1
|
Lu E, Hara A, Sun S, Hallmark B, Snider JM, Seeds MC, Watkins JC, McCall CE, Zhang HH, Yao G, Chilton FH. Temporal associations of plasma levels of the secreted phospholipase A 2 family and mortality in severe COVID-19. Eur J Immunol 2024:e2350721. [PMID: 38651231 DOI: 10.1002/eji.202350721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 04/25/2024]
Abstract
Previous research suggests that group IIA-secreted phospholipase A2 (sPLA2-IIA) plays a role in and predicts lethal COVID-19 disease. The current study reanalyzed a longitudinal proteomic data set to determine the temporal relationship between levels of several members of a family of sPLA2 isoforms and the severity of COVID-19 in 214 ICU patients. The levels of six secreted PLA2 isoforms, sPLA2-IIA, sPLA2-V, sPLA2-X, sPLA2-IB, sPLA2-IIC, and sPLA2-XVI, increased over the first 7 ICU days in those who succumbed to the disease but attenuated over the same time period in survivors. In contrast, a reversed pattern in sPLA2-IID and sPLA2-XIIB levels over 7 days suggests a protective role of these two isoforms. Furthermore, decision tree models demonstrated that sPLA2-IIA outperformed top-ranked cytokines and chemokines as a predictor of patient outcome. Taken together, proteomic analysis revealed temporal sPLA2 patterns that reflect the critical roles of sPLA2 isoforms in severe COVID-19 disease.
Collapse
Affiliation(s)
- Eric Lu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Aki Hara
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Shudong Sun
- Department of Mathematics, University of Arizona, Tucson, Arizona, USA
- Statistics Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Brian Hallmark
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
- Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
- Center for Precision Nutrition and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Michael C Seeds
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Joseph C Watkins
- Department of Mathematics, University of Arizona, Tucson, Arizona, USA
- Statistics Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Charles E McCall
- Departments of Internal Medicine, Microbiology and Immunology, and Clinical and Translational Sciences Institute, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Hao Helen Zhang
- Department of Mathematics, University of Arizona, Tucson, Arizona, USA
- Statistics Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Guang Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Floyd H Chilton
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Center for Precision Nutrition and Wellness, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
2
|
Hamu-Tanoue A, Takagi K, Taketomi Y, Miki Y, Nishito Y, Kano K, Aoki J, Matsuyama T, Kondo K, Dotake Y, Matsuyama H, Machida K, Murakami M, Inoue H. Group III secreted phospholipase A 2 -driven lysophospholipid pathway protects against allergic asthma. FASEB J 2024; 38:e23428. [PMID: 38236184 DOI: 10.1096/fj.202301976r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Asthma is a chronic inflammatory disease of the airways characterized by recurrent episodes of airway obstruction, hyperresponsiveness, remodeling, and eosinophilia. Phospholipase A2 s (PLA2 s), which release fatty acids and lysophospholipids from membrane phospholipids, have been implicated in exacerbating asthma by generating pro-asthmatic lipid mediators, but an understanding of the association between individual PLA2 subtypes and asthma is still incomplete. Here, we show that group III-secreted PLA2 (sPLA2 -III) plays an ameliorating, rather than aggravating, role in asthma pathology. In both mouse and human lungs, sPLA2 -III was expressed in bronchial epithelial cells and decreased during the asthmatic response. In an ovalbumin (OVA)-induced asthma model, Pla2g3-/- mice exhibited enhanced airway hyperresponsiveness, eosinophilia, OVA-specific IgE production, and type 2 cytokine expression as compared to Pla2g3+/+ mice. Lipidomics analysis showed that the pulmonary levels of several lysophospholipids, including lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidic acid (LPA), were decreased in OVA-challenged Pla2g3-/- mice relative to Pla2g3+/+ mice. LPA receptor 2 (LPA2 ) agonists suppressed thymic stromal lymphopoietin (TSLP) expression in bronchial epithelial cells and reversed airway hyperresponsiveness and eosinophilia in Pla2g3-/- mice, suggesting that sPLA2 -III negatively regulates allergen-induced asthma at least by producing LPA. Thus, the activation of the sPLA2 -III-LPA pathway may be a new therapeutic target for allergic asthma.
Collapse
Affiliation(s)
- Asako Hamu-Tanoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Koichi Takagi
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kiyotaka Kondo
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoichi Dotake
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiromi Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kentaro Machida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
3
|
Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A 2 family. Immunol Rev 2023; 317:42-70. [PMID: 37035998 DOI: 10.1111/imr.13205] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Among the phospholipase A2 (PLA2 ) superfamily, which typically catalyzes the sn-2 hydrolysis of phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2 ) family contains 11 isoforms in mammals. Individual sPLA2 s have unique enzymatic specificity toward fatty acids and polar heads of phospholipid substrates and display distinct tissue/cellular distributions, suggesting their distinct physiological functions. Recent studies using knockout and/or transgenic mice for a full set of sPLA2 s have revealed their roles in modulation of immunity and related disorders. Application of mass spectrometric lipidomics to these mice has enabled to identify target substrates and products of individual sPLA2 s in given tissue microenvironments. sPLA2 s hydrolyze not only phospholipids in the plasma membrane of activated, damaged or dying mammalian cells, but also extracellular phospholipids such as those in extracellular vesicles, microbe membranes, lipoproteins, surfactants, and dietary phospholipids, thereby exacerbating or ameliorating various diseases. The actions of sPLA2 s are dependent on, or independent of, the generation of fatty acid- or lysophospholipid-derived lipid mediators according to the pathophysiological contexts. In this review, we make an overview of our current understanding of the roles of individual sPLA2 s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
The phospholipase A 2 superfamily as a central hub of bioactive lipids and beyond. Pharmacol Ther 2023; 244:108382. [PMID: 36918102 DOI: 10.1016/j.pharmthera.2023.108382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
In essence, "phospholipase A2" (PLA2) means a group of enzymes that release fatty acids and lysophospholipids by hydrolyzing the sn-2 position of glycerophospholipids. To date, more than 50 enzymes possessing PLA2 or related lipid-metabolizing activities have been identified in mammals, and these are subdivided into several families in terms of their structures, catalytic mechanisms, tissue/cellular localizations, and evolutionary relationships. From a general viewpoint, the PLA2 superfamily has mainly been implicated in signal transduction, driving the production of a wide variety of bioactive lipid mediators. However, a growing body of evidence indicates that PLA2s also contribute to phospholipid remodeling or recycling for membrane homeostasis, fatty acid β-oxidation for energy production, and barrier lipid formation on the body surface. Accordingly, PLA2 enzymes are considered one of the key regulators of a broad range of lipid metabolism, and perturbation of specific PLA2-driven lipid pathways often disrupts tissue and cellular homeostasis and may be associated with a variety of diseases. This review covers current understanding of the physiological functions of the PLA2 superfamily, focusing particularly on the two major intracellular PLA2 families (Ca2+-dependent cytosolic PLA2s and Ca2+-independent patatin-like PLA2s) as well as other PLA2 families, based on studies using gene-manipulated mice and human diseases in combination with comprehensive lipidomics.
Collapse
|
5
|
Lu E, Hara A, Sun S, Hallmark B, Snider JM, Seeds MC, Watkins JC, McCall CE, Zhang HH, Yao G, Chilton FH. Temporal Associations of Plasma Levels of the Secreted Phospholipase A 2 Family and Mortality in Severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.11.21.22282595. [PMID: 36451888 PMCID: PMC9709788 DOI: 10.1101/2022.11.21.22282595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Previous research suggests that group IIA secreted phospholipase A 2 (sPLA 2 -IIA) plays a role in and predicts severe COVID-19 disease. The current study reanalyzed a longitudinal proteomic data set to determine the temporal (days 0, 3 and 7) relationship between the levels of several members of a family of sPLA 2 isoforms and the severity of COVID-19 in 214 ICU patients. The levels of six secreted PLA 2 isoforms, sPLA 2 -IIA, sPLA 2 -V, sPLA 2 -X, sPLA 2 -IB, sPLA 2 -IIC, and sPLA 2 -XVI, increased over the first 7 ICU days in those who succumbed to the disease. sPLA 2 -IIA outperformed top ranked cytokines and chemokines as predictors of patient outcome. A decision tree corroborated these results with day 0 to day 3 kinetic changes of sPLA 2 -IIA that separated the death and severe categories from the mild category and increases from day 3 to day 7 significantly enriched the lethal category. In contrast, there was a time-dependent decrease in sPLA 2 -IID and sPLA 2 -XIIB in patients with severe or lethal disease, and these two isoforms were at higher levels in mild patients. Taken together, proteomic analysis revealed temporal sPLA 2 patterns that reflect the critical roles of sPLA 2 isoforms in severe COVID-19 disease.
Collapse
|
6
|
Taketomi Y, Murakami M. Regulatory Roles of Phospholipase A2 Enzymes and Bioactive Lipids in Mast Cell Biology. Front Immunol 2022; 13:923265. [PMID: 35833146 PMCID: PMC9271868 DOI: 10.3389/fimmu.2022.923265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Lipids play fundamental roles in life as an essential component of cell membranes, as a major source of energy, as a body surface barrier, and as signaling molecules that transmit intracellular and intercellular signals. Lipid mediators, a group of bioactive lipids that mediates intercellular signals, are produced via specific biosynthetic enzymes and transmit signals via specific receptors. Mast cells, a tissue-resident immune cell population, produce several lipid mediators that contribute to exacerbation or amelioration of allergic responses and also non-allergic inflammation, host defense, cancer and fibrosis by controlling the functions of microenvironmental cells as well as mast cell themselves in paracrine and autocrine fashions. Additionally, several bioactive lipids produced by stromal cells regulate the differentiation, maturation and activation of neighboring mast cells. Many of the bioactive lipids are stored in membrane phospholipids as precursor forms and released spatiotemporally by phospholipase A2 (PLA2) enzymes. Through a series of studies employing gene targeting and lipidomics, several enzymes belonging to the PLA2 superfamily have been demonstrated to participate in mast cell-related diseases by mobilizing unique bioactive lipids in multiple ways. In this review, we provide an overview of our current understanding of the regulatory roles of several PLA2-driven lipid pathways in mast cell biology.
