1
|
Kamal H, Zafar MM, Parvaiz A, Razzaq A, Elhindi KM, Ercisli S, Qiao F, Jiang X. Gossypium hirsutum calmodulin-like protein (CML 11) interaction with geminivirus encoded protein using bioinformatics and molecular techniques. Int J Biol Macromol 2024; 269:132095. [PMID: 38710255 DOI: 10.1016/j.ijbiomac.2024.132095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/24/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Plant viruses are the most abundant destructive agents that exist in every ecosystem, causing severe diseases in multiple crops worldwide. Currently, a major gap is present in computational biology determining plant viruses interaction with its host. We lay out a strategy to extract virus-host protein interactions using various protein binding and interface methods for Geminiviridae, a second largest virus family. Using this approach, transcriptional activator protein (TrAP/C2) encoded by Cotton leaf curl Kokhran virus (CLCuKoV) and Cotton leaf curl Multan virus (CLCuMV) showed strong binding affinity with calmodulin-like (CML) protein of Gossypium hirsutum (Gh-CML11). Higher negative value for the change in Gibbs free energy between TrAP and Gh-CML11 indicated strong binding affinity. Consensus from gene ontology database and in-silico nuclear localization signal (NLS) tools identified subcellular localization of TrAP in the nucleus associated with Gh-CML11 for virus infection. Data based on interaction prediction and docking methods present evidences that full length and truncated C2 strongly binds with Gh-CML11. This computational data was further validated with molecular results collected from yeast two-hybrid, bimolecular fluorescence complementation system and pull down assay. In this work, we also show the outcomes of full length and truncated TrAP on plant machinery. This is a first extensive report to delineate a role of CML protein from cotton with begomoviruses encoded transcription activator protein.
Collapse
Affiliation(s)
- Hira Kamal
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Muhammad Mubashar Zafar
- Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Aqsa Parvaiz
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan. Pakistan
| | - Abdul Razzaq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan..
| | - Khalid M Elhindi
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Fei Qiao
- Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Xuefei Jiang
- Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Sanya, China..
| |
Collapse
|
2
|
Wang J, Ao M, Ma A, Yu J, Guo P, Huang S, Peng X, Yun DJ, Xu ZY. A Mitochondrial Localized Chaperone Regulator OsBAG6 Functions in Saline-Alkaline Stress Tolerance in Rice. RICE (NEW YORK, N.Y.) 2024; 17:10. [PMID: 38252225 PMCID: PMC10803725 DOI: 10.1186/s12284-024-00686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
B-cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family genes play prominent roles in regulating plant growth, development, and stress response. Although the molecular mechanism underlying BAG's response to abiotic stress has been studied in Arabidopsis, the function of OsBAG underlying saline-alkaline stress tolerance in rice remains unclear. In this study, OsBAG6, a chaperone regulator localized to mitochondria, was identified as a novel negative regulator of saline-alkaline stress tolerance in rice. The expression level of OsBAG6 was induced by high concentration of salt, high pH, heat and abscisic acid treatments. Overexpression of OsBAG6 in rice resulted in significantly reduced plant heights, grain size, grain weight, as well as higher sensitivity to saline-alkaline stress. By contrast, the osbag6 loss-of-function mutants exhibited decreased sensitivity to saline-alkaline stress. The transcriptomic analysis uncovered differentially expressed genes related to the function of "response to oxidative stress", "defense response", and "secondary metabolite biosynthetic process" in the shoots and roots of OsBAG6-overexpressing transgenic lines. Furthermore, cytoplasmic levels of Ca2+ increase rapidly in plants exposed to saline-alkaline stress. OsBAG6 bound to calcium sensor OsCaM1-1 under normal conditions, which was identified by comparative interactomics, but not in the presence of elevated Ca2+. Released OsCaM1-1 saturated with Ca2+ is then able to regulate downstream stress-responsive genes as part of the response to saline-alkaline stress. OsBAG6 also interacted with energy biosynthesis and metabolic pathway proteins that are involved in plant growth and saline-alkaline stress response mechanisms. This study reveals a novel function for mitochondrial localized OsBAG6 proteins in the saline-alkaline stress response alongside OsCaM1-1.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Min Ao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinlei Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Shuangzhan Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xiaoyuan Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dae-Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 132-798, South Korea
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
3
|
Deokar AA, Sagi M, Tar’an B. Genetic Analysis of Partially Resistant and Susceptible Chickpea Cultivars in Response to Ascochyta rabiei Infection. Int J Mol Sci 2024; 25:1360. [PMID: 38279360 PMCID: PMC10816841 DOI: 10.3390/ijms25021360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
The molecular mechanism involved in chickpea (Cicer arietinum L.) resistance to the necrotrophic fungal pathogen Ascochyta rabiei is not well documented. A. rabiei infection can cause severe damage in chickpea, resulting in significant economic losses. Understanding the resistance mechanism against ascochyta blight can help to define strategies to develop resistant cultivars. In this study, differentially expressed genes from two partially resistant cultivars (CDC Corinne and CDC Luna) and a susceptible cultivar (ICCV 96029) to ascochyta blight were identified in the early stages (24, 48 and 72 h) of A. rabiei infection using RNA-seq. Altogether, 3073 genes were differentially expressed in response to A. rabiei infection across different time points and cultivars. A larger number of differentially expressed genes (DEGs) were found in CDC Corinne and CDC Luna than in ICCV 96029. Various transcription factors including ERF, WRKY, bHLH and MYB were differentially expressed in response to A. rabiei infection. Genes involved in pathogen detection and immune signalings such as receptor-like kinases (RLKs), Leucine-Rich Repeat (LRR)-RLKs, and genes associated with the post-infection defence response were differentially expressed among the cultivars. GO functional enrichment and pathway analysis of the DEGs suggested that the biological processes such as metabolic process, response to stimulus and catalytic activity were overrepresented in both resistant and susceptible chickpea cultivars. The expression patterns of eight randomly selected genes revealed by RNA-seq were confirmed by quantitative PCR (qPCR) analysis. The results provide insights into the complex molecular mechanism of the chickpea defence in response to the A. rabiei infection.
Collapse
Affiliation(s)
| | | | - Bunyamin Tar’an
- Crop Development Centre, Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
4
|
Ahmed R, Dey KK, Senthil-Kumar M, Modi MK, Sarmah BK, Bhorali P. Comparative transcriptome profiling reveals differential defense responses among Alternaria brassicicola resistant Sinapis alba and susceptible Brassica rapa. FRONTIERS IN PLANT SCIENCE 2024; 14:1251349. [PMID: 38304451 PMCID: PMC10831657 DOI: 10.3389/fpls.2023.1251349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/14/2023] [Indexed: 02/03/2024]
Abstract
Alternaria blight is a devastating disease that causes significant crop losses in oilseed Brassicas every year. Adoption of conventional breeding to generate disease-resistant varieties has so far been unsuccessful due to the lack of suitable resistant source germplasms of cultivated Brassica spp. A thorough understanding of the molecular basis of resistance, as well as the identification of defense-related genes involved in resistance responses in closely related wild germplasms, would substantially aid in disease management. In the current study, a comparative transcriptome profiling was performed using Illumina based RNA-seq to detect differentially expressed genes (DEGs) specifically modulated in response to Alternaria brassicicola infection in resistant Sinapis alba, a close relative of Brassicas, and the highly susceptible Brassica rapa. The analysis revealed that, at 48 hpi (hours post inoculation), 3396 genes were upregulated and 23239 were downregulated, whereas at 72 hpi, 4023 genes were upregulated and 21116 were downregulated. Furthermore, a large number of defense response genes were detected to be specifically regulated as a result of Alternaria infection. The transcriptome data was validated using qPCR-based expression profiling for selected defense-related DEGs, that revealed significantly higher fold change in gene expression in S. alba when compared to B. rapa. Expression of most of the selected genes was elevated across all the time points under study with significantly higher expression towards the later time point of 72 hpi in the resistant germplasm. S. alba activates a stronger defense response reaction against the disease by deploying an array of genes and transcription factors involved in a wide range of biological processes such as pathogen recognition, signal transduction, cell wall modification, antioxidation, transcription regulation, etc. Overall, the study provides new insights on resistance of S. alba against A. brassicicola, which will aid in devising strategies for breeding resistant varieties of oilseed Brassica.
Collapse
Affiliation(s)
- Reshma Ahmed
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Kuntal Kumar Dey
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | | | - Mahendra Kumar Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- Department of Biotechnology - Northeast Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Priyadarshini Bhorali
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| |
Collapse
|
5
|
Aleynova OA, Kiselev KV, Suprun AR, Ananev AA, Dubrovina AS. Involvement of the Calmodulin-like Protein Gene VaCML92 in Grapevine Abiotic Stress Response and Stilbene Production. Int J Mol Sci 2023; 24:15827. [PMID: 37958810 PMCID: PMC10649675 DOI: 10.3390/ijms242115827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Calmodulin-like proteins (CMLs) are an important family of plant calcium sensor proteins that sense and decode changes in the intracellular calcium concentration in response to environmental and developmental stimuli. Nonetheless, the specific functions of individual CML family members remain largely unknown. This study aims to explore the role of the Vitis amurensis VaCML92 gene in the development of its high stress resistance and the production of stilbenes. The expression of VaCML92 was sharply induced in V. amurensis cuttings after cold stress. The VaCML92 gene was cloned and its role in the abiotic stress responses and stilbene production in grapevine was further investigated. The VaCML92-overexpressing callus cell cultures of V. amurensis and soil-grown plants of Arabidopsis thaliana exhibited enhanced tolerance to cold stress and, to a lesser extent, to the drought, while their tolerance to heat stress and high salinity was not affected. In addition, the overexpression of VaCML92 increased stilbene production in the V. amurensis cell cultures by 7.8-8.7-fold. Taken together, the data indicate that the VaCML92 gene is involved as a strong positive regulator in the rapid response to cold stress, the induction of cold stress resistance and in stilbene production in wild grapevine.
