1
|
Jiang Y, Wang C, Zu C, Rong X, Yu Q, Jiang J. Synergistic Potential of Nanomedicine in Prostate Cancer Immunotherapy: Breakthroughs and Prospects. Int J Nanomedicine 2024; 19:9459-9486. [PMID: 39371481 PMCID: PMC11456300 DOI: 10.2147/ijn.s466396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Given the global prevalence of prostate cancer in men, it is crucial to explore more effective treatment strategies. Recently, immunotherapy has emerged as a promising cancer treatment due to its unique mechanism of action and potential long-term effectiveness. However, its limited efficacy in prostate cancer has prompted renewed interest in developing strategies to improve immunotherapy outcomes. Nanomedicine offers a novel perspective on cancer treatment with its unique size effects and surface properties. By employing targeted delivery, controlled release, and enhanced immunogenicity, nanoparticles can be synergized with nanomedicine platforms to amplify the effectiveness of immunotherapy in treating prostate cancer. Simultaneously, nanotechnology can address the limitations of immunotherapy and the challenges of immune escape and tumor microenvironment regulation. Additionally, the synergistic effects of combining nanomedicine with other therapies offer promising clinical outcomes. Innovative applications of nanomedicine include smart nanocarriers, stimulus-responsive systems, and precision medicine approaches to overcome translational obstacles in prostate cancer immunotherapy. This review highlights the transformative potential of nanomedicine in enhancing prostate cancer immunotherapy and emphasizes the need for interdisciplinary collaboration to drive research and clinical applications forward.
Collapse
Affiliation(s)
- Yueyao Jiang
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chengran Wang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chuancheng Zu
- China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Xin’ao Rong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Qian Yu
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Jinlan Jiang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| |
Collapse
|
2
|
Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther 2023; 8:293. [PMID: 37544972 PMCID: PMC10404590 DOI: 10.1038/s41392-023-01536-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/08/2023] Open
Abstract
Cancer remains a highly lethal disease in the world. Currently, either conventional cancer therapies or modern immunotherapies are non-tumor-targeted therapeutic approaches that cannot accurately distinguish malignant cells from healthy ones, giving rise to multiple undesired side effects. Recent advances in nanotechnology, accompanied by our growing understanding of cancer biology and nano-bio interactions, have led to the development of a series of nanocarriers, which aim to improve the therapeutic efficacy while reducing off-target toxicity of the encapsulated anticancer agents through tumor tissue-, cell-, or organelle-specific targeting. However, the vast majority of nanocarriers do not possess hierarchical targeting capability, and their therapeutic indices are often compromised by either poor tumor accumulation, inefficient cellular internalization, or inaccurate subcellular localization. This Review outlines current and prospective strategies in the design of tumor tissue-, cell-, and organelle-targeted cancer nanomedicines, and highlights the latest progress in hierarchical targeting technologies that can dynamically integrate these three different stages of static tumor targeting to maximize therapeutic outcomes. Finally, we briefly discuss the current challenges and future opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- Dahua Fan
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China.
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yongkai Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Meiqun Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yajun Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China
| | | | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
3
|
psma-targeted NIR probes for image-guided detection of prostate cancer. Colloids Surf B Biointerfaces 2022; 218:112734. [DOI: 10.1016/j.colsurfb.2022.112734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
|
4
|
Metamorphosis of prostate specific membrane antigen (PSMA) inhibitors. Biophys Rev 2022; 14:303-315. [PMID: 35340601 PMCID: PMC8921357 DOI: 10.1007/s12551-021-00919-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/18/2021] [Indexed: 01/16/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA), also called glutamate carboxypeptidase II (GCP(II)), is a Zn-dependent metalloprotease that is known as a well prostate cancer indication and a potential targeting towards anti-cancer medicines and drug delivery. Because of its centrality in the diagnostics and treatment of prostate cancer, several types of inhibitors are designed with particular scaffolds. In this study, important groups of related inhibitors as well as reported experimental and computational studies are being reviewed, in which we examined three functional groups on each group of structures. The importance of computational biochemistry and the necessity of extensive research in this area on PSMA and its effective ligands are recommended.
Collapse
|
5
|
Cohen L, Assaraf YG, Livney YD. Novel Selectively Targeted Multifunctional Nanostructured Lipid Carriers for Prostate Cancer Treatment. Pharmaceutics 2021; 14:pharmaceutics14010088. [PMID: 35056984 PMCID: PMC8781189 DOI: 10.3390/pharmaceutics14010088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PC) is the most common cancer in men over 50 and the 4th most prevalent human malignancy. PC treatment may include surgery, androgen deprivation therapy, chemotherapy, and radiation therapy. However, the therapeutic efficacy of systemic chemotherapy is limited due to low drug solubility and insufficient tumor specificity, inflicting toxic side effects and frequently provoking the emergence of drug resistance. Towards the efficacious treatment of PC, we herein developed novel selectively PC-targeted nanoparticles (NPs) harboring a cytotoxic drug cargo. This delivery system is based upon PEGylated nanostructured lipid carriers (NLCs), decorated with a selective ligand, targeted to prostate-specific membrane antigen (PSMA). NPs loaded with cabazitaxel (CTX) displayed a remarkable loading capacity of 168 ± 3 mg drug/g SA-PEG, encapsulation efficiency of 67 ± 1%, and an average diameter of 159 ± 3 nm. The time-course of in vitro drug release from NPs revealed a substantial drug retention profile compared to the unencapsulated drug. These NPs were selectively internalized into target PC cells overexpressing PSMA, and displayed a dose-dependent growth inhibition compared to cells devoid of the PSMA receptor. Remarkably, these targeted NPs exhibited growth-inhibitory activity at pM CTX concentrations, being markedly more potent than the free drug. This selectively targeted nano-delivery platform bears the promise of enhanced efficacy and minimal untoward toxicity.
Collapse
Affiliation(s)
- Lital Cohen
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 3200003, Israel;
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion–Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: (Y.G.A.); (Y.D.L.)
| | - Yoav D. Livney
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 3200003, Israel;
- Correspondence: (Y.G.A.); (Y.D.L.)
| |
Collapse
|
6
|
Siow A, Kowalczyk R, Brimble MA, Harris PWR. Evolution of Peptide-Based Prostate-Specific Membrane Antigen (PSMA) Inhibitors: An Approach to Novel Prostate Cancer Therapeutics. Curr Med Chem 2021; 28:3713-3752. [PMID: 33023429 DOI: 10.2174/0929867327666201006153847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prostate cancer is one of the most common cancers worldwide, with approximately 1.1 million cases diagnosed annually. The rapid development of molecular imaging has facilitated greater structural understanding, which can help formulate novel combinations of therapeutic regimens and more accurate diagnosis, avoiding unnecessary prostate biopsies. This accumulated knowledge also provides a greater understanding of the aggressive stages of the disease and tumor recurrence. Recently, much progress has been made on developing peptidomimetic-based inhibitors as promising candidates to effectively bind to the prostate- specific membrane antigen (PSMA), which is expressed by prostate cancer cells. OBJECTIVE In this review, recent advances covering small-molecule and peptide-based PSMA inhibitors will be extensively reviewed, providing a base for the rational design of future PSMA inhibitors. METHOD Herein, the literature on selected PSMA inhibitors that have been developed from 1996 to 2020 were reviewed, emphasizing recent synthetic advances and chemical strategies whilst highlighting therapeutic potential and drawbacks of each inhibitor. RESULTS Synthesized inhibitors presented in this review demonstrate the clinical application of certain PSMA inhibitors, exhibited in vitro and in vivo. CONCLUSION This review highlights the clinical potential of PSMA inhibitors, analyzing the advantages and setbacks of the chemical synthetic methodologies utilized, setting precedence for the discovery of novel PSMA inhibitors for future clinical applications.
Collapse
Affiliation(s)
- Andrew Siow
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Private Bag: 92019, Auckland 1010, New Zealand
| | - Renata Kowalczyk
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Private Bag: 92019, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Private Bag: 92019, Auckland 1010, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Private Bag: 92019, Auckland 1010, New Zealand
| |
Collapse
|
7
|
Cohen L, Livney YD, Assaraf YG. Targeted nanomedicine modalities for prostate cancer treatment. Drug Resist Updat 2021; 56:100762. [PMID: 33857756 DOI: 10.1016/j.drup.2021.100762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022]
Abstract
Prostate cancer (PC) is the second most common cause of death amongst men in the USA. Therapy of PC has been transformed in the past decade by introducing novel therapeutics, advanced functional imaging and diagnostic approaches, next generation sequencing, as well as improved application of existing therapies in localized PC. Treatment of PC at the different stages of the disease may include surgery, androgen deprivation therapy (ADT), chemotherapy and radiation therapy. However, although ADT has proven efficacious in PC treatment, its effectiveness may be temporary, as these tumors frequently develop molecular mechanisms of therapy resistance, which allow them to survive and proliferate even under conditions of testosterone deprivation, inhibition of androgen receptor signaling, or cytotoxic drug treatment. Importantly, ADT was found to induce key alterations which frequently result in the formation of metastatic tumors displaying a therapy refractory phenotype. Hence, to overcome these serious therapeutic impediments, novel PC cell-targeted therapeutic strategies are being developed. These include diverse platforms enabling specific enhanced antitumor drug uptake and increased intracellular accumulation. Studies have shown that these novel treatment modalities lead to enhanced antitumor activity and diminished systemic toxicity due to the use of selective targeting and decreased drug doses. The underlying mechanism of targeting and internalization is based upon the interaction between a selective ligand, conjugated to a drug-loaded nanoparticle or directly to an anti-cancer drug, and a specific plasma membrane biomarker, uniquely overexpressed on the surface of PC cells. Another targeted therapeutic approach is the delivery of unique anti-oncogenic signaling pathway-based therapeutic drugs, which are selectively cytotoxic to PC cells. The current paper reviews PC targeted modalities reported in the past 6 years, and discusses both the advantages and limitations of the various targeted treatment strategies.