Collapse
|
7
|
Htwe YM, Wang H, Belvitch P, Meliton L, Bandela M, Letsiou E, Dudek SM. Group V Phospholipase A 2 Mediates Endothelial Dysfunction and Acute Lung Injury Caused by Methicillin-Resistant Staphylococcus Aureus. Cells 2021; 10:1731. [PMID: 34359901 PMCID: PMC8304832 DOI: 10.3390/cells10071731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022] Open
Abstract
Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.M.H.); (H.W.); (P.B.); (L.M.); (M.B.); (E.L.)
| |
Collapse
|
8
|
Knuplez E, Sturm EM, Marsche G. Emerging Role of Phospholipase-Derived Cleavage Products in Regulating Eosinophil Activity: Focus on Lysophospholipids, Polyunsaturated Fatty Acids and Eicosanoids. Int J Mol Sci 2021; 22:4356. [PMID: 33919453 PMCID: PMC8122506 DOI: 10.3390/ijms22094356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Eosinophils are important effector cells involved in allergic inflammation. When stimulated, eosinophils release a variety of mediators initiating, propagating, and maintaining local inflammation. Both, the activity and concentration of secreted and cytosolic phospholipases (PLAs) are increased in allergic inflammation, promoting the cleavage of phospholipids and thus the production of reactive lipid mediators. Eosinophils express high levels of secreted phospholipase A2 compared to other leukocytes, indicating their direct involvement in the production of lipid mediators during allergic inflammation. On the other side, eosinophils have also been recognized as crucial mediators with regulatory and homeostatic roles in local immunity and repair. Thus, targeting the complex network of lipid mediators offer a unique opportunity to target the over-activation and 'pro-inflammatory' phenotype of eosinophils without compromising the survival and functions of tissue-resident and homeostatic eosinophils. Here we provide a comprehensive overview of the critical role of phospholipase-derived lipid mediators in modulating eosinophil activity in health and disease. We focus on lysophospholipids, polyunsaturated fatty acids, and eicosanoids with exciting new perspectives for future drug development.
Collapse
Affiliation(s)
| | | | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (E.K.); (E.M.S.)
| |
Collapse
|
9
|
Nolin JD, Murphy RC, Gelb MH, Altemeier WA, Henderson WR, Hallstrand TS. Function of secreted phospholipase A 2 group-X in asthma and allergic disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:827-837. [PMID: 30529275 DOI: 10.1016/j.bbalip.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Elevated secreted phospholipase A2 (sPLA2) activity in the airways has been implicated in the pathogenesis of asthma and allergic disease for some time. The identity and function of these enzymes in asthma is becoming clear from work in our lab and others. We focused on sPLA2 group X (sPLA2-X) after identifying increased levels of this enzyme in asthma, and that it is responsible for a large portion of sPLA2 activity in the airways and that the levels are strongly associated with features of airway hyperresponsiveness (AHR). In this review, we discuss studies that implicated sPLA2-X in human asthma, and murine models that demonstrate a critical role of this enzyme as a regulator of type-2 inflammation, AHR and production of eicosanoids. We discuss the mechanism by which sPLA2-X acts to regulate eicosanoids in leukocytes, as well as effects that are mediated through the generation of lysophospholipids and through receptor-mediated functions. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- James D Nolin
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - Ryan C Murphy
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, United States of America; Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - William R Henderson
- Division of Allergy and Infectious DIseases, University of Washington, Seattle, WA, United States of America
| | - Teal S Hallstrand
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|
10
|
Haggadone MD, Peters-Golden M. Microenvironmental Influences on Extracellular Vesicle-Mediated Communication in the Lung. Trends Mol Med 2018; 24:963-975. [DOI: 10.1016/j.molmed.2018.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
|
11
|
Samuchiwal SK, Balestrieri B. Harmful and protective roles of group V phospholipase A 2: Current perspectives and future directions. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:819-826. [PMID: 30308324 DOI: 10.1016/j.bbalip.2018.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Group V Phospholipase A2 (Pla2g5) is a member of the PLA2 family of lipid-generating enzymes. It is expressed in immune and non-immune cell types and is inducible during several pathologic conditions serving context-specific functions. In this review, we recapitulate the protective and detrimental functions of Pla2g5 investigated through preclinical and translational approaches. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- Sachin K Samuchiwal
- Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Barbara Balestrieri
- Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Debeuf N, Lambrecht BN. Eicosanoid Control Over Antigen Presenting Cells in Asthma. Front Immunol 2018; 9:2006. [PMID: 30233591 PMCID: PMC6131302 DOI: 10.3389/fimmu.2018.02006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Asthma is a common lung disease affecting 300 million people worldwide. Allergic asthma is recognized as a prototypical Th2 disorder, orchestrated by an aberrant adaptive CD4+ T helper (Th2/Th17) cell immune response against airborne allergens, that leads to eosinophilic inflammation, reversible bronchoconstriction, and mucus overproduction. Other forms of asthma are controlled by an eosinophil-rich innate ILC2 response driven by epithelial damage, whereas in some patients with more neutrophilia, the disease is driven by Th17 cells. Dendritic cells (DCs) and macrophages are crucial regulators of type 2 immunity in asthma. Numerous lipid mediators including the eicosanoids prostaglandins and leukotrienes influence key functions of these cells, leading to either pro- or anti-inflammatory effects on disease outcome. In this review, we will discuss how eicosanoids affect the functions of DCs and macrophages in the asthmatic lung and how this leads to aberrant T cell differentiation that causes disease.
Collapse
Affiliation(s)
- Nincy Debeuf
- Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
13
|
Yamaguchi M, Samuchiwal SK, Quehenberger O, Boyce JA, Balestrieri B. Macrophages regulate lung ILC2 activation via Pla2g5-dependent mechanisms. Mucosal Immunol 2018; 11:615-626. [PMID: 29346348 PMCID: PMC5976507 DOI: 10.1038/mi.2017.99] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/17/2017] [Indexed: 02/04/2023]
Abstract
Group V phospholipase A2 (Pla2g5) is a lipid-generating enzyme necessary for macrophage effector functions in pulmonary inflammation. However, the lipid mediators involved and their cellular targets have not been identified. Mice lacking Pla2g5 showed markedly reduced lung ILC2 activation and eosinophilia following repetitive Alternaria Alternata inhalation. While Pla2g5-null mice had Wt levels of immediate IL-33 release after one Alternaria dose, they failed to upregulate IL-33 in macrophages following repeated Alternaria administration. Unexpectedly, while adoptive transfer of bone marrow-derived (BM)-macrophages restored ILC2 activation and eosinophilia in Alternaria-exposed Pla2g5-null mice, exogenous IL-33 did not. Conversely, transfers of Pla2g5-null BM-macrophages reduced inflammation in Alternaria-exposed Wt mice. Mass spectrometry analysis of free fatty acids (FFAs) demonstrated significantly reduced FFAs (including linoleic acid (LA) and oleic acid (OA)) in lung and BM-macrophages lacking Pla2g5. Exogenous administration of LA or LA+OA to Wt mice sharply potentiated IL-33-induced lung eosinophilia and ILC2 expansion in vitro and in vivo. In contrast, OA potentiated IL-33-induced inflammation and ILC2 expansion in Pla2g5-null mice, but LA was inactive both in vivo and in vitro. Notably, Pla2g5-null ILC2s showed significantly reduced expression of the FFA-receptor-1 compared to Wt ILC2s. Thus, macrophage-associated Pla2g5 contributes significantly to type-2 immunity through regulation of IL-33 induction and FFA-driven ILC2 activation.
Collapse
Affiliation(s)
- Munehiro Yamaguchi
- Department of Medicine, Harvard Medical School, Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Sachin K. Samuchiwal
- Department of Medicine, Harvard Medical School, Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Oswald Quehenberger
- Department of Medicine, Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Joshua A. Boyce
- Department of Medicine, Harvard Medical School, Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Barbara Balestrieri
- Department of Medicine, Harvard Medical School, Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
14
|
Murakami M, Yamamoto K, Miki Y, Murase R, Sato H, Taketomi Y. The Roles of the Secreted Phospholipase A 2 Gene Family in Immunology. Adv Immunol 2016; 132:91-134. [PMID: 27769509 PMCID: PMC7112020 DOI: 10.1016/bs.ai.2016.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Within the phospholipase A2 (PLA2) family that hydrolyzes phospholipids to yield fatty acids and lysophospholipids, secreted PLA2 (sPLA2) enzymes comprise the largest group containing 11 isoforms in mammals. Individual sPLA2s exhibit unique tissue or cellular distributions and enzymatic properties, suggesting their distinct biological roles. Although PLA2 enzymes, particularly cytosolic PLA2 (cPLA2α), have long been implicated in inflammation by driving arachidonic acid metabolism, the precise biological roles of sPLA2s have remained a mystery over the last few decades. Recent studies employing mice gene-manipulated for individual sPLA2s, in combination with mass spectrometric lipidomics to identify their target substrates and products in vivo, have revealed their roles in diverse biological events, including immunity and associated disorders, through lipid mediator-dependent or -independent processes in given microenvironments. In this review, we summarize our current knowledge of the roles of sPLA2s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- M Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| | - K Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Y Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - R Murase
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - H Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Y Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
15
|
Sato H, Taketomi Y, Murakami M. Metabolic regulation by secreted phospholipase A 2. Inflamm Regen 2016; 36:7. [PMID: 29259680 PMCID: PMC5725825 DOI: 10.1186/s41232-016-0012-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/10/2016] [Indexed: 12/18/2022] Open
Abstract
Within the phospholipase A2 (PLA2) superfamily that hydrolyzes phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2) enzymes comprise the largest family that contains 11 isoforms in mammals. Individual sPLA2s exhibit unique distributions and specific enzymatic properties, suggesting their distinct biological roles. While sPLA2s have long been implicated in inflammation and atherosclerosis, it has become evident that they are involved in diverse biological events through lipid mediator-dependent or mediator-independent processes in a given microenvironment. In recent years, new biological aspects of sPLA2s have been revealed using their transgenic and knockout mouse models in combination with mass spectrometric lipidomics to unveil their target substrates and products in vivo. In this review, we summarize our current knowledge of the roles of sPLA2s in metabolic disorders including obesity, hepatic steatosis, diabetes, insulin resistance, and adipose tissue inflammation.
