1
|
Martínez-Ramírez JM, Carmona C, Ramírez-Expósito MJ, Martínez-Martos JM. Extracting Knowledge from Machine Learning Models to Diagnose Breast Cancer. Life (Basel) 2025; 15:211. [PMID: 40003620 DOI: 10.3390/life15020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
This study explored the application of explainable machine learning models to enhance breast cancer diagnosis using serum biomarkers, contrary to many studies that focus on medical images and demographic data. The primary objective was to develop models that are not only accurate but also provide insights into the factors driving predictions, addressing the need for trustworthy AI in healthcare. Several classification models were evaluated, including OneR, JRIP, the FURIA, J48, the ADTree, and the Random Forest, all of which are known for their explainability. The dataset included a variety of biomarkers, such as electrolytes, metal ions, marker proteins, enzymes, lipid profiles, peptide hormones, steroid hormones, and hormone receptors. The Random Forest model achieved the highest accuracy at 99.401%, followed closely by JRIP, the FURIA, and the ADTree at 98.802%. OneR and J48 achieved 98.204% accuracy. Notably, the models identified oxytocin as a key predictive biomarker, with most models featuring it in their rules. Other significant parameters included GnRH, β-endorphin, vasopressin, IRAP, and APB, as well as factors like iron, cholinesterase, the total protein, progesterone, 5-nucleotidase, and the BMI, which are considered clinically relevant to breast cancer pathogenesis. This study discusses the roles of the identified parameters in cancer development, thus underscoring the potential of explainable machine learning models for enhancing early breast cancer diagnosis by focusing on explainability and the use of serum biomarkers.The combination of both can lead to improved early detection and personalized treatments, emphasizing the potential of these methods in clinical settings. The identified markers also provide additional research and therapeutic targets for breast cancer pathogenesis and a deep understanding of their interactions, advancing personalized approaches to breast cancer management.
Collapse
Affiliation(s)
| | - Cristobal Carmona
- Department of Computer Science, University of Jaén, E-23071 Jaén, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence, DASCI, University of Jaén, E-23071 Jaén, Spain
- Leicester School of Pharmacy, DeMontfort University, Leicester LE1 7RH, UK
| | - María Jesús Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group CVI-1039, Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain
| | - José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CVI-1039, Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain
| |
Collapse
|
2
|
Kuang B, Geng N, Yi M, Zeng Q, Fan M, Xian M, Deng L, Chen C, Pan Y, Kuang L, Luo F, Xie Y, Liu C, Deng Z, Nie M, Du Y, Guo F. Panaxatriol exerts anti-senescence effects and alleviates osteoarthritis and cartilage repair fibrosis by targeting UFL1. J Adv Res 2024:S2090-1232(24)00470-3. [PMID: 39442872 DOI: 10.1016/j.jare.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2024] [Revised: 09/01/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA), the most common degenerative joint disease, can eventually lead to disability. However, no safe or effective intervention is currently available. Therefore, there is an urgent need to develop effective drugs that reduce cartilage damage and treat OA. OBJECTIVES This study aimed to ascertain the potential of panaxatriol, a natural small molecule, as a therapeutic drug for alleviating the progression of OA. METHODS An in vitro culture of human cartilage explants and C28/I2 human chondrocytes and an in vivo surgically induced OA mouse model were used to evaluate the chondroprotective effect of panaxatriol. The Drug Affinity Responsive Target Stability assay, CRISPR-Cas9 assay, Whole-transcriptome RNA sequencing analysis and agonist or antagonist assays were used to identify the target and potential signaling pathways of panaxatriol. Poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) was used to construct the sustained-release system of panaxatriol. RESULTS Panaxatriol protected against OA by regulating chondrocyte metabolism. Ubiquitin-fold modifier 1-specific E3 ligase 1 (UFL1) was identified as a novel target of panaxatriol. Whole transcriptome RNA sequencing showed that UFL1 was closely related to cell senescence. Panaxatriol inhibited chondrocyte senescence through UFL1/forkhead box O1 (FOXO1)/P21 and UFL1/NF-κB/SASPs signaling pathways. It also could inhibit fibrocartilage formation during cartilage repair via the UFL1/FOXO1/Collagen 1 signaling pathway. Finally, we constructed a sustained-release system for panaxatriol based on PLGA-PEG, which reduced the number of intra-articular injections, thereby alleviating joint swelling and injury. CONCLUSIONS Panaxatriol exerts anti-senescence effects and has the potential to delay OA progression and reduce cartilage repair fibrosis by targeting UFL1.
Collapse
Affiliation(s)
- Biao Kuang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Nana Geng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Miao Yi
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Qiqi Zeng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mengtian Fan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Menglin Xian
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lin Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Cheng Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Zhongliang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mao Nie
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| | - Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| | - Fengjin Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Lingo JJ, Voigt E, Quelle DE. Linking FOXM1 and PD-L1 to CDK4/6-MEK targeted therapy resistance in malignant peripheral nerve sheath tumors. Oncotarget 2024; 15:638-643. [PMID: 39347707 PMCID: PMC11441412 DOI: 10.18632/oncotarget.28650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, Ras-driven sarcomas characterized by loss of the NF1 tumor suppressor gene and hyperactivation of MEK and CDK4/6 kinases. MPNSTs lack effective therapies. We recently demonstrated remarkable efficacy of dual CDK4/6-MEK inhibition in mice with de novo MPNSTs, which was heightened by combined targeting of the immune checkpoint protein, PD-L1. The triple combination therapy targeting CDK4/6, MEK, and PD-L1 led to extended MPNST regression and improved survival, although most tumors eventually acquired drug resistance. Here, we consider the immune activation phenotype caused by CDK4/6-MEK inhibition in MPNSTs that uniquely involved intratumoral plasma cell accumulation. We discuss how PD-L1 and FOXM1, a tumor-promoting transcription factor, are functionally linked and may be key mediators of resistance to CDK4/6-MEK targeted therapies. Finally, the role of FOXM1 in suppressing anti-tumor immunity and potentially thwarting immune-based therapies is considered. We suggest that future therapeutic strategies targeting the oncogenic network of CDK4/6, MEK, PD-L1, and FOXM1 represent exciting future treatment options for MPNST patients.
Collapse
Affiliation(s)
- Joshua J. Lingo
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Ellen Voigt
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
| | - Dawn E. Quelle
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
5
|
Diep CH, Spartz A, Truong TH, Dwyer AR, El-Ashry D, Lange CA. Progesterone Receptor Signaling Promotes Cancer Associated Fibroblast Mediated Tumorigenicity in ER+ Breast Cancer. Endocrinology 2024; 165:bqae092. [PMID: 39041201 PMCID: PMC11492492 DOI: 10.1210/endocr/bqae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/19/2024] [Revised: 06/27/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Breast cancer progression involves intricate interactions between cancer cells and the tumor microenvironment (TME). This study elucidates the critical role of progesterone receptor (PR) signaling in mediating the protumorigenic effects of cancer-associated fibroblasts (CAFs) on estrogen receptor-positive (ER+) luminal breast cancer cells. We demonstrate that CAFs produce physiologically relevant levels of estrogen and progesterone, which significantly contribute to breast cancer tumorigenicity. Specifically, CAF conditioned media (CM) promoted PR-dependent anchorage-independent growth, tumorsphere formation/stem cell expansion, and CD44 upregulation. CAF cells formed co-clusters more frequently with PR+ breast cancer cells relative to PR-null models. While both PR isoforms mediated these actions, PR-A was a dominant driver of tumorsphere formation/stemness, while PR-B induced robust CD44 expression and CAF/tumor cell co-cluster formation. CD44 knockdown impaired CAF/tumor cell co-clustering. Fibroblast growth factor 2 (FGF2), also secreted by CAFs, phosphorylated PR (Ser294) in a MAPK-dependent manner and activated PR to enhance CD44 expression and breast cancer tumorigenicity. The FGF receptor (FGFR) inhibitor PD173074 diminished CAF- and FGF2-dependent PR activation, tumorsphere formation, and co-clustering. In summary, this study reveals a novel mechanism through which stromal CAFs orchestrate elevated PR signaling in ER+ luminal breast cancer via secretion of both progesterone and FGF2, a potent activator of ERK1/2. Understanding tumor cell/TME interactions provides insights into potential therapeutic strategies aimed at disrupting PR- and/or FGF2/FGFR-dependent signaling pathways to prevent early metastasis in patients with ER+ breast cancer.
Collapse
Affiliation(s)
- Caroline H Diep
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angela Spartz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amy R Dwyer
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dorraya El-Ashry
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Hematology, Oncology & Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Sajeev A, BharathwajChetty B, Manickasamy MK, Alqahtani MS, Abbas M, Shakibaei M, Sethi G, Ma Z, Kunnumakkara AB. Nuclear receptors in ovarian cancer: changing paradigms in cancer therapeutics. Front Oncol 2024; 14:1383939. [PMID: 39077471 PMCID: PMC11284039 DOI: 10.3389/fonc.2024.1383939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 07/31/2024] Open
Abstract
Ovarian cancer (OVC) is one of the most common causes of cancer-related deaths in women worldwide. Despite advancements in detection and therapy, the prognosis of OVC remains poor due to late diagnosis and the lack of effective therapeutic options at advanced stages. Therefore, a better understanding of the biology underlying OVC is essential for the development of effective strategies for early detection and targeted therapies. Nuclear receptors (NRs) are a superfamily of 48 transcription factors that, upon binding to their specific ligand, play a vital role in regulating various cellular processes such as growth, development, metabolism, and homeostasis. Accumulating evidence from several studies has shown that their aberrant expression is associated with multiple human diseases. Numerous NRs have shown significant effects in the development of various cancers, including OVC. This review summarizes the recent findings on the role of NRs in OVC, as well as their potential as prognostic and therapeutic markers. Further, the basic structure and signaling mechanism of NRs have also been discussed briefly. Moreover, this review highlights their cellular and molecular mechanisms in chemoresistance and chemosensitization. Further, the clinical trials targeting NRs for the treatment of OVC have also been discussed.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University of Singapore (NUS) Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| |
Collapse
|
7
|
Bramwell LR, Frankum R, Harries LW. Repurposing Drugs for Senotherapeutic Effect: Potential Senomorphic Effects of Female Synthetic Hormones. Cells 2024; 13:517. [PMID: 38534362 PMCID: PMC10969307 DOI: 10.3390/cells13060517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Repurposing previously approved drugs may fast track the route to the clinic for potential senotherapeutics and improves the inefficiency of the clinical drug development pipeline. We performed a repurposing screen of 240 clinically approved molecules in human primary dermal fibroblasts for their effects on CDKN2A expression. Molecules demonstrating effects on CDKN2A expression underwent secondary screening for senescence-associated beta galactosidase (SAB) activity, based on effect size, direction, and/or molecule identity. Selected molecules then underwent a more detailed assessment of senescence phenotypes including proliferation, apoptosis, DNA damage, senescence-associated secretory phenotype (SASP) expression, and regulators of alternative splicing. A selection of the molecules demonstrating effects on senescence were then used in a new bioinformatic structure-function screen to identify common structural motifs. In total, 90 molecules displayed altered CDKN2A expression at one or other dose, of which 15 also displayed effects on SAB positivity in primary human dermal fibroblasts. Of these, 3 were associated with increased SAB activity, and 11 with reduced activity. The female synthetic sex hormones-diethylstilboestrol, ethynyl estradiol and levonorgestrel-were all associated with a reduction in aspects of the senescence phenotype in male cells, with no effects visible in female cells. Finally, we identified that the 30 compounds that decreased CDKN2A activity the most had a common substructure linked to this function. Our results suggest that several drugs licensed for other indications may warrant exploration as future senotherapies, but that different donors and potentially different sexes may respond differently to senotherapeutic compounds. This underlines the importance of considering donor-related characteristics when designing drug screening platforms.