Collapse
Affiliation(s)
- Lital Cohen
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yoav D Livney
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
8
|
Rogers OC, Antony L, Levy O, Joshi N, Simons BW, Dalrymple SL, Rosen DM, Pickering A, Lan H, Kuang H, Ranganath SH, Zheng L, Karp JM, Howard SP, Denmeade SR, Isaacs JT, Brennen WN. Microparticle Encapsulation of a Prostate-targeted Biologic for the Treatment of Liver Metastases in a Preclinical Model of Castration-resistant Prostate Cancer. Mol Cancer Ther 2020; 19:2353-2362. [PMID: 32943549 DOI: 10.1158/1535-7163.mct-20-0227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/17/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022]
Abstract
PRX302 is a highly potent, mutant bacterial pore-forming biologic protoxin engineered for selective activation by PSA, a serine protease expressed by benign and malignant prostate epithelial cells. Although being developed as a local therapy for benign prostatic hyperplasia and localized prostate cancer, PRX302 cannot be administered systemically as a treatment for metastatic disease due to binding to ubiquitously expressed glycosylphosphatidylinositol (GPI)-anchored proteins, which leads to poor accumulation within the tumor microenvironment. To overcome this limitation, poly-lactic-co-glycolic acid (PLGA) microparticles encapsulating the protoxin were developed, which are known to accumulate in the liver, a major site of metastasis for prostate cancer and other solid tumors. A highly sensitive and reproducible sandwich ELISA to quantify PRX302 released from microparticles was developed. Utilizing this assay, PRX302 release from different microparticle formulations was assessed over multiple days. Hemolysis assays documented PSA-dependent pore formation and lytic potential (i.e., function) of the released protoxin. MTT assays demonstrated that conditioned supernatant from PRX302-loaded, but not blank (i.e., unloaded), PLGA microparticles was highly cytotoxic to PC3 and DU145 human prostate cancer cells in the presence of exogenous PSA. Microparticle encapsulation prevented PRX302 from immediately interacting with GPI-anchored proteins as demonstrated in a competition assay, which resulted in an increased therapeutic index and significant antitumor efficacy following a single dose of PRX302-loaded microparticles in a preclinical model of prostate cancer liver metastasis with no obvious toxicity. These results document that PRX302 released from PLGA microparticles demonstrate in vivo antitumor efficacy in a clinically relevant preclinical model of metastatic prostate cancer.
Collapse
Affiliation(s)
- Oliver C Rogers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Lizamma Antony
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Oren Levy
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Harvard - MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Nitin Joshi
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Harvard - MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Brian W Simons
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susan L Dalrymple
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - D Marc Rosen
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Andrew Pickering
- Harvard - MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Haoyue Lan
- Harvard - MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Heidi Kuang
- Harvard - MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Sudhir H Ranganath
- Harvard - MIT Division of Health Sciences and Technology, Cambridge, Massachusetts.,Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumkur, Karnataka, India
| | - Lei Zheng
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Jeffrey M Karp
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Harvard - MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - S Peter Howard
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Samuel R Denmeade
- Department of Pharmacology and Molecular Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John T Isaacs
- Department of Pharmacology and Molecular Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - W Nathaniel Brennen
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland. .,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Yari H, Gali H, Awasthi V. Nanoparticles for Targeting of Prostate Cancer. Curr Pharm Des 2020; 26:5393-5413. [PMID: 32693761 DOI: 10.2174/1381612826666200721001500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/27/2020] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is the leading cause of death by cancer in men. Because of the drastic decline in the survival rate of PCa patients with advanced/metastatic disease, early diagnosis of disease and therapy without toxic side effects is crucial. Chemotherapy is widely used to control the progression of PCa at the later stages; however, it is associated with off-target toxicities and severe adverse effects due to the lack of specificity. Delivery of therapeutic or diagnostic agents by using targeted nanoparticles is a promising strategy to enhance accuracy and sensitivity of diagnosis of PCa and to increase efficacy and specificity of therapeutic agents. Numerous efforts have been made in past decades to create nanoparticles with different architectural bases for specific delivery payloads to prostate tumors. Major PCa associated cell membrane protein markers identified as targets for such purposes include folate receptor, sigma receptors, transferrin receptor, gastrin-releasing peptide receptor, urokinase plasminogen activator receptor, and prostate specific membrane antigen. Among these markers, prostate specific membrane antigen has emerged as an extremely specific and sensitive targetable marker for designing targeted nanoparticle-based delivery systems for PCa. In this article, we review contemporary advances in design, specificity, and efficacy of nanoparticles functionalized against PCa. Whenever feasible, both diagnostic as well as therapeutic applications are discussed.
Collapse
Affiliation(s)
- Hooman Yari
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Hariprasad Gali
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
10
|
Hapuarachchige S, Huang CT, Donnelly MC, Bařinka C, Lupold SE, Pomper MG, Artemov D. Cellular Delivery of Bioorthogonal Pretargeting Therapeutics in PSMA-Positive Prostate Cancer. Mol Pharm 2019; 17:98-108. [PMID: 31840521 DOI: 10.1021/acs.molpharmaceut.9b00788] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostate cancer is primarily fatal after it becomes metastatic and castration-resistant despite novel combined hormonal and chemotherapeutic regimens. Hence, new therapeutic concepts and drug delivery strategies are urgently needed for the eradication of this devastating disease. Here we report the highly specific, in situ click chemistry driven pretargeted delivery of cytotoxic drug carriers to PSMA(+) prostate cancer cells. Anti-PSMA 5D3 mAb and its F(ab')2 fragments were functionalized with trans-cyclooctene (TCO), labeled with a fluorophore, and used as pretargeting components. Human serum albumin (ALB) was loaded with the DM1 antitubulin agent, functionalized with PEGylated tetrazine (PEG4-Tz), labeled with a fluorophore, and used as the drug delivery component. The internalization kinetics of components and the therapeutic efficacy of the pretargeted click therapy were studied in PSMA(+) PC3-PIP and PSMA(-) PC3-Flu control cells. The F(ab')2 fragments were internalized faster than 5D3 mAb in PSMA(+) PC3-PIP cells. In the two-component pretargeted imaging study, both components were colocalized in a perinuclear location of the cytoplasm of PC3-PIP cells. Better colocalization was achieved when 5D3 mAb was used as the pretargeting component. Consecutively, the in vitro cell viability study shows a significantly higher therapeutic effect of click therapy in PC3-PIP cells when 5D3 mAb was used for pretargeting, compared to its F(ab')2 derivative. 5D3 mAb has a longer lifetime on the cell surface, when compared to its F(ab')2 analogue, enabling efficient cross-linking with the drug delivery component and increased efficacy. Pretargeting and drug delivery components were cross-linked via multiple bioorthogonal click chemistry reactions on the surface of PSMA(+) PC cells forming nanoclusters, which undergo fast cellular internalization and intracellular transport to perinuclear locations.
Collapse
Affiliation(s)
- Sudath Hapuarachchige
- The Russell H. Morgan Department of Radiology and Radiological Science , The Johns Hopkins University School of Medicine , 720 Rutland Avenue , Baltimore , Maryland 21205 , United States
| | - Colin T Huang
- The Russell H. Morgan Department of Radiology and Radiological Science , The Johns Hopkins University School of Medicine , 720 Rutland Avenue , Baltimore , Maryland 21205 , United States
| | - Madeline C Donnelly
- The Russell H. Morgan Department of Radiology and Radiological Science , The Johns Hopkins University School of Medicine , 720 Rutland Avenue , Baltimore , Maryland 21205 , United States
| | - Cyril Bařinka
- Laboratory of Structural Biology , Institute of Biotechnology of the Czech Academy of Sciences , Prumyslova 595 , Vestec 252 50 , Czech Republic
| | - Shawn E Lupold
- The James Buchanan Brady Urologic Institute and Department of Urology , Johns Hopkins School of Medicine , 600 N. Wolfe St. , Baltimore , Maryland 21287 , United States
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science , The Johns Hopkins University School of Medicine , 720 Rutland Avenue , Baltimore , Maryland 21205 , United States.,The James Buchanan Brady Urologic Institute and Department of Urology , Johns Hopkins School of Medicine , 600 N. Wolfe St. , Baltimore , Maryland 21287 , United States.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center , The Johns Hopkins University School of Medicine , 401 N. Broadway , Baltimore , Maryland 21231 , United States
| | - Dmitri Artemov
- The Russell H. Morgan Department of Radiology and Radiological Science , The Johns Hopkins University School of Medicine , 720 Rutland Avenue , Baltimore , Maryland 21205 , United States.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center , The Johns Hopkins University School of Medicine , 401 N. Broadway , Baltimore , Maryland 21231 , United States
| |
Collapse
|
11
|
Sengupta S, Asha Krishnan M, Chattopadhyay S, Chelvam V. Comparison of prostate-specific membrane antigen ligands in clinical translation research for diagnosis of prostate cancer. Cancer Rep (Hoboken) 2019; 2:e1169. [PMID: 32721116 DOI: 10.1002/cnr2.1169] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA), overexpressed on prostate cancer (PCa), is a well-characterized cell surface protein to selectively diagnose PCa. PSMA's unique characteristics and its 1000-fold higher expression in PCa compared with other tissues renders it as a suitable biomarker for detection of PCa in its early stage. In this report, we critically analyze and recommend the requirements needed for the development of variety of PSMA-targeted molecular imaging agents based on antibodies, small molecule ligands, peptides, and aptamers. The targeting moieties are either conjugated to radionuclear isotopes or near-infrared agents for efficient diagnosis of PCa. RECENT FINDINGS From the analysis, it was found that several small molecule-derived PCa imaging agents are approved for clinical trials in Europe and the United States, and few are already in the clinical use for diagnosis of PCa. Even though 111In-labeled capromab pendetide was approved by the Food and Drug Administration (FDA) and other engineered antibodies are available for detection of PCa, but high production cost, low shelf life (less than 1 month at 4°C), possibility of human immuno reactions, and low blood clearance rate necessitated a need for developing new imaging agents, which are serum stable, cost-effective, and possesses longer shelf life (6 months), have fast clearance rate from nontargeted tissues during the diagnosis process. It is found that small molecule ligand-derived imaging agents possesses most of the desired properties expected for an ideal diagnostic agent when compared with other targeting moieties. CONCLUSION This report discusses in detail the homing moieties used in the development of targeted diagnostic tools for detection of PCa. The merits and demerits of monoclonal antibodies, small molecule ligands, peptides, and aptamers for imaging of PCa and intraoperative guided surgery are extensively analyzed. Among all, urea-based ligands were found to be most successful in preclinical and clinical trials and show a major promise for future commercialization.