Collapse
Affiliation(s)
| | | | | | | | - Alexandra S. Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia (K.V.K.)
| |
Collapse
|
6
|
Wang L, Yeo S, Lee M, Endah S, Alhuda NA, Yue GH. Combination of GWAS and F ST-based approaches identified loci associated with economic traits in sugarcane. Mol Genet Genomics 2023:10.1007/s00438-023-02040-2. [PMID: 37289230 DOI: 10.1007/s00438-023-02040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
Sugarcane is a globally important plant for both sugar and biofuel production. Although conventional breeding has played an important role in increasing the productivity of sugarcane, it takes a long time to achieve breeding goals such as high yield and resistant to diseases. Molecular breeding, including marker-assisted breeding and genomic selection, can accelerate genetic improvement by selecting elites at the seedling stage with DNA markers. However, only a few DNA markers associated with important traits were identified in sugarcane. The purpose of this study was to identify DNA markers associated with sugar content, stalk diameter, and sugarcane top borer resistance. The sugarcane samples with trait records were genotyped using the restriction site-associated DNA sequencing (RADseq) technology. Using FST analysis and genome-wide association study (GWAS), a total of 9, 23 and 9 DNA variants (single nucleotide polymorphisms (SNPs)/insertions and deletions (indels)) were associated with sugar content, stalk diameter, and sugarcane top borer resistance, respectively. The identified genetic variants were on different chromosomes, suggesting that these traits are complex and determined by multiple genetic factors. These DNA markers identified by both approaches have the potential to be used in selecting elite clones at the seeding stage in our sugarcane breeding program to accelerate genetic improvement. Certainly, it is essential to verify the reliability of the identified DNA markers associated with traits before they are used in molecular breeding in other populations.
Collapse
Affiliation(s)
- Le Wang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Shadame Yeo
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - May Lee
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - S Endah
- Research and Development, PT Gunung Madu Plantations, KM 90 Terusan Nunyai, Central Lampung, Lampung, 34167, Indonesia
| | - N A Alhuda
- Research and Development, PT Gunung Madu Plantations, KM 90 Terusan Nunyai, Central Lampung, Lampung, 34167, Indonesia
| | - G H Yue
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore.
| |
Collapse
|
7
|
Li X, Wang L, Cui Y, Liu C, Liu Y, Lu L, Luo M. The cotton protein GhIQD21 interacts with GhCaM7 and modulates organ morphogenesis in Arabidopsis by influencing microtubule stability. PLANT CELL REPORTS 2023; 42:1025-1038. [PMID: 37010557 DOI: 10.1007/s00299-023-03010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE GhIQD21, a cotton IQ67-domain protein, interacts with GhCaM7 and alters organ shape in Arabidopsis by modulating microtubule stability. Calcium ion (Ca2+) and the calcium sensor calmodulin play crucial roles in the growth and development of plants. GhCaM7, a calmodulin in upland cotton (Gossypium hirsutum L.), is highly expressed in cotton fiber cells during the rapid elongation period and plays an important role in fiber cell development. In this study, we screened for GhCaM7-interacting proteins and identified GhIQD21, which contains a typical IQ67-domain. GhIQD21 was preferentially expressed at the fiber rapid elongation stage, and the protein localized to microtubules (MTs). Ectopic expression of GhIQD21 in Arabidopsis resulted in shorter leaves, petals, siliques, and plant height, thicker inflorescences, and more trichomes when compared with wild type (WT). Further investigation indicated that the morphogenesis of leaf epidermal cells and silique cells was altered. There was less consistency in the orientation of cortical microtubules in cotyledon and hypocotyl epidermal cells. Furthermore, compared with WT, transgenic seedling hypocotyls were more sensitive to oryzalin, a MT depolymerization drug. These results indicated that GhIQD21 is a GhCaM7-interacting protein located in MTs and that it plays a role in plant growth and potentially cotton fiber development. This study provides a foundation for further studies of the function and regulatory mechanism of GhIQD21 in fiber cell development.
Collapse
Affiliation(s)
- Xing Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yupeng Cui
- Anyang Institute of Technology, Anyang, 455000, China
| | - Chen Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yujie Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lili Lu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China.
| | - Ming Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
8
|
Zribi I, Ghorbel M, Haddaji N, Besbes M, Brini F. Genome-Wide Identification and Expression Profiling of Pathogenesis-Related Protein 1 ( PR-1) Genes in Durum Wheat ( Triticum durum Desf.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1998. [PMID: 37653915 PMCID: PMC10223549 DOI: 10.3390/plants12101998] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 07/30/2023]
Abstract
Pathogen-related proteins (PRs) are diversified proteins with a low molecular weight implicated in plant response to biotic and abiotic stress as well in regulating different functions in plant maturation. Interestingly, no systematical study has been conducted in durum wheat (Triticum turgidum subsp. durum). In the present study, 12 PR-1 genes encoding a CAP superfamily domain were identified in the genome of Triticum turgidum subsp. durum, which is an important cereal, using in silico approaches. Additionally, phylogenetic analysis showed that the PR-1 genes were classified into three groups based on their isoelectric point and the conserved motif domain. Moreover, our analysis showed that most of the TdPR-1 proteins presented an N-terminal signal peptide. Expression patterns analysis showed that the PR-1 gene family presented temporal and spatial specificity and was induced by different abiotic stresses. This is the first report describing the genome-scale analysis of the durum wheat PR-1 gene family, and these data will help further study the roles of PR-1 genes during stress responses, leading to crop improvement.
Collapse
Affiliation(s)
- Ikram Zribi
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia;
| | - Mouna Ghorbel
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (M.B.)
| | - Najla Haddaji
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (M.B.)
| | - Malek Besbes
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia; (M.G.); (N.H.); (M.B.)
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia;
| |
Collapse
|
9
|
Xue N, Sun M, Gai Z, Bai M, Sun J, Sai S, Zhang L. Genome-Wide Identification and Expression Analysis of Calmodulin (CaM) and Calmodulin-Like (CML) Genes in the Brown Algae Saccharina japonica. PLANTS (BASEL, SWITZERLAND) 2023; 12:1934. [PMID: 37653850 PMCID: PMC10222329 DOI: 10.3390/plants12101934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 09/02/2023]
Abstract
Calmodulins (CaMs) and Calmodulin-like proteins (CMLs) are vital in plant growth, development, and stress responses. However, CaMs and CMLs have not been fully identified and characterized in brown algae, which has been evolving independently of the well-studied green plant lineage. In this study, whole-genome searches revealed one SjCaM and eight SjCMLs in Saccharina japonica, and one EsCaM and eleven EsCMLs in Ectocarpus sp. SjCaM and EsCaM encoded identical protein products and shared 88.59-89.93% amino acid identities with Arabidopsis thaliana AtCaMs, thereby indicating that brown algae CaMs retained a similar Ca2+ sensors function as in plants. The phylogenetic and gene structure analysis results showed that there was significant divergence in the gene sequences among brown algae CMLs. Furthermore, evolutionary analysis indicated that the function of brown alga CMLs was relatively conserved, which may be related to the fact that brown algae do not need to face complex environments like terrestrial plants. Regulatory elements prediction and the expression analysis revealed the probable functioning of SjCaM/CML genes in gametophyte development and the stress response in S. japonica. In addition, the SjCaM/SjCMLs interacting proteins and chemicals were preliminarily predicted, suggesting that SjCaM/SjCMLs might play putative roles in Ca2+/CaM-mediated growth and development processes and stimulus responses. Therefore, these results will facilitate our understanding of the evolution of brown algae CaMs/CMLs and the functional identification of SjCaM/SjCMLs.
Collapse
Affiliation(s)
- Nianchao Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Minghui Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Zihan Gai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Meihan Bai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Juan Sun
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Shandong Technology Innovation Center of Algae and Sea Cucumber, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai 264003, China
| | - Shan Sai
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Shandong Technology Innovation Center of Algae and Sea Cucumber, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai 264003, China
| | - Linan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
10
|
Zhao H, Gao Y, Du Y, Du J, Han Y. Genome-wide analysis of the CML gene family and its response to melatonin in common bean (Phaseolus vulgaris L.). Sci Rep 2023; 13:1196. [PMID: 36681714 PMCID: PMC9867747 DOI: 10.1038/s41598-023-28445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Calmodulin-like proteins (CML) are important calcium signal transduction proteins in plants. CML genes have been analyzed in several plants. However, little information on CML in Phaseolus vulgare is available. In this study, we identified 111 PvCMLs distributed on eleven chromosomes. Phylogenetic analysis classified them into seven subfamilies. Cis-acting element prediction showed that PvCML contained elements related to growth and development, response to abiotic stress and hormones. Moreover, the majority of PvCMLs showed different expression patterns in most of the nine tissues and developmental stages which indicated the role of PvCML in the growth and development of common bean. Additionally, the common bean was treated with melatonin by seed soaking, and root transcriptome at the 5th day and qRT-PCR of different tissue at several stages were performed to reveal the response of PvCML to the hormone. Interestingly, 9 PvCML genes of subfamily VI were detected responsive to exogenous melatonin, and the expression dynamics of nine melatonin response PvCML genes after seed soaking with melatonin were revealed. Finally, the protein interaction network analysis of nine melatonin responsive PvCMLs was constructed. The systematic analysis of the PvCML gene family provides theoretical support for the further elucidation of their functions, and melatonin response molecular mechanism of the CML family in P. vulgaris.
Collapse
Affiliation(s)
- Hongyan Zhao
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
- National Coarse Cereals Engineering Research Center, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Yamei Gao
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in the Cold Region, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yanli Du
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Jidao Du
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Yiqiang Han
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China.
- National Coarse Cereals Engineering Research Center, Daqing, 163319, Heilongjiang, People's Republic of China.
| |
Collapse
|
11
|
Wang H, Feng M, Zhong X, Yu Q, Que Y, Xu L, Guo J. Identification of Saccharum CaM gene family and function characterization of ScCaM1 during cold and oxidant exposure in Pichia pastoris. Genes Genomics 2023; 45:103-122. [PMID: 35608775 DOI: 10.1007/s13258-022-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Calmodulin (CaM) plays an essential role in binding calcium ions and mediating the interpretation of Ca2+ signals in plants under various stresses. However, the evolutionary relationship of CaM family proteins in Saccharum has not been elucidated. OBJECTIVE To deduce and explore the evolution and function of Saccharum CaM family. METHODS A total of 104 typical CaMs were obtained from Saccharum spontaneum and other 18 plant species. The molecular characteristics and evolution of those CaM proteins were analyzed. A typical CaM gene, ScCaM1, was subsequently cloned from sugarcane (Saccharum spp. hybrid). Its expression patterns in different tissues and under various abiotic stresses were assessed by quantitative real-time PCR. Then the green fluorescent protein was used to determine the subcellular localization of ScCaM1. Finally, the function of ScCaM1 was evaluated via heterologous yeast expression systems. RESULTS Three typical CaM members (SsCaM1, SsCaM2, and SsCaM3) were identified from the S. spontaneum genome database. CaMs were originated from the two last common ancestors before the origin of angiosperms. The number of CaM family members did not correlate to the genome size but correlated with allopolyploidization events. The ScCaM1 was more highly expressed in buds and roots than in other tissues. The expression patterns of ScCaM1 suggested that it was involved in responses to various abiotic stresses in sugarcane via different hormonal signaling pathways. Noteworthily, its expression levels appeared relatively stable during the cold exposure in the cold-tolerant variety but significantly suppressed in the cold-susceptible variety. Moreover, the recombinant yeast (Pichia pastoris) overexpressing ScCaM1 grew better than the wild-type yeast strain under cold and oxidative stresses. It was revealed that the ScCaM1 played a positive role in reactive oxygen species scavenging and conferred enhanced cold and oxidative stress tolerance to cells. CONCLUSION This study provided comprehensive information on the CaM gene family in Saccharum and would facilitate further investigation of their functional characterization.