Collapse
Affiliation(s)
- Hiroyasu Sato
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, 100-0004 Japan
| |
Collapse
|
16
|
Yamaguchi M, Zacharia J, Laidlaw TM, Balestrieri B. PLA2G5 regulates transglutaminase activity of human IL-4-activated M2 macrophages through PGE2 generation. J Leukoc Biol 2016; 100:131-41. [PMID: 26936936 DOI: 10.1189/jlb.3a0815-372r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/12/2016] [Indexed: 12/22/2022] Open
Abstract
Phospholipases A2 are enzymes that liberate membrane-bound lipids in a tissue and cell-specific fashion. Group V secretory phospholipase A2 is necessary for the development of M2 macrophages and their effector functions in a mouse model of the T-helper-2 allergic airway inflammation. However, the function of group V phospholipase A2 in human M2 activation and T-helper-2 inflammation is ill-defined. Transglutaminase-2, a protein cross-linking enzyme, is a newly identified marker of both human and mouse interleukin-4-activated M2 macrophages and is also found in the lungs of patients with asthma. We report that group V phospholipase A2 and transglutaminase-2 colocalized in macrophages of human nasal polyp tissue obtained from patients with T-helper-2 eosinophilic inflammation, and their coexpression positively correlated with the number of eosinophils in each tissue specimen. We demonstrate that in human monocyte-derived macrophages activated by interleukin-4, group V phospholipase A2 translocated and colocalized with transglutaminase-2 in the cytoplasm and on the membrane of macrophages. Moreover, knocking down group V phospholipase A2 with small interfering ribonucleic acid reduced macrophage transglutaminase activity, whereas mass spectrometry analysis of lipids also showed reduced prostaglandin E2 production. Finally, exogenous prostaglandin E2 restored transglutaminase activity of group V phospholipase A2-small interfering ribonucleic acid-treated macrophages. Thus, our study shows a novel function of group V phospholipase A2 in regulating the transglutaminase activity of human interleukin-4-activated M2 macrophages through prostaglandin E2 generation and suggests that group V phospholipase A2 is a functionally relevant enzyme that may have therapeutic value for the treatment of human T-helper-2 inflammatory disorders.
Collapse
Affiliation(s)
- Munehiro Yamaguchi
- Department of Medicine, Harvard Medical School, Boston Massachusetts, USA; and the Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jennifer Zacharia
- Department of Medicine, Harvard Medical School, Boston Massachusetts, USA; and the Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tanya M Laidlaw
- Department of Medicine, Harvard Medical School, Boston Massachusetts, USA; and the Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Barbara Balestrieri
- Department of Medicine, Harvard Medical School, Boston Massachusetts, USA; and the Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Mruwat R, Kivity S, Landsberg R, Yedgar S, Langier S. Phospholipase A2-dependent Release of Inflammatory Cytokines by Superantigen-Stimulated Nasal Polyps of Patients with Chronic Rhinosinusitis. Am J Rhinol Allergy 2015; 29:e122-8. [DOI: 10.2500/ajra.2015.29.4224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Chronic rhinosinusitis (CRS) is an inflammatory/allergic disease with unclear pathophysiology, but it has been linked to an imbalance in the production of eicosanoids, which are metabolites of arachidonic acid, and results from phospholipids hydrolysis by phospholipase A2 (PLA2). As of yet, the role of PLA2 in CRS has hardly been studied, except for a report that group II PLA2 expression is elevated in interleukin (IL) 1β or tumor necrosis factor α-stimulated CRS nasal tissues with and without polyps. The PLA2 families include extracellular (secretory) and intracellular isoforms, which are involved in the regulation of inflammatory processes in different ways. Here we comprehensively investigated the expression of PLA2s, particularly those reported to be involved in respiratory disorders, in superantigen (SAE)-stimulated nasal polyps from patients with CRS with polyps, and determined their role in inflammatory cytokine production by inhibition of PLA2 expression. Methods The release of IL-5, IL-13, IL-17, and interferon γ by nasal polyps dispersed cells (NPDC) was determined concomitantly with PLA2 messenger RNA expression, under SAE stimulation, with or without dexamethasone, as a regulator of PLA2 expression. Results Stimulation of NPDCs by SAE-induced cytokine secretion with enhanced expression of several secretory PLA2 and Ca2+-independent PLA2, while suppressing cytosolic PLA2 expression. All these were reverted to the level of unstimulated NPDCs on treatment with dexamethasone. Conclusion This study further supports the key role of secretory PLA2 in the pathophysiology of respiratory disorders and presents secretory PLA2 inhibition as a therapeutic strategy for the treatment of CRS and airway pathologies in general.
Collapse
Affiliation(s)
- Rufayda Mruwat
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Roee Landsberg
- Ear Nose and Throat Department, Tel Aviv Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, lsrael
| | - Saul Yedgar
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
18
|
Tanabe T, Shimokawaji T, Kanoh S, Rubin BK. Secretory phospholipases A2 are secreted from ciliated cells and increase mucin and eicosanoid secretion from goblet cells. Chest 2015; 147:1599-1609. [PMID: 25429648 DOI: 10.1378/chest.14-0258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Secretory phospholipases A2 (sPLA2) initiate the biosynthesis of eicosanoids, are increased in the airways of people with severe asthma, and induce mucin hypersecretion. We used IL-13-transformed, highly enriched goblet cells and differentiated (ciliary cell-enriched) human bronchial epithelial cell culture to evaluate the relative contribution of ciliated and goblet cells to airway sPLA2 generation and response. We wished to determine the primary source(s) of sPLA2 and leukotrienes in human airway epithelial cells. METHODS Human bronchial epithelial cells from subjects without lung disease were differentiated to a ciliated-enriched or goblet-enriched cell phenotype. Synthesis of sPLA2, cysteinyl leukotrienes (cysLTs), and airway mucin messenger RNA and protein was measured by real-time-polymerase chain reaction and an enzyme-linked immunosorbent assay, and the localization of mucin and sPLA2 to specific cells types was confirmed by confocal microscopy. RESULTS sPLA2 group IIa, V, and X messenger RNA expression was increased in ciliated-enriched cells (P < .001) but not in goblet-enriched cells. sPLA2 were secreted from the apical (air) side of ciliated-enriched cells but not goblet-enriched cells (P < .001). Immunostaining of sPLA2 V was strongly positive in ciliated-enriched cells but not in goblet-enriched cells. sPLA2 released cysLTs from goblet-enriched cells but not from ciliated-enriched cells, and this result was greatest with sPLA2 V (P < .05). sPLA2 V increased goblet-enriched cell mucin secretion, which was inhibited by inhibitors of lipoxygenase or cyclooxygenase (P < .02). CONCLUSIONS sPLA2 are secreted from ciliated cells and appear to induce mucin and cysLT secretion from goblet cells, strongly suggesting that airway goblet cells are proinflammatory effector cells.
Collapse
Affiliation(s)
- Tsuyoshi Tanabe
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA.
| | - Tadasuke Shimokawaji
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Soichiro Kanoh
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Bruce K Rubin
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA
| |
Collapse
|
19
|
Park S, Baek H, Jung KH, Lee G, Lee H, Kang GH, Lee G, Bae H. Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin-induced asthma model through the induction of regulatory T cells. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:386-97. [PMID: 26734460 PMCID: PMC4693726 DOI: 10.1002/iid3.76] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/23/2015] [Accepted: 07/17/2015] [Indexed: 01/27/2023]
Abstract
Bee venom (BV) is one of the alternative medicines that have been widely used in the treatment of chronic inflammatory diseases. We previously demonstrated that BV induces immune tolerance by increasing the population of regulatory T cells (Tregs) in immune disorders. However, the major component and how it regulates the immune response have not been elucidated. We investigated whether bee venom phospholipase A2 (bvPLA2) exerts protective effects that are mediated via Tregs in OVA‐induced asthma model. bvPLA2 was administered by intraperitoneal injection into control and OVA‐challenged mice. The Treg population, total and differential bronchoalveolar lavage fluid (BALF) cell count, Th2 cytokines, and lung histological features were assessed. Treg depletion was used to determine the involvement of Treg migration and the reduction of asthmatic symptoms. The CD206‐dependence of bvPLA2‐treated suppression of airway inflammation was evaluated in OVA‐challenged CD206‐/‐ mice. The bvPLA2 treatment induced the Tregs and reduced the infiltration of inflammatory cells into the lung in the OVA‐challenged mice. Th2 cytokines in the bronchoalveolar lavage fluid (BALF) were reduced in bvPLA2‐treated mice. Although bvPLA2 suppressed the number of inflammatory cells after OVA challenge, these effects were not observed in Treg‐depleted mice. In addition, we investigated the involvement of CD206 in bvPLA2‐mediated immune tolerance in OVA‐induced asthma model. We observed a significant reduction in the levels of Th2 cytokines and inflammatory cells in the BALF of bvPLA2‐treated OVA‐induced mice but not in bvPLA2‐treated OVA‐induced CD206‐/‐ mice. These results demonstrated that bvPLA2 can mitigate airway inflammation by the induction of Tregs in an OVA‐induced asthma model.