Collapse
Affiliation(s)
| | | | - Lorna W. Harries
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Exeter EX2 5DW, UK; (L.R.B.); (R.F.)
| |
Collapse
|
8
|
Kuroshli Z, Novin MG, Nazarian H, Abdollahifar MA, Zademodarres S, Pirani M, Jahvani FA, Fathabady FF, Mofarahe ZS. The Efficacy of Vitamin D Supplement in the Expression and Protein Levels of Endometrial Decidualization Factors in Women with Recurrent Implantation Failure. Reprod Sci 2024; 31:675-686. [PMID: 37816991 DOI: 10.1007/s43032-023-01349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 10/12/2023]
Abstract
Recurrent implantation failure (RIF) is a challenging situation for infertility specialists, and its treatment is introduced as a difficult case in the field of assisted reproductive technology (ART). Vitamin D (VD) is one of the supplements that have been suggested to improve the implantation process. In the present study, the effect of VD on the expression and protein levels of VD receptor (VDR), progesterone receptor (PR), prolactin (PRL), insulin-like growth factor binding protein-1 (IGFBP-1), and homeobox protein A10 (HOXA10) in the endometrial cells of unknown RIF women with and without VD deficiency were assessed by qRT-PCR and immunohistochemistry. Twelve women with unknown RIF and VD deficiency (≤ 20 ng/ml) and twelve women with unknown RIF without VD deficiency (≥ 30 ng/ml) from 2021 to 2022 were identified. Endometrial specimens were collected in the mid-luteal stage before treatment or pregnancy. In the group with VD deficiency, oral medication of VD 50,000 units was prescribed for 2 to 3 months and their serum levels of VD were re-measured, then an endometrial biopsy at the same stage of the menstrual cycle was performed. The expression and protein levels of VDR, PR, PRL, IGFBP1, and HOXA10 in RIF patients with VD deficiency were lower than the RIF patients without VD deficiency (P value < 0.05). Our findings suggest that VD can play a key role in the pregnancy process, especially during embryo implantation and decidualization of the endometrial cells.IRCT registration number: IRCT20220528055006N1, Registration date: 2022-10-15, Registration timing: retrospective.
Collapse
Affiliation(s)
- Zahra Kuroshli
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrzad Zademodarres
- Clinical Research Development Center, Mahdiyeh Education Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Pirani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Arab Jahvani
- Research and Clinical Centre for Infertility, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Mauro LJ, Spartz A, Austin JR, Lange CA. Reevaluating the Role of Progesterone in Ovarian Cancer: Is Progesterone Always Protective? Endocr Rev 2023; 44:1029-1046. [PMID: 37261958 PMCID: PMC11048595 DOI: 10.1210/endrev/bnad018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/16/2022] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023]
Abstract
Ovarian cancer (OC) represents a collection of rare but lethal gynecologic cancers where the difficulty of early detection due to an often-subtle range of abdominal symptoms contributes to high fatality rates. With the exception of BRCA1/2 mutation carriers, OC most often manifests as a post-menopausal disease, a time in which the ovaries regress and circulating reproductive hormones diminish. Progesterone is thought to be a "protective" hormone that counters the proliferative actions of estrogen, as can be observed in the uterus or breast. Like other steroid hormone receptor family members, the transcriptional activity of the nuclear progesterone receptor (nPR) may be ligand dependent or independent and is fully integrated with other ubiquitous cell signaling pathways often altered in cancers. Emerging evidence in OC models challenges the singular protective role of progesterone/nPR. Herein, we integrate the historical perspective of progesterone on OC development and progression with exciting new research findings and critical interpretations to help paint a broader picture of the role of progesterone and nPR signaling in OC. We hope to alleviate some of the controversy around the role of progesterone and give insight into the importance of nPR actions in disease progression. A new perspective on the role of progesterone and nPR signaling integration will raise awareness to the complexity of nPRs and nPR-driven gene regulation in OC, help to reveal novel biomarkers, and lend critical knowledge for the development of better therapeutic strategies.
Collapse
Affiliation(s)
- Laura J Mauro
- Department of Animal Science-Physiology, University of Minnesota, Saint Paul, MN 55108, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angela Spartz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia R Austin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Departments of Medicine (Division of Hematology, Oncology & Transplantation) and Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Mori H, Nishida H, Kusaba T, Kawamura K, Oyama Y, Daa T. Clinicopathological correlations of endometrioid and clear cell carcinomas in the uterus and ovary. Medicine (Baltimore) 2023; 102:e35301. [PMID: 37713813 PMCID: PMC10508447 DOI: 10.1097/md.0000000000035301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 09/17/2023] Open
Abstract
Endometrioid carcinoma (EC) and clear cell carcinoma (CC) are associated with endometrial tissue hyperplasia and endometriosis, and they occur in the endometrium and ovaries. However, detailed differences between these tumors based on immunostaining are unclear; therefore, in this study, we aimed to analyze the clinicopathological correlations between these tumors using immunostaining and to develop new treatments based on histological subtypes. Immunohistochemistry was used to investigate differentially expressed hypoxia-associated molecules (hypoxia-inducible factor-1 subunit alpha [HIF-1α], forkhead box O1, prostate-specific membrane antigen, signal transducer and activator of transcription 3 [STAT3], hepatocyte nuclear factor 1β [HNF-1β], aquaporin-3, and vimentin [VIM]) between these carcinomas because of the reported association between CC and ischemia. Immunostaining and clinicopathological data from 70 patients (21 uterine endometrioid carcinomas [UECs], 9 uterine cell carcinomas, 20 ovarian endometrioid carcinomas [OECs], and 20 ovarian cell carcinomas [OCCs]) were compared. HIF-1α and prostate-specific membrane antigen expression levels were higher in UEC and OCC than in uterine cell carcinomas and OEC. STAT3 was slightly overexpressed in UEC. Additionally, forkhead box O1 expression was either absent or significantly attenuated in all ECs. VIM and AQ3 were highly expressed in UEC, whereas HNF-1β expression was higher in OCC. UEC, OEC, and OCC were more common in the uterine fundus, left ovary, and right ovary, respectively. Ovarian endometriosis was strongly associated with EC. Our findings suggest that UEC and OCC share a carcinogenic pathway that involves HIF-1α induction under hypoxic conditions via STAT3 expression, resulting in angiogenesis. Furthermore, the anatomical position of carcinomas may contribute to their carcinogenesis. Finally, aquaporin-3 and VIM demonstrate strong potential as biomarkers for UEC, whereas HNF-1β expression is a crucial factor in CC development. These differences in tumor site and histological subtypes shown in this study will lead to the establishment of treatment based on histological and immunohistological classification.
Collapse
Affiliation(s)
- Hidemi Mori
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Haruto Nishida
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takahiro Kusaba
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhiro Kawamura
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yuzo Oyama
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
11
|
Voigt E, Quelle DE. FOXM1, MEK, and CDK4/6: New Targets for Malignant Peripheral Nerve Sheath Tumor Therapy. Int J Mol Sci 2023; 24:13596. [PMID: 37686402 PMCID: PMC10487994 DOI: 10.3390/ijms241713596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are deadly sarcomas, which desperately need effective therapies. Half of all MPNSTs arise in patients with neurofibromatosis type I (NF1), a common inherited disease. NF1 patients can develop benign lesions called plexiform neurofibromas (PNFs), often in adolescence, and over time, some PNFs, but not all, will transform into MPNSTs. A deeper understanding of the molecular and genetic alterations driving PNF-MPNST transformation will guide development of more targeted and effective treatments for these patients. This review focuses on an oncogenic transcription factor, FOXM1, which is a powerful oncogene in other cancers but little studied in MPNSTs. Elevated expression of FOXM1 was seen in patient MPNSTs and correlated with poor survival, but otherwise, its role in the disease is unknown. We discuss what is known about FOXM1 in MPNSTs relative to other cancers and how FOXM1 may be regulated by and/or regulate the most commonly altered players in MPNSTs, particularly in the MEK and CDK4/6 kinase pathways. We conclude by considering FOXM1, MEK, and CDK4/6 as new, clinically relevant targets for MPNST therapy.
Collapse
Affiliation(s)
- Ellen Voigt
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA;
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Dawn E. Quelle
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA;
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
12
|
Cartwright M, Louw-du Toit R, Jackson H, Janse van Vuuren M, Africander D. Progesterone receptor isoform ratios influence the transcriptional activity of progestins via the progesterone receptor. J Steroid Biochem Mol Biol 2023; 232:106348. [PMID: 37315868 DOI: 10.1016/j.jsbmb.2023.106348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Progestins (synthetic progestogens) are progesterone receptor (PR) ligands used globally by women in both hormonal contraception and menopausal hormone therapy. Although four generations of unique progestins have been developed, studies seldom distinguish between the activities of progestins via the two functionally distinct PR isoforms, PR-A and PR-B. Moreover, not much is known about the action of progestins in breast cancer tumors where PR-A is mostly overexpressed relative to PR-B. Understanding progestin action in breast cancer is crucial since the clinical use of some progestins has been associated with an increased risk of developing breast cancer. This study directly compared the agonist activities of selected progestins from all four generations for transactivation and transrepression via either PR-A or PR-B, and when PR-A and PR-B were co-expressed at ratios comparable to those detected in breast cancer tumors. Comparative dose-response analysis showed that earlier generation progestins mostly displayed similar efficacies for transactivation on a minimal progesterone response element via the PR isoforms, while most of the 4th generation progestins, similar to the natural progestogen, progesterone (P4), were more efficacious via PR-B. Most of the progestogens were however more potent via PR-A. We are the first to show that the efficacies of the selected progestogens via the individual PR isoforms were generally decreased when PR-A and PR-B were co-expressed, irrespective of the ratio of PR-A:PR-B. While the potencies of most progestogens via PR-B were enhanced when the ratio of PR-A relative to PR-B was increased, those via PR-A were minimally influenced. This study is also the first to report that all progestogens evaluated, except 1st generation medroxyprogesterone acetate and 4th generation drospirenone, displayed similar agonist activity for transrepression via PR-A and PR-B on a minimal nuclear factor kappa B containing promoter. Moreover, we showed that the progestogen activity for transrepression was significantly increased when PR-A and PR-B were co-expressed. Taken together, our results highlight that PR agonists (progestogens) do not always display the same activity via PR-A and PR-B, or when PR-A and PR-B are co-expressed at ratios mimicking those found in breast cancer tumors. These results suggest that biological responses are progestogen- and PR isoform-dependent and may differ in target tissues expressing varying PR-A:PR-B ratios.
Collapse
Affiliation(s)
- Meghan Cartwright
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Renate Louw-du Toit
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Hayley Jackson
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Melani Janse van Vuuren
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
13
|
Borella F, Fucina S, Mangherini L, Cosma S, Carosso AR, Cusato J, Cassoni P, Bertero L, Katsaros D, Benedetto C. Hormone Receptors and Epithelial Ovarian Cancer: Recent Advances in Biology and Treatment Options. Biomedicines 2023; 11:2157. [PMID: 37626654 PMCID: PMC10452581 DOI: 10.3390/biomedicines11082157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2023] [Revised: 06/03/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a significant cause of cancer-related mortality in women. Despite advances in diagnosis and treatment, EOC remains a challenging disease to manage, and the 5-year survival rate is still poor. The role of hormone receptors (HRs) in EOC carcinogenesis and prognosis has been actively explored; however, the role of hormone therapy (HT) in the treatment of these tumors is not well established. Most available data on HT mainly come from retrospective series and small early clinical trials. Several of these studies suggest that HT may have a role in adjuvant, maintenance therapy, or in the case of recurrent disease, especially for some subtypes of EOC (e.g., low-grade serous EOC). Furthermore, HT has recently been combined with targeted therapies, but most studies evaluating these combinations are still ongoing. The main aim of this review is to provide an overview of the progress made in the last decade to characterize the biological and prognostic role of HRs for EOC and the developments in their therapeutic targeting through HT.