Collapse
Affiliation(s)
- Hengbo Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meichang Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoqiang Zhong
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing Yu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
12
|
Ma M, Liu S, Wang Z, Shao R, Ye J, Yan W, Lv H, Hasi A, Che G. Genome-Wide Identification of the SUN Gene Family in Melon ( Cucumis melo) and Functional Characterization of Two CmSUN Genes in Regulating Fruit Shape Variation. Int J Mol Sci 2022; 23:16047. [PMID: 36555689 PMCID: PMC9785357 DOI: 10.3390/ijms232416047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Melon (Cucumis melo) is an important economic crop cultivated worldwide. A unique SUN gene family plays a crucial role in regulating plant growth and fruit development, but many SUN family genes and their function have not been well-characterized in melon. In the present study, we performed genome-wide identification and bioinformatics analysis and identified 24 CmSUN family genes that contain integrated and conserved IQ67 domain in the melon genome. Transcriptome data analysis and qRT-PCR results showed that most CmSUNs are specifically enriched in melon reproductive organs, such as young flowers and ovaries. Through genetic transformation in melons, we found that overexpression of CmSUN23-24 and CmSUN25-26-27c led to an increased fruit shape index, suggesting that they act as essential regulators in melon fruit shape variation. Subcellular localization revealed that the CmSUN23-24 protein is located in the cytoplasmic membrane. A direct interaction between CmSUN23-24 and a Calmodulin protein CmCaM5 was found by yeast two-hybrid assay, which indicated their participation in the calcium signal transduction pathway in regulating plant growth. These findings revealed the molecular characteristics, expression profile, and functional pattern of the CmSUN genes, and may provide the theoretical basis for the genetic improvement of melon fruit breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Agula Hasi
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Gen Che
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
13
|
Song Q, Zhang S, Bai C, Shi Q, Wu D, Liu Y, Han X, Li T, Yong JWH. Exogenous Ca 2+ priming can improve peanut photosynthetic carbon fixation and pod yield under early sowing scenarios in the field. FRONTIERS IN PLANT SCIENCE 2022; 13:1004721. [PMID: 36247552 PMCID: PMC9557924 DOI: 10.3389/fpls.2022.1004721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Harnessing cold-resilient and calcium-enriched peanut production technology are crucial for high-yielding peanut cultivation in high-latitude areas. However, there is limited field data about how exogenous calcium (Ca2+) application would improve peanut growth resilience during exposure to chilling stress at early sowing (ES). To help address this problem, a two-year field study was conducted to assess the effects of exogenous foliar Ca2+ application on photosynthetic carbon fixation and pod yield in peanuts under different sowing scenarios. We measured plant growth indexes, leaf photosynthetic gas exchange, photosystems activities, and yield in peanuts. It was indicated that ES chilling stress at the peanut seedling stage led to the reduction of Pn, gs, Tr, Ls, WUE, respectively, and the excessive accumulation of non-structural carbohydrates in leaves, which eventually induced a chilling-dependent feedback inhibition of photosynthesis due mainly to weaken growth/sink demand. While exogenous Ca2+ foliar application improved the export of nonstructural carbohydrates, and photosynthetic capacity, meanwhile activated cyclic electron flow, thereby enhancing growth and biomass accumulation in peanut seedlings undergoing ES chilling stress. Furthermore, ES combined with exogenous Ca2+ application can significantly enhance plant chilling resistance and peanut yield ultimately in the field. In summary, the above results demonstrated that exogenous foliar Ca2+ application restored the ES-linked feedback inhibition of photosynthesis, enhancing the growth/sink demand and the yield of peanuts.
Collapse
Affiliation(s)
- Qiaobo Song
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- Research Institute of Sorghum, Liaoning Academy of Agricultural Sciences, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Qingwen Shi
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Di Wu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Tianlai Li
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
14
|
Identification and validation of candidate genes for high calcium content in finger millet [Eleusine coracana (L.) Gaertn.] through genome-wide association study. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
The Activity of the Durum Wheat (Triticum durum L.) Catalase 1 (TdCAT1) Is Modulated by Calmodulin. Antioxidants (Basel) 2022; 11:antiox11081483. [PMID: 36009202 PMCID: PMC9404813 DOI: 10.3390/antiox11081483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 01/14/2023] Open
Abstract
Plant catalases (CAT) are involved in the cellular scavenging of the reactive oxygen species during developmental processes and in response to abiotic and biotic stresses. However, little is known about the regulation of the CAT activity to ensure efficient antioxidant function. Using bioinformatic analyses, we showed that durum wheat catalase 1 (TdCAT1) harbors highly conserved cation-binding and calmodulin binding (CaMBD) domains which are localized at different positions of the protein. As a result, the catalytic activity of TdCAT1 is enhanced in vitro by the divalent cations Mn2+ and Fe2+ and to a lesser extent by Cu2+, Zn2+, and Mg2+. Moreover, the GST-pull down assays performed here revealed that TdCAT1 bind to the wheat CaM (TdCaM1.3) in a Ca2+-independent manner. Furthermore, the TdCaM1.3/Ca2+ complex is stimulated in a CaM-dose-dependent manner by the catalytic activity of TdCAT1, which is further increased in the presence of Mn2+ cations. The catalase activity of TdCAT1 is enhanced by various divalent cations and TdCaM1.3 in a Ca-dependent manner. Such effects are not reported so far and raise a possible role of CaM and cations in the function of CATs during cellular response to oxidative stress.
Collapse
|
16
|
Characterization of the Calmodulin/Calmodulin-like Protein (CAM/CML) Family in Ginkgo biloba, and the Influence of an Ectopically Expressed GbCML Gene (Gb_30819) on Seedling and Fruit Development of Transgenic Arabidopsis. PLANTS 2022; 11:plants11111506. [PMID: 35684283 PMCID: PMC9183014 DOI: 10.3390/plants11111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/05/2022]
Abstract
Calmodulins (CAMs) and calmodulin-like proteins (CMLs) can participate in the regulation of various physiological processes via sensing and decoding Ca2+ signals. To reveal the characteristics of the CAM/CML family in Ginkgo biloba, a comprehensive analysis was performed at the genome-wide level. A total of 26 CAMs/CMLs, consisting of 5 GbCAMs and 21 GbCMLs, was identified on 11 out of 12 chromosomes in G. biloba. They displayed a certain degree of multiplicity in their sequences, albeit with conserved EF hands. Collinearity analysis suggested that tandem rather than segmental or whole-genome duplications were likely to play roles in the evolution of the Ginkgo CAM/CML family. Furthermore, GbCAMs/GbCMLs were grouped into higher, lower, and moderate expression in magnitude. The cis-acting regulatory elements involved in phytohormone-responsiveness within GbCAM/GbCML promotors may explain their varied expression profiles. The ectopic expression of a GbCML gene (Gb_30819) in transgenic Arabidopsis led to phenotypes with significantly shortened root length and seedling height, and decreased yields of both pods and seeds. Moreover, an electrophoresis mobility shift assay demonstrated the Ca2+-binding activity of Gb_30819 in vitro. Altogether, these results contribute to insights into the characteristics of the evolution and expression of GbCAMs/GbCMLs, as well as evidence for Ca2+-CAM/CML pathways functioning within the ancient gymnosperm G. biloba.
Collapse
|
17
|
Identification of the Wheat (Triticum aestivum) IQD Gene Family and an Expression Analysis of Candidate Genes Associated with Seed Dormancy and Germination. Int J Mol Sci 2022; 23:ijms23084093. [PMID: 35456910 PMCID: PMC9025732 DOI: 10.3390/ijms23084093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
The IQ67 Domain (IQD) gene family plays important roles in plant developmental processes and stress responses. Although IQDs have been characterized in model plants, little is known about their functions in wheat (Triticum aestivum), especially their roles in the regulation of seed dormancy and germination. Here, we identified 73 members of the IQD gene family from the wheat genome and phylogenetically separated them into six major groups. Gene structure and conserved domain analyses suggested that most members of each group had similar structures. A chromosome positional analysis showed that TaIQDs were unevenly located on 18 wheat chromosomes. A synteny analysis indicated that segmental duplications played significant roles in TaIQD expansion, and that the IQD gene family underwent strong purifying selection during evolution. Furthermore, a large number of hormone, light, and abiotic stress response elements were discovered in the promoters of TaIQDs, implying their functional diversity. Microarray data for 50 TaIQDs showed different expression levels in 13 wheat tissues. Transcriptome data and a quantitative real-time PCR analysis of wheat varieties with contrasting seed dormancy and germination phenotypes further revealed that seven genes (TaIQD4/-28/-32/-58/-64/-69/-71) likely participated in seed dormancy and germination through the abscisic acid-signaling pathway. The study results provide valuable information for cloning and a functional investigation of candidate genes controlling wheat seed dormancy and germination; consequently, they increase our understanding of the complex regulatory networks affecting these two traits.
Collapse
|
18
|
Ke Q, Sun H, Tang M, Luo R, Zeng Y, Wang M, Li Y, Li Z, Cui L. Genome-wide identification, expression analysis and evolutionary relationships of the IQ67-domain gene family in common wheat (Triticum aestivum L.) and its progenitors. BMC Genomics 2022; 23:264. [PMID: 35382737 PMCID: PMC8981769 DOI: 10.1186/s12864-022-08520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The plant-specific IQ67-domain (IQD) gene family plays an important role in plant development and stress responses. However, little is known about the IQD family in common wheat (Triticum aestivum L), an agriculturally important crop that provides more than 20% of the calories and protein consumed in the modern human diet. RESULTS We identified 125 IQDs in the wheat genome and divided them into four subgroups by phylogenetic analysis. The IQDs belonging to the same subgroup had similar exon-intron structure and conserved motif composition. Polyploidization contributed significantly to the expansion of IQD genes in wheat. Characterization of the expression profile of these genes revealed that a few T. aestivum (Ta)IQDs showed high tissue-specificity. The stress-induced expression pattern also revealed a potential role of TaIQDs in environmental adaptation, as TaIQD-2A-2, TaIQD-3A-9 and TaIQD-1A-7 were significantly induced by cold, drought and heat stresses, and could be candidates for future functional characterization. In addition, IQD genes in the A, B and D subgenomes displayed an asymmetric evolutionary pattern, as evidenced by their different gain or loss of member genes, expression levels and nucleotide diversity. CONCLUSIONS This study elucidated the potential biological functions and evolutionary relationships of the IQD gene family in wheat and revealed the divergent fates of IQD genes during polyploidization.