Collapse
Affiliation(s)
- Sagnik Sengupta
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Indore, India
| | - Mena Asha Krishnan
- Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Indore, India
| | - Sudeshna Chattopadhyay
- Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Indore, India.,Discipline of Physics, School of Basic Sciences, Indian Institute of Technology Indore, Indore, India.,Discipline of Metallurgy Engineering and Material Science, School of Engineering, Indian Institute of Technology Indore, Indore, India
| | - Venkatesh Chelvam
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Indore, India.,Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
12
|
Yari H, Nkepang G, Awasthi V. Surface Modification of Liposomes by a Lipopolymer Targeting Prostate Specific Membrane Antigen for Theranostic Delivery in Prostate Cancer. MATERIALS 2019; 12:ma12050756. [PMID: 30841602 PMCID: PMC6427334 DOI: 10.3390/ma12050756] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/16/2023]
Abstract
Prostate specific membrane antigen (PSMA) is a marker for diagnosis and targeted delivery of therapeutics to advanced/metastasized prostate cancer. We report a liposome-based system for theranostic delivery to PSMA-expressing (PSMA+) LNCaP cells. A lipopolymer (P3) comprising of PSMA ligand (PSMAL), polyethylene glycol (PEG2000), and palmitate was synthesized and post-inserted into the surface of preformed liposomes. These P3-liposomes were loaded with doxorubicin and radiolabeled with 99mTc radionuclide to study their theranostic characteristics. Differential expression of PSMA on LNCaP and PC3 cells was confirmed by immunoblotting as well as by uptake of PSMAL labeled with 18F radionuclide. We found that the uptake of 99mTc-labeled P3-liposomes by LNCaP cells was >3-fold higher than 99mTc-labeled Plain-liposomes; the amount of doxorubicin delivered to LNCaP cells was also found to be >3-fold higher by P3-liposomes. Cell-based cytotoxicity assay results showed that doxorubicin-loaded P3-liposomes were significantly more toxic to LNCaP cells (p < 0.05), but not to PSMA-negative PC3 cells. Compared to doxorubicin-loaded Plain-liposomes, the IC50 value of doxorubicin-loaded P3-liposomes was reduced by ~5-fold in LNCaP cells. Together, these results suggest that surface functionalization of liposomes with small PSMA-binding motifs, such as PSMAL, can provide a viable platform for specific delivery of theranostics to PSMA+ prostate cancer.
Collapse
Affiliation(s)
- Hooman Yari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117, USA.
| | - Gregory Nkepang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117, USA.
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 North Stonewall Avenue, Oklahoma City, OK 73117, USA.
| |
Collapse
|
13
|
Harmatys KM, Overchuk M, Chen J, Ding L, Chen Y, Pomper MG, Zheng G. Tuning Pharmacokinetics to Improve Tumor Accumulation of a Prostate-Specific Membrane Antigen-Targeted Phototheranostic Agent. Bioconjug Chem 2018; 29:3746-3756. [PMID: 30350576 DOI: 10.1021/acs.bioconjchem.8b00636] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We describe a simple and effective bioconjugation strategy to extend the plasma circulation of a low molecular weight targeted phototheranostic agent, which achieves high tumor accumulation (9.74 ± 2.26%ID/g) and high tumor-to-background ratio (10:1). Long-circulating pyropheophorbide (LC-Pyro) was synthesized with three functional building blocks: (1) a porphyrin photosensitizer for positron-emission tomography (PET)/fluorescence imaging and photodynamic therapy (PDT), (2) a urea-based prostate-specific membrane antigen (PSMA) targeting ligand, and (3) a peptide linker to prolong the plasma circulation time. With porphyrin's copper-64 chelating and optical properties, LC-Pyro demonstrated its dual-modality (fluorescence/PET) imaging potential for selective and quantitative tumor detection in subcutaneous, orthotopic, and metastatic murine models. The peptide linker in LC-Pyro prolonged its plasma circulation time about 8.5 times compared to its truncated analog. High tumor accumulation of LC-Pyro enabled potent PDT, which resulted in significantly delayed tumor growth in a subcutaneous xenograft model. This approach can be applied to improve the pharmacokinetics of existing and future targeted PDT agents for enhanced tumor accumulation and treatment efficacy.
Collapse
Affiliation(s)
- Kara M Harmatys
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada.,Department of Medical Biophysics , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - Marta Overchuk
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada.,Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
| | - Juan Chen
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - Lili Ding
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - Ying Chen
- Johns Hopkins Medical School , 1550 Orleans Street, 492 CRB II , Baltimore , Maryland 21287 , United States
| | - Martin G Pomper
- Johns Hopkins Medical School , 1550 Orleans Street, 492 CRB II , Baltimore , Maryland 21287 , United States
| | - Gang Zheng
- Princess Margaret Cancer Centre , University Health Network , 101 College Street , Toronto , Ontario M5G 1L7 , Canada.,Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada.,Department of Medical Biophysics , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| |
Collapse
|
14
|
Neburkova J, Sedlak F, Zackova Suchanova J, Kostka L, Sacha P, Subr V, Etrych T, Simon P, Barinkova J, Krystufek R, Spanielova H, Forstova J, Konvalinka J, Cigler P. Inhibitor-GCPII Interaction: Selective and Robust System for Targeting Cancer Cells with Structurally Diverse Nanoparticles. Mol Pharm 2018; 15:2932-2945. [PMID: 29389139 DOI: 10.1021/acs.molpharmaceut.7b00889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glutamate carboxypeptidase II (GCPII) is a membrane protease overexpressed by prostate cancer cells and detected in the neovasculature of most solid tumors. Targeting GCPII with inhibitor-bearing nanoparticles can enable recognition, imaging, and delivery of treatments to cancer cells. Compared to methods based on antibodies and other large biomolecules, inhibitor-mediated targeting benefits from the low molecular weight of the inhibitor molecules, which are typically stable, easy-to-handle, and able to bind the enzyme with very high affinity. Although GCPII is established as a molecular target, comparing previously reported results is difficult due to the different methodological approaches used. In this work, we investigate the robustness and limitations of GCPII targeting with a diverse range of inhibitor-bearing nanoparticles (various structures, sizes, bionanointerfaces, conjugation chemistry, and surface densities of attached inhibitors). Polymer-coated nanodiamonds, virus-like particles based on bacteriophage Qβ and mouse polyomavirus, and polymeric poly(HPMA) nanoparticles with inhibitors attached by different means were synthesized and characterized. We evaluated their ability to bind GCPII and interact with cancer cells using surface plasmon resonance, inhibition assay, flow cytometry, and confocal microscopy. Regardless of the diversity of the investigated nanosystems, they all strongly interact with GCPII (most with low picomolar Ki values) and effectively target GCPII-expressing cells. The robustness of this approach was limited only by the quality of the nanoparticle bionanointerface, which must be properly designed by adding a sufficient density of hydrophilic protective polymers. We conclude that the targeting of cancer cells overexpressing GCPII is a viable approach transferable to a broad diversity of nanosystems.
Collapse
Affiliation(s)
- Jitka Neburkova
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic.,First Faculty of Medicine , Charles University , Katerinska 32 , 121 08 Prague , Czech Republic
| | - Frantisek Sedlak
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic.,First Faculty of Medicine , Charles University , Katerinska 32 , 121 08 Prague , Czech Republic.,Department of Genetics and Microbiology, Faculty of Science , Charles University , Vinicna 5 , 128 44 Prague 2 , Czech Republic
| | - Jirina Zackova Suchanova
- Department of Genetics and Microbiology, Faculty of Science , Charles University , Vinicna 5 , 128 44 Prague 2 , Czech Republic
| | - Libor Kostka
- Institute of Macromolecular Chemistry of the CAS , Heyrovskeho namesti 2 , 162 06 , Prague 6 , Czech Republic
| | - Pavel Sacha
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic
| | - Vladimir Subr
- Institute of Macromolecular Chemistry of the CAS , Heyrovskeho namesti 2 , 162 06 , Prague 6 , Czech Republic
| | - Tomas Etrych
- Institute of Macromolecular Chemistry of the CAS , Heyrovskeho namesti 2 , 162 06 , Prague 6 , Czech Republic
| | - Petr Simon
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic
| | - Jitka Barinkova
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic
| | - Robin Krystufek
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic
| | - Hana Spanielova
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic.,Department of Genetics and Microbiology, Faculty of Science , Charles University , Vinicna 5 , 128 44 Prague 2 , Czech Republic
| | - Jitka Forstova
- Department of Genetics and Microbiology, Faculty of Science , Charles University , Vinicna 5 , 128 44 Prague 2 , Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic.,Department of Biochemistry, Faculty of Science , Charles University , Hlavova 2030 , 128 43 Prague 2 , Czech Republic
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS , Flemingovo namesti 2 , 166 10 Prague , Czech Republic
| |
Collapse
|
15
|
Liu G, Banerjee SR, Yang X, Yadav N, Lisok A, Jablonska A, Xu J, Li Y, Pomper MG, van Zijl P. A dextran-based probe for the targeted magnetic resonance imaging of tumours expressing prostate-specific membrane antigen. Nat Biomed Eng 2017; 1:977-982. [PMID: 29456877 PMCID: PMC5810963 DOI: 10.1038/s41551-017-0168-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Safe imaging agents able to render the expression and distribution of cancer receptors, enzymes or other biomarkers would facilitate clinical screening of the disease. Here, we show that diamagnetic dextran particles coordinated to a urea-based targeting ligand for prostate-specific membrane antigen (PSMA) enable targeted magnetic resonance imaging (MRI) of the PSMA receptor. In a xenograft model of prostate cancer, micromolar concentrations of the dextran –ligand probe provided sufficient signal to specifically detect PSMA-expressing tumours via chemical exchange saturation transfer MRI. The dextran-based probe could be detected via the contrast originating from dextran hydroxyl protons, thereby avoiding the need of chemical substitution for radioactive or metallic labelling. Because dextrans are currently used clinically, dextran-based contrast agents may help extend receptor-targeted imaging to clinical MRI.