Collapse
Affiliation(s)
- Soojin Park
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Hyunjung Baek
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Kyung-Hwa Jung
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Gihyun Lee
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Hyeonhoon Lee
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Geun-Hyung Kang
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Gyeseok Lee
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| | - Hyunsu Bae
- Department of Physiology College of Korean Medicine Kyung Hee University #1 Hoeki-Dong Dongdaemoon-Gu Seoul 130-701 Republic of Korea
| |
Collapse
|
20
|
Tietge UJ. Extracellular Phospholipases. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Murakami M, Sato H, Miki Y, Yamamoto K, Taketomi Y. A new era of secreted phospholipase A₂. J Lipid Res 2015; 56:1248-61. [PMID: 25805806 DOI: 10.1194/jlr.r058123] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
Among more than 30 members of the phospholipase A2 (PLA2) superfamily, secreted PLA2 (sPLA2) enzymes represent the largest family, being Ca(2+)-dependent low-molecular-weight enzymes with a His-Asp catalytic dyad. Individual sPLA2s exhibit unique tissue and cellular distributions and enzymatic properties, suggesting their distinct biological roles. Recent studies using transgenic and knockout mice for nearly a full set of sPLA2 subtypes, in combination with sophisticated lipidomics as well as biochemical and cell biological studies, have revealed distinct contributions of individual sPLA2s to various pathophysiological events, including production of pro- and anti-inflammatory lipid mediators, regulation of membrane remodeling, degradation of foreign phospholipids in microbes or food, or modification of extracellular noncellular lipid components. In this review, we highlight the current understanding of the in vivo functions of sPLA2s and the underlying lipid pathways as revealed by a series of studies over the last decade.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hiroyasu Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
22
|
Murakami M, Taketomi Y, Miki Y, Sato H, Yamamoto K, Lambeau G. Emerging roles of secreted phospholipase A2 enzymes: the 3rd edition. Biochimie 2014; 107 Pt A:105-13. [PMID: 25230085 DOI: 10.1016/j.biochi.2014.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/05/2014] [Indexed: 12/19/2022]
Abstract
Within the phospholipase A2 (PLA2) superfamily, secreted PLA2 (sPLA2) enzymes comprise the largest family that contains 11 to 12 mammalian isoforms with a conserved His-Asp catalytic dyad. Individual sPLA2s exhibit unique tissue and cellular localizations and specific enzymatic properties, suggesting distinct biological roles. Individual sPLA2s are involved in diverse biological events through lipid mediator-dependent or -independent processes and act redundantly or non-redundantly in a given microenvironment. In the past few years, new biological aspects of sPLA2s have been clarified using their transgenic and knockout mouse lines in combination with mass spectrometric lipidomics to unveil their target substrates and products in vivo. In the 3rd edition of this review series, we highlight the newest understanding of the in vivo functions of sPLA2s in pathophysiological conditions in the context of immunity and metabolism. We will also describe the latest knowledge on PLA2R1, the best known sPLA2 receptor, which may serve either as a clearance or signaling receptor for sPLA2 or may even act independently of sPLA2 function.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hiroyasu Sato
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Kei Yamamoto
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Centre National de la Recherche Scientifique - Université Nice Sophia Antipolis, Valbonne 06560, France
| |
Collapse
|
23
|
Quach ND, Arnold RD, Cummings BS. Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem Pharmacol 2014; 90:338-48. [PMID: 24907600 DOI: 10.1016/j.bcp.2014.05.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 02/03/2023]
Abstract
Phospholipase A2 (PLA2) cleave phospholipids preferentially at the sn-2 position, liberating free fatty acids and lysophospholipids. They are classified into six main groups based on size, location, function, substrate specificity and calcium requirement. These classes include secretory PLA2 (sPLA2), cytosolic (cPLA2), Ca(2+)-independent (iPLA2), platelet activating factor acetylhydrolases (PAF-AH), lysosomal PLA2 (LyPLA2) and adipose specific PLA2 (AdPLA2). It is hypothesized that PLA2 can serve as pharmacological targets for the therapeutic treatment of several diseases, including cardiovascular diseases, atherosclerosis, immune disorders and cancer. Special emphasis has been placed on inhibitors of sPLA2 isoforms as pharmacological moieties, mostly due to the fact that these enzymes are activated during inflammatory events and because their expression is increased in several diseases. This review focuses on understanding how sPLA2 isoform expression is altered during disease progression and the possible therapeutic interventions to specifically target sPLA2 isoforms, including new approaches using nano-particulate-based strategies.
Collapse
Affiliation(s)
- Nhat D Quach
- Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - Robert D Arnold
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849-5503, United States
| | - Brian S Cummings
- Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
24
|
The (G>A) rs11573191 polymorphism of PLA2G5 gene is associated with premature coronary artery disease in the Mexican Mestizo population: the genetics of atherosclerotic disease Mexican study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:931361. [PMID: 24959594 PMCID: PMC4052156 DOI: 10.1155/2014/931361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/02/2014] [Accepted: 05/04/2014] [Indexed: 11/20/2022]
Abstract
Coronary artery disease (CAD) is a multifactorial disorder that results from an excessive inflammatory response. Secretory phospholipase A2-V (sPLA2-V) encoded by PLA2G5 gene promotes diverse proinflammatory processes. The aim of the present study was to analyze if PLA2G5 gene polymorphisms are associated with premature CAD. Three PLA2G5 polymorphisms (rs11573187, rs2148911, and rs11573191) were analyzed in 707 patients with premature CAD and 749 healthy controls. Haplotypes were constructed after linkage disequilibrium analysis. Under dominant, recessive, and additive models, the rs11573191 polymorphism was associated with increased risk of premature CAD (OR = 1.51, Pdom = 3.5 × 10−3; OR = 2.95, Prec = 0.023; OR = 1.51, Padd = 1.2 × 10−3). According to the informatics software, this polymorphism had a functional effect modifying the affinity of the sequence by the MZF1 transcription factor. PLA2G5 polymorphisms were in linkage disequilibrium and the CGA haplotype was associated with increased risk of premature CAD (OR = 1.49, P = 0.0023) and with hypertension in these patients (OR = 1.75, P = 0.0072). Our results demonstrate the association of the PLA2G5 rs11573191 polymorphism with premature CAD. In our study, it was possible to distinguish one haplotype associated with increased risk of premature CAD and hypertension.
Collapse
|
25
|
Henderson WR. Secretory phospholipase A₂ and airway inflammation and hyperresponsiveness. J Asthma 2013; 45 Suppl 1:10-2. [PMID: 19093280 DOI: 10.1080/02770900802569751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Phospholipases mediate the release of arachidonic acid from membrane phospholipids, enabling the subsequent metabolism to potent inflammatory mediator products of cyclooxygenase and lipoxygenase enzymes, such as prostaglandins and leukotrienes. Cytosolic phospholipase A₂ has long been recognized as important, but newly characterized are secreted A₂ isoenzymes. These secretory phospholipases are released into the extracellular compartment on cell activation. Elevated levels have been found in allergic patients after allergen challenge. Earlier investigations in a mouse asthma model utilizing airway challenges with allergen showed an important role for cysteinyl leukotrienes in the airway remodeling process. Utilizing secretory phospholipase knockout mice, group X deficiency significantly diminished the airway goblet cell metaplasia, mucus hypersecretion, increased airway smooth muscle mass, and subepithelial fibrosis observed in wild type mice after allergen challenge. The mechanism is likely through impaired generation of cysteinyl leukotrienes in the knockout mice. Recent human investigation in patients with exercise induced bronchoconstriction is supportive of a role of secretory phospholipase, directing attention to these enzymes as particularly attractive pharmacologic targets in asthma.
Collapse
|
26
|
Mruwat R, Yedgar S, Lavon I, Ariel A, Krimsky M, Shoseyov D. Phospholipase A2 in experimental allergic bronchitis: a lesson from mouse and rat models. PLoS One 2013; 8:e76641. [PMID: 24204651 PMCID: PMC3812210 DOI: 10.1371/journal.pone.0076641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/21/2013] [Indexed: 11/26/2022] Open
Abstract
Background Phospholipases A2 (PLA2) hydrolyzes phospholipids, initiating the production of inflammatory lipid mediators. We have previously shown that in rats, sPLA2 and cPLA2 play opposing roles in the pathophysiology of ovalbumin (OVA)-induced experimental allergic bronchitis (OVA-EAB), an asthma model: Upon disease induction sPLA2 expression and production of the broncho-constricting CysLTs are elevated, whereas cPLA2 expression and the broncho-dilating PGE2 production are suppressed. These were reversed upon disease amelioration by treatment with an sPLA2 inhibitor. However, studies in mice reported the involvement of both sPLA2 and cPLA2 in EAB induction. Objectives To examine the relevance of mouse and rat models to understanding asthma pathophysiology. Methods OVA-EAB was induced in mice using the same methodology applied in rats. Disease and biochemical markers in mice were compared with those in rats. Results As in rats, EAB in mice was associated with increased mRNA of sPLA2, specifically sPLA2gX, in the lungs, and production of the broncho-constricting eicosanoids CysLTs, PGD2 and TBX2 in bronchoalveolar lavage (BAL). In contrast, EAB in mice was associated also with elevated cPLA2 mRNA and PGE2 production. Yet, treatment with an sPLA2 inhibitor ameliorated the EAB concomitantly with reverting the expression of both cPLA2 and sPLA2, and eicosanoid production. Conclusions In both mice and rats sPLA2 is pivotal in OVA-induced EAB. Yet, amelioration of asthma markers in mouse models, and human tissues, was observed also upon cPLA2 inhibition. It is plausible that airway conditions, involving multiple cell types and organs, require the combined action of more than one, essential, PLA2s.
Collapse
MESH Headings
- Animals
- Arachidonate 5-Lipoxygenase/immunology
- Arachidonate 5-Lipoxygenase/metabolism
- Arginase/genetics
- Arginase/immunology
- Arginase/metabolism
- Asthma/genetics
- Asthma/immunology
- Asthma/metabolism
- Blotting, Western
- Bronchitis/genetics
- Bronchitis/immunology
- Bronchitis/metabolism
- Bronchoalveolar Lavage Fluid/chemistry
- Bronchoalveolar Lavage Fluid/immunology
- Chitinases/genetics
- Chitinases/immunology
- Chitinases/metabolism
- Cysteine/immunology
- Cysteine/metabolism
- Dinoprostone/immunology
- Dinoprostone/metabolism
- Disease Models, Animal
- Female
- Group X Phospholipases A2/genetics
- Group X Phospholipases A2/immunology
- Group X Phospholipases A2/metabolism
- Humans
- Leukotrienes/immunology
- Leukotrienes/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Inbred BALB C
- Ovalbumin/immunology
- Phospholipases A2, Cytosolic/genetics
- Phospholipases A2, Cytosolic/immunology
- Phospholipases A2, Cytosolic/metabolism
- Phospholipases A2, Secretory/genetics
- Phospholipases A2, Secretory/immunology
- Phospholipases A2, Secretory/metabolism
- Prostaglandin D2/immunology
- Prostaglandin D2/metabolism
- Rats
- Receptors, Leukotriene/immunology
- Receptors, Leukotriene/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- T-Box Domain Proteins/immunology
- T-Box Domain Proteins/metabolism
Collapse
Affiliation(s)
- Rufayda Mruwat
- Department of Biochemistry, Hebrew University Medical School, Jerusalem, Israel
| | - Saul Yedgar
- Department of Biochemistry, Hebrew University Medical School, Jerusalem, Israel
- * E-mail:
| | - Iris Lavon
- Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
| | - Amiram Ariel
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Miron Krimsky
- Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
- Pediatric Department, Hadassah University Hospital, Jerusalem, Israel
| | - David Shoseyov
- Pediatric Department, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
27
|
Nyegaard S, Novakovic VA, Rasmussen JT, Gilbert GE. Lactadherin inhibits secretory phospholipase A2 activity on pre-apoptotic leukemia cells. PLoS One 2013; 8:e77143. [PMID: 24194865 PMCID: PMC3806724 DOI: 10.1371/journal.pone.0077143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/21/2013] [Indexed: 01/09/2023] Open
Abstract
Secretory phospholipase A2 (sPLA2) is a critical component of insect and snake venoms and is secreted by mammalian leukocytes during inflammation. Elevated secretory PLA2 concentrations are associated with autoimmune diseases and septic shock. Many sPLA2’s do not bind to plasma membranes of quiescent cells but bind and digest phospholipids on the membranes of stimulated or apoptotic cells. The capacity of these phospholipases to digest membranes of stimulated or apoptotic cells correlates to the exposure of phosphatidylserine. In the present study, the ability of the phosphatidyl-L-serine-binding protein, lactadherin to inhibit phospholipase enzyme activity has been assessed. Inhibition of human secretory phospholipase A2-V on phospholipid vesicles exceeded 90%, whereas inhibition of Naja mossambica sPLA2 plateaued at 50–60%. Lactadherin inhibited 45% of activity of Naja mossambica sPLA2 and >70% of human secretory phospholipase A2-V on the membranes of human NB4 leukemia cells treated with calcium ionophore A23187. The data indicate that lactadherin may decrease inflammation by inhibiting sPLA2.