Collapse
Affiliation(s)
- Qinglin Ke
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Huifan Sun
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Minqiang Tang
- College of Forestry, Hainan University, Hainan, 570228, China
| | - Ruihan Luo
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Yan Zeng
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Mengxing Wang
- College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Zhimin Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China. .,Key Laboratory for Crop Gene Resources and Germplasm Enhancement, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, MOA, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
19
|
Wang D, Huang F, Yan P, Nie Y, Chen L, Luo J, Zhao H, Wang Y, Han S. Cytosolic and Nucleosolic Calcium-Regulated Molecular Networks in Response to Long-Term Treatment with Abscisic Acid and Methyl Jasmonate in Arabidopsis thaliana. Genes (Basel) 2022; 13:genes13030524. [PMID: 35328077 PMCID: PMC8950999 DOI: 10.3390/genes13030524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Calcium acts as a universal secondary messenger that transfers developmental cues and stress signals for gene expression and adaptive growth. A prior study showed that abiotic stresses induce mutually independent cytosolic Ca2+ ([Ca2+]cyt) and nucleosolic Ca2+ ([Ca2+]nuc) increases in Arabidopsis thaliana root cells. However, gene expression networks deciphering [Ca2+]cyt and [Ca2+]nuc signalling pathways remain elusive. Here, using transgenic A. thaliana to selectively impair abscisic acid (ABA)- or methyl jasmonate (MeJA)-induced [Ca2+]cyt and [Ca2+]nuc increases, we identified [Ca2+]cyt- and [Ca2+]nuc-regulated ABA- or MeJA-responsive genes with a genome oligo-array. Gene co-expression network analysis revealed four Ca2+ signal-decoding genes, CAM1, CIPK8, GAD1, and CPN20, as hub genes co-expressed with Ca2+-regulated hormone-responsive genes and hormone signalling genes. Luciferase complementation imaging assays showed interactions among CAM1, CIPK8, and GAD1; they also showed interactions with several proteins encoded by Ca2+-regulated hormone-responsive genes. Furthermore, CAM1 and CIPK8 were required for MeJA-induced stomatal closure; they were associated with ABA-inhibited seed germination. Quantitative reverse transcription polymerase chain reaction analysis showed the unique expression pattern of [Ca2+]-regulated hormone-responsive genes in cam1, cipk8, and gad1. This comprehensive understanding of distinct Ca2+ and hormonal signalling will allow the application of approaches to uncover novel molecular foundations for responses to developmental and stress signals in plants.
Collapse
Affiliation(s)
- Doudou Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Feifei Huang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Pengcheng Yan
- Department of Computational Biology, Beijing Computing Center, Beijing 100094, China;
| | - Yanli Nie
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Lvli Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Jin Luo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (F.H.); (Y.N.); (L.C.); (J.L.); (H.Z.); (Y.W.)
- Correspondence:
| |
Collapse
|
20
|
Preharvest Spray Hexanal Formulation Enhances Postharvest Quality in ‘Honeycrisp’ Apples by Regulating Phospholipase D and Calcium Sensor Proteins Genes. PLANTS 2021; 10:plants10112332. [PMID: 34834695 PMCID: PMC8623384 DOI: 10.3390/plants10112332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
‘Honeycrisp’ (Malus domestica Borkh.), a premium applecultivar, is highly susceptible to bitter pit and decline in quality during long-term storage. In order to enhance the quality, an aqueous composition containing hexanal was applied as a preharvest spray. The effects of hexanal were assessed on the treated fruit and compared with HarvistaTM (a sprayable 1-Methylcyclopropene based commercial formulation) applied and control fruit under both cold (2.5 °C; four months) and cold after room temperature storage (20 °C; 14 days) conditions. Color, firmness, and total soluble solids (TSS) did not show a significant change in response to any treatment at harvest, while abscisic acid (ABA) significantly reduced and tryptophan increased in response to hexanal, compared to HarvistaTM and control. The treatment effects on quality traits were observed during storage. Both hexanal and HarvistaTM sprayed apples had higher TSS under both cold and room temperature storage. In addition, both sprays enhanced firmness at room temperature storage. However, the effects of sprays on other quality traits showed a different pattern. Apples sprayed with hexanal had lower phospholipase D enzyme (PLD) activity, lower incidence of bitter pit, and decreased expression of MdPLDα1 compared to HarvistaTM and control. On the other hand, HarvistaTM treated fruit produced lower ethylene. Both sprays decreased the expression of MdPLDα4, MdCaM2, MdCaM4 and MdCML18 genes. Generally, PLD alpha has a direct role in promoting fruit senescence, whereas the calcium senor proteins (CaM/CMLs) may involve in fruit ripening process via calcium and ethylene interactions. Therefore, improved postharvest qualities, including the lower incidence of bitter pit in hexanal treated ‘Honeycrisp’, may be associated with lower membrane damage due to lower PLD enzyme activity and decreased expression of MdPLDα1 and MdPLDα4 genes throughout the storage period.
Collapse
|
21
|
Physiological and Molecular Responses of 'Dusa' Avocado Rootstock to Water Stress: Insights for Drought Adaptation. PLANTS 2021; 10:plants10102077. [PMID: 34685886 PMCID: PMC8537572 DOI: 10.3390/plants10102077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022]
Abstract
Avocado consumption is increasing year by year, and its cultivation has spread to many countries with low water availability, which threatens the sustainability and profitability of avocado orchards. However, to date, there is not much information on the behavior of commercial avocado rootstocks against drought. The aim of this research was to evaluate the physiological and molecular responses of ‘Dusa’ avocado rootstock to different levels of water stress. Plants were deficit irrigated until soil water content reached 50% (mild-WS) and 25% (severe-WS) of field capacity. Leaf water potential (Ψw), net CO2 assimilation rates (AN), transpiration rate (E), stomatal conductance (gs), and plant transpiration rates significantly decreased under both WS treatments, reaching significantly lower values in severe-WS plants. After rewatering, mild- and severe-WS plants showed a fast recovery in most physiological parameters measured. To analyze root response to different levels of drought stress, a cDNA avocado stress microarray was carried out. Plants showed a wide transcriptome response linked to the higher degree of water stress, and functional enrichment of differentially expressed genes (DEGs) revealed abundance of common sequences associated with water stress, as well as specific categories for mild-WS and severe-WS. DEGs previously linked to drought tolerance showed overexpression under both water stress levels, i.e., several transcription factors, genes related to abscisic acid (ABA) response, redox homeostasis, osmoprotection, and cell-wall organization. Taken altogether, physiological and molecular data highlight the good performance of ‘Dusa’ rootstock under low-water-availability conditions, although further water stress experiments must be carried out under field conditions.
Collapse
|
22
|
Ahmed FF, Hossen MI, Sarkar MAR, Konak JN, Zohra FT, Shoyeb M, Mondal S. Genome-wide identification of DCL, AGO and RDR gene families and their associated functional regulatory elements analyses in banana (Musa acuminata). PLoS One 2021; 16:e0256873. [PMID: 34473743 PMCID: PMC8412350 DOI: 10.1371/journal.pone.0256873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
RNA silencing is mediated through RNA interference (RNAi) pathway gene families, i.e., Dicer-Like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) and their cis-acting regulatory elements. The RNAi pathway is also directly connected with the post-transcriptional gene silencing (PTGS) mechanism, and the pathway controls eukaryotic gene regulation during growth, development, and stress response. Nevertheless, genome-wide identification of RNAi pathway gene families such as DCL, AGO, and RDR and their regulatory network analyses related to transcription factors have not been studied in many fruit crop species, including banana (Musa acuminata). In this study, we studied in silico genome-wide identification and characterization of DCL, AGO, and RDR genes in bananas thoroughly via integrated bioinformatics approaches. A genome-wide analysis identified 3 MaDCL, 13 MaAGO, and 5 MaRDR candidate genes based on multiple sequence alignment and phylogenetic tree related to the RNAi pathway in banana genomes. These genes correspond to the Arabidopsis thaliana RNAi silencing genes. The analysis of the conserved domain, motif, and gene structure (exon-intron numbers) for MaDCL, MaAGO, and MaRDR genes showed higher homogeneity within the same gene family. The Gene Ontology (GO) enrichment analysis exhibited that the identified RNAi genes could be involved in RNA silencing and associated metabolic pathways. A number of important transcription factors (TFs), e.g., ERF, Dof, C2H2, TCP, GATA and MIKC_MADS families, were identified by network and sub-network analyses between TFs and candidate RNAi gene families. Furthermore, the cis-acting regulatory elements related to light-responsive (LR), stress-responsive (SR), hormone-responsive (HR), and other activities (OT) functions were identified in candidate MaDCL, MaAGO, and MaRDR genes. These genome-wide analyses of these RNAi gene families provide valuable information related to RNA silencing, which would shed light on further characterization of RNAi genes, their regulatory elements, and functional roles, which might be helpful for banana improvement in the breeding program.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Faculty of Science, Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
- * E-mail:
| | - Md. Imran Hossen
- Faculty of Science, Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Faculty of Biological Science and Technology, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Jesmin Naher Konak
- Faculty of Life Science, Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Fatema Tuz Zohra
- Faculty of Agriculture, Laboratory of Fruit Science, Saga University, Honjo-machi, Saga, Japan
| | - Md. Shoyeb
- Faculty of Biological Science and Technology, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Samiran Mondal
- Faculty of Science, Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
23
|
Basu R, Dutta S, Pal A, Sengupta M, Chattopadhyay S. Calmodulin7: recent insights into emerging roles in plant development and stress. PLANT MOLECULAR BIOLOGY 2021; 107:1-20. [PMID: 34398355 DOI: 10.1007/s11103-021-01177-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/27/2021] [Indexed: 05/25/2023]
Abstract
Analyses of the function of Arabidopsis Calmodulin7 (CAM7) in concert with multiple regulatory proteins involved in various signal transduction processes. Calmodulin (CaM) plays various regulatory roles in multiple signaling pathways in eukaryotes. Arabidopsis CALMODULIN 7 (CAM7) is a unique member of the CAM family that works as a transcription factor in light signaling pathways. CAM7 works in concert with CONSTITUTIVE PHOTOMORPHOGENIC 1 and ELONGATED HYPOCOTYL 5, and plays an important role in seedling development. Further, it is involved in the regulation of the activity of various Ca2+-gated channels such as cyclic nucleotide gated channel 6 (CNGC6), CNGC14 and auto-inhibited Ca2+ ATPase 8. Recent studies further indicate that CAM7 is also an integral part of multiple signaling pathways including hormone, immunity and stress. Here, we review the recent advances in understanding the multifaceted role of CAM7. We highlight the open-ended questions, and also discuss the diverse aspects of CAM7 characterization that need to be addressed for comprehensive understanding of its cellular functions.