Collapse
Affiliation(s)
- Fulvio Borella
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, City of Health and Science, University of Turin, 10126 Turin, Italy; (S.F.); (S.C.); (A.R.C.); (D.K.); (C.B.)
| | - Stefano Fucina
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, City of Health and Science, University of Turin, 10126 Turin, Italy; (S.F.); (S.C.); (A.R.C.); (D.K.); (C.B.)
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (P.C.); (L.B.)
| | - Stefano Cosma
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, City of Health and Science, University of Turin, 10126 Turin, Italy; (S.F.); (S.C.); (A.R.C.); (D.K.); (C.B.)
| | - Andrea Roberto Carosso
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, City of Health and Science, University of Turin, 10126 Turin, Italy; (S.F.); (S.C.); (A.R.C.); (D.K.); (C.B.)
| | - Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy;
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (P.C.); (L.B.)
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (P.C.); (L.B.)
| | - Dionyssios Katsaros
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, City of Health and Science, University of Turin, 10126 Turin, Italy; (S.F.); (S.C.); (A.R.C.); (D.K.); (C.B.)
| | - Chiara Benedetto
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, City of Health and Science, University of Turin, 10126 Turin, Italy; (S.F.); (S.C.); (A.R.C.); (D.K.); (C.B.)
| |
Collapse
|
14
|
Garrido F, Wild CM, Jeschke U, Dannecker C, Mayr D, Cavailles V, Mahner S, Kost B, Heidegger HH, Vattai A. Expression of Progesterone Receptor A as an Independent Negative Prognosticator for Cervical Cancer. Int J Mol Sci 2023; 24:ijms24032815. [PMID: 36769131 PMCID: PMC9917985 DOI: 10.3390/ijms24032815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
The role of progesterone receptor A (PRA) for the survival outcome of cervical cancer patients is ambiguous. In mouse models, it has been shown that PRA plays a rather protective role in cancer development. The aim of this study was to assess its expression by immunohistochemistry in 250 cervical cancer tissue samples and to correlate the results with clinicopathological parameters including patient survival. PRA expression was positively correlated with the International Federation of Gynecology and Obstetrics (FIGO) classification scores. PRA was significantly overexpressed in adenocarcinomas compared to squamous epithelial carcinoma subtypes. Correlation analyses revealed a trend association with the HPV virus protein E6, a negative correlation with p16 and a positive correlation with EP3. PRA expression was also associated with the expression of RIP140, a transcriptional coregulator that we previously identified as a negative prognostic factor for survival in cervical cancer patients. Univariate survival analyses revealed PRA as a negative prognosticator for survival in patients with cervical adenocarcinoma. Multivariate analyses showed that simultaneous expression of RIP140 and PRA was associated with the worst survival, whereas with negative RIP140, PRA expression alone was associated with the best survival. We can therefore assume that the effect of nuclear PRA on overall survival is dependent upon nuclear RIP140 expression.
Collapse
Affiliation(s)
- Fabian Garrido
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Carl Mathis Wild
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
- Department of Data Management and Clinical Decision Support, Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
- Correspondence: ; Tel.: +49-89-4400-54240
| | - Christian Dannecker
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Doris Mayr
- Department of Pathology, LMU Munich, 80337 Munich, Germany
| | - Vincent Cavailles
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université Montpellier, F-34298 Montpellier, France
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Bernd Kost
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Helene H. Heidegger
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
15
|
SOX2 Modulates the Nuclear Organization and Transcriptional Activity of the Glucocorticoid Receptor. J Mol Biol 2022; 434:167869. [PMID: 36309135 DOI: 10.1016/j.jmb.2022.167869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Steroid receptors (SRs) are ligand-dependent transcription factors (TFs) relevant to key cellular processes in both physiology and pathology, including some types of cancer. SOX2 is a master TF of pluripotency and self-renewal of embryonic stem cells, and its dysregulation is also associated with various types of human cancers. A potential crosstalk between these TFs could be relevant in malignant cells yet, to the best of our knowledge, no formal study has been performed thus far. Here we show, by quantitative live-cell imaging microscopy, that ectopic expression of SOX2 disrupts the formation of hormone-dependent intranuclear condensates of many steroid receptors (SRs), including those formed by the glucocorticoid receptor (GR). SOX2 also reduces GR's binding to specific DNA targets and modulates its transcriptional activity. SOX2-driven effects on GR condensates do not require the intrinsically disordered N-terminal domain of the receptor and, surprisingly, neither relies on GR/SOX2 interactions. SOX2 also alters the intranuclear dynamics and compartmentalization of the SR coactivator NCoA-2 and impairs GR/NCoA-2 interactions. These results suggest an indirect mechanism underlying SOX2-driven effects on SRs involving this coactivator. Together, these results highlight that the transcriptional program elicited by GR relies on its nuclear organization and is intimately linked to the distribution of other GR partners, such as the NCoA-2 coactivator. Abnormal expression of SOX2, commonly observed in many tumors, may alter the biological action of GR and, probably, other SRs as well. Understanding this crosstalk may help to improve steroid hormone-based therapies in cancers with elevated SOX2 expression.
Collapse
|
16
|
Evidence of Sex Differences in Cellular Senescence. Neurobiol Aging 2022; 120:88-104. [PMID: 36166919 DOI: 10.1016/j.neurobiolaging.2022.08.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022]
|
17
|
Chand V, Liao X, Guzman G, Benevolenskaya E, Raychaudhuri P. Hepatocellular carcinoma evades RB1-induced senescence by activating the FOXM1-FOXO1 axis. Oncogene 2022; 41:3778-3790. [PMID: 35761036 PMCID: PMC9329203 DOI: 10.1038/s41388-022-02394-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. The retinoblastoma protein (RB1), a regulator of cell proliferation, is functionally inactivated in HCC by CYCLIN D/E-mediated phosphorylation. However, the mechanism of RB1-inactivation is unclear because only small percentages of HCCs exhibit amplification of CYCLIN D/E or mutations in the CDK-inhibitory genes. We show that FOXM1, which is overexpressed and critical for HCC, plays essential roles in inactivating RB1 and suppressing RB1-induced senescence of the HCC cells. Mechanistically, FOXM1 binds RB1 and DNMT3B to repress the expression of FOXO1, leading to a decrease in the levels of the CDK-inhibitors, creating an environment for phosphorylation and inactivation of RB1. Consistent with that, inhibition of FOXM1 causes increased expression of FOXO1 with consequent activation of RB1, leading to senescence of the HCC cells, in vitro and in vivo. Also, repression-deficient mutants of FOXM1 induce senescence that is blocked by depletion of RB1 or FOXO1. We provide evidence that human HCCs rely upon this FOXM1-FOXO1 axis for phosphorylation and inactivation of RB1. The observations demonstrate the existence of a new autoregulatory loop of RB1-inactivation in HCC involving a FOXM1-FOXO1 axis that is required for phosphorylation of RB1 and for aggressive progression of HCC.
Collapse
Affiliation(s)
- Vaibhav Chand
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA
| | - Xiubei Liao
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA
| | - Grace Guzman
- Department of Pathology, University of Illinois, College of Medicine, Chicago, IL, 60612, USA
| | - Elizaveta Benevolenskaya
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA. .,Jesse Brown VA Medical Center, 820S. Damen Ave., Chicago, IL, 60612, USA.
| |
Collapse
|
18
|
Molecular characterization of low-grade serous ovarian carcinoma identifies genomic aberrations according to hormone receptor expression. NPJ Precis Oncol 2022; 6:47. [PMID: 35768582 PMCID: PMC9242985 DOI: 10.1038/s41698-022-00288-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2021] [Accepted: 05/17/2022] [Indexed: 12/03/2022] Open
Abstract
Hormone receptor expression is a characteristic of low-grade serous ovarian carcinoma (LGSOC). Studies investigating estrogen receptor (ER) and progesterone receptor (PR) expression levels suggest its prognostic and predictive significance, although their associations with key molecular aberrations are not well understood. As such, we sought to describe the specific genomic profiles associated with different ER/PR expression patterns and survival outcomes in a cohort of patients with advanced disease. The study comprised fifty-five advanced-staged (III/IV) LGSOCs from the Canadian Ovarian Experimental Unified Resource (COEUR) for which targeted mutation sequencing, copy-number aberration, clinical and follow-up data were available. ER, PR, and p16 expression were assessed by immunohistochemistry. Tumors were divided into low and high ER/PR expression groups based on Allred scoring. Copy number analysis revealed that PR-low tumors (Allred score <2) had a higher fraction of the genome altered by copy number changes compared to PR-high tumors (p = 0.001), with cancer genes affected within specific loci linked to altered peptidyl-tyrosine kinase, MAP-kinase, and PI3-kinase signaling. Cox regression analysis showed that ER-high (p = 0.02), PR-high (p = 0.03), stage III disease (p = 0.02), low residual disease burden (p = 0.01) and normal p16 expression (p<0.001) were all significantly associated with improved overall survival. This study provides evidence that genomic aberrations are linked to ER/PR expression in primary LGSOC.
Collapse
|
19
|
Fu R, Dou Z, Li N, Zhang J, Li Z, Yang P. Avenanthramide C induces cellular senescence in colorectal cancer cells via suppressing β-catenin-mediated the transcription of miR-183/96/182 cluster. Biochem Pharmacol 2022; 199:115021. [DOI: 10.1016/j.bcp.2022.115021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2022] [Revised: 03/06/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
|
20
|
Liu L, Zhao J, Du X, Zhao Y, Zou C, Zhou H, Li W, Yan X. Construction and validation of a novel aging-related gene signature and prognostic nomogram for predicting the overall survival in ovarian cancer. Cancer Med 2021; 10:9097-9114. [PMID: 34825509 PMCID: PMC8683552 DOI: 10.1002/cam4.4404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/22/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecological malignancy. The objective of this study was to establish and validate an individual aging-related gene signature and a clinical nomogram that can powerfully predict independently the overall survival rate of patients with ovarian cancer. METHODS Data on transcriptomic profile and relevant clinical information were retrieved from The Cancer Genome Atlas (TCGA) database as a training group, and the same data from three public Gene Expression Omnibus (GEO) databases as validation groups. Univariate Cox regression analysis, lasso regression analysis, and multiple multivariate Cox analysis were analyzed sequentially to select the genes to be included in the aging-associated signature. A risk scoring model was established and verified, the predictive value of the model was evaluated, and a clinical nomogram was established. RESULTS We found eight genes that were most relevant to prognosis and constructed an eight-mRNA signature. Based on the model, each OC patient's risk score was able to be calculated and patients were split into groups of low and high risks with a distinct outcome. Survival analysis confirmed that the outcome of patients in the high-risk group was dramatically shorter than that of those in the low-risk group, and the eight-mRNA signature can be considered as a powerful and independent predictor that could predict the outcome of OC patient. Additionally, the risk score and age can be used to construct a clinical nomogram as a simpler tool for predicting prognosis. We also explored the association between the risk score and immunity and drug sensitivity. CONCLUSION This study suggested that the aging-related gene signature could be used as an intervention point and latent prognostic predictor in OC, which may provide new perceptions for postoperative treatment strategies.