Collapse
Affiliation(s)
- Guanshu Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Sangeeta Ray Banerjee
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Nirbhay Yadav
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ala Lisok
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anna Jablonska
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Yuguo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Peter van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
16
|
Pradeep P, Kumar P, Choonara YE, Pillay V. Targeted nanotechnologies for cancer intervention: a patent review (2010-2016). Expert Opin Ther Pat 2017. [DOI: 10.1080/13543776.2017.1344216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Priyamvada Pradeep
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
17
|
Meng P, Dong QC, Tan GG, Wen WH, Wang H, Zhang G, Wang YZ, Jing YM, Wang C, Qin WJ, Yuan JL. Anti-tumor effects of a recombinant anti-prostate specific membrane antigen immunotoxin against prostate cancer cells. BMC Urol 2017; 17:14. [PMID: 28193277 PMCID: PMC5307788 DOI: 10.1186/s12894-017-0203-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/06/2017] [Indexed: 11/22/2022] Open
Abstract
Background To evaluate anti-prostate cancer effects of a chimeric tumor-targeted killer protein. Methods We established a novel fusion gene, immunocasp-3, composed of NH2-terminal leader sequence fused with an anti-prostate-specific membrane antigen (PSMA) antibody (J591), the furin cleavage sequences of diphtheria toxin (Fdt), and the reverse coding sequences of the large and small subunits of caspase-3 (revcaspase-3). The expressing level of the immunocasp-3 gene was evaluated by using the reverse transcription-PCR (RT-PCR) and western blot analysis. Cell viability assay and cytotoxicity assay were used to evaluate its anti-tumor effects in vitro. Apoptosis was confirmed by electron microscopy and Annexin V-FITC staining. The antitumor effects of immunocasp-3 were assessed in nude mice xenograft models containing PSMA-overexpressing LNCaP cells. Results This study shows that the immunocasp-3 proteins selectively recognized and induced apoptotic death in PSMA-overexpressing LNCaP cells in vitro, where apoptotic cells were present in 15.3% of the cells transfected with the immunocasp-3 expression vector at 48 h after the transfection, in contrast to 5.5% in the control cells. Moreover, LNCaP cells were significantly killed under the condition of the co-culture of the immunocasp-3-secreting Jurkat cells and more than 50% of the LNCaP cells died when the two cell lines were co-cultured within 5 days. In addition, The expression of immunocasp-3 also significantly suppressed tumor growth and greatly prolonged the animal survival rate in vivo. Conclusion A novel fusion gene, immunocasp-3, may represent a viable approach to treating PSMA-positive prostate cancer.
Collapse
Affiliation(s)
- Ping Meng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qing-Chuan Dong
- Department of Urology Surgery, Peoples' Hospital of Shaanxi Province, Xi'an, Shaanxi, China
| | - Guang-Guo Tan
- Department of Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei-Hong Wen
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - He Wang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Geng Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan-Zhu Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu-Ming Jing
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Wei-Jun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Jian-Lin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
18
|
Bao K, Lee JH, Kang H, Park GK, El Fakhri G, Choi HS. PSMA-targeted contrast agents for intraoperative imaging of prostate cancer. Chem Commun (Camb) 2017; 53:1611-1614. [PMID: 28085163 DOI: 10.1039/c6cc09781b] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prostate-specific membrane antigen (PSMA) can serve as a molecular cell surface target for the detection and treatment of prostate cancer. Near-infrared (NIR) fluorescence imaging enables highly sensitive, rapid, and non-radioactive imaging of PSMA, though specific targeting still remains a challenge because no optimized contrast agents exist.
Collapse
Affiliation(s)
- Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Banerjee SR, Foss CA, Horhota A, Pullambhatla M, McDonnell K, Zale S, Pomper MG. 111In- and IRDye800CW-Labeled PLA-PEG Nanoparticle for Imaging Prostate-Specific Membrane Antigen-Expressing Tissues. Biomacromolecules 2016; 18:201-209. [PMID: 28001364 DOI: 10.1021/acs.biomac.6b01485] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeted delivery of drug-encapsulated nanoparticles is a promising new approach to safe and effective therapeutics for cancer. Here we investigate the pharmacokinetics and biodistribution of a prostate-specific membrane antigen (PSMA)-targeted nanoparticle based on a poly(lactic acid)-polyethylene glycol copolymer by utilizing single photon emission computed tomography (SPECT) and fluorescence imaging of a low-molecular-weight, PSMA-targeting moiety attached to the surface and oriented toward the outside environment. Tissue biodistribution of the radioactive, PSMA-targeted nanoparticles in mice containing PSMA(+) PC3 PIP and PSMA(-) PC3 flu (control) tumors demonstrated similar accumulation compared to the untargeted particles within all tissues except for the tumor and liver by 96 h postinjection. For PSMA(+) PC3 PIP tumor, the targeted nanoparticle demonstrated retention of 6.58% injected dose (ID)/g at 48 h and remained nearly at that level out to 96 h, whereas the untargeted nanoparticle showed a 48 h retention of 8.17% ID/g followed by a significant clearance to 2.37% ID/g at 96 h (P < 0.02). On the other hand, for control tumor, both targeted and untargeted particles displayed similar 48 h retentions and rates of clearance over 96 h. Ex vivo microscopic analysis with near-infrared versions of the nanoparticles indicated retention within PSMA(+) tumor epithelial cells as well as tumor-associated macrophages for targeted particles and primarily macrophage-associated uptake for the untargeted particles. Retention in control tumor was primarily associated with tumor vasculature and macrophages. The data demonstrate the utility of radioimaging to assess nanoparticle biodistribution and suggest that active targeting has a modest positive effect on tumor localization of PSMA-targeted PLA-PEG nanoparticles that have been derivatized for imaging.
Collapse
Affiliation(s)
- Sangeeta R Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | - Catherine A Foss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | - Allen Horhota
- BIND Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Mrudula Pullambhatla
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | - Kevin McDonnell
- BIND Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Stephen Zale
- BIND Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| |
Collapse
|
20
|
Li M, Banerjee SR, Zheng C, Pomper MG, Barman I. Ultrahigh affinity Raman probe for targeted live cell imaging of prostate cancer. Chem Sci 2016; 7:6779-6785. [PMID: 28451123 PMCID: PMC5356002 DOI: 10.1039/c6sc01739h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/14/2016] [Indexed: 01/29/2023] Open
Abstract
Precise visualization of tumor margins with characterization of microscopic tumor invasion are unmet needs in prostate oncology that demand approaches with high sensitivity and specificity. To address those needs we report surface-enhanced Raman scattering (SERS) based optical imaging for prostate cancer using a combination of live cell Raman microscopy, optimally engineered SERS tags and a urea-based small-molecule inhibitor of prostate-specific membrane antigen (PSMA) as a targeting moiety. We develop gold nanostar based SERS agents that offer ultrahigh binding affinity to PSMA with nearly four orders of magnitude lower IC50 values in relation to existing clinical imaging agents. This combination enables selective recognition of prostate cancer cells, and facilitates quantitative and photostable Raman measurements. Using Raman microscopy to analyze phenotypically similar prostate cancer cell lines differing only in PSMA expression, we demonstrate facile, site-selective recognition using as low as 20 pM of the SERS agent for imaging, opening the door for spectroscopic detection of prostate and other PSMA-expressing tumors in vivo.
Collapse
Affiliation(s)
- Ming Li
- Department of Mechanical Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , USA . ;
| | - Sangeeta Ray Banerjee
- The Sidney Kimmel Comprehensive Cancer Center , Johns Hopkins University School of Medicine , Baltimore , Maryland 21287 , USA .
- The Russell H. Morgan Department of Radiology and Radiological Sciences , Johns Hopkins University School of Medicine , Baltimore , Maryland 21287 , USA
| | - Chao Zheng
- Department of Mechanical Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , USA . ;
- Department of Breast Surgery , The Second Hospital of Shandong University , Jinan , Shandong 25000 , China
| | - Martin G Pomper
- The Sidney Kimmel Comprehensive Cancer Center , Johns Hopkins University School of Medicine , Baltimore , Maryland 21287 , USA .