Collapse
Affiliation(s)
- Riya Basu
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Siddhartha Dutta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Abhideep Pal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Mandar Sengupta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
24
|
Bourgine B, Guihur A. Heat Shock Signaling in Land Plants: From Plasma Membrane Sensing to the Transcription of Small Heat Shock Proteins. FRONTIERS IN PLANT SCIENCE 2021; 12:710801. [PMID: 34434209 PMCID: PMC8381196 DOI: 10.3389/fpls.2021.710801] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/06/2021] [Indexed: 05/08/2023]
Abstract
Heat stress events are major factors limiting crop productivity. During summer days, land plants must anticipate in a timely manner upcoming mild and severe temperature. They respond by accumulating protective heat-shock proteins (HSPs), conferring acquired thermotolerance. All organisms synthetize HSPs; many of which are members of the conserved chaperones families. This review describes recent advances in plant temperature sensing, signaling, and response. We highlight the pathway from heat perception by the plasma membrane through calcium channels, such as cyclic nucleotide-gated channels, to the activation of the heat-shock transcription factors (HSFs). An unclear cellular signal activates HSFs, which act as essential regulators. In particular, the HSFA subfamily can bind heat shock elements in HSP promoters and could mediate the dissociation of bound histones, leading to HSPs transcription. Although plants can modulate their transcriptome, proteome, and metabolome to protect the cellular machinery, HSP chaperones prevent, use, and revert the formation of misfolded proteins, thereby avoiding heat-induced cell death. Remarkably, the HSP20 family is mostly tightly repressed at low temperature, suggesting that a costly mechanism can become detrimental under unnecessary conditions. Here, the role of HSP20s in response to HS and their possible deleterious expression at non-HS temperatures is discussed.
Collapse
Affiliation(s)
| | - Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Mei C, Liu Y, Dong X, Song Q, Wang H, Shi H, Feng R. Genome-Wide Identification and Characterization of the Potato IQD Family During Development and Stress. Front Genet 2021; 12:693936. [PMID: 34386041 PMCID: PMC8354571 DOI: 10.3389/fgene.2021.693936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/16/2021] [Indexed: 12/05/2022] Open
Abstract
Calmodulin-binding proteins belong to the IQ67 domain (IQD) gene family and play essential roles in plant development and stress responses. However, the role of IQD gene family in potato (Solanum tuberosum L.) is yet to be known. In the present study, 23 StIQDs were identified in the potato genome and named StIQD1 to StIQD23. They were unevenly distributed on 10 of the 12 chromosomes. Phylogenetic analysis divided the IQDs into four subfamilies (IQD I–IV). StIQDs found in three of the four subfamilies. Synteny analysis confirmed that potato and tomato shared a close evolutionary relationship. Besides, RNA-Seq data analysis revealed that the expression of 19 of the 23 StIQDs was detected in at least one of the 12 tissues, and some of which showed a tissue-specific pattern. Quantitative reverse transcriptase–polymerase chain reaction results further confirmed that 14 StIQDs responded differently to various abiotic stresses, including drought, extreme temperature, and CaCl2 treatment, suggesting their significance in stress response. This study presents a comprehensive overview of the potato IQD gene family and lays a foundation for further analysis of the StIQDs functions in plant development and stress response.
Collapse
Affiliation(s)
- Chao Mei
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Yuwei Liu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xue Dong
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Qianna Song
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Huijie Wang
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Hongwei Shi
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Ruiyun Feng
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
26
|
Lephatsi MM, Meyer V, Piater LA, Dubery IA, Tugizimana F. Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives. Metabolites 2021; 11:457. [PMID: 34357351 PMCID: PMC8305699 DOI: 10.3390/metabo11070457] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
In response to abiotic stresses, plants mount comprehensive stress-specific responses which mediate signal transduction cascades, transcription of relevant responsive genes and the accumulation of numerous different stress-specific transcripts and metabolites, as well as coordinated stress-specific biochemical and physiological readjustments. These natural mechanisms employed by plants are however not always sufficient to ensure plant survival under abiotic stress conditions. Biostimulants such as plant growth-promoting rhizobacteria (PGPR) formulation are emerging as novel strategies for improving crop quality, yield and resilience against adverse environmental conditions. However, to successfully formulate these microbial-based biostimulants and design efficient application programs, the understanding of molecular and physiological mechanisms that govern biostimulant-plant interactions is imperatively required. Systems biology approaches, such as metabolomics, can unravel insights on the complex network of plant-PGPR interactions allowing for the identification of molecular targets responsible for improved growth and crop quality. Thus, this review highlights the current models on plant defence responses to abiotic stresses, from perception to the activation of cellular and molecular events. It further highlights the current knowledge on the application of microbial biostimulants and the use of epigenetics and metabolomics approaches to elucidate mechanisms of action of microbial biostimulants.
Collapse
Affiliation(s)
- Motseoa M. Lephatsi
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Vanessa Meyer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa;
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
- International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa
| |
Collapse
|
27
|
Jia X, Feng H, Bu Y, Ji N, Lyu Y, Zhao S. Comparative Transcriptome and Weighted Gene Co-expression Network Analysis Identify Key Transcription Factors of Rosa chinensis 'Old Blush' After Exposure to a Gradual Drought Stress Followed by Recovery. Front Genet 2021; 12:690264. [PMID: 34335694 PMCID: PMC8320538 DOI: 10.3389/fgene.2021.690264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Rose is one of the most fundamental ornamental crops, but its yield and quality are highly limited by drought. The key transcription factors (TFs) and co-expression networks during rose’s response to drought stress and recovery after drought stress are still limited. In this study, the transcriptomes of leaves of 2-year-old cutting seedlings of Rosa chinensis ‘Old Blush’ from three continuous droughted stages (30, 60, 90 days after full watering) and rewatering were analyzed using RNA sequencing. Weighted gene co-expression network analysis (WGCNA) was used to construct a co-expression network, which was associated with the physiological traits of drought response to discovering the hub TFs involved in drought response. More than 45 million high-quality clean reads were generated from the sample and used for comparison with the rose reference genome. A total of 46433 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that drought stress caused significant changes in signal transduction, plant hormones including ABA, auxin, brassinosteroid (BR), cytokinin, ethylene (ET), jasmonic acid (JA) and salicylic acid (SA), primary and secondary metabolism, and a certain degree of recovery after rewatering. Gene co-expression analysis identified 18 modules, in which four modules showed a high degree of correlation with physiological traits. In addition, 42 TFs including members of NACs, WRKYs, MYBs, AP2/ERFs, ARFs, and bHLHs with high connectivity in navajowhite1 and blue modules were screened. This study provides the transcriptome sequencing report of R. chinensis ‘Old Blush’ during drought stress and rewatering process. The study also identifies the response of candidate TFs to drought stress, providing guidelines for improving the drought tolerance of the rose through molecular breeding in the future.
Collapse
Affiliation(s)
- Xin Jia
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Hui Feng
- Beijing Key Laboratory of Greening Plant Breeding, Beijing Institute of Landscape Architecture, Beijing, China
| | - Yanhua Bu
- Beijing Key Laboratory of Greening Plant Breeding, Beijing Institute of Landscape Architecture, Beijing, China
| | - Naizhe Ji
- Beijing Key Laboratory of Greening Plant Breeding, Beijing Institute of Landscape Architecture, Beijing, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Shiwei Zhao
- Beijing Key Laboratory of Greening Plant Breeding, Beijing Institute of Landscape Architecture, Beijing, China
| |
Collapse
|
28
|
Nobahar A, Carlier JD, Miguel MG, Costa MC. A review of plant metabolites with metal interaction capacity: a green approach for industrial applications. Biometals 2021; 34:761-793. [PMID: 33961184 DOI: 10.1007/s10534-021-00315-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/28/2021] [Indexed: 01/20/2023]
Abstract
Rapid industrial development is responsible for severe problems related to environmental pollution. Many human and industrial activities require different metals and, as a result, great amounts of metals/heavy metals are discharged into the water and soil making them dangerous for both human and ecosystems and this is being aggravated by intensive demand and utilization. In addition, compounds with metal binding capacities are needed to be used for several purposes including in activities related to the removal and/or recovery of metals from effluents and soils, as metals' corrosion inhibitors, in the synthesis of metallic nanoparticles and as metal related pharmaceuticals, preferably a with minimum risks associated to the environment. Plants are able to synthesize an uncountable number of compounds with numerous functions, including compounds with metal binding capabilities. In fact, some of the plants' secondary metabolites can bind to various metals through different mechanisms, as such they are excellent sources of such compounds due to their high availability and vast diversity. In addition, the use of plant-based compounds is desirable from an environmental and economical point of view, thus being potential candidates for utilization in different industrial activities, replacing conventional physiochemical methods. This review focuses on the ability of some classes of compounds that can be found in relatively high concentrations in plants, having good metal binding capacities and thus with potential utilization in metal based industrial activities and that can be involved in the progressive development of new environmentally friendly strategies.
Collapse
Affiliation(s)
- Amir Nobahar
- Centre of Marine Sciences (CCMAR), University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal.,Faculty of Sciences and Technology, University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Jorge Dias Carlier
- Centre of Marine Sciences (CCMAR), University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Maria Graça Miguel
- Faculty of Sciences and Technology, University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Maria Clara Costa
- Centre of Marine Sciences (CCMAR), University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal. .,Faculty of Sciences and Technology, University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal.
| |
Collapse
|
29
|
Raina M, Kumar A, Yadav N, Kumari S, Yusuf MA, Mustafiz A, Kumar D. StCaM2, a calcium binding protein, alleviates negative effects of salinity and drought stress in tobacco. PLANT MOLECULAR BIOLOGY 2021; 106:85-108. [PMID: 33629224 DOI: 10.1007/s11103-021-01131-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/09/2021] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Overexpression of StCaM2 in tobacco promotes plant growth and confers increased salinity and drought tolerance by enhancing the photosynthetic efficiency, ROS scavenging, and recovery from membrane injury. Calmodulins (CaMs) are important Ca2+ sensors that interact with effector proteins and drive a network of signal transduction pathways involved in regulating the growth and developmental pattern of plants under stress. Herein, using in silico analysis, we identified 17 CaM isoforms (StCaM) in potato. Expression profiling revealed different temporal and spatial expression patterns of these genes, which were modulated under abiotic stress. Among the identified StCaM genes, StCaM2 was found to have the largest number of abiotic stress responsive promoter elements. In addition, StCaM2 was upregulated in response to some of the selected abiotic stress in potato tissues. Overexpression of StCaM2 in transgenic tobacco plants enhanced their tolerance to salinity and drought stress. Accumulation of reactive oxygen species was remarkably decreased in transgenic lines compared to that in wild type plants. Chlorophyll a fluorescence analysis suggested better performance of photosystem II in transgenic plants under stress compared to that in wild type plants. The increase in salinity stress tolerance in StCaM2-overexpressing plants was also associated with a favorable K+/Na+ ratio. The enhanced tolerance to abiotic stresses correlated with the increase in the activities of anti-oxidative enzymes in transgenic tobacco plants. Overall, our results suggest that StCaM2 can be a novel candidate for conferring salt and drought tolerance in plants.