Collapse
Affiliation(s)
- Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinduo Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuedan Du
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ye Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengyang Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Heling Zhou
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Wenzhou, China
| | - Wenfeng Li
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojian Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Ma YB, Manzoor R, Jia PP, Bian WP, Hamid N, Xie ZY, Pei DS. Transcriptome and in silico approaches provide new insights into the mechanism of male reproductive toxicity induced by chronic exposure to DEHP. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117944. [PMID: 34391046 DOI: 10.1016/j.envpol.2021.117944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/21/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) can affect the male reproductive system in vertebrates, but the underlying molecular mechanism is still elusive. Therefore, in this study, we aimed to dig the in-depth mechanism of DEHP-induced reproductive toxicity on male zebrafish via testicular transcriptome using embryo exposed at the environmentally relevant concentration (ERC) of 100 μg/L for 111 days. Moreover, our results were further confirmed via in silico technique and bioassay experimental in vitro (cell lines) and in vivo (zebrafish). The results showed DEHP exposure could affect male spermatogenesis, altered gonad histology, and reduced egg fertilization rate. Transcriptome analysis identified 1879 significant differentially expressed genes enriched in the exposure group. Twenty-seven genes related to three pathways of reproduction behavior were further validated by qPCR. In silico molecular docking revealed that DEHP and its metabolism bind to the zebrafish progesterone receptor (Pgr), suggesting the potential disruption of DEHP to the normal Pgr signaling. To further validate it, a wild-type Pgr plasmid and its mutants on specific binding sites were constructed. The transfection and microinjection experiment demonstrated that these binding sites mutations of Pgr affected the expression levels of male reproductive toxicity. Taken together, our study provided new insight into the molecular mechanisms of male reproductive toxicity induced by DEHP, and Pgr may serve as an important target binding by DEHP pollution, which needs further study in the future.
Collapse
Affiliation(s)
- Yan-Bo Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rakia Manzoor
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pan-Pan Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Ping Bian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Naima Hamid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuo-Yuan Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
22
|
Li H, Liu Y, Wang Y, Zhao X, Qi X. Hormone therapy for ovarian cancer: Emphasis on mechanisms and applications (Review). Oncol Rep 2021; 46:223. [PMID: 34435651 PMCID: PMC8424487 DOI: 10.3892/or.2021.8174] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer (OC) remains the leading cause of mortality due to gynecological malignancies. Epidemiological studies have demonstrated that steroid hormones released from the hypothalamic-pituitary-ovarian axis can play a role in stimulating or inhibiting OC progression, with gonadotropins, estrogens and androgens promoting OC progression, while gonadotropin-releasing hormone (GnRH) and progesterone may be protective factors in OC. Experimental studies have indicated that hormone receptors are expressed in OC cells and mediate the growth stimulatory or growth inhibitory effects of hormones on these cells. Hormone therapy agents have been evaluated in a number of clinical trials. The majority of these trials were conducted in patients with relapsed or refractory OC with average efficacy and limited side-effects. A better understanding of the mechanisms through which hormones affect cell growth may improve the efficacy of hormone therapy. In the present review article, the role of hormones (GnRH, gonadotropins, androgens, estrogens and progestins) and their receptors in OC tumorigenesis, and hormonal therapy in OC treatment is discussed and summarized.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Liu
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
23
|
Regulation of autoreactive CD4 T cells by FoxO1 signaling in CNS autoimmunity. J Neuroimmunol 2021; 359:577675. [PMID: 34403862 DOI: 10.1016/j.jneuroim.2021.577675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/01/2023]
Abstract
Myelin-specific CD4 T effector cells (Teffs), Th1 and Th17 cells, are encephalitogenic in experimental autoimmune encephalomyelitis (EAE), a well-defined murine model of multiple sclerosis (MS) and implicated in MS pathogenesis. Forkhead box O 1 (FoxO1) is a conserved effector molecule in PI3K/Akt signaling and critical in the differentiation of CD4 T cells into T helper subsets. However, it is unclear whether FoxO1 may be a target for redirecting CD4 T cell differentiation and benefit CNS autoimmunity. Using a selective FoxO1 inhibitor AS1842856, we show that inhibition of FoxO1 suppressed the differentiation and expansion of Th1 cells. The transdifferentiation of Th17 cells into encephalitogenic Th1-like cells was suppressed by FoxO1 inhibition upon reactivation of myelin-specific CD4 T cells from EAE mice. The transcriptional balance skewed from the Th1 transcription factor T-bet toward the Treg transcription factor Foxp3. Myelin-specific CD4 T cells treated with the FoxO1 inhibitor were less encephalitogenic in adoptive transfer EAE studies. Inhibition of FoxO1 in T cells from MS patients significantly suppressed the expansion of Th1 cells. Furthermore, FoxO1 inhibition with AS1842856 promoted the development of functional iTreg cells. The immune checkpoint programmed cell death protein-1 (PD-1)-induced Foxp3 expression in CD4 T cells was impaired by FoxO1 inhibition. These data illustrate an important role of FoxO1 signaling in CNS autoimmunity via regulating autoreactive Teff and Treg balance.
Collapse
|
24
|
Wang H, Shi H. Megestrol acetate drives endometrial carcinoma cell senescence via interacting with progesterone receptor B/FOXO1 axis. Exp Biol Med (Maywood) 2021; 246:2307-2316. [PMID: 34233525 DOI: 10.1177/15353702211026566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
Megestrol acetate is a common and efficient anticancer progesterone. To explore the activity and the therapeutic mechanisms of megestrol acetate in endometrial cancer, human endometrial cancer cell lines Ishikawa and HHUA overexpressing progesterone receptor A (PR-A) and progesterone receptor B (PR-B) were treated with megestrol acetate. Cell viability, apoptosis, cycle arrest, and senescence, as well as the expressions of p21 and p16, two hallmarks of cellular senescence, were evaluated. Compared with the control, >10 nmol/L megestrol acetate treatment could significantly reduce endometrial cancer cell growth, and induce the irreversible G1 arrest and cell senescence. The expression of cyclin D1 in megestrol acetate treated cells was downregulated, while the expressions of p21 and p16 were upregulated via PR-B isoform. FOXO1 inhibitor AS1842856 could significantly abrogate megestrol acetate-induced cell senescence, suggesting that FOXO1 was involved in megestrol acetate/PR-B axis. These findings may provide a new understanding for the treatment of human endometrial cancer.
Collapse
Affiliation(s)
- Hong Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Department of Obstetrics and Gynecology, The Second People's Hospital of Jiaozuo (The First Affiliated Hospital of Henan Polytechnic University), Jiaozuo 454001, China
| | - Huirong Shi
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
25
|
Haapalainen AM, Daddali R, Hallman M, Rämet M. Human CPPED1 belongs to calcineurin-like metallophosphoesterase superfamily and dephosphorylates PI3K-AKT pathway component PAK4. J Cell Mol Med 2021; 25:6304-6317. [PMID: 34009729 PMCID: PMC8366450 DOI: 10.1111/jcmm.16607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Protein kinases and phosphatases regulate cellular processes by reversible phosphorylation and dephosphorylation events. CPPED1 is a recently identified serine/threonine protein phosphatase that dephosphorylates AKT1 of the PI3K-AKT signalling pathway. We previously showed that CPPED1 levels are down-regulated in the human placenta during spontaneous term birth. In this study, based on sequence comparisons, we propose that CPPED1 is a member of the class III phosphodiesterase (PDE) subfamily within the calcineurin-like metallophosphoesterase (MPE) superfamily rather than a member of the phosphoprotein phosphatase (PPP) or metal-dependent protein phosphatase (PPM) protein families. We used a human proteome microarray to identify 36 proteins that putatively interact with CPPED1. Of these, GRB2, PAK4 and PIK3R2 are known to regulate the PI3K-AKT pathway. We further confirmed CPPED1 interactions with PAK4 and PIK3R2 by coimmunoprecipitation analyses. We characterized the effect of CPPED1 on phosphorylation of PAK4 and PIK3R2 in vitro by mass spectrometry. CPPED1 dephosphorylated specific serine residues in PAK4, while phosphorylation levels in PIK3R2 remained unchanged. Our findings indicate that CPPED1 may regulate PI3K-AKT pathway activity at multiple levels. Higher CPPED1 levels may inhibit PI3K-AKT pathway maintaining pregnancy. Consequences of decreased CPPED1 expression during labour remain to be elucidated.
Collapse
Affiliation(s)
- Antti M. Haapalainen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Ravindra Daddali
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mika Rämet
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| |
Collapse
|
26
|
Mauro LJ, Seibel MI, Diep CH, Spartz A, Perez Kerkvliet C, Singhal H, Swisher EM, Schwartz LE, Drapkin R, Saini S, Sesay F, Litovchick L, Lange CA. Progesterone Receptors Promote Quiescence and Ovarian Cancer Cell Phenotypes via DREAM in p53-Mutant Fallopian Tube Models. J Clin Endocrinol Metab 2021; 106:1929-1955. [PMID: 33755733 PMCID: PMC8499172 DOI: 10.1210/clinem/dgab195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/30/2020] [Indexed: 02/08/2023]
Abstract
CONTEXT The ability of ovarian steroids to modify ovarian cancer (OC) risk remains controversial. Progesterone is considered to be protective; recent studies indicate no effect or enhanced OC risk. Knowledge of progesterone receptor (PR) signaling during altered physiology that typifies OC development is limited. OBJECTIVE This study defines PR-driven oncogenic signaling mechanisms in p53-mutant human fallopian tube epithelia (hFTE), a precursor of the most aggressive OC subtype. METHODS PR expression in clinical samples of serous tubal intraepithelial carcinoma (STIC) lesions and high-grade serous OC (HGSC) tumors was analyzed. Novel PR-A and PR-B isoform-expressing hFTE models were characterized for gene expression and cell cycle progression, emboli formation, and invasion. PR regulation of the DREAM quiescence complex and DYRK1 kinases was established. RESULTS STICs and HGSC express abundant activated phospho-PR. Progestin promoted reversible hFTE cell cycle arrest, spheroid formation, and invasion. RNAseq/biochemical studies revealed potent ligand-independent/-dependent PR actions, progestin-induced regulation of the DREAM quiescence complex, and cell cycle target genes through enhanced complex formation and chromatin recruitment. Disruption of DREAM/DYRK1s by pharmacological inhibition, HPV E6/E7 expression, or DYRK1A/B depletion blocked progestin-induced cell arrest and attenuated PR-driven gene expression and associated OC phenotypes. CONCLUSION Activated PRs support quiescence and pro-survival/pro-dissemination cell behaviors that may contribute to early HGSC progression. Our data support an alternative perspective on the tenet that progesterone always confers protection against OC. STICs can reside undetected for decades prior to invasive disease; our studies reveal clinical opportunities to prevent the ultimate development of HGSC by targeting PRs, DREAM, and/or DYRKs.