Collapse
Affiliation(s)
- Steffen Nyegaard
- Department of Molecular Biology, Aarhus University, Aarhus C, Denmark
- Departments of Medicine, Veterans Administration Boston Healthcare System, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Valerie A. Novakovic
- Departments of Medicine, Veterans Administration Boston Healthcare System, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jan T. Rasmussen
- Department of Molecular Biology, Aarhus University, Aarhus C, Denmark
- * E-mail:
| | - Gary E. Gilbert
- Departments of Medicine, Veterans Administration Boston Healthcare System, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
28
|
Tamaru S, Mishina H, Watanabe Y, Watanabe K, Fujioka D, Takahashi S, Suzuki K, Nakamura T, Obata JE, Kawabata K, Yokota Y, Murakami M, Hanasaki K, Kugiyama K. Deficiency of phospholipase A2 receptor exacerbates ovalbumin-induced lung inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 191:1021-8. [PMID: 23817419 DOI: 10.4049/jimmunol.1300738] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Secretory phospholipase A2 (sPLA2) plays a critical role in the genesis of lung inflammation through proinflammatory eicosanoids. A previous in vitro experiment showed a possible role of cell surface receptor for sPLA2 (PLA2R) in the clearance of extracellular sPLA2. PLA2R and groups IB and X sPLA2 are expressed in the lung. This study examined a pathogenic role of PLA2R in airway inflammation using PLA2R-deficient (PLA2R(-/-)) mice. Airway inflammation was induced by immunosensitization with OVA. Compared with wild-type (PLA2R(+/+)) mice, PLA2R(-/-) mice had a significantly greater infiltration of inflammatory cells around the airways, higher levels of groups IB and X sPLA2, eicosanoids, and Th2 cytokines, and higher numbers of eosinophils and neutrophils in bronchoalveolar lavage fluid after OVA treatment. In PLA2R(-/-) mice, intratracheally instilled [(125)I]-labeled sPLA2-IB was cleared much more slowly from bronchoalveolar lavage fluid compared with PLA2R(+/+) mice. The degradation of the instilled [(125)I]-labeled sPLA2-IB, as assessed by trichloroacetic acid-soluble radioactivity in bronchoalveolar lavage fluid after instillation, was lower in PLA2R(-/-) mice than in PLA2R(+/+) mice. In conclusion, PLA2R deficiency increased sPLA2-IB and -X levels in the lung through their impaired clearance from the lung, leading to exaggeration of lung inflammation induced by OVA treatment in a murine model.
Collapse
Affiliation(s)
- Shun Tamaru
- Department of Internal Medicine II, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ohta S, Imamura M, Xing W, Boyce JA, Balestrieri B. Group V secretory phospholipase A2 is involved in macrophage activation and is sufficient for macrophage effector functions in allergic pulmonary inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:5927-38. [PMID: 23650617 PMCID: PMC3939699 DOI: 10.4049/jimmunol.1203202] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We reported that Pla2g5-null mice lacking group V secretory phospholipase A2 (gV-sPLA2) showed reduced eosinophilic pulmonary inflammation and Th2 cytokine generation when challenged with an extract from house dust mite Dermatophagoides farinae, compared with wild-type (WT) controls. Adoptive transfer studies suggested that gV-sPLA2 in dendritic cells was necessary for sensitization of Pla2g5-null mice, but was not sufficient to induce the effector phase of pulmonary inflammation. In this study, we demonstrate that gV-sPLA2 is inducibly expressed in mouse and human macrophages (M) activated by IL-4 and is required for the acquisition of M effector functions that facilitate the effector phase of pulmonary inflammation. We demonstrate that gV-sPLA2 expression in M is sufficient for the development of pulmonary inflammation, even when inflammation is induced by intrapulmonary administration of IL-4. The concentrations of CCL22/CCL17 and effector T cell recruitment are severely impaired in Pla2g5-null mice. Intratracheal transfers of enriched CD68(+) cells isolated from the lungs of D. farinae-challenged WT donor mice induce eosinophilia, chemokine production, and recruitment of T cells into the lungs of Pla2g5-null recipients previously sensitized by WT D. farinae-loaded dendritic cells. Our studies identified a unique function of gV-sPLA2 in activation of M and in their capacity to recruit T cells to amplify the effector phase of pulmonary inflammation.
Collapse
Affiliation(s)
- Shin Ohta
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Mitsuru Imamura
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Wei Xing
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Joshua A. Boyce
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Internal Medicine, Division of Allergy and Respiratory Medicine, Showa University, School of Medicine, Tokyo, Japan
| | - Barbara Balestrieri
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
30
|
Miki Y, Yamamoto K, Taketomi Y, Sato H, Shimo K, Kobayashi T, Ishikawa Y, Ishii T, Nakanishi H, Ikeda K, Taguchi R, Kabashima K, Arita M, Arai H, Lambeau G, Bollinger JM, Hara S, Gelb MH, Murakami M. Lymphoid tissue phospholipase A2 group IID resolves contact hypersensitivity by driving antiinflammatory lipid mediators. ACTA ACUST UNITED AC 2013; 210:1217-34. [PMID: 23690440 PMCID: PMC3674707 DOI: 10.1084/jem.20121887] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PLA2G2D ameliorates skin inflammation through mobilizing pro-resolving lipid mediators. Resolution of inflammation is an active process that is mediated in part by antiinflammatory lipid mediators. Although phospholipase A2 (PLA2) enzymes have been implicated in the promotion of inflammation through mobilizing lipid mediators, the molecular entity of PLA2 subtypes acting upstream of antiinflammatory lipid mediators remains unknown. Herein, we show that secreted PLA2 group IID (PLA2G2D) is preferentially expressed in CD11c+ dendritic cells (DCs) and macrophages and displays a pro-resolving function. In hapten-induced contact dermatitis, resolution, not propagation, of inflammation was compromised in skin and LNs of PLA2G2D-deficient mice (Pla2g2d−/−), in which the immune balance was shifted toward a proinflammatory state over an antiinflammatory state. Bone marrow-derived DCs from Pla2g2d−/− mice were hyperactivated and elicited skin inflammation after intravenous transfer into mice. Lipidomics analysis revealed that PLA2G2D in the LNs contributed to mobilization of a pool of polyunsaturated fatty acids that could serve as precursors for antiinflammatory/pro-resolving lipid mediators such as resolvin D1 and 15-deoxy-Δ12,14-prostaglandin J2, which reduced Th1 cytokine production and surface MHC class II expression in LN cells or DCs. Altogether, our results highlight PLA2G2D as a “resolving sPLA2” that ameliorates inflammation through mobilizing pro-resolving lipid mediators and points to a potential use of this enzyme for treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hallstrand TS, Lai Y, Henderson WR, Altemeier WA, Gelb MH. Epithelial regulation of eicosanoid production in asthma. Pulm Pharmacol Ther 2013; 25:432-7. [PMID: 23323271 DOI: 10.1016/j.pupt.2012.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alterations in the airway epithelium have been associated with the development of asthma in elite athletes and in subjects that are susceptible to exercise-induced bronchoconstriction (EIB). The syndrome of EIB refers to acute airflow obstruction that is triggered by a period of physical exertion. Asthmatics who are susceptible to EIB have increased levels of cysteinyl leukotrienes (CysLTs, i.e., LTs C₄, D₄, and E₄) in induced sputum and exhaled breath condensate, and greater shedding of epithelial cells into the airway lumen. Exercise challenge in individuals susceptible to this disorder initiates a sustained increase in CysLTs in the airways, and secreted mucin release and smooth muscle constriction, which may be mediated in part through activation of sensory nerves. We have identified a secreted phospholipase A₂ (sPLA₂) with increased levels in the airways of patients with EIB called sPLA₂ group X(sPLA₂-X).We have found that sPLA₂-X is strongly expressed in the airway epithelium in asthma. Further,we discovered that transglutaminase 2 (TGM2) is expressed at increased levels in asthma and serves asa regulator of sPLA₂-X. Finally, we demonstrated that sPLA₂-X acts on target cells such as eosinophils to initiate cellular eicosanoid synthesis. Collectively, these studies identify a novel mechanism linking the airway epithelium to the production of inflammatory eicosanoids by leukocytes.