- The Russell H. Morgan Department of Radiology and Radiological Sciences , Johns Hopkins University School of Medicine , Baltimore , Maryland 21287 , USA
| | - Ishan Barman
- Department of Mechanical Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , USA . ;
- The Sidney Kimmel Comprehensive Cancer Center , Johns Hopkins University School of Medicine , Baltimore , Maryland 21287 , USA .
| |
Collapse
|
21
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1120] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
22
|
Zhu C, Bandekar A, Sempkowski M, Banerjee SR, Pomper MG, Bruchertseifer F, Morgenstern A, Sofou S. Nanoconjugation of PSMA-Targeting Ligands Enhances Perinuclear Localization and Improves Efficacy of Delivered Alpha-Particle Emitters against Tumor Endothelial Analogues. Mol Cancer Ther 2015; 15:106-113. [PMID: 26586724 DOI: 10.1158/1535-7163.mct-15-0207] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/16/2015] [Indexed: 11/16/2022]
Abstract
This study aims to evaluate the effect on killing efficacy of the intracellular trafficking patterns of α-particle emitters by using different radionuclide carriers in the setting of targeted antivascular α-radiotherapy. Nanocarriers (lipid vesicles) targeted to the prostate-specific membrane antigen (PSMA), which is unique to human neovasculature for a variety of solid tumors, were loaded with the α-particle generator actinium-225 and were compared with a PSMA-targeted radiolabeled antibody. Actinium-225 emits a total of four α-particles per decay, providing highly lethal and localized irradiation of targeted cells with minimal exposure to surrounding healthy tissues. Lipid vesicles were derivatized with two types of PSMA-targeting ligands: a fully human PSMA antibody (mAb) and a urea-based, low-molecular-weight agent. Target selectivity and extent of internalization were evaluated on monolayers of human endothelial cells (HUVEC) induced to express PSMA in static incubation conditions and in a flow field. Both types of radiolabeled PSMA-targeted vesicles exhibit similar killing efficacy, which is greater than the efficacy of the radiolabeled control mAb when compared on the basis of delivered radioactivity per cell. Fluorescence confocal microscopy demonstrates that targeted vesicles localize closer to the nucleus, unlike antibodies which localize near the plasma membrane. In addition, targeted vesicles cause larger numbers of dsDNAs per nucleus of treated cells compared with the radiolabeled mAb. These findings demonstrate that radionuclide carriers, such as PSMA-targeted lipid-nanocarriers, which localize close to the nucleus, increase the probability of α-particle trajectories crossing the nuclei, and, therefore, enhance the killing efficacy of α-particle emitters.
Collapse
Affiliation(s)
- Charles Zhu
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| | - Amey Bandekar
- Department of Chemical and Biochemical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| | - Michelle Sempkowski
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21287
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21287
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
| | - Stavroula Sofou
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
- Department of Chemical and Biochemical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| |
Collapse
|
23
|
Banerjee SR, Ngen EJ, Rotz MW, Kakkad S, Lisok A, Pracitto R, Pullambhatla M, Chen Z, Shah T, Artemov D, Meade TJ, Bhujwalla ZM, Pomper MG. Synthesis and Evaluation of GdIII-Based Magnetic Resonance Contrast Agents for Molecular Imaging of Prostate-Specific Membrane Antigen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Banerjee SR, Ngen EJ, Rotz MW, Kakkad S, Lisok A, Pracitto R, Pullambhatla M, Chen Z, Shah T, Artemov D, Meade TJ, Bhujwalla ZM, Pomper MG. Synthesis and Evaluation of Gd(III) -Based Magnetic Resonance Contrast Agents for Molecular Imaging of Prostate-Specific Membrane Antigen. Angew Chem Int Ed Engl 2015. [PMID: 26212031 DOI: 10.1002/anie.201503417] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magnetic resonance (MR) imaging is advantageous because it concurrently provides anatomic, functional, and molecular information. MR molecular imaging can combine the high spatial resolution of this established clinical modality with molecular profiling in vivo. However, as a result of the intrinsically low sensitivity of MR imaging, high local concentrations of biological targets are required to generate discernable MR contrast. We hypothesize that the prostate-specific membrane antigen (PSMA), an attractive target for imaging and therapy of prostate cancer, could serve as a suitable biomarker for MR-based molecular imaging. We have synthesized three new high-affinity, low-molecular-weight Gd(III) -based PSMA-targeted contrast agents containing one to three Gd(III) chelates per molecule. We evaluated the relaxometric properties of these agents in solution, in prostate cancer cells, and in an in vivo experimental model to demonstrate the feasibility of PSMA-based MR molecular imaging.
Collapse
Affiliation(s)
- Sangeeta Ray Banerjee
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA).
| | - Ethel J Ngen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Matthew W Rotz
- Chemistry, Northwestern University, Evanston, IL 60208 (USA)
| | - Samata Kakkad
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Ala Lisok
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Richard Pracitto
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Mrudula Pullambhatla
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Zhengping Chen
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Tariq Shah
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Dmitri Artemov
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Thomas J Meade
- Chemistry, Northwestern University, Evanston, IL 60208 (USA)
| | - Zaver M Bhujwalla
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21231 (USA)
| |
Collapse
|
25
|
Sun L, Wu Q, Peng F, Liu L, Gong C. Strategies of polymeric nanoparticles for enhanced internalization in cancer therapy. Colloids Surf B Biointerfaces 2015; 135:56-72. [PMID: 26241917 DOI: 10.1016/j.colsurfb.2015.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/19/2015] [Accepted: 07/07/2015] [Indexed: 02/05/2023]
Abstract
In order to achieve long circulation time and high drug accumulation in the tumor sites via the EPR effects, anticancer drugs have to be protected by non-fouling polymers such as poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO), dextran, and poly(acrylic acid) (PAA). However, the dense layer of stealth polymer also prohibits efficient uptake of anticancer drugs by target cancer cells. For cancer therapy, it is often more desirable to accomplish rapid cellular uptake after anticancer drugs arriving at the pathological site, which could on one hand maximize the therapeutic efficacy and on the other hand reduce probability of drug resistance in cells. In this review, special attention will be focused on the recent potential strategies that can enable drug-loaded polymeric nanoparticles to rapidly recognize cancer cells, leading to enhanced internalization.
Collapse
Affiliation(s)
- Lu Sun
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qinjie Wu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Feng Peng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lei Liu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Changyang Gong
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
26
|
Banerjee SR, Foss CA, Pullambhatla M, Wang Y, Srinivasan S, Hobbs RF, Baidoo KE, Brechbiel MW, Nimmagadda S, Mease RC, Sgouros G, Pomper MG. Preclinical evaluation of 86Y-labeled inhibitors of prostate-specific membrane antigen for dosimetry estimates. J Nucl Med 2015; 56:628-34. [PMID: 25722448 DOI: 10.2967/jnumed.114.149062] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED (86)Y (half-life = 14.74 h, 33% β(+)) is within an emerging class of positron-emitting isotopes with relatively long physical half-lives that enables extended imaging of biologic processes. We report the synthesis and evaluation of 3 low-molecular-weight compounds labeled with (86)Y for imaging the prostate-specific membrane antigen (PSMA) using PET. Impetus for the study derives from the need to perform dosimetry estimates for the corresponding (90)Y-labeled radiotherapeutics. METHODS Multistep syntheses were used in preparing (86)Y- 4: - 6: PSMA inhibition constants were evaluated by competitive binding assay. In vivo characterization using tumor-bearing male mice was performed by PET/CT for (86)Y- 4: - 6: and by biodistribution studies of (86)Y- 4: and (86)Y- 6: out to 24 h after injection. Quantitative whole-body PET scans were recorded to measure the kinetics for 14 organs in a male baboon using (86)Y- 6 RESULTS: Compounds (86)Y- 4: - 6: were obtained in high radiochemical yield and purity, with specific radioactivities of more than 83.92 GBq/μmol. PET imaging and biodistribution studies using PSMA-positive PC-3 PIP and PSMA-negative PC-3 flu tumor-bearing mice revealed that (86)Y- 4-6: had high site-specific uptake in PSMA-positive PC-3 PIP tumor starting at 20 min after injection and remained high at 24 h. Compound (86)Y- 6: demonstrated the highest tumor uptake and retention, with 32.17 ± 7.99 and 15.79 ± 6.44 percentage injected dose per gram (%ID/g) at 5 and 24 h, respectively. Low activity concentrations were associated with blood and normal organs, except for the kidneys, a PSMA-expressing tissue. PET imaging in baboons reveals that all organs have a 2-phase (rapid and slow) clearance, with the highest uptake (8 %ID/g) in the kidneys at 25 min. The individual absolute uptake kinetics were used to calculate radiation doses using the OLINDA/EXM software. The highest mean absorbed dose was received by the renal cortex, with 1.9 mGy per MBq of (86)Y- 6: CONCLUSION Compound (86)Y- 6: is a promising candidate for quantitative PET imaging of PSMA-expressing tumors. Dosimetry calculations indicate promise for future (90)Y or other radiometals that could use a similar chelator/scaffold combination for radiopharmaceutical therapy based on the structure of 6.
Collapse
Affiliation(s)
- Sangeeta Ray Banerjee
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | - Catherine A Foss
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | - Mrudula Pullambhatla
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | - Yuchuan Wang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | - Senthamizhchelvan Srinivasan
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | - Robert F Hobbs
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | | | | | - Sridhar Nimmagadda
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | - Ronnie C Mease
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | - George Sgouros
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; and
| |
Collapse
|
27
|
Liu CH, Sastre A, Conroy R, Seto B, Pettigrew RI. NIH workshop on clinical translation of molecular imaging probes and technology--meeting report. Mol Imaging Biol 2014; 16:595-604. [PMID: 24833042 PMCID: PMC4161932 DOI: 10.1007/s11307-014-0746-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A workshop on "Clinical Translation of Molecular Imaging Probes and Technology" was held August 2, 2013 in Bethesda, Maryland, organized and supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB). This workshop brought together researchers, clinicians, representatives from pharmaceutical companies, molecular probe developers, and regulatory science experts. Attendees met to talk over current challenges in the discovery, validation, and translation of molecular imaging (MI) probes for key clinical applications. Participants also discussed potential strategies to address these challenges. The workshop consisted of 4 sessions, with 14 presentations and 2 panel discussions. Topics of discussion included (1) challenges and opportunities for clinical research and patient care, (2) advances in molecular probe design, (3) current approaches used by industry and pharmaceutical companies, and (4) clinical translation of MI probes. In the presentations and discussions, there were general agreement that while the barriers for validation and translation of MI probes remain high, there are pressing clinical needs and development opportunities for targets in cardiovascular, cancer, endocrine, neurological, and inflammatory diseases. The strengths of different imaging modalities, and the synergy of multimodality imaging, were highlighted. Participants also underscored the continuing need for close interactions and collaborations between academic and industrial partners, and federal agencies in the imaging probe development process.