Collapse
Affiliation(s)
- Laura J Mauro
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
- University of Minnesota, Department of Animal Science, St. Paul, MN 55108, USA
| | - Megan I Seibel
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Caroline H Diep
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Angela Spartz
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
| | | | - Hari Singhal
- Northwestern University, Department of Surgery, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth M Swisher
- University of Washington Seattle, Dept Obstetrics & Gynecology, Division of Gynecologic Oncology, Seattle, WA 98109, USA
| | - Lauren E Schwartz
- University of Pennsylvania, Dept of Pathology and Laboratory Medicine, Philadelphia, PA 19104, USA
| | - Ronny Drapkin
- University of Pennsylvania, Penn Ovarian Cancer Research Center, Dept Obstetrics & Gynecology, Philadelphia, PA 19104, USA
| | - Siddharth Saini
- Virginia Commonwealth University, Massey Cancer Center, Dept. Internal Medicine, Division of Hematology, Oncology & Palliative Care, Richmond, VA 23298, USA
| | - Fatmata Sesay
- Virginia Commonwealth University, Massey Cancer Center, Dept. Internal Medicine, Division of Hematology, Oncology & Palliative Care, Richmond, VA 23298, USA
| | - Larisa Litovchick
- Virginia Commonwealth University, Massey Cancer Center, Dept. Internal Medicine, Division of Hematology, Oncology & Palliative Care, Richmond, VA 23298, USA
| | - Carol A Lange
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
- University of Minnesota, Dept Medicine, Division of Hematology, Oncology & Transplantation, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
Yang S, Pang L, Dai W, Wu S, Ren T, Duan Y, Zheng Y, Bi S, Zhang X, Kong J. Role of Forkhead Box O Proteins in Hepatocellular Carcinoma Biology and Progression (Review). Front Oncol 2021; 11:667730. [PMID: 34123834 PMCID: PMC8190381 DOI: 10.3389/fonc.2021.667730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of malignant tumor of the digestive system, is associated with high morbidity and mortality. The main treatment for HCC is surgical resection. Advanced disease, recurrence, and metastasis are the main factors affecting prognosis. Chemotherapy and radiotherapy are not sufficiently efficacious for the treatment of primary and metastatic HCC; therefore, optimizing targeted therapy is essential for improving outcomes. Forkhead box O (FOXO) proteins are widely expressed in cells and function to integrate a variety of growth factors, oxidative stress signals, and other stimulatory signals, thereby inducing the specific expression of downstream signal factors and regulation of the cell cycle, senescence, apoptosis, oxidative stress, HCC development, and chemotherapy sensitivity. Accordingly, FOXO proteins are considered multifunctional targets of cancer treatment. The current review discusses the roles of FOXO proteins, particularly FOXO1, FOXO3, FOXO4, and FOXO6, in HCC and establishes a theoretical basis for the potential targeted therapy of HCC.
Collapse
Affiliation(s)
- Shaojie Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liwei Pang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tengqi Ren
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunlong Duan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuting Zheng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiyuan Bi
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaolin Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Aggarwal V, Montoya CA, Donnenberg VS, Sant S. Interplay between tumor microenvironment and partial EMT as the driver of tumor progression. iScience 2021; 24:102113. [PMID: 33659878 PMCID: PMC7892926 DOI: 10.1016/j.isci.2021.102113] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/09/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), an evolutionary conserved phenomenon, has been extensively studied to address the unresolved variable treatment response across therapeutic regimes in cancer subtypes. EMT has long been envisaged to regulate tumor invasion, migration, and therapeutic resistance during tumorigenesis. However, recently it has been highlighted that EMT involves an intermediate partial EMT (pEMT) phenotype, defined by incomplete loss of epithelial markers and incomplete gain of mesenchymal markers. It has been further emphasized that pEMT transition involves a spectrum of intermediate hybrid states on either side of pEMT spectrum. Emerging evidence underlines bi-directional crosstalk between tumor cells and surrounding microenvironment in acquisition of pEMT phenotype. Although much work is still ongoing to gain mechanistic insights into regulation of pEMT phenotype, it is evident that pEMT plays a critical role in tumor aggressiveness, invasion, migration, and metastasis along with therapeutic resistance. In this review, we focus on important role of tumor-intrinsic factors and tumor microenvironment in driving pEMT and emphasize that engineered controlled microenvironments are instrumental to provide mechanistic insights into pEMT biology. We also discuss the significance of pEMT in regulating hallmarks of tumor progression i.e. cell cycle regulation, collective migration, and therapeutic resistance. Although constantly evolving, current progress and momentum in the pEMT field holds promise to unravel new therapeutic targets to halt tumor progression at early stages as well as tackle the complex therapeutic resistance observed across many cancer types. Partial EMT phenotype drives key hallmarks of tumor progression Role of tumor microenvironment in pEMT phenotype via cellular signaling pathways Engineering 3D in vitro models to study pEMT phenotype Opportunities and challenges in understanding pEMT phenotype
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Catalina Ardila Montoya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vera S Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh, School of Medicine Pittsburgh, PA 15213, USA.,UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA.,UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.,Department of Pharmaceutical Sciences, School of Pharmacy; Department of Bioengineering, Swanson School of Engineering; McGowan Institute for Regenerative Medicine, University of Pittsburgh, UPMC-Hillman Cancer Center, 700 Technology Drive, Room 4307, Pittsburgh, PA 15261, USA
| |
Collapse
|
29
|
Książek K. Where does cellular senescence belong in the pathophysiology of ovarian cancer? Semin Cancer Biol 2020; 81:14-23. [PMID: 33290845 DOI: 10.1016/j.semcancer.2020.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Although ovarian cancer is the leading cause of death from gynecological malignancies, there are still some issues that hamper accurate interpretation of the complexity of cellular and molecular events underlying the pathophysiology of this disease. One of these is cellular senescence, which is the process whereby cells irreversibly lose their ability to divide and develop a phenotype that fuels a variety of age-related diseases, including cancer. In this review, various aspects of cellular senescence associated with intraperitoneal ovarian cancer metastasis are presented and discussed, including mechanisms of senescence in normal peritoneal mesothelial cells; the role of senescent mesothelium in ovarian cancer progression; the effect of drugs commonly used as first-line therapy in ovarian cancer patients on senescence of normal cells; mechanisms of spontaneous senescence in ovarian cancer cells; and, last but not least, other pharmacologic strategies to induce senescence in ovarian malignancies. Collectively, this study shows that cellular senescence is involved in several aspects of ovarian cancer pathobiology. Proper understanding of this phenomenon, particularly its clinical relevance, seems to be critical for oncology patients from both therapeutic and prognostic perspectives.
Collapse
Affiliation(s)
- Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland.
| |
Collapse
|
30
|
Liu J, Xie X, Yan D, Wang Y, Yuan H, Cai Y, Luo J, Xu A, Huang Y, Cheung CW, Irwin MG, Xia Z. Up-regulation of FoxO1 contributes to adverse vascular remodelling in type 1 diabetic rats. J Cell Mol Med 2020; 24:13727-13738. [PMID: 33108705 PMCID: PMC7754018 DOI: 10.1111/jcmm.15935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Vascular complications from diabetes often result in poor outcomes for patients, even after optimized interventions. Forkhead box protein O1 (FoxO1) is a key regulator of cellular metabolism and plays an important role in vessel formation and maturation. Alterations of FoxO1 occur in the cardiovascular system in diabetes, yet the role of FoxO1 in diabetic vascular complications is poorly understood. In Streptozotocin (STZ)‐induced type 1 diabetic rats, FoxO1 expression was up‐regulated in carotid arteries at 8 weeks of diabetes that was accompanied with adverse vascular remodelling characterized as increased wall thickness, carotid medial cross‐sectional area, media‐to‐lumen ratio and decreased carotid artery lumen area. This adverse vascular remodelling induced by hyperglycaemia in diabetic rats required FoxO1 activation as pharmacological inhibition of FoxO1 with 50mg/kg AS1842856 (AS) reversed vascular remodelling in type 1 diabetic rats. The adverse vascular remodelling in type 1 diabetes mellitus (T1DM) occurred concomitantly with increases in pro‐inflammatory factors, adhesion factors, apoptosis, NOD‐like receptor family protein‐3 inflammasome activation and the phenotypic switch of arterial smooth muscle cells, which were all reversed by AS. In addition, FoxO1 inhibition counteracted the down‐regulation of its upstream mediator PDK1 in T1DM. PDK1 activator reduced FoxO1 nuclear translocation, which serves as the basis for subsequent transcriptional regulation during hyperglycaemia. Taken together, our data suggest that FoxO1 is a critical trigger for type 1 diabetes‐induced vascular remodelling in rats, and inhibition of FoxO1 thus offers a potential therapeutic option for diabetes‐associated cardiovascular diseases.
Collapse
Affiliation(s)
- Jingjin Liu
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Xiang Xie
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dan Yan
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Yongshun Wang
- Department of Biomedical Science, University of Hong Kong, Hong Kong, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yin Cai
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Jierong Luo
- Department of Anesthesiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Wai Cheung
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Michael G Irwin
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China.,State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
Dwyer AR, Truong TH, Ostrander JH, Lange CA. 90 YEARS OF PROGESTERONE: Steroid receptors as MAPK signaling sensors in breast cancer: let the fates decide. J Mol Endocrinol 2020; 65:T35-T48. [PMID: 32209723 PMCID: PMC7329584 DOI: 10.1530/jme-19-0274] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Steroid hormone receptors (SRs) are classically defined as ligand-activated transcription factors that function as master regulators of gene programs important for a wide range of processes governing adult physiology, development, and cell or tissue homeostasis. A second function of SRs includes the ability to activate cytoplasmic signaling pathways. Estrogen (ER), androgen (AR), and progesterone (PR) receptors bind directly to membrane-associated signaling molecules including mitogenic protein kinases (i.e. c-SRC and AKT), G-proteins, and ion channels to mediate context-dependent actions via rapid activation of downstream signaling pathways. In addition to making direct contact with diverse signaling molecules, SRs are further fully integrated with signaling pathways by virtue of their N-terminal phosphorylation sites that act as regulatory hot-spots capable of sensing the signaling milieu. In particular, ER, AR, PR, and closely related glucocorticoid receptors (GR) share the property of accepting (i.e. sensing) ligand-independent phosphorylation events by proline-directed kinases in the MAPK and CDK families. These signaling inputs act as a 'second ligand' that dramatically impacts cell fate. In the face of drugs that reliably target SR ligand-binding domains to block uncontrolled cancer growth, ligand-independent post-translational modifications guide changes in cell fate that confer increased survival, EMT, migration/invasion, stemness properties, and therapy resistance of non-proliferating SR+ cancer cell subpopulations. The focus of this review is on MAPK pathways in the regulation of SR+ cancer cell fate. MAPK-dependent phosphorylation of PR (Ser294) and GR (Ser134) will primarily be discussed in light of the need to target changes in breast cancer cell fate as part of modernized combination therapies.
Collapse
Affiliation(s)
- Amy R. Dwyer
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
| | - Thu H. Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
| | - Julie H. Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis MN 55455
| | - Carol A. Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis MN 55455
- Department of Pharmacology, University of Minnesota, Minneapolis MN 55455
- Corresponding author: Carol A Lange, Professor, ; 612-626-0621 (phone), University of Minnesota Masonic Cancer Center, Delivery Code 2812, Cancer and Cardiovascular Research Building, 2231 6th St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
32
|
Ogara MF, Rodríguez-Seguí SA, Marini M, Nacht AS, Stortz M, Levi V, Presman DM, Vicent GP, Pecci A. The glucocorticoid receptor interferes with progesterone receptor-dependent genomic regulation in breast cancer cells. Nucleic Acids Res 2020; 47:10645-10661. [PMID: 31598691 PMCID: PMC6846950 DOI: 10.1093/nar/gkz857] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2019] [Revised: 09/19/2019] [Accepted: 10/04/2019] [Indexed: 12/30/2022] Open
Abstract
The glucocorticoid and progesterone receptors (GR and PR) are closely related members of the steroid receptor family. Despite sharing similar structural and functional characteristics; the cognate hormones display very distinct physiological responses. In mammary epithelial cells, PR activation is associated with the incidence and progression of breast cancer, whereas the GR is related to growth suppression and differentiation. Despite their pharmacological relevance, only a few studies have compared GR and PR activities in the same system. Using a PR+/GR+ breast cancer cell line, here we report that either glucocorticoid-free or dexamethasone (DEX)-activated GR inhibits progestin-dependent gene expression associated to epithelial-mesenchymal-transition and cell proliferation. When both receptors are activated with their cognate hormones, PR and GR can form part of the same complex according to co-immunoprecipitation, quantitative microscopy and sequential ChIP experiments. Moreover, genome-wide studies in cells treated with either DEX or R5020, revealed the presence of several regions co-bound by both receptors. Surprisingly, GR also binds novel genomic sites in cells treated with R5020 alone. This progestin-induced GR binding was enriched in REL DNA motifs and located close to genes coding for chromatin remodelers. Understanding GR behavior in the context of progestin-dependent breast cancer could provide new targets for tumor therapy.
