used as a novel way for diagnosis of T1DM. These Abs were found to be neutralizing Abs. It is possible, though hard to prove, that these Abs participate in the natural regulation of the human disease. Hence, it has previously been shown by others that selective neutralization of CCL3 suppresses T1DM in NOD mice. Theses results together with ours suggest CCL3 as a preferential target for therapy of T1DM.
Collapse
Affiliation(s)
- Naim Shehadeh
- Department of Immunology, Rambam Medical Center, Technion, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease with a strong inflammatory component. The latest studies indicate that innate immunity and inflammatory mediators have a much broader role in T1DM than initially assumed. Inflammation might contribute to early induction and amplification of the immune assault against pancreatic beta cells and, at later stages, to the stabilization and maintenance of insulitis. Inflammatory mediators probably contribute to the suppression of beta-cell function and subsequent apoptosis; they may also inhibit or stimulate beta-cell regeneration and might cause peripheral insulin resistance. The different effects of inflammation take place in different phases of the course of T1DM, and should be considered in the context of a 'dialog' between invading immune cells and the target beta cells. This dialog is mediated both by cytokines and chemokines that are released by beta cells and immune cells, and by putative, immunogenic signals that are delivered by dying beta cells. In this Review, we divided the role of inflammation in T1DM into three arbitrary stages: induction, amplification and maintenance or resolution of insulitis. These stages, and their progression or resolution, might depend on a patient's genetic background, which contributes to disease heterogeneity.
Collapse
Affiliation(s)
- Décio L Eizirik
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, 808 Route de Lennik, Brussels,Belgium.
| | | | | |
Collapse
|
48
|
Martin AP, Rankin S, Pitchford S, Charo IF, Furtado GC, Lira SA. Increased expression of CCL2 in insulin-producing cells of transgenic mice promotes mobilization of myeloid cells from the bone marrow, marked insulitis, and diabetes. Diabetes 2008; 57:3025-33. [PMID: 18633103 PMCID: PMC2570399 DOI: 10.2337/db08-0625] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To define the mechanisms underlying the accumulation of monocytes/macrophages in the islets of Langerhans. RESEARCH DESIGN AND METHODS We tested the hypothesis that macrophage accumulation into the islets is caused by overexpression of the chemokine CCL2. To test this hypothesis, we generated transgenic mice and evaluated the cellular composition of the islets by immunohistochemistry and flow cytometry. We determined serum levels of CCL2 by enzyme-linked immunosorbent assay, determined numbers of circulating monocytes, and tested whether CCL2 could mobilize monocytes from the bone marrow directly. We examined development of diabetes over time and tested whether CCL2 effects could be eliminated by deletion of its receptor, CCR2. RESULTS Expression of CCL2 by beta-cells was associated with increased numbers of monocytes in circulation and accumulation of macrophages in the islets of transgenic mice. These changes were promoted by combined actions of CCL2 at the level of the bone marrow and the islets and were not seen in animals in which the CCL2 receptor (CCR2) was inactivated. Mice expressing higher levels of CCL2 in the islets developed diabetes spontaneously. The development of diabetes was correlated with the accumulation of large numbers of monocytes in the islets and did not depend on T- and B-cells. Diabetes could also be induced in normoglycemic mice expressing low levels of CCL2 by increasing the number of circulating myeloid cells. CONCLUSIONS These results indicate that CCL2 promotes monocyte recruitment by acting both locally and remotely and that expression of CCL2 by insulin-producing cells can lead to insulitis and islet destruction.
Collapse
Affiliation(s)
- Andrea P Martin
- Immunology Institute, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
49
|
Mabley JG, Pacher P, Murthy KGK, Williams W, Southan GJ, Salzman AL, Szabo C. The novel inosine analogue, INO-2002, protects against diabetes development in multiple low-dose streptozotocin and non-obese diabetic mouse models of type I diabetes. J Endocrinol 2008; 198:581-9. [PMID: 18562629 PMCID: PMC2669843 DOI: 10.1677/joe-07-0511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Endogenous purines including inosine have been shown to exert immunomodulatory and anti-inflammatory effects in a variety of disease models. The dosage of inosine required for protection is very high because of the rapid metabolism of inosine in vivo. The aim of this study was to determine whether a metabolic-resistant purine analogue, INO-2002, exerts anti-inflammatory effects in two animal models of type I diabetes. Type I diabetes was induced chemically with streptozotocin or genetically using the non-obese diabetic (NOD) female mouse model. Mice were treated with INO-2002 or inosine as required at 30, 100, or 200 mg/kg per day, while blood glucose and diabetes incidence were monitored. The effect of INO-2002 on the pancreatic cytokine profile was also determined. INO-2002 reduced both the hyperglycaemia and incidence of diabetes in both streptozotocin-induced and spontaneous diabetes in NOD mice. INO-2002 proved to be more effective in protecting against diabetes than the naturally occurring purine, inosine, when administered at the same dose. INO-2002 treatment decreased pancreatic levels of interleukin (IL)-12 and tumour necrosis factor-alpha, while increasing levels of IL-4 and IL-10. INO-2002 also reduced pancreatic levels of the chemokine MIP-1 alpha. The inosine analogue, INO-2002, was protected more effectively than the naturally occurring purine, inosine, against development of diabetes in two separate animal models. INO-2002 exerts protective effects by changing the pancreatic cytokine expression from a destructive Th1 to a protective Th2 profile. The use of analogues of inosine such as INO-2002 should be considered as a potential preventative therapy in individuals susceptible to developing type I diabetes.
Collapse
Affiliation(s)
- Jon G Mabley
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4GJ, UK.
| | | | | | | | | | | | | |
Collapse
|
50
|
Pfleger C, Kaas A, Hansen L, Alizadeh B, Hougaard P, Holl R, Kolb H, Roep BO, Mortensen HB, Schloot NC. Relation of circulating concentrations of chemokine receptor CCR5 ligands to C-peptide, proinsulin and HbA1c and disease progression in type 1 diabetes. Clin Immunol 2008; 128:57-65. [PMID: 18434252 DOI: 10.1016/j.clim.2008.03.458] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/03/2008] [Accepted: 03/03/2008] [Indexed: 11/19/2022]
Abstract
Th1 related chemokines CCL3 and CCL5 and Th2 related CCL4 as ligands of the receptor CCR5 contribute to disease development in animal models of type 1 diabetes. In humans, no data are available addressing the role of these chemokines regarding disease progression and remission. We investigated longitudinally circulating concentrations of CCR5 ligands of 256 newly diagnosed patients with type 1 diabetes. CCR5 ligands were differentially associated with beta-cell function and clinical remission. CCL5 was decreased in remitters and positively associated with HbA1c suggestive of a Th1 associated progression of the disease. Likewise, CCL3 was negatively related to C-peptide and positively associated with the beta-cell stress marker proinsulin but increased in remitters. CCL4 associated with decreased beta-cell stress shown by negative association with proinsulin. Blockage of chemokines or antagonism of CCR5 by therapeutic agents such as maraviroc may provide a new therapeutic target to ameliorate disease progression in type 1 diabetes.
Collapse
Affiliation(s)
- C Pfleger
- Institute for Clinical Diabetes Research at German Diabetes Centre, Leibniz Institute at Heinrich-Heine-University Duesseldorf, Auf'm Hennekamp 65, 40225 Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|