Collapse
Affiliation(s)
- Teal S Hallstrand
- Division of Pulmonary and Critical Care, University of Washington, Box 356522, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
32
|
Pniewska E, Pawliczak R. The involvement of phospholipases A2 in asthma and chronic obstructive pulmonary disease. Mediators Inflamm 2013; 2013:793505. [PMID: 24089590 PMCID: PMC3780701 DOI: 10.1155/2013/793505] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 01/02/2013] [Accepted: 02/27/2013] [Indexed: 12/21/2022] Open
Abstract
The increased morbidity, mortality, and ineffective treatment associated with the pathogenesis of chronic inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD) have generated much research interest. The key role is played by phospholipases from the A2 superfamily: enzymes which are involved in inflammation through participation in pro- and anti-inflammatory mediators production and have an impact on many immunocompetent cells. The 30 members of the A2 superfamily are divided into 7 groups. Their role in asthma and COPD has been studied in vitro and in vivo (animal models, cell cultures, and patients). This paper contains complete and updated information about the involvement of particular enzymes in the etiology and course of asthma and COPD.
Collapse
Affiliation(s)
- Ewa Pniewska
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, 7/9 Zeligowskiego Street, Building 2, Room 122, 90-752 Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, 7/9 Zeligowskiego Street, Building 2, Room 122, 90-752 Lodz, Poland
| |
Collapse
|
33
|
Taketomi Y, Ueno N, Kojima T, Sato H, Murase R, Yamamoto K, Tanaka S, Sakanaka M, Nakamura M, Nishito Y, Kawana M, Kambe N, Ikeda K, Taguchi R, Nakamizo S, Kabashima K, Gelb MH, Arita M, Yokomizo T, Nakamura M, Watanabe K, Hirai H, Nakamura M, Okayama Y, Ra C, Aritake K, Urade Y, Morimoto K, Sugimoto Y, Shimizu T, Narumiya S, Hara S, Murakami M. Mast cell maturation is driven via a group III phospholipase A2-prostaglandin D2-DP1 receptor paracrine axis. Nat Immunol 2013; 14:554-63. [PMID: 23624557 DOI: 10.1038/ni.2586] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/11/2013] [Indexed: 12/19/2022]
Abstract
Microenvironment-based alterations in phenotypes of mast cells influence the susceptibility to anaphylaxis, yet the mechanisms underlying proper maturation of mast cells toward an anaphylaxis-sensitive phenotype are incompletely understood. Here we report that PLA2G3, a mammalian homolog of anaphylactic bee venom phospholipase A2, regulates this process. PLA2G3 secreted from mast cells is coupled with fibroblastic lipocalin-type PGD2 synthase (L-PGDS) to provide PGD2, which facilitates mast-cell maturation via PGD2 receptor DP1. Mice lacking PLA2G3, L-PGDS or DP1, mast cell-deficient mice reconstituted with PLA2G3-null or DP1-null mast cells, or mast cells cultured with L-PGDS-ablated fibroblasts exhibited impaired maturation and anaphylaxis of mast cells. Thus, we describe a lipid-driven PLA2G3-L-PGDS-DP1 loop that drives mast cell maturation.
Collapse
Affiliation(s)
- Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Role of cells and mediators in exercise-induced bronchoconstriction. Immunol Allergy Clin North Am 2013; 33:313-28, vii. [PMID: 23830127 DOI: 10.1016/j.iac.2013.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A susceptible group of subjects with asthma develops airflow obstruction in response to the transfer of water out of the airways during exercise. The transfer of water or the challenge with a hypertonic solution serves as a strong stimulus to the airway epithelium. Susceptible subjects have epithelial shedding into the airway lumen, and airway inflammation that leads to the overproduction of leukotrienes and other eicosanoids following exercise challenge. The sensory nerves of the airways may serve as a critical link that mediates the effect of eicosanoids, leading to bronchoconstriction and mucus production in response to exercise challenge.
Collapse
|
35
|
Henderson WR, Ye X, Lai Y, Ni Z, Bollinger JG, Tien YT, Chi EY, Gelb MH. Key role of group v secreted phospholipase A2 in Th2 cytokine and dendritic cell-driven airway hyperresponsiveness and remodeling. PLoS One 2013; 8:e56172. [PMID: 23451035 PMCID: PMC3581544 DOI: 10.1371/journal.pone.0056172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/07/2013] [Indexed: 11/23/2022] Open
Abstract
Background Previous work has shown that disruption of the gene for group X secreted phospholipase A2 (sPLA2-X) markedly diminishes airway hyperresponsiveness and remodeling in a mouse asthma model. With the large number of additional sPLA2s in the mammalian genome, the involvement of other sPLA2s in the asthma model is possible – in particular, the group V sPLA2 (sPLA2-V) that like sPLA2-X is highly active at hydrolyzing membranes of mammalian cells. Methodology and Principal Findings The allergen-driven asthma phenotype was significantly reduced in sPLA2-V-deficient mice but to a lesser extent than observed previously in sPLA2-X-deficient mice. The most striking difference observed between the sPLA2-V and sPLA2-X knockouts was the significant impairment of the primary immune response to the allergen ovalbumin (OVA) in the sPLA2-V−/− mice. The impairment in eicosanoid generation and dendritic cell activation in sPLA2-V−/− mice diminishes Th2 cytokine responses in the airways. Conclusions This paper illustrates the diverse roles of sPLA2s in the immunopathogenesis of the asthma phenotype and directs attention to developing specific inhibitors of sPLA2-V as a potential new therapy to treat asthma and other allergic disorders.
Collapse
Affiliation(s)
- William R Henderson
- Center for Allergy and Inflammation, UW Medicine at South Lake Union, Department of Medicine, University of Washington, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Emerging roles of secreted phospholipase A2 enzymes: An update. Biochimie 2013; 95:43-50. [DOI: 10.1016/j.biochi.2012.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/11/2012] [Indexed: 01/18/2023]
|
37
|
New insights into pathogenesis of exercise-induced bronchoconstriction. Curr Opin Allergy Clin Immunol 2012; 12:42-8. [PMID: 22157157 DOI: 10.1097/aci.0b013e32834ecc67] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Exercise-induced bronchoconstriction (EIB) refers to acute airflow obstruction that is triggered by a period of physical exertion. Here we review recent findings about the epidemiology of EIB, immunopathology leading to EIB, and the latest understanding of the pathogenesis of EIB. RECENT FINDINGS Longitudinal studies demonstrated that airway hyper-responsiveness to exercise or cold air at an early age are among the strongest predictors of persistent asthma. Patients that are susceptible to EIB have epithelial disruption and increased levels of inflammatory eicosanoids such as cysteinyl leukotrienes (CysLT)s. The leukocytes implicated in production of eicosanoids in the airways include both a unique mast cell population as well as eosinophils. A secreted phospholipase A(2) (sPLA(2)) enzyme that serves as a regulator of CysLT formation is present in increased quantities in asthma. Transglutaminase 2 (TGM2) is expressed at increased levels in asthma and serves as a regulator of secreted phospholipase A(2) group X (sPLA(2)-X). Further, sPLA(2)-X acts on target cells such as eosinophils to initiate cellular eicosanoid synthesis. SUMMARY Recent studies have advanced our understanding of EIB as a syndrome that is caused by the increased production of inflammatory eicosanoids. The airway epithelium may be an important regulator of the production of inflammatory eicosanoids by leukocytes.
Collapse
|
38
|
Maternal diet modulates placenta growth and gene expression in a mouse model of diabetic pregnancy. PLoS One 2012; 7:e38445. [PMID: 22701643 PMCID: PMC3372526 DOI: 10.1371/journal.pone.0038445] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/07/2012] [Indexed: 01/19/2023] Open
Abstract
Unfavorable maternal diet during pregnancy can predispose the offspring to diseases later in life, such as hypertension, metabolic syndrome, and obesity. However, the molecular basis for this phenomenon of "developmental programming" is poorly understood. We have recently shown that a diet nutritionally optimized for pregnancy can nevertheless be harmful in the context of diabetic pregnancy in the mouse, associated with a high incidence of neural tube defects and intrauterine growth restriction. We hypothesized that placental abnormalities may contribute to impaired fetal growth in these pregnancies, and therefore investigated the role of maternal diet in the placenta. LabDiet 5015 diet was associated with reduced placental growth, commencing at midgestation, when compared to pregnancies in which the diabetic dam was fed LabDiet 5001 maintenance chow. Furthermore, by quantitative RT-PCR we identify 34 genes whose expression in placenta at midgestation is modulated by diet, diabetes, or both, establishing biomarkers for gene-environment interactions in the placenta. These results implicate maternal diet as an important factor in pregnancy complications and suggest that the early phases of placenta development could be a critical time window for developmental origins of adult disease.
Collapse
|
39
|
Sergouniotis P, Davidson A, Mackay D, Lenassi E, Li Z, Robson A, Yang X, Kam J, Isaacs T, Holder G, Jeffery G, Beck J, Moore A, Plagnol V, Webster A. Biallelic mutations in PLA2G5, encoding group V phospholipase A2, cause benign fleck retina. Am J Hum Genet 2011; 89:782-91. [PMID: 22137173 DOI: 10.1016/j.ajhg.2011.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/02/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022] Open
Abstract
Flecked-retina syndromes, including fundus flavimaculatus, fundus albipunctatus, and benign fleck retina, comprise a group of disorders with widespread or limited distribution of yellow-white retinal lesions of various sizes and configurations. Three siblings who have benign fleck retina and were born to consanguineous parents are the basis of this report. A combination of homozygosity mapping and exome sequencing helped to identify a homozygous missense mutation, c.133G>T (p.Gly45Cys), in PLA2G5, a gene encoding a secreted phospholipase (group V phospholipase A(2)). A screen of a further four unrelated individuals with benign fleck retina detected biallelic variants in the same gene in three patients. In contrast, no loss of function or common (minor-allele frequency>0.05%) nonsynonymous PLA2G5 variants have been previously reported (EVS, dbSNP, 1000 Genomes Project) or were detected in an internal database of 224 exomes (from subjects with adult onset neurodegenerative disease and without a diagnosis of ophthalmic disease). All seven affected individuals had fundoscopic features compatible with those previously described in benign fleck retina and no visual or electrophysiological deficits. No medical history of major illness was reported. Levels of low-density lipoprotein were mildly elevated in two patients. Optical coherence tomography and fundus autofluorescence findings suggest that group V phospholipase A(2) plays a role in the phagocytosis of photoreceptor outer-segment discs by the retinal pigment epithelium. Surprisingly, immunohistochemical staining of human retinal tissue revealed localization of the protein predominantly in the inner and outer plexiform layers.