Collapse
Affiliation(s)
- Maria F Ogara
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Santiago A Rodríguez-Seguí
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Melisa Marini
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Ana Silvina Nacht
- Centro de Regulación Genómica, Barcelona 08003, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Martin Stortz
- Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-UBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-UBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina.,Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Diego M Presman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Guillermo P Vicent
- Centro de Regulación Genómica, Barcelona 08003, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.,Department of Molecular Genomics, Institute of Molecular Biology of Barcelona, IBMB-CSIC. Baldiri Reixac 4, Barcelona 08028, Spain
| | - Adali Pecci
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina.,Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
33
|
ZNF746/PARIS overexpression induces cellular senescence through FoxO1/p21 axis activation in myoblasts. Cell Death Dis 2020; 11:359. [PMID: 32398756 PMCID: PMC7217926 DOI: 10.1038/s41419-020-2552-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2019] [Revised: 02/06/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023]
Abstract
Various stresses, including oxidative stress, impair the proliferative capacity of muscle stem cells leading to declined muscle regeneration related to aging or muscle diseases. ZNF746 (PARIS) is originally identified as a substrate of E3 ligase Parkin and its accumulation is associated with Parkinson’s disease. In this study, we investigated the role of PARIS in myoblast function. PARIS is expressed in myoblasts and decreased during differentiation. PARIS overexpression decreased both proliferation and differentiation of myoblasts without inducing cell death, whereas PARIS depletion enhanced myoblast differentiation. Interestingly, high levels of PARIS in myoblasts or fibroblasts induced cellular senescence with alterations in gene expression associated with p53 signaling, inflammation, and response to oxidative stress. PARIS overexpression in myoblasts starkly enhanced oxidative stress and the treatment of an antioxidant Trolox attenuated the impaired proliferation caused by PARIS overexpression. FoxO1 and p53 proteins are elevated in PARIS-overexpressing cells leading to p21 induction and the depletion of FoxO1 or p53 reduced p21 levels induced by PARIS overexpression. Furthermore, both PARIS and FoxO1 were recruited to p21 promoter region and Trolox treatment attenuated FoxO1 recruitment. Taken together, PARIS upregulation causes oxidative stress-related FoxO1 and p53 activation leading to p21 induction and cellular senescence of myoblasts.
Collapse
|
34
|
Dai C, Jia J, Kot A, Liu X, Liu L, Jiang M, Lane NE, Wise BL, Yao W. Selective inhibition of progesterone receptor in osteochondral progenitor cells, but not in mature chondrocytes, modulated subchondral bone structures. Bone 2020; 132:115196. [PMID: 31863959 PMCID: PMC7006606 DOI: 10.1016/j.bone.2019.115196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/16/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The presence or relative proportion of progesterone nuclear receptors (PR) in different tissues may contribute to sexual dimorphism in these tissues. PR is expressed in chondrocytes, but its function is mostly unknown. We hypothesized that the PR may regulate chondrocyte metabolism and affect subchondral bone structure. METHODS We utilized genetic fate mapping and immunohistochemistry to elucidate PR expression in and effect on cartilage. To define sex-dependent and chondrocyte-specific effects of the PR on subchondral bone, we selectively deleted PR in osteochondrogenic progenitor cells marked by Prx1 (Prx1; PRcKO) and Collagen 2 (Col2; PRcKO), or in matured chondrocytes marked by aggrecan (Acan; PRcKO) and evaluated subchondral bone structure at 4 months of age. Chondrocyte aging was monitored by anti-senescence marker p16INK4a, and MMP13, one of the Senescence-Associated Secretary Phenotype (SASP) components. RESULTS Compared to wild-type (WT) mice, the female Prx1; PRcKO and the Col2; PRcKO mice had greater total subchondral bone volume and greater subchondral cortical bone thickness, with increased estimated subchondral bone stiffness and failure load in both female and male Col2; PRcKO mice. Moreover, Col2; PRcKO mice from both sexes had greater bone formation and bone strength at the femurs. In contrast, we did not observe any subchondral bone changes in Acan; PRcKO mice other than higher work-to-failure observed in the male Acan; PRcKO mice. Despite no detected difference in articular cartilage between the WT and the PR; chondrocyte conditional deletion mice, there were greater numbers of senescent chondrocytes and increased MMP13 expression, especially in the male mutant mice. CONCLUSION These findings suggest that selective inhibition of PR in osteoprogenitor cells, but not in terminally differentiated chondrocytes, induced an increased subchondral bone phenotype and high estimated subchondral bone strength, which might be associated with the development of osteoarthritis in older age.
Collapse
Affiliation(s)
- Chenlin Dai
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Junjing Jia
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Alexander Kot
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Xueping Liu
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Lixian Liu
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Min Jiang
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Barton L Wise
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA; Department of Orthopaedic Surgery, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Wei Yao
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817, USA.
| |
Collapse
|
35
|
Deciphering the Molecular Mechanism of Spontaneous Senescence in Primary Epithelial Ovarian Cancer Cells. Cancers (Basel) 2020; 12:cancers12020296. [PMID: 32012719 PMCID: PMC7072138 DOI: 10.3390/cancers12020296] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Spontaneous senescence of cancer cells remains a puzzling and poorly understood phenomenon. Here we comprehensively characterize this process in primary epithelial ovarian cancer cells (pEOCs). Analysis of tumors from ovarian cancer patients showed an abundance of senescent cells in vivo. Further, serially passaged pEOCs become senescent after a few divisions. These senescent cultures display trace proliferation, high expression of senescence biomarkers (SA--Gal, -H2A.X), growth-arrest in the G1 phase, increased level of cyclins D1, D2, decreased cyclin B1, up-regulated p16, p21, and p53 proteins, eroded telomeres, reduced activity of telomerase, predominantly non-telomeric DNA damage, activated AKT, AP-1, and ERK1/2 signaling, diminished JNK, NF-B, and STAT3 pathways, increased formation of reactive oxygen species, unchanged activity of antioxidants, increased oxidative damage to DNA and proteins, and dysfunctional mitochondria. Moreover, pEOC senescence is inducible by normal peritoneal mesothelium, fibroblasts, and malignant ascites via the paracrine activity of GRO-1, HGF, and TGF-1. Collectively, pEOCs undergo spontaneous senescence in a mosaic, telomere-dependent and telomere-independent manner, plausibly in an oxidative stress-dependent mechanism. The process may also be activated by extracellular stimuli. The biological and clinical significance of pEOC senescence remains to be explored.
Collapse
|
36
|
Mikuła-Pietrasik J, Niklas A, Uruski P, Tykarski A, Książek K. Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells. Cell Mol Life Sci 2020; 77:213-229. [PMID: 31414165 PMCID: PMC6970957 DOI: 10.1007/s00018-019-03261-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022]
Abstract
In contrast to the well-recognized replicative and stress-induced premature senescence of normal somatic cells, mechanisms and clinical implications of senescence of cancer cells are still elusive and uncertain from patient-oriented perspective. Moreover, recent years provided multiple pieces of evidence that cancer cells may undergo senescence not only in response to chemotherapy or ionizing radiation (the so-called therapy-induced senescence) but also spontaneously, without any external insults. Since the molecular nature of the latter process is poorly recognized, the significance of spontaneously senescent cancer cells for tumor progression, therapy effectiveness, and patient survival is purely speculative. In this review, we summarize the most up-to-date research regarding therapy-induced and spontaneous senescence of cancer cells, by delineating the most important discoveries regarding the occurrence of these phenomena in vivo and in vitro. This review provides data collected from studies on various cancer cell models, and the narration is presented from the broader perspective of the most critical findings regarding the senescence of normal somatic cells.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland.
| |
Collapse
|
37
|
Lu X, Guan A, Chen X, Xiao J, Xie M, Yang B, He S, You S, Li W, Chen Q. mPRα mediates P4/Org OD02-0 to improve the sensitivity of lung adenocarcinoma to EGFR-TKIs via the EGFR-SRC-ERK1/2 pathway. Mol Carcinog 2019; 59:179-192. [PMID: 31777985 DOI: 10.1002/mc.23139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 01/02/2023]
Abstract
The discovery of epidermal growth factor receptor (EGFR) mutations has made EGFR tyrosine kinase inhibitors (EGFR-TKIs) a milestone in the treatment for advanced non-small cell lung cancer (NSCLC). However, patients lacking EGFR mutations are not sensitive to EGFR-TKI treatment and the emergence of secondary resistance poses new challenges for the targeted therapy of lung cancer. In this study, we identified that the expression of membrane progesterone receptor α (mPRα) was associated with EGFR mutations in lung adenocarcinoma patients and subsequently affected the efficacy of EGFR-TKIs. Progesterone (P4) or its derivative Org OD02-0 (Org), which is mediated by mPRα, increases the function of EGFR-TKIs to suppress the proliferation, migration, and invasion of lung adenocarcinoma cells in vitro and in vivo. In addition, the mPRα pathway triggers delayed resistance to EGFR-TKIs. Mechanistic investigations demonstrated that the mPRα pathway can crosstalk with the EGFR pathway by activating nongenomic effects to inhibit the EGFR-SRC-ERK1/2 pathway, thereby promoting antitumorigenic effects. In conclusion, our data describe an essential role for mPRα in improving sensitivity to EGFR-TKIs, thus rationalizing its potential as a therapeutic target for lung adenocarcinomas.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anqi Guan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Chen
- Department of Respiratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Xiao
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingxuan Xie
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baishuang Yang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuya He
- Department of Biochemistry & Biology, University of South China, Hengyang, China
| | - Shaojin You
- Laboratory of Cancer Experimental Therapy, Histopathology Core, Atlanta Research & Educational Foundation (151F), Atlanta VA Medical Center, Emory University, Decatur, Georgia
| | - Wei Li
- Department of Geriatrics, Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
38
|
A drug library screen identifies Carbenoxolone as novel FOXO inhibitor that overcomes FOXO3-mediated chemoprotection in high-stage neuroblastoma. Oncogene 2019; 39:1080-1097. [PMID: 31591479 PMCID: PMC6989399 DOI: 10.1038/s41388-019-1044-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023]
Abstract
The transcription factor FOXO3 has been associated in different tumor entities with hallmarks of cancer, including metastasis, tumor angiogenesis, maintenance of tumor-initiating stem cells, and drug resistance. In neuroblastoma (NB), we recently demonstrated that nuclear FOXO3 promotes tumor angiogenesis in vivo and chemoresistance in vitro. Hence, inhibiting the transcriptional activity of FOXO3 is a promising therapeutic strategy. However, as no FOXO3 inhibitor is clinically available to date, we used a medium-throughput fluorescence polarization assay (FPA) screening in a drug-repositioning approach to identify compounds that bind to the FOXO3-DNA-binding-domain (DBD). Carbenoxolone (CBX), a glycyrrhetinic acid derivative, was identified as a potential FOXO3-inhibitory compound that binds to the FOXO3-DBD with a binding affinity of 19 µM. Specific interaction of CBX with the FOXO3-DBD was validated by fluorescence-based electrophoretic mobility shift assay (FAM-EMSA). CBX inhibits the transcriptional activity of FOXO3 target genes, as determined by chromatin immunoprecipitation (ChIP), DEPP-, and BIM promoter reporter assays, and real-time RT-PCR analyses. In high-stage NB cells with functional TP53, FOXO3 triggers the expression of SESN3, which increases chemoprotection and cell survival. Importantly, FOXO3 inhibition by CBX treatment at pharmacologically relevant concentrations efficiently repressed FOXO3-mediated SESN3 expression and clonogenic survival and sensitized high-stage NB cells to chemotherapy in a 2D and 3D culture model. Thus, CBX might be a promising novel candidate for the treatment of therapy-resistant high-stage NB and other "FOXO-resistant" cancers.