Collapse
Affiliation(s)
- Meenakshi Raina
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Dist- Samba, Jammu and Kashmir, 181143, India
| | - Ashish Kumar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Nikita Yadav
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Sumita Kumari
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Dasauli, Kursi Road, Lucknow, 226026, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India.
| | - Deepak Kumar
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Dist- Samba, Jammu and Kashmir, 181143, India.
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
30
|
Label-free quantitative proteomics of Sorghum bicolor reveals the proteins strengthening plant defense against insect pest Chilo partellus. Proteome Sci 2021; 19:6. [PMID: 33810819 PMCID: PMC8019186 DOI: 10.1186/s12953-021-00173-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spotted stem borer- Chilo partellus - a Lepidopteran insect pest of Sorghum bicolor is responsible for major economic losses. It is an oligophagous pest, which bores through the plant stem, causing 'deadheart' and hampering the development of the main cob. We applied a label-free quantitative proteomics approach on three genotypes of S. bicolor with differential resistance/ susceptibility to insect pests, intending to identify the S. bicolor's systemic protein complement contributing to C. partellus tolerance. METHODS The proteomes of S. bicolor with variable resistance to insect pests, ICSV700, IS2205 (resistant) and Swarna (susceptible) were investigated and compared using label-free quantitative proteomics to identify putative leaf proteins contributing to resistance to C. partellus. RESULTS The multivariate analysis on a total of 967 proteins led to the identification of proteins correlating with insect resistance/susceptibility of S. bicolor. Upon C. partellus infestation S. bicolor responded by suppression of protein and amino acid biosynthesis, and induction of proteins involved in maintaining photosynthesis and responding to stresses. The gene ontology analysis revealed that C. partellus-responsive proteins in resistant S. bicolor genotypes were mainly involved in stress and defense, small molecule biosynthesis, amino acid metabolism, catalytic and translation regulation activities. At steady-state, the resistant S. bicolor genotypes displayed at least two-fold higher numbers of unique proteins than the susceptible genotype Swarna, mostly involved in catalytic activities. Gene expression analysis of selected candidates was performed on S. bicolor by artificial induction to mimic C. partellus infestation. CONCLUSION The collection of identified proteins differentially expressed in resistant S. bicolor, are interesting candidates for further elucidation of their role in defense against insect pests.
Collapse
|
31
|
Transcriptomic profiling of susceptible and resistant flax seedlings after Fusarium oxysporum lini infection. PLoS One 2021; 16:e0246052. [PMID: 33497403 PMCID: PMC7837494 DOI: 10.1371/journal.pone.0246052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/13/2021] [Indexed: 01/03/2023] Open
Abstract
In this study transcriptome was analyzed on two fibrous varieties of flax: the susceptible Regina and the resistant Nike. The experiment was carried out on 2-week-old seedlings, because in this phase of development flax is the most susceptible to infection. We analyzed the whole seedlings, which allowed us to recognize the systemic response of the plants to the infection. We decided to analyze two time points: 24h and 48h, because our goal was to learn the mechanisms activated in the initial stages of infection, these points were selected based on the previous analysis of chitinase gene expression, whose increase in time of Fusarium oxysporum lini infection has been repeatedly confirmed both in the case of flax and other plant species. The results show that although qualitatively the responses of the two varieties are similar, it is the degree of the response that plays the role in the differences of their resistance to F. oxysporum.
Collapse
|
32
|
Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping. Mol Genet Genomics 2021; 296:391-408. [DOI: 10.1007/s00438-020-01749-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
|
33
|
Torres-Silva G, Correia LNF, Batista DS, Koehler AD, Resende SV, Romanel E, Cassol D, Almeida AMR, Strickler SR, Specht CD, Otoni WC. Transcriptome Analysis of Melocactus glaucescens (Cactaceae) Reveals Metabolic Changes During in vitro Shoot Organogenesis Induction. FRONTIERS IN PLANT SCIENCE 2021; 12:697556. [PMID: 34490003 PMCID: PMC8417902 DOI: 10.3389/fpls.2021.697556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/16/2021] [Indexed: 05/16/2023]
Abstract
Melocactus glaucescens is an endangered cactus highly valued for its ornamental properties. In vitro shoot production of this species provides a sustainable alternative to overharvesting from the wild; however, its propagation could be improved if the genetic regulation underlying its developmental processes were known. The present study generated de novo transcriptome data, describing in vitro shoot organogenesis induction in M. glaucescens. Total RNA was extracted from explants before (control) and after shoot organogenesis induction (treated). A total of 14,478 unigenes (average length, 520 bases) were obtained using Illumina HiSeq 3000 (Illumina Inc., San Diego, CA, USA) sequencing and transcriptome assembly. Filtering for differential expression yielded 2,058 unigenes. Pairwise comparison of treated vs. control genes revealed that 1,241 (60.3%) unigenes exhibited no significant change, 226 (11%) were downregulated, and 591 (28.7%) were upregulated. Based on database analysis, more transcription factor families and unigenes appeared to be upregulated in the treated samples than in controls. Expression of WOUND INDUCED DEDIFFERENTIATION 1 (WIND1) and CALMODULIN (CaM) genes, both of which were upregulated in treated samples, was further validated by real-time quantitative PCR (RT-qPCR). Differences in gene expression patterns between control and treated samples indicate substantial changes in the primary and secondary metabolism of M. glaucescens after the induction of shoot organogenesis. These results help to clarify the molecular genetics and functional genomic aspects underlying propagation in the Cactaceae family.
Collapse
Affiliation(s)
- Gabriela Torres-Silva
- Plant Biology Department/Laboratory of Plant Tissue Culture II—BIOAGRO, Federal University of Viçosa (UFV), Viçosa, Brazil
| | - Ludmila Nayara Freitas Correia
- Plant Biology Department/Laboratory of Plant Tissue Culture II—BIOAGRO, Federal University of Viçosa (UFV), Viçosa, Brazil
| | - Diego Silva Batista
- Department of Agriculture, Federal University of Paraíba (UFPB), Bananeiras, Brazil
| | - Andréa Dias Koehler
- Plant Biology Department/Laboratory of Plant Tissue Culture II—BIOAGRO, Federal University of Viçosa (UFV), Viçosa, Brazil
| | | | - Elisson Romanel
- Laboratory of Plant Genomics and Bioenergy, Department of Biotechnology, School of Engineering of Lorena, University of São Paulo, Lorena, Brazil
| | - Daniela Cassol
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Ana Maria Rocha Almeida
- Department of Biological Science, College of Science, California State University East Bay, Hayward, CA, United States
| | - Susan R. Strickler
- Computational Biology Center, Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Chelsea Dvorak Specht
- Plant Biology Section and the L. H. Bailey Hortorium, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Wagner Campos Otoni
- Plant Biology Department/Laboratory of Plant Tissue Culture II—BIOAGRO, Federal University of Viçosa (UFV), Viçosa, Brazil
- *Correspondence: Wagner Campos Otoni
| |
Collapse
|
34
|
Asif MA, Garcia M, Tilbrook J, Brien C, Dowling K, Berger B, Schilling RK, Short L, Trittermann C, Gilliham M, Fleury D, Roy SJ, Pearson AS. Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:131-140. [PMID: 32835651 DOI: 10.1071/fp20167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Bread wheat (Triticum aestivum L.) is one of the most important food crops, however it is only moderately tolerant to salinity stress. To improve wheat yield under saline conditions, breeding for improved salinity tolerance of wheat is needed. We have identified nine quantitative trail loci (QTL) for different salt tolerance sub-traits in a recombinant inbred line (RIL) population, derived from the bi-parental cross of Excalibur × Kukri. This population was screened for salinity tolerance subtraits using a combination of both destructive and non-destructive phenotyping. Genotyping by sequencing (GBS) was used to construct a high-density genetic linkage map, consisting of 3236 markers, and utilised for mapping QTL. Of the nine mapped QTL, six were detected under salt stress, including QTL for maintenance of shoot growth under salinity (QG(1-5).asl-5A, QG(1-5).asl-7B) sodium accumulation (QNa.asl-2A), chloride accumulation (QCl.asl-2A, QCl.asl-3A) and potassium:sodium ratio (QK:Na.asl-2DS2). Potential candidate genes within these QTL intervals were shortlisted using bioinformatics tools. These findings are expected to facilitate the breeding of new salt tolerant wheat cultivars.