Collapse
|
40
|
Degousee N, Kelvin DJ, Geisslinger G, Hwang DM, Stefanski E, Wang XH, Danesh A, Angioni C, Schmidt H, Lindsay TF, Gelb MH, Bollinger J, Payré C, Lambeau G, Arm JP, Keating A, Rubin BB. Group V phospholipase A2 in bone marrow-derived myeloid cells and bronchial epithelial cells promotes bacterial clearance after Escherichia coli pneumonia. J Biol Chem 2011; 286:35650-35662. [PMID: 21849511 PMCID: PMC3195628 DOI: 10.1074/jbc.m111.262733] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/11/2011] [Indexed: 02/05/2023] Open
Abstract
Group V-secreted phospholipase A(2) (GV sPLA(2)) hydrolyzes bacterial phospholipids and initiates eicosanoid biosynthesis. Here, we elucidate the role of GV sPLA(2) in the pathophysiology of Escherichia coli pneumonia. Inflammatory cells and bronchial epithelial cells both express GV sPLA(2) after pulmonary E. coli infection. GV(-/-) mice accumulate fewer polymorphonuclear leukocytes in alveoli, have higher levels of E. coli in bronchoalveolar lavage fluid and lung, and develop respiratory acidosis, more severe hypothermia, and higher IL-6, IL-10, and TNF-α levels than GV(+/+) mice after pulmonary E. coli infection. Eicosanoid levels in bronchoalveolar lavage are similar in GV(+/+) and GV(-/-) mice after lung E. coli infection. In contrast, GV(+/+) mice have higher levels of prostaglandin D(2) (PGD(2)), PGF(2α), and 15-keto-PGE(2) in lung and express higher levels of ICAM-1 and PECAM-1 on pulmonary endothelial cells than GV(-/-) mice after lung infection with E. coli. Selective deletion of GV sPLA(2) in non-myeloid cells impairs leukocyte accumulation after pulmonary E. coli infection, and lack of GV sPLA(2) in either bone marrow-derived myeloid cells or non-myeloid cells attenuates E. coli clearance from the alveolar space and the lung parenchyma. These observations show that GV sPLA(2) in bone marrow-derived myeloid cells as well as non-myeloid cells, which are likely bronchial epithelial cells, participate in the regulation of the innate immune response to pulmonary infection with E. coli.
Collapse
Affiliation(s)
- Norbert Degousee
- Division of Vascular Surgery, Peter Munk Cardiac Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - David J Kelvin
- Division of Experimental Therapeutics, University of Toronto, Toronto, Ontario M5G 2C4, Canada; Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China
| | - Gerd Geisslinger
- Institut für Klinische Pharmakologie, D-60590, Frankfurt am Main, Germany
| | - David M Hwang
- Department of Pathology, Toronto General Hospital Research Institute of the University Health Network and the Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Eva Stefanski
- Division of Vascular Surgery, Peter Munk Cardiac Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Xing-Hua Wang
- Department of Medical Oncology and Hematology, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Ali Danesh
- Division of Experimental Therapeutics, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Carlo Angioni
- Institut für Klinische Pharmakologie, D-60590, Frankfurt am Main, Germany
| | - Helmut Schmidt
- Institut für Klinische Pharmakologie, D-60590, Frankfurt am Main, Germany
| | - Thomas F Lindsay
- Division of Vascular Surgery, Peter Munk Cardiac Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Michael H Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195
| | - James Bollinger
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195
| | - Christine Payré
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice, Sophia Antipolis et Centre National de la Recherche Scientifique, Sophia Antipolis, 06560 Valbonne, France
| | - Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice, Sophia Antipolis et Centre National de la Recherche Scientifique, Sophia Antipolis, 06560 Valbonne, France
| | - Jonathan P Arm
- Division of Rheumatology, Immunology, and Allergy, and Partners Asthma Center, Brigham and Women's Hospital, Boston Massachusetts 02115
| | - Armand Keating
- Department of Medical Oncology and Hematology, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Barry B Rubin
- Division of Vascular Surgery, Peter Munk Cardiac Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
41
|
Murakami M, Taketomi Y, Sato H, Yamamoto K. Secreted phospholipase A2 revisited. J Biochem 2011; 150:233-55. [PMID: 21746768 DOI: 10.1093/jb/mvr088] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phospholipase A(2) (PLA(2)) catalyses the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. So far, more than 30 enzymes that possess PLA(2) or related activity have been identified in mammals. About one third of these enzymes belong to the secreted PLA(2) (sPLA(2)) family, which comprises low molecular weight, Ca(2+) requiring, secreted enzymes with a His/Asp catalytic dyad. Individual sPLA(2)s display distinct localizations and enzymatic properties, suggesting their specialized biological roles. However, in contrast to intracellular PLA(2)s, whose roles in signal transduction and membrane homoeostasis have been well documented, the biological roles of sPLA(2)s in vivo have remained obscure until recently. Over the past decade, information fuelled by studies employing knockout and transgenic mice as well as specific inhibitors, in combination with lipidomics, has clarified when and where the different sPLA(2) isoforms are expressed, which isoforms are involved in what types of pathophysiology, and how they exhibit their specific functions. In this review, we highlight recent advances in PLA(2) research, focusing mainly on the physiological functions of sPLA(2)s and their modes of action on 'extracellular' phospholipid targets versus lipid mediator production.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | |
Collapse
|
42
|
Hallstrand TS, Lai Y, Ni Z, Oslund RC, Henderson WR, Gelb MH, Wenzel SE. Relationship between levels of secreted phospholipase A₂ groups IIA and X in the airways and asthma severity. Clin Exp Allergy 2011; 41:801-10. [PMID: 21255140 PMCID: PMC3093436 DOI: 10.1111/j.1365-2222.2010.03676.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Secreted phospholipase A(2) (sPLA(2) ) may be important mediators of asthma, but the specific sPLA(2) s involved in asthma are not known. Objective To evaluate sPLA(2) group IIA, V, and X proteins (sPLA(2) -IIA, sPLA(2) -V, and sPLA(2) -X) in bronchoalveolar lavage (BAL) fluid, BAL cells, and airway epithelial cells of subjects with and without asthma, and examine the relationship between the levels of specific sPLA(2) enzymes and airway inflammation, asthma severity, and lung function. Methods The expression of sPLA(2) -IIA, sPLA(2) -V, and sPLA(2) -X in BAL cells and epithelial brushings was assessed by qPCR. The levels of these sPLA(2) proteins and sPLA(2) activity with and without group II and group X-specific inhibitors were measured in BAL fluid from 18 controls and 39 asthmatics. Results The airway epithelium expressed sPLA(2) -X at higher levels than either sPLA(2) -IIA or sPLA(2) -V, whereas BAL cells expressed sPLA(2) -IIA and sPLA(2) -X at similar levels. The majority of sPLA(2) activity in BAL fluid was attributed to either sPLA(2) -IIA or sPLA(2) -X. After 10-fold concentration of BAL fluid, the levels of sPLA(2) -X normalized to total protein were increased in asthma and were associated with lung function, the concentration of induced sputum neutrophils, and prostaglandin E(2) . The levels of sPLA(2) -IIA were elevated in asthma when normalized to total protein, but were not related to lung function, markers of airway inflammation or eicosanoid formation. Conclusions and Clinical Relevance These data indicate that sPLA(2) -IIA and sPLA(2) -X are the major sPLA(2) s in human airways, and suggest a link between the levels of sPLA(2) -X in the airways and several features of asthma.
Collapse
Affiliation(s)
- T S Hallstrand
- Department of Medicine, Divisions of Pulmonary and Critical Care, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Sato H, Isogai Y, Masuda S, Taketomi Y, Miki Y, Kamei D, Hara S, Kobayashi T, Ishikawa Y, Ishii T, Ikeda K, Taguchi R, Ishimoto Y, Suzuki N, Yokota Y, Hanasaki K, Suzuki-Yamamoto T, Yamamoto K, Murakami M. Physiological roles of group X-secreted phospholipase A2 in reproduction, gastrointestinal phospholipid digestion, and neuronal function. J Biol Chem 2011; 286:11632-48. [PMID: 21266581 PMCID: PMC3064216 DOI: 10.1074/jbc.m110.206755] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/17/2011] [Indexed: 01/04/2023] Open
Abstract
Although the secreted phospholipase A(2) (sPLA(2)) family has been generally thought to participate in pathologic events such as inflammation and atherosclerosis, relatively high and constitutive expression of group X sPLA(2) (sPLA(2)-X) in restricted sites such as reproductive organs, the gastrointestinal tract, and peripheral neurons raises a question as to the roles played by this enzyme in the physiology of reproduction, digestion, and the nervous system. Herein we used mice with gene disruption or transgenic overexpression of sPLA(2)-X to clarify the homeostatic functions of this enzyme at these locations. Our results suggest that sPLA(2)-X regulates 1) the fertility of spermatozoa, not oocytes, beyond the step of flagellar motility, 2) gastrointestinal phospholipid digestion, perturbation of which is eventually linked to delayed onset of a lean phenotype with reduced adiposity, decreased plasma leptin, and improved muscle insulin tolerance, and 3) neuritogenesis of dorsal root ganglia and the duration of peripheral pain nociception. Thus, besides its inflammatory action proposed previously, sPLA(2)-X participates in physiologic processes including male fertility, gastrointestinal phospholipid digestion linked to adiposity, and neuronal outgrowth and sensing.