Collapse
Affiliation(s)
- Christina H Liu
- National Institute of Biomedical Imaging and Bioengineering, 6707 Democracy Blvd., Suite 200, Bethesda, MD, 20892, USA,
| | | | | | | | | |
Collapse
|
28
|
Friedman AD, Claypool SE, Liu R. The smart targeting of nanoparticles. Curr Pharm Des 2014; 19:6315-29. [PMID: 23470005 DOI: 10.2174/13816128113199990375] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/01/2013] [Indexed: 01/03/2023]
Abstract
One major challenge in nanomedicine is the selective delivery of nanoparticles to diseased tissues. Nanoparticle delivery systems require targeting for specific delivery to pathogenic sites when enhanced permeability and retention (EPR) is not suitable or inefficient. Nanoparticle functionalization is a widely-used technique for targeting ligand conjugation; these ligands possess inherent abilities to direct nanoparticle selective binding. This review illustrates methods of ligand-nanoparticle functionalization, provides a cross-section of various ligand classes, including small molecules, peptides, antibodies, engineered proteins, or nucleic acid aptamers, and discusses some unconventional approaches currently under investigation.
Collapse
Affiliation(s)
- Adam D Friedman
- Eshelman School of Pharmacy and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7568, USA.
| | | | | |
Collapse
|
29
|
Huang B, Otis J, Joice M, Kotlyar A, Thomas TP. PSMA-targeted stably linked "dendrimer-glutamate urea-methotrexate" as a prostate cancer therapeutic. Biomacromolecules 2014; 15:915-23. [PMID: 24392665 DOI: 10.1021/bm401777w] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One of the important criteria for achieving efficient nanoparticle-based targeted drug delivery is that the drug is not prematurely released at off-target sites. Here we report the preclinical evaluation of a serum-stable dendrimer-based drug conjugate capable of actively targeting into prostate cancer (PC) cells, delivered through the prostate-specific membrane antigen (PSMA). Multiple molecules of PSMA-binding small molecule glutamate urea (GLA; targeting agent) and the drug methotrexate (MTX) were conjugated to generation 5 PAMAM dendrimer (G5) through Cu-free "click" chemistry. The GLA was conjugated through a stable amide bond, and the MTX was conjugated either through ester (Es)- or amide (Am)-coupling, to generate G5-GLA(m)-(Es)MTX(n) and G5-GLA(m)-(Am)MTX(n), respectively. In serum-containing medium, free MTX was slowly released from "G5-GLA(m)-(Es)MTX(n)", with ~8% MTX released from the dendrimer in 72 h, whereas the MTX on G5-GLA(m)-(Am)MTX(n) was completely stable. The G5-GLA(m)-(Am)MTX(n) bound and internalized into PSMA-expressing LNCaP cells, but not into PSMA-negative PC3 cells. The conjugate-inhibited recombinant dihydrofolate reductase and induced potent cytotoxicity in the LNCaP cells, but not in the PC3 cells. Similar to the action of free GLA, stable amide-linked dendrimer-GLA was capable of inhibiting the enzyme N-acetylated α-linked acidic dipeptidase (NAALADase) activity of PSMA. The G5-GLA(m)-MTX(n) may serve as a serum-stable nanoparticle conjugate to specifically and effectively target and treat PSMA-overexpressing prostate tumors.
Collapse
Affiliation(s)
- Baohua Huang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences and Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | | | |
Collapse
|
30
|
Abstract
Recent advances in nanotechnology and biotechnology have contributed to the development of engineered nanoscale materials as innovative prototypes to be used for biomedical applications and optimized therapy. Due to their unique features, including a large surface area, structural properties, and a long circulation time in blood compared with small molecules, a plethora of nanomaterials has been developed, with the potential to revolutionize the diagnosis and treatment of several diseases, in particular by improving the sensitivity and recognition ability of imaging contrast agents and by selectively directing bioactive agents to biological targets. Focusing on cancer, promising nanoprototypes have been designed to overcome the lack of specificity of conventional chemotherapeutic agents, as well as for early detection of precancerous and malignant lesions. However, several obstacles, including difficulty in achieving the optimal combination of physicochemical parameters for tumor targeting, evading particle clearance mechanisms, and controlling drug release, prevent the translation of nanomedicines into therapy. In spite of this, recent efforts have been focused on developing functionalized nanoparticles for delivery of therapeutic agents to specific molecular targets overexpressed on different cancer cells. In particular, the combination of targeted and controlled-release polymer nanotechnologies has resulted in a new programmable nanotherapeutic formulation of docetaxel, namely BIND-014, which recently entered Phase II clinical testing for patients with solid tumors. BIND-014 has been developed to overcome the limitations facing delivery of nanoparticles to many neoplasms, and represents a validated example of targeted nanosystems with the optimal biophysicochemical properties needed for successful tumor eradication.
Collapse
Affiliation(s)
- Vanna Sanna
- Department of Chemistry and Pharmacy, Laboratory of Nanomedicine, University of Sassari, Sassari, Italy
| | - Nicolino Pala
- Department of Chemistry and Pharmacy, Laboratory of Nanomedicine, University of Sassari, Sassari, Italy
| | - Mario Sechi
- Department of Chemistry and Pharmacy, Laboratory of Nanomedicine, University of Sassari, Sassari, Italy
| |
Collapse
|
31
|
Valencia PM, Pridgen EM, Rhee M, Langer R, Farokhzad OC, Karnik R. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. ACS NANO 2013; 7:10671-80. [PMID: 24215426 PMCID: PMC3963607 DOI: 10.1021/nn403370e] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Taking a nanoparticle (NP) from discovery to clinical translation has been slow compared to small molecules, in part by the lack of systems that enable their precise engineering and rapid optimization. In this work we have developed a microfluidic platform for the rapid, combinatorial synthesis and optimization of NPs. The system takes in a number of NP precursors from which a library of NPs with varying size, surface charge, target ligand density, and drug load is produced in a reproducible manner. We rapidly synthesized 45 different formulations of poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) NPs of different size and surface composition and screened and ranked the NPs for their ability to evade macrophage uptake in vitro. Comparison of the results to pharmacokinetic studies in vivo in mice revealed a correlation between in vitro screen and in vivo behavior. Next, we selected NP synthesis parameters that resulted in longer blood half-life and used the microfluidic platform to synthesize targeted NPs with varying targeting ligand density (using a model targeting ligand against cancer cells). We screened NPs in vitro against prostate cancer cells as well as macrophages, identifying one formulation that exhibited high uptake by cancer cells yet similar macrophage uptake compared to nontargeted NPs. In vivo, the selected targeted NPs showed a 3.5-fold increase in tumor accumulation in mice compared to nontargeted NPs. The developed microfluidic platform in this work represents a tool that could potentially accelerate the discovery and clinical translation of NPs.
Collapse
Affiliation(s)
- Pedro M. Valencia
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Eric M. Pridgen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Minsoung Rhee
- Laboratory of Nanomedicine and Biomaterials and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- MIT-Harvard Center for Cancer Nanotechnology Excellence, Massachusetts Institute of Technology, Cambridge, MA 02139
- To whom correspondence should be addressed. Omid C. Farokhzad Laboratory of Nanomedicine and Biomaterials and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115. ; Rohit Karnik Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139. ; Robert Langer Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- MIT-Harvard Center for Cancer Nanotechnology Excellence, Massachusetts Institute of Technology, Cambridge, MA 02139
- To whom correspondence should be addressed. Omid C. Farokhzad Laboratory of Nanomedicine and Biomaterials and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115. ; Rohit Karnik Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139. ; Robert Langer Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Rohit Karnik
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- To whom correspondence should be addressed. Omid C. Farokhzad Laboratory of Nanomedicine and Biomaterials and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115. ; Rohit Karnik Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139. ; Robert Langer Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
32
|
Synthesis of 1-aroyl(1-arylsulfonyl)-4-bis(trifluoromethyl)alkyl semicarbazides as potential physiologically active compounds. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2013.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Mease RC, Foss CA, Pomper MG. PET imaging in prostate cancer: focus on prostate-specific membrane antigen. Curr Top Med Chem 2013. [PMID: 23590171 DOI: 10.2174/092986712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death in American men. Positron emission tomography/computed tomography (PET/CT) with emerging radiopharmaceuticals promises accurate staging of primary disease, restaging of recurrent disease, detection of metastatic lesions and, ultimately, for predicting the aggressiveness of disease. Prostate-specific membrane antigen (PSMA) is a well-characterized imaging biomarker of PCa. Because PSMA levels are directly related to androgen independence, metastasis and progression, PSMA could prove an important target for the development of new radiopharmaceuticals for PET. Preclinical data for new PSMA-based radiotracers are discussed and include new (89)Zr- and (64)Cu-labeled anti-PSMA antibodies and antibody fragments, (64)Cu-labeled aptamers, and (11)C-, (18)F-, (68)Ga-, (64)Cu-, and (86)Y-labeled low molecular weight inhibitors of PSMA. Several of these agents, namely (68)Ga- HBED-CC conjugate 15, (18)F-DCFBC 8, and BAY1075553 are particularly promising, each having detected sites of PCa in initial clinical studies. These early clinical results suggest that PET/CT using PSMA-targeted agents, especially with compounds of low molecular weight, will make valuable contributions to the management of PCa.