Collapse
|
39
|
Czogalla B, Kahaly M, Mayr D, Schmoeckel E, Niesler B, Hester A, Zeder-Göß C, Kolben T, Burges A, Mahner S, Jeschke U, Trillsch F. Correlation of NRF2 and progesterone receptor and its effects on ovarian cancer biology. Cancer Manag Res 2019; 11:7673-7684. [PMID: 31616183 PMCID: PMC6699153 DOI: 10.2147/cmar.s210004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose This study aimed to investigate the potential prognostic impact of nuclear factor erythroid 2-related factor 2 (NRF2) and progesterone receptor A (PRA)/progesterone receptor B (PRB) in ovarian cancer patients which might be the rationale for putative new treatment strategies. Patients and methods The presence of NRF2 and PRA/PRB was investigated in 156 ovarian cancer samples using immunohistochemistry (IHC). Staining of NRF2 and PRA/PRB was rated using the semi-quantitative immunoreactive score (IR score, Remmele’s score) and correlated to clinical and pathological data. NRF2 and PRA/PRB expression were compared with respect to the overall survival (OS). Results NRF2 staining was different in both, the cytoplasm and nucleus between the histological subtypes (p=0.001 and p=0.02, respectively). There was a significant difference in the PRA expression comparing all histological subtypes (p=0.02). Histological subtypes showed no significant differences in the PRB expression. A strong correlation of cytoplasmic NRF2 and PRA expression was detected (cc=0.247, p=0.003) as well as of cytoplasmic NRF2 and PRB expression (cc=0.25, p=0.003), confirmed by immunofluorescence double staining. Cytoplasmic NRF2 expression was associated with a longer OS (median 50.6 vs 32.5 months; p=0.1) as it was seen for PRA expression (median 63.4 vs 33.1 months; p=0.08), although not statistically significant. In addition, high PRB expression (median 80.4 vs 32.5 months; p=0.04) and concurrent expression of cytoplasmic NRF2 and PRA were associated with a significantly longer OS (median 109.7 vs 30.6 months; p=0.02). The same relationship was also noted for NRF2 and PRB with improved OS for patients expressing both cytoplasmic NRF2 and PRB (median 153.5 vs 30.6 months; p=0.009). Silencing of NFE2L2 induced higher mRNA expression of PGR in the cancer cell line OVCAR3 (p>0.05) confirming genetic interactions of NRF2 and PR. Conclusion In this study, the combination of cytoplasmic NRF2 and high PRA/PRB expression was demonstrated to be associated with improved overall survival in ovarian cancer patients. Further understanding of interactions within the NRF2/AKR1C1/PR pathway could open new additional therapeutic approaches.
Collapse
Affiliation(s)
- Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Maja Kahaly
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Doris Mayr
- Faculty of Medicine, Institute of Pathology, Lmu Munich, Munich, Germany
| | - Elisa Schmoeckel
- Faculty of Medicine, Institute of Pathology, Lmu Munich, Munich, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Anna Hester
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Christine Zeder-Göß
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
40
|
Hallman M, Haapalainen A, Huusko JM, Karjalainen MK, Zhang G, Muglia LJ, Rämet M. Spontaneous premature birth as a target of genomic research. Pediatr Res 2019; 85:422-431. [PMID: 30353040 DOI: 10.1038/s41390-018-0180-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/28/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 01/23/2023]
Abstract
Spontaneous preterm birth is a serious and common pregnancy complication associated with hormonal dysregulation, infection, inflammation, immunity, rupture of fetal membranes, stress, bleeding, and uterine distention. Heredity is 25-40% and mostly involves the maternal genome, with contribution of the fetal genome. Significant discoveries of candidate genes by genome-wide studies and confirmation in independent replicate populations serve as signposts for further research. The main task is to define the candidate genes, their roles, localization, regulation, and the associated pathways that influence the onset of human labor. Genomic research has identified some candidate genes that involve growth, differentiation, endocrine function, immunity, and other defense functions. For example, selenocysteine-specific elongation factor (EEFSEC) influences synthesis of selenoproteins. WNT4 regulates decidualization, while a heat-shock protein family A (HSP70) member 1 like, HSPAIL, influences expression of glucocorticoid receptor and WNT4. Programming of pregnancy duration starts before pregnancy and during placentation. Future goals are to understand the interactive regulation of the pathways in order to define the clocks that influence the risk of prematurity and the duration of pregnancy. Premature birth has a great impact on the duration and the quality of life. Intensification of focused research on causes, prediction and prevention of prematurity is justified.
Collapse
Affiliation(s)
- Mikko Hallman
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.
| | - Antti Haapalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Johanna M Huusko
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Minna K Karjalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Ge Zhang
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Mika Rämet
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
41
|
Truong TH, Dwyer AR, Diep CH, Hu H, Hagen KM, Lange CA. Phosphorylated Progesterone Receptor Isoforms Mediate Opposing Stem Cell and Proliferative Breast Cancer Cell Fates. Endocrinology 2019; 160:430-446. [PMID: 30597041 PMCID: PMC6349004 DOI: 10.1210/en.2018-00990] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/20/2018] [Accepted: 12/20/2018] [Indexed: 02/08/2023]
Abstract
Progesterone receptors (PRs) are key modifiers of estrogen receptor (ER) target genes and drivers of luminal breast cancer progression. Total PR expression, rather than isoform-specific PR expression, is measured in breast tumors as an indicator of functional ER. We identified phenotypic differences between PR-A and PR-B in luminal breast cancer models with a focus on tumorsphere biology. Our findings indicated that PR-A is a dominant driver of cancer stem cell (CSC) expansion in T47D models, and PR-B is a potent driver of anchorage-independent proliferation. PR-A+ tumorspheres were enriched for aldehyde dehydrogenase (ALDH) activity, CD44+/CD24-, and CD49f+/CD24- cell populations relative to PR-B+ tumorspheres. Progestin promoted heightened expression of known CSC-associated target genes in PR-A+ but not PR-B+ cells cultured as tumorspheres. We report robust phosphorylation of PR-A relative to PR-B Ser294 and found that this residue is required for PR-A-induced expression of CSC-associated genes and CSC behavior. Cells expressing PR-A S294A exhibited impaired CSC phenotypes but heightened anchorage-independent cell proliferation. The PR target gene and coactivator, FOXO1, promoted PR phosphorylation and tumorsphere formation. The FOXO1 inhibitor (AS1842856) alone or combined with onapristone (PR antagonist), blunted phosphorylated PR, and tumorsphere formation in PR-A+ and PR-B+ T47D, MCF7, and BT474 models. Our data revealed unique isoform-specific functions of phosphorylated PRs as modulators of distinct and opposing pathways relevant to mechanisms of late recurrence. A clear understanding of PR isoforms, phosphorylation events, and the role of cofactors could lead to novel biomarkers of advanced tumor behavior and reveal new approaches to pharmacologically target CSCs in luminal breast cancer.
Collapse
Affiliation(s)
- Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Amy R Dwyer
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Caroline H Diep
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Hsiangyu Hu
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Kyla M Hagen
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
- Correspondence: Carol A. Lange, PhD, Masonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer and Cardiovascular Research Building, 2231 6th Street Southeast, Minneapolis, Minnesota 55455. E-mail:
| |
Collapse
|
42
|
Atif F, Yousuf S, Espinosa-Garcia C, Sergeeva E, Stein DG. Progesterone Treatment Attenuates Glycolytic Metabolism and Induces Senescence in Glioblastoma. Sci Rep 2019; 9:988. [PMID: 30700763 PMCID: PMC6353890 DOI: 10.1038/s41598-018-37399-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
We examined the effect of progesterone treatments on glycolytic metabolism and senescence as possible mechanisms in controlling the growth of glioblastoma multiforme (GBM). In an orthotopic mouse model, after tumor establishment, athymic nude mice received treatment with progesterone or vehicle for 40 days. Compared to controls, high-dose progesterone administration produced a significant reduction in tumor size (~47%) and an increased survival rate (~43%) without any demonstrable toxicity to peripheral organs (liver, kidney). This was accompanied by a significant improvement in spontaneous locomotor activity and reduced anxiety-like behavior. In a follow-up in vitro study of U87MG-luc, U87dEGFR and U118MG tumor cells, we observed that high-dose progesterone inhibited expression of Glut1, which facilitated glucose transport into the cytoplasm; glyceraldehyde 3-phosphate dehydrogenase (GAPDH; a glycolysis enzyme); ATP levels; and cytoplasmic FoxO1 and Phospho-FoxO1, both of which control glycolytic metabolism through upstream PI3K/Akt/mTOR signaling in GBM. In addition, progesterone administration attenuated EGFR/PI3K/Akt/mTOR signaling, which is highly activated in grade IV GBM. High-dose progesterone also induced senescence in GBM as evidenced by changes in cell morphology and β-galactocidase accumulation. In conclusion, progesterone inhibits the modulators of glycolytic metabolism and induces premature senescence in GBM cells and this can help to reduce/slow tumor progression.