Collapse
Affiliation(s)
- Hiroyasu Sato
- From the Lipid Metabolism Project, the Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 256-8506
- the Department of Health Chemistry, School of Pharceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555
| | - Yuki Isogai
- From the Lipid Metabolism Project, the Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 256-8506
- the Department of Biology, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610
| | - Seiko Masuda
- From the Lipid Metabolism Project, the Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 256-8506
- the Department of Health Chemistry, School of Pharceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555
| | - Yoshitaka Taketomi
- From the Lipid Metabolism Project, the Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 256-8506
- the Department of Health Chemistry, School of Pharceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555
| | - Yoshimi Miki
- From the Lipid Metabolism Project, the Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 256-8506
- the Department of Health Chemistry, School of Pharceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555
| | - Daisuke Kamei
- the Department of Health Chemistry, School of Pharceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555
| | - Shuntaro Hara
- the Department of Health Chemistry, School of Pharceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555
| | - Tetsuyuki Kobayashi
- the Department of Biology, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610
| | - Yukio Ishikawa
- the Department of Pathology, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ohta-ku, Tokyo 143-8540
| | - Toshiharu Ishii
- the Department of Pathology, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ohta-ku, Tokyo 143-8540
| | - Kazutaka Ikeda
- the Department of Metabolome, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
- the Department of Neutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Kuboki 111, Souja, Okayama 719-1197, and
| | - Ryo Taguchi
- the Department of Metabolome, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
- CREST and
| | - Yoshikazu Ishimoto
- Shionogi Research Laboratories, Shionogi and Company Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825
| | - Noriko Suzuki
- Shionogi Research Laboratories, Shionogi and Company Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825
| | - Yasunori Yokota
- Shionogi Research Laboratories, Shionogi and Company Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825
| | - Kohji Hanasaki
- Shionogi Research Laboratories, Shionogi and Company Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825
| | - Toshiko Suzuki-Yamamoto
- the Department of Neutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Kuboki 111, Souja, Okayama 719-1197, and
| | - Kei Yamamoto
- From the Lipid Metabolism Project, the Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 256-8506
| | - Makoto Murakami
- From the Lipid Metabolism Project, the Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 256-8506
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
44
|
Murakami M, Sato H, Taketomi Y, Yamamoto K. Integrated lipidomics in the secreted phospholipase A(2) biology. Int J Mol Sci 2011; 12:1474-95. [PMID: 21673902 PMCID: PMC3111613 DOI: 10.3390/ijms12031474] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 02/18/2011] [Accepted: 02/24/2011] [Indexed: 12/22/2022] Open
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A(2)s (PLA(2)s) or related enzymes, which are subdivided into several subgroups based on their structures, catalytic mechanisms, localizations and evolutionary relationships. More than one third of the PLA(2) enzymes belong to the secreted PLA(2) (sPLA(2)) family, which consists of low-molecular-weight, Ca(2+)-requiring extracellular enzymes, with a His-Asp catalytic dyad. Individual sPLA(2) isoforms exhibit unique tissue and cellular localizations and enzymatic properties, suggesting their distinct pathophysiological roles. Recent studies using transgenic and knockout mice for several sPLA(2) isoforms, in combination with lipidomics approaches, have revealed their distinct contributions to various biological events. Herein, we will describe several examples of sPLA(2)-mediated phospholipid metabolism in vivo, as revealed by integrated analysis of sPLA(2) transgenic/knockout mice and lipid mass spectrometry. Knowledge obtained from this approach greatly contributes to expanding our understanding of the sPLA(2) biology and pathophysiology.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| | - Hiroyasu Sato
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| | - Kei Yamamoto
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| |
Collapse
|
45
|
Okunishi K, Peters-Golden M. Leukotrienes and airway inflammation. Biochim Biophys Acta Gen Subj 2011; 1810:1096-102. [PMID: 21352897 DOI: 10.1016/j.bbagen.2011.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/28/2011] [Accepted: 02/11/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND Asthma is a common chronic inflammatory disease of the airways characterized by airway obstruction and hyperresponsiveness. Leukotrienes (LTs) are lipid mediators that contribute to many aspects of asthma pathogenesis. As the LT pathway is relatively steroid-resistant, its blockade by alternative strategies is a desirable component of asthma management. Cysteinyl LT (cysLT) receptor 1 antagonists (LTRAs) have been utilized worldwide for more than 10years, and while their efficacy in asthma is well accepted, their limitations are also evident. SCOPE OF REVIEW In this review, we summarize the biological effects of LTs in asthma, review recent advances in LT receptors, and consider possible new therapeutic targets in the LT pathway that offer the potential to achieve better control of asthma in the future. MAJOR CONCLUSIONS CysLTs play pathogenetic roles in many aspects of asthma, and blockade of cysLT receptor 1 by currently available LTRAs is certainly beneficial in disease management. On the other hand, the limitations of LTRAs are also apparent. Recent studies have revealed new receptors for cysLTs other than classical cysLT receptors 1 and 2, as well as the potential importance of LTB(4) in asthma. GENERAL SIGNIFICANCE Recent findings provide clues to new approaches for targeting the LT pathway that may overcome the current limitations of LTRAs and achieve superior control of asthma. This article is part of a Special Issue entitled: Biochemistry of Asthma.
Collapse
Affiliation(s)
- Katsuhide Okunishi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 4810--5642, USA
| | | |
Collapse
|
46
|
Affiliation(s)
- Yoshitaka TAKETOMI
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science
| | - Makoto MURAKAMI
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science
| |
Collapse
|
47
|
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A₂ research: from cells to animals to humans. Prog Lipid Res 2010; 50:152-92. [PMID: 21185866 DOI: 10.1016/j.plipres.2010.12.001] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A₂s (PLA₂s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA₂s (sPLA₂s), Ca²+-dependent cytosolic PLA₂s (cPLA₂s), Ca²+-independent PLA₂s (iPLA₂s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA₂s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA₂ and iPLA₂ families and the extracellular sPLA₂ family are recognized as the "big three". From a general viewpoint, cPLA₂α (the prototypic cPLA₂ plays a major role in the initiation of arachidonic acid metabolism, the iPLA₂ family contributes to membrane homeostasis and energy metabolism, and the sPLA₂ family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA₂ family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA₂ and sPLA₂ families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA₂ enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA₂ genes. This review focuses on current understanding of the emerging biological functions of PLA₂s and related enzymes.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Giannattasio G, Fujioka D, Xing W, Katz HR, Boyce JA, Balestrieri B. Group V secretory phospholipase A2 reveals its role in house dust mite-induced allergic pulmonary inflammation by regulation of dendritic cell function. THE JOURNAL OF IMMUNOLOGY 2010; 185:4430-8. [PMID: 20817863 DOI: 10.4049/jimmunol.1001384] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have previously shown that group V secretory phospholipase A(2) (sPLA(2)) regulates phagocytosis of zymosan and Candida albicans by a mechanism that depends on fusion of phagosomes with late endosomes in macrophages. In this study, we report that group V sPLA(2) (Pla2g5)-null mice exposed to an extract of house dust mite Dermatophagoides farinae had markedly reduced pulmonary inflammation and goblet cell metaplasia compared with wild-type (WT) mice. Pla2g5-null mice had also impaired Th2-type adaptive immune responses to D. farinae compared with WT mice. Pla2g5-null bone marrow-derived dendritic cells (BMDCs) activated by D. farinae had delayed intracellular processing of allergen and impaired allergen-dependent maturation, a pattern recapitulated by the native lung DCs of D. farinae-challenged mice. Adoptively transferred D. farinae-loaded Pla2g5-null BMDCs were less able than D. farinae-loaded WT BMDCs to induce pulmonary inflammation and Th2 polarization in WT mice. However, Pla2g5-null recipients transferred with WT or Pla2g5-null D. farinae-loaded BMDCs exhibited significantly reduced local inflammatory responses to D. farinae, even though the transfer of WT BMDCs still induced an intact Th2 cytokine response in regional lymph nodes. Thus, the expression of group V sPLA(2) in APCs regulates Ag processing and maturation of DCs and contributes to pulmonary inflammation and immune response against D. farinae. Furthermore, an additional yet to be identified resident cell type is essential for the development of pulmonary inflammation, likely a cell in which group V sPLA(2) is upregulated by D. farinae, and whose function is also regulated by group V sPLA(2).
Collapse
|
49
|
Boilard E, Lai Y, Larabee K, Balestrieri B, Ghomashchi F, Fujioka D, Gobezie R, Coblyn JS, Weinblatt ME, Massarotti EM, Thornhill TS, Divangahi M, Remold H, Lambeau G, Gelb MH, Arm JP, Lee DM. A novel anti-inflammatory role for secretory phospholipase A2 in immune complex-mediated arthritis. EMBO Mol Med 2010; 2:172-87. [PMID: 20432503 PMCID: PMC3058614 DOI: 10.1002/emmm.201000072] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Phospholipase A2 (PLA2) catalyses the release of arachidonic acid for generation of lipid mediators of inflammation and is crucial in diverse inflammatory processes. The functions of the secretory PLA2 enzymes (sPLA2), numbering nine members in humans, are poorly understood, though they have been shown to participate in lipid mediator generation and the associated inflammation. To further understand the roles of sPLA2 in disease, we quantified the expression of these enzymes in the synovial fluid in rheumatoid arthritis and used gene-deleted mice to examine their contribution in a mouse model of autoimmune erosive inflammatory arthritis. Contrary to expectation, we find that the group V sPLA2 isoform plays a novel anti-inflammatory role that opposes the pro-inflammatory activity of group IIA sPLA2. Mechanistically, group V sPLA2 counter-regulation includes promotion of immune complex clearance by regulating cysteinyl leukotriene synthesis. These observations identify a novel anti-inflammatory function for a PLA2 and identify group V sPLA2 as a potential biotherapeutic for treatment of immune-complex-mediated inflammation.
Collapse
Affiliation(s)
- Eric Boilard
- Division of Rheumatology, Immunology and Allergy and Partners Asthma Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Leukotrienes are lipid mediators involved in the pathogenesis of asthma. There is significant new information about the actions of leukotrienes in asthma and the evolving role of antileukotriene therapies. We review recent findings on regulation of leukotriene synthesis, biological function of leukotrienes in disease models, and use of leukotriene modifiers in clinical practice. RECENT FINDINGS Our understanding of the regulation of leukotriene synthesis at a molecular level has greatly advanced. Recent evidence indicates that genetic variation in the leukotriene synthetic pathway affects the clinical response to leukotriene modifiers. The participation of leukotriene B4 in the allergic sensitization process in animal models suggests a larger role for leukotriene B4 in asthma. Preclinical and in-vitro models suggest that the cysteinyl leukotrienes are important in airway remodeling. Leukotrienes are key mediators of exercise-induced bronchoconstriction with recent studies demonstrating that leukotriene modifiers reduce the severity of exercise-induced bronchoconstriction during short-term and long-term use. SUMMARY Leukotrienes are clearly involved in airway inflammation and certain clinical features of asthma. Evolving evidence indicates that leukotriene B4 has an important role in the development of asthma and that cysteinyl leukotrienes are key mediators of the airway remodeling process.
Collapse
|