Collapse
Affiliation(s)
- Ronnie C Mease
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
34
|
Abstract
There is a need for developing improved therapeutic options for the management of prostate cancer, able to inhibit proliferation of precancerous and malignant lesions and/or to improve the effectiveness of conventional chemopreventive and chemotherapeutic agents. In this perspective, application of nanotechnology based strategies for the delivery of natural compounds for effective management of the disease is being actively researched. Here, after highlighting the most promising natural compounds for chemoprevention and chemotherapy of prostate cancer, the state of the art nanotherapeutics and the recent proof-of-concept of "nanochemoprevention", as well as the clinical development of promising targeted nanoprototypes for use in the prostate cancer treatment are being discussed.
Collapse
|
35
|
Kasten BB, Liu T, Nedrow-Byers JR, Benny PD, Berkman CE. Targeting prostate cancer cells with PSMA inhibitor-guided gold nanoparticles. Bioorg Med Chem Lett 2012; 23:565-8. [PMID: 23232055 DOI: 10.1016/j.bmcl.2012.11.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/30/2012] [Accepted: 11/07/2012] [Indexed: 12/22/2022]
Abstract
Prostate-specific membrane antigen (PSMA) is a notable biomarker for diagnostic and therapeutic applications in prostate cancer. Gold nanoparticles (AuNPs) provide an attractive nanomaterial platform for combining a variety of targeting, imaging, and cytotoxic agents into a unified device for biomedical research. In this study, we present the generation and evaluation of the first AuNP system functionalized with a small molecule phosphoramidate peptidomimetic inhibitor for the targeted delivery to PSMA-expressing prostate cancer cells. The general approach involved the conjugation of streptavidin-coated AuNPs with a biotin-linked PSMA inhibitor (CTT54) to generate PSMA-targeted AuNPs. In vitro evaluations of these targeted AuNPs were conducted to determine PSMA-mediated and time-dependent binding to PSMA-positive LNCaP cells. The PSMA-targeted AuNPs exhibited significantly higher and selective binding to LNCaP cells compared to control non-targeted AuNPs, thus demonstrating the feasibility of this approach.
Collapse
Affiliation(s)
- Benjamin B Kasten
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| | | | | | | | | |
Collapse
|
36
|
Valencia PM, Pridgen EM, Perea B, Gadde S, Sweeney C, Kantoff PW, Bander NH, Lippard SJ, Langer R, Karnik R, Farokhzad OC. Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles. Nanomedicine (Lond) 2012; 8:687-98. [PMID: 23075285 DOI: 10.2217/nnm.12.134] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM Two unexplored aspects for irinotecan and cisplatin (I&C) combination chemotherapy are: actively targeting both drugs to a specific diseased cell type, and delivering both drugs on the same vehicle to ensure their synchronized entry into the cell at a well-defined ratio. In this work, the authors report the use of targeted polymeric nanoparticles (NPs) to coencapsulate and deliver I&C to cancer cells expressing the prostate-specific membrane antigen. MATERIALS & METHODS Targeted NPs were prepared in a single step by mixing four different precursors inside microfluidic devices. RESULTS I&C were encapsulated in 55-nm NPs and showed an eightfold increase in internalization by prostate-specific membrane antigen-expressing LNCaP cells compared with nontargeted NPs. NPs coencapsulating both drugs exhibited strong synergism in LNCaP cells with a combination index of 0.2. CONCLUSION The strategy of coencapsulating both I&C in a single NP targeted to a specific cell type could potentially be used to treat different types of cancer.
Collapse
Affiliation(s)
- Pedro M Valencia
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang X, Tian H, Lee Z, Heston WDW. Structure-activity relationships of 2',5'-oligoadenylate analogue modifications of prostate-specific membrane antigen (PSMA) antagonists. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:432-44. [PMID: 22497258 DOI: 10.1080/15257770.2012.671988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Prostate-specific membrane antigen (PSMA) is an ideal biomarker for prostate cancer. A previously reported 2-5A conjugate RBI1033 (3) showed binding affinity more than 10 times higher than the parent urea-based compound (S)-2-(3-((S)-5-amino-1-carboxypentyl)ureido) pentanedioic acid (1). The purpose of this work is to further optimize the structure of 3 to identify highly selective ligands of PSMA. It was found that conjugates having 2-5A in their structure showed extraordinary improved binding affinity to PSMA compared with compound 1. Removal of 2-5A significantly reduced its biological activity. The results will provide a path to agents for targeted imaging and treatment of prostate cancer.
Collapse
Affiliation(s)
- Xinning Wang
- Department of Cancer Biology , Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
38
|
High expression of prostate-specific membrane antigen in the tumor-associated neo-vasculature is associated with worse prognosis in squamous cell carcinoma of the oral cavity. Mod Pathol 2012; 25:1079-85. [PMID: 22460809 DOI: 10.1038/modpathol.2012.66] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is a transmembrane protein expressed in prostate cancer as well as in the neo-vasculature of nonprostatic solid tumors. Here, we determined the expression pattern of PSMA in the vasculature of oral squamous cell carcinoma. Using a previously validated antibody, PSMA staining distribution and cyclooxygenase 2 (COX2) expression status was evaluated in a cohort of patients with squamous cell carcinoma of the oral cavity (n=96) using immunohistochemistry and was correlated with clinicopathological features as well as outcome. Twenty-four (25%) cases showed no detectable PSMA staining, 48 (50%) demonstrated positive immunoreactivity for PSMA in less than 50% of microvessels and 24 (25%) cases showed strong endothelial PSMA expression in more than 50% of tumor-associated microvessels. High endothelial PSMA expression was associated with greatly reduced survival (18.2 vs 77.3 months; P=0.0001) and maintained prognostic significance after adjusting for grade and stage in multivariate analysis (hazard ratio=2.19, P=0.007). Furthermore, we observed a strong association between endothelial PSMA and cancer cell-specific COX2 expression. In conclusion, we provide the first evidence for the prognostic significance of endothelial PSMA expression in oral squamous cell carcinoma and, suggest a potential interaction between arachidonic acid metabolites and endothelial PSMA expression in the tumor neo-vasculature.
Collapse
|
39
|
Foss CA, Mease RC, Cho SY, Kim HJ, Pomper MG. GCPII imaging and cancer. Curr Med Chem 2012; 19:1346-59. [PMID: 22304713 DOI: 10.2174/092986712799462612] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/26/2011] [Accepted: 12/27/2011] [Indexed: 12/11/2022]
Abstract
Glutamate carboxypeptidase II (GCPII) in the central nervous system is referred to as the prostate-specific membrane antigen (PSMA) in the periphery. PSMA serves as a target for imaging and treatment of prostate cancer and because of its expression in solid tumor neovasculature has the potential to be used in this regard for other malignancies as well. An overview of GCPII/PSMA in cancer, as well as a discussion of imaging and therapy of prostate cancer using a wide variety of PSMA-targeting agents is provided.
Collapse
Affiliation(s)
- C A Foss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
40
|
Banerjee SR, Pullambhatla M, Shallal H, Lisok A, Mease RC, Pomper MG. A modular strategy to prepare multivalent inhibitors of prostate-specific membrane antigen (PSMA). Oncotarget 2012; 2:1244-53. [PMID: 22207391 PMCID: PMC3282081 DOI: 10.18632/oncotarget.415] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have developed a modular scaffold for preparing high-affinity, homo-multivalent inhibitors of the prostate-specific membrane antigen (PSMA) for imaging and therapy of prostate cancer (PCa). Our system contains a lysine-based (µ-, e-) dialkyne residue for incorporating a PSMA binding Lys-Glu urea motif exploiting click chemistry and a second lysine residue for subsequent modification with an imaging or therapeutic moiety. The utility of the multivalent scaffold was examined by synthesizing bivalent compounds 2 and 3 and comparing them with the monovalent analog 1. Determination of inhibition constants (Ki) revealed that bivalent 2 (0.2 nM) and 3 (0.08 nM) are significantly more potent (~ 5 fold and ~ 11 fold, respectively) inhibitors of PSMA than monovalent 1 (0.9 nM). A single photon emission computed tomography (SPECT)-CT imaging study of [111In]3 demonstrated high and specific uptake in PSMA+ PC-3 PIP tumor until at least 48 h post-injection, with rapid clearance from non-target tissues, including kidney. A biodistribution study revealed that [111In]3 demonstrated 34.0 ± 7.5 percent injected dose per gram of tissue in PSMA+ tumor at 24 h post-injection and was capable of generating target-to-non-target ratios of ~ 379 in PSMA+ PC-3 PIP tumors vs. isogenic PSMA-negative PC3-flu tumors in vivo. The click chemistry approach affords a convenient strategy toward multivalent PSMA inhibitors of enhanced affinity and superior pharmacokinetics for imaging.
Collapse
Affiliation(s)
- Sangeeta Ray Banerjee
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
41
|
Shemetov AA, Nabiev I, Sukhanova A. Molecular interaction of proteins and peptides with nanoparticles. ACS NANO 2012; 6:4585-602. [PMID: 22621430 DOI: 10.1021/nn300415x] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The interaction of proteins in living cells is one of the key processes in the maintenance of their homeostasis. Introduction of additional agents into the chain of these interactions may influence homeostatic processes. Recent advances in nanotechnologies have led to a wide use of nanoparticles (NPs) in industrial and biomedical applications. NPs are small enough to enter almost all compartments of the body, including cells and organelles, and to complicate the pattern of protein interactions. In some cases, interaction of nanoscale objects with proteins leads to hazardous consequences, such as abnormal conformational changes leading to exposure of cryptic peptide epitopes or the appearance of abnormal functions caused by structural modifications. In addition, the high local protein concentration resulting from protein adsorption on NPs may provoke avidity effects arising from close spatial repetition of the same protein. Finally, the interaction of NPs with proteins is known to induce cooperative effects, such as promotion or inhibition of protein fibrillation or self-assembling of NPs on macromolecules serving as a template. It is obvious that better understanding of the molecular mechanisms of nano-bio interactions is crucial for further advances in all nanotechnological applications. This review summarizes recent progress in understanding the molecular mechanisms of the interactions between proteins or peptides and NPs in order to predict the structural, functional, and/or nanotoxic consequences of these interactions.