Collapse
Affiliation(s)
- Muhammad A Asif
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Melissa Garcia
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Joanne Tilbrook
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Chris Brien
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, SA 5064, Australia; and School of Information Technology and Mathematical Sciences, The University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Kate Dowling
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, SA 5064, Australia
| | - Bettina Berger
- School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, SA 5064, Australia
| | - Rhiannon K Schilling
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Laura Short
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Christine Trittermann
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Delphine Fleury
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia; and Innolea, 6 chemin de Panedautes, 31700, Mondonville, France
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia; and Corresponding author.
| | - Allison S Pearson
- Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia; and School of Agriculture, Food and Wine & Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia; and ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
35
|
Gong J, Shi T, Li Y, Wang H, Li F. Genome-Wide Identification and Characterization of Calcium Metabolism Related Gene Families in Arabidopsis thaliana and Their Regulation by Bacillus amyloliquefaciens Under High Calcium Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:707496. [PMID: 34456948 PMCID: PMC8387222 DOI: 10.3389/fpls.2021.707496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 05/05/2023]
Abstract
Several gene families involved in calcium signaling have been detected in plants, including calmodulin (CaM), calcium dependent protein kinases (CDPK), calcineurin B-like (CBL) and cyclic nucleotide-gated channels (CNGCs). In our previous study, we demonstrated that Bacillus amyloliquefaciens LZ04 (B. amyloliquefaciens LZ04) regulate genes involved in calcium stress in Arabidopsis thaliana (A. thaliana). Here, we aimed to explore the potential involvement of calcium-related gene families in the response of A. thaliana to calcium stress and the potential regulatory effects of B. amyloliquefaciens LZ04 on these genes. The structure, duplication, synteny, and expression profiles of 102 genes in calcium-related gene families in A. thaliana were investigated. Hidden Markov Models (HMMs) and BLASTP were used to predict candidate genes and conserved domains of the candidate genes were confirmed in SMART and NCBI CDD databases. Gene duplications and synteny were uncovered by BLASTP and phylogenetic analysis. The transcriptome expression profiles of candidate genes were investigated by strand-specific sequencing. Cluster analysis was used to find the expression profiles of calcium-related genes families under different treatment conditions. A total of 102 genes in calcium-related gene families were detected in A. thaliana genome, including 34 CDPK genes, 20 CNGC genes, 18 CIPK genes, 22 IQD genes, and 10 CBP genes. Additionally, of the 102 genes, 33 duplications (32.35%) and 26 gene pairs including 48 genes (47.06%) were detected. Treatment with B. amyloliquefaciens LZ04 enhanced the resistance of A. thaliana under high calcium stress by regulating some of the genes in the calcium-related gene families. Functional enrichment analysis revealed that the genes clustered in the 42nd expression profile which may be B. amyloliquefaciens-responsive genes under calcium stress were enriched in protein phosphorylation and protein modification process. Transcriptome data was validated by RT-PCR and the results generally corroborated the transcriptome sequencing results. These results may be useful for agricultural improvement in high calcium stress regions.
Collapse
Affiliation(s)
- Jiyi Gong
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tianlong Shi
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yuke Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Hancheng Wang
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Fei Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
- *Correspondence: Fei Li, ; ;
| |
Collapse
|
36
|
Mosharaf MP, Rahman H, Ahsan MA, Akond Z, Ahmed FF, Islam MM, Moni MA, Mollah MNH. In silico identification and characterization of AGO, DCL and RDR gene families and their associated regulatory elements in sweet orange (Citrus sinensis L.). PLoS One 2020; 15:e0228233. [PMID: 33347517 PMCID: PMC7751981 DOI: 10.1371/journal.pone.0228233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
RNA interference (RNAi) plays key roles in post-transcriptional and chromatin modification levels as well as regulates various eukaryotic gene expressions which are involved in stress responses, development and maintenance of genome integrity during developmental stages. The whole mechanism of RNAi pathway is directly involved with the gene-silencing process by the interaction of Dicer-Like (DCL), Argonaute (AGO) and RNA-dependent RNA polymerase (RDR) gene families and their regulatory elements. However, these RNAi gene families and their sub-cellular locations, functional pathways and regulatory components were not extensively investigated in the case of economically and nutritionally important fruit plant sweet orange (Citrus sinensis L.). Therefore, in silico characterization, gene diversity and regulatory factor analysis of RNA silencing genes in C. sinensis were conducted by using the integrated bioinformatics approaches. Genome-wide comparison analysis based on phylogenetic tree approach detected 4 CsDCL, 8 CsAGO and 4 CsRDR as RNAi candidate genes in C. sinensis corresponding to the RNAi genes of model plant Arabidopsis thaliana. The domain and motif composition and gene structure analyses for all three gene families exhibited almost homogeneity within the same group members. The Gene Ontology enrichment analysis clearly indicated that the predicted genes have direct involvement into the gene-silencing and other important pathways. The key regulatory transcription factors (TFs) MYB, Dof, ERF, NAC, MIKC_MADS, WRKY and bZIP were identified by their interaction network analysis with the predicted genes. The cis-acting regulatory elements associated with the predicted genes were detected as responsive to light, stress and hormone functions. Furthermore, the expressed sequence tag (EST) analysis showed that these RNAi candidate genes were highly expressed in fruit and leaves indicating their organ specific functions. Our genome-wide comparison and integrated bioinformatics analyses provided some necessary information about sweet orange RNA silencing components that would pave a ground for further investigation of functional mechanism of the predicted genes and their regulatory factors.
Collapse
Affiliation(s)
- Md. Parvez Mosharaf
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Hafizur Rahman
- Department of Microbiology, Rajshahi Institute of Biosciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Asif Ahsan
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Zobaer Akond
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- Institute of Environmental Science, University of Rajshahi, Rajshahi, Bangladesh
- Agricultural Statistics and ICT Division, Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh
| | - Fee Faysal Ahmed
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Mazharul Islam
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohammad Ali Moni
- The University of Sydney, Sydney Medical School, School of Medical Sciences, Discipline of Biomedical Science, Sydney, New South Wales, Australia
| | - Md. Nurul Haque Mollah
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- * E-mail:
| |
Collapse
|
37
|
Ghorbel M, Zribi I, Missaoui K, Drira-Fakhfekh M, Azzouzi B, Brini F. Differential regulation of the durum wheat Pathogenesis-related protein (PR1) by Calmodulin TdCaM1.3 protein. Mol Biol Rep 2020; 48:347-362. [PMID: 33313970 DOI: 10.1007/s11033-020-06053-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/01/2020] [Indexed: 01/21/2023]
Abstract
In plants, pathogenesis-related 1 protein (PR1) is considered as important defense protein. The production and accumulation of PR proteins in plants are one of the important responses to several biotic and abiotic stresses. In this regard, PR1 gene was isolated from Triticum turgidum ssp durum and was named as TdPR1.2. The amino acid sequence of TdPR1.2 protein showed 100%, 97.13%, and 44.41% with known PR1 proteins isolated from Triticum aestivum TdPR1-18, PRB1.2 of Aegilops tauschii subsp. tauschii and Arabidopsis thaliana respectively. qRT-PCR showed that TdPR1.2 was induced specially in leaves of durum wheat treated with Salicylic acid for 48 h. Besides, bioinformatic analysis showed that the durum wheat TdPR1.2 harbors a calmodulin binding domain located in it's C-terminal part and that this domain is conserved among different PR1 proteins isolated so far. However, no information is available about the regulation of PR genes by calmodulin and Ca2+ complex (CaM/Ca2+). Here, we showed that TdPR1.2 gene exhibits an antibacterial effect as revealed by the in vitro tests against 8 different bacteria and against the fungi Septoria tritici. In addition, we demonstrate for the first time that PR1 proteins are able to bind to CaM in a Ca2+-dependent manner via a GST-Pull down assay. Finally, in presence of Mn2+ cations, CaM/Ca2+ complex stimulated the antimicrobial effect of TdPR1.2. Such effects were not reported so far, and raise a possible role for CaM/Ca2+ complex in the regulation of plant PRs during cellular response to external signals.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
- Biology Departement, Faculty of Science, University of Ha'il, B.O. box, Ha'il city, 2440, Saudi Arabia
| | - Ikram Zribi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Khawla Missaoui
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Marwa Drira-Fakhfekh
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Basma Azzouzi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia.
| |
Collapse
|
38
|
Zorin EA, Afonin AM, Kulaeva OA, Gribchenko ES, Shtark OY, Zhukov VA. Transcriptome Analysis of Alternative Splicing Events Induced by Arbuscular Mycorrhizal Fungi ( Rhizophagus irregularis) in Pea ( Pisum sativum L.) Roots. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1700. [PMID: 33287282 PMCID: PMC7761762 DOI: 10.3390/plants9121700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022]
Abstract
Alternative splicing (AS), a process that enables formation of different mRNA isoforms due to alternative ways of pre-mRNA processing, is one of the mechanisms for fine-tuning gene expression. Currently, the role of AS in symbioses formed by plants with soil microorganisms is not fully understood. In this work, a comprehensive analysis of the transcriptome of garden pea (Pisum sativum L.) roots in symbiosis with arbuscular mycorrhiza was performed using RNAseq and following bioinformatic analysis. AS profiles of mycorrhizal and control roots were highly similar, intron retention accounting for a large proportion of the observed AS types (67%). Using three different tools (SUPPA2, DRIMSeq and IsoformSwitchAnalyzeR), eight genes with AS events specific for mycorrhizal roots of pea were identified, among which four were annotated as encoding an apoptosis inhibitor protein, a serine/threonine-protein kinase, a dehydrodolichyl diphosphate synthase, and a pre-mRNA-splicing factor ATP-dependent RNA helicase DEAH1. In pea mycorrhizal roots, the isoforms of these four genes with preliminary stop codons leading to a truncated ORFs were up-regulated. Interestingly, two of these four genes demonstrating mycorrhiza-specific AS are related to the process of splicing, thus forming parts of the feedback loops involved in fine-tuning of gene expression during mycorrhization.
Collapse
Affiliation(s)
| | | | | | | | | | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (E.A.Z.); (A.M.A.); (O.A.K.); (E.S.G.); (O.Y.S.)
| |
Collapse
|
39
|
Jiang X, Hoehenwarter W, Scheel D, Lee J. Phosphorylation of the CAMTA3 Transcription Factor Triggers Its Destabilization and Nuclear Export. PLANT PHYSIOLOGY 2020; 184:1056-1071. [PMID: 32769161 PMCID: PMC7536672 DOI: 10.1104/pp.20.00795] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/29/2020] [Indexed: 05/21/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) calmodulin-binding transcription activator3 (CAMTA3) is a repressor of immunity-related genes but an activator of cold-induced or general stress-responsive genes in plants. Post-transcriptional or posttranslational mechanisms have been proposed to control CAMTA3 functions in different stress responses. Here, we show that treatment with the bacterial flg22 elicitor induces CAMTA3 phosphorylation, which is accompanied by its destabilization and nuclear export. Two flg22-responsive mitogen-activated protein kinases (MAPKs), MPK3 and MPK6, directly phosphorylate CAMTA3, with the phospho-sites contributing to CAMTA3 degradation and suppression of downstream target gene expression. However, the flg22-induced nuclear export and phospho-mobility shift can still be observed for the CAMTA3 phospho-null variant of the MAPK-modified sites, suggesting additional flg22-responsive kinases might be involved. Taken together, we propose that flg22-induced CAMTA3 depletion facilitates de-repression of downstream defense target genes, which involves phosphorylation, increased protein turnover, and nucleo-cytoplasmic trafficking.