Collapse
Affiliation(s)
- Fahim Atif
- Brain Research Laboratory, Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| | - Seema Yousuf
- Brain Research Laboratory, Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Claudia Espinosa-Garcia
- Brain Research Laboratory, Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Elena Sergeeva
- Brain Research Laboratory, Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Donald G Stein
- Brain Research Laboratory, Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
43
|
Xie X, Yan D, Li H, Zhu Q, Li J, Fang YP, Cheung CW, Irwin MG, Xia Z, Lian Q. Enhancement of Adiponectin Ameliorates Nonalcoholic Fatty Liver Disease via Inhibition of FoxO1 in Type I Diabetic Rats. J Diabetes Res 2018; 2018:6254340. [PMID: 30186875 PMCID: PMC6116459 DOI: 10.1155/2018/6254340] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/12/2018] [Revised: 05/14/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease which has been previously shown to be associated with type 2 diabetes mellitus (T2DM). Recent research has indicated that type 1 diabetes mellitus (T1DM) is also involved in the development of nonalcoholic fatty liver disease, whereas the underlying mechanisms are largely unknown. Forkhead box O1 (FoxO1) and adiponectin (APN) have been proposed to play an important role in the processes in NAFLD in T1DM. We herein investigated the effects of FoxO1 and APN on the development of NAFLD and the underlying mechanism in streptozotocin-induced T1DM. Serum liver enzymes AST, ALT, and triglyceride (TG) were determined by commercially available kits. Blood glucose levels were measured by the OneTouch Ultra glucose meter. Relevant protein expression was tested by Western blot analysis. Results showed that serum AST, ALT, and TG were all significantly increased in T1DM rats, which was ameliorated by application of APN or selective inhibition of FoxO1 with AS1842856. Moreover, APN and AS1842856 both decreased the expression of liver nuclear FoxO1 which was significantly increased in diabetic rats. However, the inhibition of FoxO1 did not alter the expression of APN and its receptors. We also found that Akt1 expression was significantly declined in diabetic rat which was restored by APN and moderately and significantly increased by FoxO1 inhibition. It is concluded that APN ameliorates NAFLD via inhibition of FoxO1 through Akt1/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Xiang Xie
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
- Department of Anesthesiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Dan Yan
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haobo Li
- Department of Anesthesiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jun Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yong-ping Fang
- Department of General Surgery, Huizhou First Hospital, Huizhou, Guangdong, China
| | - Chi Wai Cheung
- Department of Anesthesiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Michael G. Irwin
- Department of Anesthesiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
44
|
Hornsveld M, Dansen T, Derksen P, Burgering B. Re-evaluating the role of FOXOs in cancer. Semin Cancer Biol 2018; 50:90-100. [DOI: 10.1016/j.semcancer.2017.11.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2017] [Revised: 10/23/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023]
|
45
|
Tight regulation of FOXO1 is essential for maintenance of B-cell precursor acute lymphoblastic leukemia. Blood 2018; 131:2929-2942. [PMID: 29622548 DOI: 10.1182/blood-2017-10-813576] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2017] [Accepted: 03/26/2018] [Indexed: 12/30/2022] Open
Abstract
The FOXO1 transcription factor plays an essential role in the regulation of proliferation and survival programs at early stages of B-cell differentiation. Here, we show that tightly regulated FOXO1 activity is essential for maintenance of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Genetic and pharmacological inactivation of FOXO1 in BCP-ALL cell lines produced a strong antileukemic effect associated with CCND3 downregulation. Moreover, we demonstrated that CCND3 expression is critical for BCP-ALL survival and that overexpression of CCND3 protected BCP-ALL cell lines from growth arrest and apoptosis induced by FOXO1 inactivation. Most importantly, pharmacological inhibition of FOXO1 showed antileukemia activity on several primary, patient-derived, pediatric ALL xenografts with effective leukemia reduction in the hematopoietic, lymphoid, and central nervous system organ compartments, ultimately leading to prolonged survival without leukemia reoccurrence in a preclinical in vivo model of BCP-ALL. These results suggest that repression of FOXO1 might be a feasible approach for the treatment of BCP-ALL.
Collapse
|
46
|
Tecalco-Cruz AC. Molecular pathways involved in the transport of nuclear receptors from the nucleus to cytoplasm. J Steroid Biochem Mol Biol 2018; 178:36-44. [PMID: 29107180 DOI: 10.1016/j.jsbmb.2017.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/02/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
Abstract
Nuclear receptors (NRs) are transcription regulators that direct the expression of many genes linked to cellular processes, such as proliferation, differentiation, and apoptosis. Additionally, some cellular events are also modulated by signaling pathways induced by NRs outside of the nucleus. Hence, the subcellular transport of NRs is dynamic and is modulated by several signals, protein-protein interactions, and posttranslational modifications. Particularly, the exit of NRs from the nucleus to cytoplasm and/or other compartments is transcendental, as it is this export event, which determines their abundance in the cells' compartments, the activation or attenuation of nuclear or extranuclear pathways, and the magnitude and duration of their effects inside or outside of the nucleus. Consequently, an adequate control of the distribution of NRs is critical for homeostasis, because a deregulation in the nucleo-cytoplasmic transport of NRs could be involved in diseases including cancer as well as metabolic and vascular alterations. In this review, we investigated the pathways and molecular and biological aspects that have been described for the nuclear export of NRs so far and their functional relevance in some diseases. This information suggests that the transport of NRs out of the nucleus is a key mechanism for the identification of new therapeutic targets for alterations associated with the deregulation of the function of NRs.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo Postal, D.F. 04510, Mexico.
| |
Collapse
|
47
|
De Amicis F, Guido C, Santoro M, Giordano F, Donà A, Rizza P, Pellegrino M, Perrotta I, Bonofiglio D, Sisci D, Panno ML, Tramontano D, Aquila S, Andò S. Ligand activated progesterone receptor B drives autophagy-senescence transition through a Beclin-1/Bcl-2 dependent mechanism in human breast cancer cells. Oncotarget 2018; 7:57955-57969. [PMID: 27462784 PMCID: PMC5295403 DOI: 10.18632/oncotarget.10799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2016] [Accepted: 07/09/2016] [Indexed: 12/21/2022] Open
Abstract
Loss of progesterone-receptors (PR) expression is associated with breast cancer progression. Herein we provide evidence that OHPg/PR-B through Beclin-1 evoke autophagy-senescence transition, in breast cancer cells. Specifically, OHPg increases Beclin-1 expression through a transcriptional mechanism due to the occupancy of Beclin-1 promoter by PR-B, together with the transcriptional coactivator SRC-2. This complex binds at a canonical half progesterone responsive element, which is fundamental for OHPg effects, as shown by site-directed mutagenesis. Beside, OHPg via non-genomic action rapidly activates JNK, which phosphorylates Bcl-2, producing the functional release from Beclin-1 interaction. This is not linked to an efficient autophagic flux, since p62 levels, marker of degradation via lysosomes, were not reduced after sustained OHPg stimulus. Instead, the cell cycle inhibitor p27 was induced, together with an irreversible G1 arrest, hallmark of cellular senescence. Specifically the increase of senescence-associated β-galactosidase activity was blocked by Bcl-2 siRNA but also by Beclin-1 siRNA. Collectively these findings support the importance of PR-B expression in breast cancer cells, thus targeting PR-B may be a useful strategy to provide additional approaches to existing therapies for breast cancer patients.
Collapse
Affiliation(s)
- Francesca De Amicis
- Centro Sanitario, University of Calabria, Rende, Italy.,Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Carmela Guido
- Centro Sanitario, University of Calabria, Rende, Italy.,Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Marta Santoro
- Centro Sanitario, University of Calabria, Rende, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Ada Donà
- Centro Sanitario, University of Calabria, Rende, Italy.,Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Pietro Rizza
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | | | - Daniela Bonofiglio
- Centro Sanitario, University of Calabria, Rende, Italy.,Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Diego Sisci
- Centro Sanitario, University of Calabria, Rende, Italy.,Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Donatella Tramontano
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Saveria Aquila
- Centro Sanitario, University of Calabria, Rende, Italy.,Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Sebastiano Andò
- Centro Sanitario, University of Calabria, Rende, Italy.,Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| |
Collapse
|
48
|
Haapalainen AM, Karjalainen MK, Daddali R, Ohlmeier S, Anttonen J, Määttä TA, Salminen A, Mahlman M, Bergmann U, Mäkikallio K, Ojaniemi M, Hallman M, Rämet M. Expression of CPPED1 in human trophoblasts is associated with timing of term birth. J Cell Mol Med 2018; 22:968-981. [PMID: 29193784 PMCID: PMC5783879 DOI: 10.1111/jcmm.13402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2016] [Accepted: 08/29/2017] [Indexed: 12/15/2022] Open
Abstract
Understanding of timing of human parturition is incomplete. Therefore, we carried out proteomic analyses of full-term placentas from uncomplicated pregnancies to identify protein signatures associated with the onset of spontaneous delivery. We found quantitative associations of 10 proteins with spontaneous term birth, evident either in the basal or in the chorionic plates or in both. Additional 18 proteins were associated according to the location within placenta indicating local variations in protein amounts. Calcineurin-like phosphoesterase domain-containing 1 (CPPED1), a phosphatase previously suggested dephosphorylating AKT1/PKB, was one of the identified proteins. qRT-PCR revealed the mRNA level of CPPED1 was higher in elective caesarean deliveries than in spontaneous births, while immunohistochemistry showed CPPED1 in cytotrophoblasts, syncytiotrophoblasts and extravillous trophoblasts. Noteworthy, phosphorylation status of AKT1 did not differ between placentas from elective caesarean and spontaneous deliveries. Additionally, analyses of samples from infants indicated that single-nucleotide polymorphisms rs11643593 and rs8048866 of CPPED1 were associated with duration of term pregnancy. Finally, post-transcriptional silencing of CPPED1 in cultured HTR8/SVneo cells by siRNAs affected gene expression in pathways associated with inflammation and blood vessel development. We postulate that functions regulated by CPPED1 in trophoblasts at choriodecidual interphase have a role in the induction of term labour, but it may be independent of AKT1.
Collapse
Affiliation(s)
- Antti M. Haapalainen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Minna K. Karjalainen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Ravindra Daddali
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Steffen Ohlmeier
- Proteomics Core FacilityBiocenter OuluFaculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Julia Anttonen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Tomi A. Määttä
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Annamari Salminen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mari Mahlman
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Ulrich Bergmann
- Proteomics Core FacilityBiocenter OuluFaculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Kaarin Mäkikallio
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Obstetrics and GynecologyOulu University HospitalOuluFinland
- Department of Obstetrics and GynecologyTurku University Hospital and University of TurkuTurkuFinland
| | - Marja Ojaniemi
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mika Rämet
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
- BioMediTech Institute and Faculty of Medical and Life SciencesUniversity of TampereTampereFinland
| |
Collapse
|
49
|
Wang F, Wang J, Cao X, Xu L, Chen L. Hsa_circ_0014717 is downregulated in colorectal cancer and inhibits tumor growth by promoting p16 expression. Biomed Pharmacother 2018; 98:775-782. [DOI: 10.1016/j.biopha.2018.01.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
|
50
|
Brighton PJ, Maruyama Y, Fishwick K, Vrljicak P, Tewary S, Fujihara R, Muter J, Lucas ES, Yamada T, Woods L, Lucciola R, Hou Lee Y, Takeda S, Ott S, Hemberger M, Quenby S, Brosens JJ. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. eLife 2017; 6. [PMID: 29227245 PMCID: PMC5724991 DOI: 10.7554/elife.31274] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022] Open
Abstract
In cycling human endometrium, menstruation is followed by rapid estrogen-dependent growth. Upon ovulation, progesterone and rising cellular cAMP levels activate the transcription factor Forkhead box O1 (FOXO1) in endometrial stromal cells (EnSCs), leading to cell cycle exit and differentiation into decidual cells that control embryo implantation. Here we show that FOXO1 also causes acute senescence of a subpopulation of decidualizing EnSCs in an IL-8 dependent manner. Selective depletion or enrichment of this subpopulation revealed that decidual senescence drives the transient inflammatory response associated with endometrial receptivity. Further, senescent cells prevent differentiation of endometrial mesenchymal stem cells in decidualizing cultures. As the cycle progresses, IL-15 activated uterine natural killer (uNK) cells selectively target and clear senescent decidual cells through granule exocytosis. Our findings reveal that acute decidual senescence governs endometrial rejuvenation and remodeling at embryo implantation, and suggest a critical role for uNK cells in maintaining homeostasis in cycling endometrium.
Collapse
Affiliation(s)
- Paul J Brighton
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yojiro Maruyama
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Katherine Fishwick
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Shreeya Tewary
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Risa Fujihara
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Joanne Muter
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Emma S Lucas
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Taihei Yamada
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Laura Woods
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Raffaella Lucciola
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yie Hou Lee
- Obstetrics & Gynaecology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Sascha Ott
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Myriam Hemberger
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Siobhan Quenby
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jan Joris Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|