Collapse
Affiliation(s)
- Anton A Shemetov
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, 31 Kashirskoe shosse, 115409 Moscow, Russian Federation
| | | | | |
Collapse
|
42
|
Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 2012; 41:2971-3010. [PMID: 22388185 PMCID: PMC3684255 DOI: 10.1039/c2cs15344k] [Citation(s) in RCA: 1146] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development of targeted polymeric NPs and to highlight the challenges associated with the engineering of this novel class of therapeutics, including considerations of NP design optimization, development and biophysicochemical properties. Additionally, we highlight some recent examples from the literature, which demonstrate current trends and novel concepts in both the design and utility of targeted polymeric NPs (444 references).
Collapse
Affiliation(s)
- Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zeyu Xiao
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro M. Valencia
- The David H. Koch Institute for Integrative Cancer Research and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aleksandar F. Radovic-Moreno
- The David H. Koch Institute for Integrative Cancer Research and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
43
|
Hrkach J, Von Hoff D, Ali MM, Andrianova E, Auer J, Campbell T, De Witt D, Figa M, Figueiredo M, Horhota A, Low S, McDonnell K, Peeke E, Retnarajan B, Sabnis A, Schnipper E, Song JJ, Song YH, Summa J, Tompsett D, Troiano G, Van Geen Hoven T, Wright J, LoRusso P, Kantoff PW, Bander NH, Sweeney C, Farokhzad OC, Langer R, Zale S. Preclinical Development and Clinical Translation of a PSMA-Targeted Docetaxel Nanoparticle with a Differentiated Pharmacological Profile. Sci Transl Med 2012; 4:128ra39. [DOI: 10.1126/scitranslmed.3003651] [Citation(s) in RCA: 872] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Luzina EL, Popov AV. Synthesis, evaluation of anticancer activity and COMPARE analysis of N-bis(trifluoromethyl)alkyl-N'-substituted ureas with pharmacophoric moieties. Eur J Med Chem 2012; 53:364-73. [PMID: 22538016 DOI: 10.1016/j.ejmech.2012.03.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/07/2012] [Accepted: 03/12/2012] [Indexed: 12/15/2022]
Abstract
A series of new synthesized N-bis(trifluoromethyl)alkyl-N'-substituted ureas have been tested in the National Cancer Institute (NCI, Bethesda, USA) by Program NCI-60 DTP Human Tumor Cell Line Screen at a single high dose (10(-5) M). COMPARE analysis has been carried out for all tested compounds. The tested compounds showed antitumor activity against individual cell lines. The most sensitive cell lines relative to the tested compounds are: 5 g Leukemia RPMI-8226 (GI% 52.7), Non-Small Cell Lung cancer HOP-92 (GI % 88.53), NCI-H522 (GI % 64.41), Melanoma UACC-62 (GI% 53.08), SK-MEL-5 (GI % 74.63), Breast cancer MDA-MB-468 (GI% 51.29), T-47D (GI % 65.1), 5b Leukemia K-562 (GI % 55.55), 7 m Leukemia HL-60(TB) (GI % 51.76).
Collapse
Affiliation(s)
- Elena L Luzina
- Institute of Physiologically Active Compounds, Severnyi pr 1, Chernogolovka, Moscow Region 142432, Russia.
| | | |
Collapse
|
45
|
Chen Y, Pullambhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, Sgouros G, Mease RC, Pomper MG. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res 2011; 17:7645-53. [PMID: 22042970 DOI: 10.1158/1078-0432.ccr-11-1357] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE We have synthesized and evaluated in vivo 2-(3-{1-carboxy-5-[(6-[(18)F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [(18)F]DCFPyL, as a potential imaging agent for the prostate-specific membrane antigen (PSMA). PSMA is upregulated in prostate cancer epithelia and in the neovasculature of most solid tumors. EXPERIMENTAL DESIGN [(18)F]DCFPyL was synthesized in two steps from the p-methoxybenzyl (PMB) protected lys-C(O)-glu urea precursor using 6-[(18)F]fluoronicotinic acid tetrafluorophenyl ester ([(18)F]F-Py-TFP) for introduction of (18)F. Radiochemical synthesis was followed by biodistribution and imaging with PET in immunocompromised mice using isogenic PSMA PC3 PIP and PSMA- PC3 flu xenograft models. Human radiation dosimetry estimates were calculated using OLINDA/EXM 1.0. RESULTS DCFPyL displays a K(i) value of 1.1 ± 0.1 nmol/L for PSMA. [(18)F]DCFPyL was produced in radiochemical yields of 36%-53% (decay corrected) and specific radioactivities of 340-480 Ci/mmol (12.6-17.8 GBq/μmol, n = 3). In an immunocompromised mouse model [(18)F]DCFPyL clearly delineated PSMA+ PC3 PIP prostate tumor xenografts on imaging with PET. At 2 hours postinjection, 39.4 ± 5.4 percent injected dose per gram of tissue (%ID/g) was evident within the PSMA+ PC3 PIP tumor, with a ratio of 358:1 of uptake within PSMA+ PC3 PIP to PSMA- PC3 flu tumor placed in the opposite flank. At or after 1 hour postinjection, minimal nontarget tissue uptake of [(18)F]DCFPyL was observed. The bladder wall is the dose-limiting organ. CONCLUSIONS These data suggest [(18)F]DCFPyL as a viable, new positron-emitting imaging agent for PSMA-expressing tissues.
Collapse
Affiliation(s)
- Ying Chen
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Banerjee SR, Pullambhatla M, Byun Y, Nimmagadda S, Foss CA, Green G, Fox JJ, Lupold SE, Mease RC, Pomper MG. Sequential SPECT and optical imaging of experimental models of prostate cancer with a dual modality inhibitor of the prostate-specific membrane antigen. Angew Chem Int Ed Engl 2011; 50:9167-70. [PMID: 21861274 DOI: 10.1002/anie.201102872] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/24/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Sangeeta Ray Banerjee
- The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, 1550 Orleans Street, 492 CRB II, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Banerjee SR, Pullambhatla M, Byun Y, Nimmagadda S, Foss CA, Green G, Fox JJ, Lupold SE, Mease RC, Pomper MG. Sequential SPECT and Optical Imaging of Experimental Models of Prostate Cancer with a Dual Modality Inhibitor of the Prostate-Specific Membrane Antigen. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Sanna V, Pintus G, Roggio AM, Punzoni S, Posadino AM, Arca A, Marceddu S, Bandiera P, Uzzau S, Sechi M. Targeted biocompatible nanoparticles for the delivery of (-)-epigallocatechin 3-gallate to prostate cancer cells. J Med Chem 2011; 54:1321-32. [PMID: 21306166 DOI: 10.1021/jm1013715] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular targeted cancer therapy mediated by nanoparticles (NPs) is a promising strategy to overcome the lack of specificity of conventional chemotherapeutic agents. In this context, the prostate-specific membrane antigen (PSMA) has demonstrated a powerful potential for the management of prostate cancer (PCa). Cancer chemoprevention by phytochemicals is emerging as a suitable approach for the treatment of early carcinogenic processes. Since (-)-epigallocatechin 3-gallate (EGCG) has shown potent chemopreventive efficacy for PCa, we designed and developed novel targeted NPs in order to selectively deliver EGCG to cancer cells. Herein, to explore the recent concept of "nanochemoprevention", we present a study on EGCG-loaded NPs consisting of biocompatible polymers, functionalized with small molecules targeting PSMA, that exhibited a selective in vitro efficacy against PSMA-expressing PCa cells. This approach could be beneficial for high risk patients and would fulfill a significant therapeutic need, thus opening new perspectives for novel and effective treatment for PCa.
Collapse
Affiliation(s)
- Vanna Sanna
- Porto Conte Ricerche, Località Tramariglio, 07041 Alghero, Sassari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Properties and effects of a novel liquid crystal nanoparticle formulation of docetaxel in a prostate cancer mouse model. Eur J Pharm Sci 2010; 41:369-75. [DOI: 10.1016/j.ejps.2010.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/01/2010] [Accepted: 07/04/2010] [Indexed: 11/18/2022]
|
50
|
Yu F, Zhang L, Huang Y, Sun K, David AE, Yang VC. The magnetophoretic mobility and superparamagnetism of core-shell iron oxide nanoparticles with dual targeting and imaging functionality. Biomaterials 2010; 31:5842-8. [PMID: 20434209 DOI: 10.1016/j.biomaterials.2010.03.072] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/29/2010] [Indexed: 11/26/2022]
Abstract
With the goal to achieve highly efficacious MRI-monitored magnetic targeting, a novel drug carrier with dual nature of superior magnetophoretic mobility and superparamagnetism was synthesized. This carrier was specially designed in a core-shell structure. The core was achieved by utilizing a strategy of self-assembly of oppositely charged ultrafine superparamagnetic iron oxide nanoparticles previously prepared. The final particles were formed by coating such cores with carboxymethyldextran (CMD) polymer. By exclusion of non-magnetic materials from the interior part of the particles, this structure maximized the amount of magnetic material and thus yielded a superior magnetophoretic mobility. Such a strategy avoids the challenge of superparamagnetism loss, which would be caused by cores exceeding a critical domain size. Coating the self-assembled core enables the magnetic carrier to be stable upon usage and storage and to be readily linked with drug molecules for therapeutic applications. In vitro characterization showed that these nanoparticles displayed a 3- to 4-fold enhancement in magnetophoretic mobility, and a markedly improved stability when stored in 50% serum as a comparison of conventional iron oxide-based magnetic nanoparticles. Preliminary in vivo studies revealed that the nanoparticles also function well as a contrast enhancer for MR imaging of brain glioma. This technology could lead to the development of a new paradigm of magnetic carriers that meet with the needs of various clinical applications.
Collapse
Affiliation(s)
- Faquan Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | | | | | | | | | | |
Collapse
|