Collapse
Affiliation(s)
- Xiyuan Jiang
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle/Saale 06120, Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Halle/Saale 06120, Germany
| | - Dierk Scheel
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle/Saale 06120, Germany
| | - Justin Lee
- Department for Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle/Saale 06120, Germany
| |
Collapse
|
40
|
Chitarrini G, Riccadonna S, Zulini L, Vecchione A, Stefanini M, Larger S, Pindo M, Cestaro A, Franceschi P, Magris G, Foria S, Morgante M, Di Gaspero G, Vrhovsek U. Two-omics data revealed commonalities and differences between Rpv12- and Rpv3-mediated resistance in grapevine. Sci Rep 2020; 10:12193. [PMID: 32699241 PMCID: PMC7376207 DOI: 10.1038/s41598-020-69051-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Plasmopara viticola is the causal agent of grapevine downy mildew (DM). DM resistant varieties deploy effector-triggered immunity (ETI) to inhibit pathogen growth, which is activated by major resistance loci, the most common of which are Rpv3 and Rpv12. We previously showed that a quick metabolome response lies behind the ETI conferred by Rpv3 TIR-NB-LRR genes. Here we used a grape variety operating Rpv12-mediated ETI, which is conferred by an independent locus containing CC-NB-LRR genes, to investigate the defence response using GC/MS, UPLC, UHPLC and RNA-Seq analyses. Eighty-eight metabolites showed significantly different concentration and 432 genes showed differential expression between inoculated resistant leaves and controls. Most metabolite changes in sugars, fatty acids and phenols were similar in timing and direction to those observed in Rpv3-mediated ETI but some of them were stronger or more persistent. Activators, elicitors and signal transducers for the formation of reactive oxygen species were early observed in samples undergoing Rpv12-mediated ETI and were paralleled and followed by the upregulation of genes belonging to ontology categories associated with salicylic acid signalling, signal transduction, WRKY transcription factors and synthesis of PR-1, PR-2, PR-5 pathogenesis-related proteins.
Collapse
Affiliation(s)
- Giulia Chitarrini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Samantha Riccadonna
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Luca Zulini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Antonella Vecchione
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Marco Stefanini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Simone Larger
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Pietro Franceschi
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Gabriele Magris
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, via delle Scienze 208, 33100, Udine, Italy.,Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| | - Serena Foria
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, via delle Scienze 208, 33100, Udine, Italy
| | - Michele Morgante
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, via delle Scienze 208, 33100, Udine, Italy.,Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| | - Gabriele Di Gaspero
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy.
| | - Urska Vrhovsek
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy.
| |
Collapse
|
41
|
Lin S, Medina CA, Boge B, Hu J, Fransen S, Norberg S, Yu LX. Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.). BMC PLANT BIOLOGY 2020; 20:303. [PMID: 32611315 PMCID: PMC7328273 DOI: 10.1186/s12870-020-02520-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/24/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Alfalfa has been cultivated in many regions around the world as an important forage crop due to its nutritive value to livestock and ability to adapt to various environments. However, the genetic basis by which plasticity of quality-relevant traits influence alfalfa adaption to different water conditions remain largely unknown. RESULTS In the present study, 198 accessions of alfalfa of the core collection for drought tolerance were evaluated for 26 forage quality traits in a field trial under an imposed deficit irrigation gradient. Regression analysis between quality traits and water stress revealed that values of fiber-related traits were negatively correlated with values of energy-related traits as water deficit increased. More than one hundred significant markers associated with forage quality under different water treatments were identified using genome-wide association studies with genotyping by sequencing. Among them, 131 markers associated with multiple traits in all the water deficit treatments. Most of the associated markers were dependent to the levels of water deficit, suggesting genetic controls for forage quality traits were dependent to the stress treatment. Twenty-four loci associated with forage quality were annotated to functional genes that may play roles in cell development or in response to water stress. CONCLUSIONS This study addressed the genetic base of phenotypic variation of forage quality traits under water deficit. The SNP markers identified in this study will be useful in marker-assisted selection for the genetic improvement of alfalfa with enhanced drought tolerance while maintaining forage quality.
Collapse
Affiliation(s)
- Sen Lin
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, 99350, USA
| | - Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, 99350, USA
| | - Bill Boge
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, 99350, USA
| | - Jinguo Hu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, 99350, USA
| | - Steven Fransen
- Irrigated Agriculture Extension and Research Center, Washington State University, 24106 N Bunn Road, Prosser, Washington, USA
| | - Steven Norberg
- Washington State University Franklin County Extension Office, 404 West Clark Street, Pasco, Washington, USA
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, 99350, USA.
| |
Collapse
|
42
|
Liu D, Yang Q. Expression patterns of NbrgsCaM family genes in Nicotiana benthamiana and their potential roles in development and stress responses. Sci Rep 2020; 10:9652. [PMID: 32541846 PMCID: PMC7296017 DOI: 10.1038/s41598-020-66670-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/20/2020] [Indexed: 11/09/2022] Open
Abstract
rgsCaM has been reported as a calmodulin-like (CML) factor induced by viral infection in Nicotiana. There are three CMLs that belong to the rgsCaM family in Arabidopsis thaliana. In this study, we found a total of 5 NbrgsCaM coding sequences in N. benthamiana genome. We analyzed transcription patterns of NbrgsCaMs in transgenic plants expressing a β-glucuronidase (GUS) under the promoter of NbrgsCaMs by histochemistry staining and RT-qPCR. Similar to their Arabidopsis homologs, most NbrgsCaMs have an overlapping but distinct expression pattern in response to developmental and environmental changes. Specifically, the NbrgsCaM4 promoter exhibited robust activity and showed distinct regulatory response to viral infection, developmental stages and other abiotic stimuli. Overall, these findings provide clues for further understanding of the NbrgsCaM family genes in regulating plant growth and development under biotic stress and environmental stimulation.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory for Plant Disease and Insect Pest, Institute of Plant protection, China Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiuying Yang
- State Key Laboratory for Plant Disease and Insect Pest, Institute of Plant protection, China Academy of Agricultural Sciences, Beijing, 100193, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
43
|
Yang J, Liu S, Ji L, Tang X, Zhu Y, Xie G. Identification of novel OsCML16 target proteins and differential expression analysis under abiotic stresses in rice. JOURNAL OF PLANT PHYSIOLOGY 2020; 249:153165. [PMID: 32408008 DOI: 10.1016/j.jplph.2020.153165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 05/24/2023]
Abstract
Calmodulin-like proteins (CMLs) have been shown to play key regulatory roles in calcium signaling in plants. However, few bona-fide CMLs binding proteins have been characterized in rice, a monocot model plant. Here, through large-scale screening of a yeast-two hybrid (Y2H) cDNA library with OsCML16 as a bait, six new putative interacting partners of OsCML16 were discovered and confirmed by both pairwise Y2H and bimolecular fluorescence complementation (BiFC) assays. Interestingly, the in vitro peptide-binding assays manifested that OsERD2 could bind both OsCaM1 and OsCML16 whereas other five target proteins could specifically bind OsCML16 but not OsCaM1. Furthermore, Ca2+ and TFP, a calmodulin (CaM) antagonist, were involved in the ABA-induced transcription of OsCML16 and its target genes, and they were also obviously induced by cold, drought, and salt stresses. Taken together, our new findings have provided the basis for the novel signaling pathways of OsCML16 in the abiotic stress response in rice.
Collapse
Affiliation(s)
- Jun Yang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingxiao Ji
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianying Tang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yongsheng Zhu
- Institute of Crop Science, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
44
|
Lavergne FD, Broeckling CD, Brown KJ, Cockrell DM, Haley SD, Peairs FB, Pearce S, Wolfe LM, Jahn CE, Heuberger AL. Differential Stem Proteomics and Metabolomics Profiles for Four Wheat Cultivars in Response to the Insect Pest Wheat Stem Sawfly. J Proteome Res 2020; 19:1037-1051. [PMID: 31995381 DOI: 10.1021/acs.jproteome.9b00561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Common wheat (Triticum aestivum L.) is a global staple crop, and insect pests can impact grain yield. The wheat stem sawfly (Cephus cinctus, WSS) is a major wheat pest, and while partial resistance has been deployed by breeding for a solid-stem trait, this trait is affected by environment. Here, a proteomics and metabolomics study was performed on four wheat cultivars to characterize a molecular response to WSS infestation. The cultivars Hatcher (hollow-stem partially tolerant), Conan (semisolid-stem-resistant), and Denali and Reeder (hollow-stem-susceptible) were infested with WSS, and changes in stem proteins and metabolites were characterized using liquid chromatography-mass spectrometry. The proteome was characterized as 1830 proteins that included five major biological processes, including metabolic processes and response to stimuli, and the metabolome (1823 metabolites) spanned eight chemical superclasses, including alkaloids, benzenoids, and lipids. All four varieties had a molecular response to WSS following infestation. Hatcher had the most distinct changes, whereby 62 proteins and 29 metabolites varied in metabolic pathways involving enzymatic detoxification, proteinase inhibition, and antiherbivory compound production via benzoxazinoids, neolignans, and phenolics. Taken together, these data demonstrate variation in the wheat stem molecular response to WSS infestation and support breeding for molecular resistance in hollow-stem cultivars.
Collapse
Affiliation(s)
- Florent D Lavergne
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Corey D Broeckling
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523, United States.,Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kitty J Brown
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Darren M Cockrell
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Scott D Haley
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Frank B Peairs
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Lisa M Wolfe
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Courtney E Jahn
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Adam L Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523, United States.,Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
45
|
Dabi M, Agarwal P, Agarwal PK. Functional Validation of JcWRKY2, a Group III Transcription Factor Toward Mitigating Salinity Stress in Transgenic Tobacco. DNA Cell Biol 2019; 38:1278-1291. [PMID: 31584843 DOI: 10.1089/dna.2019.4895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The plants being sessile cannot escape from the adverse environmental stresses, hence get negatively affected in terms of their growth and yield. Transcriptional control simultaneously regulate different cellular processes, minimizing the deleterious effects of these stresses. The salicylic acid (SA)-inducible WRKY family of transcription factors auto or crossregulate the stress signaling in response to abiotic and biotic stresses, facilitating enhanced stress tolerance. In this study, we characterized the group III WRKY gene, JcWRKY2 from ecological and economical valued shrub Jatropha curcas. The JcWRKY2 tobacco transgenics showed improved physiological growth parameters, elevated chlorophyll content, improved antioxidative activities, and increased endogenous SA with both salt and SA stress. Interestingly, the pretreatment with SA and hydrogen peroxide facilitated improved germination of transgenic seeds with salinity stress. The transgenics showed differential regulation of antioxidative enzymes, calcium/calmodulin, dehydrins, and phospholipase genes with salt and SA stress. The increased SA content in transgenics on stress treatments, enhanced the antioxidant capacity leading to reduced susceptibility to stresses. Thus, JcWRKY2 transgenics participate in SA-mediated, improved antioxidative status during salinity stress with reduced reactive oxygen species damage.
Collapse
Affiliation(s)
- Mitali Dabi
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat, India
| | - Parinita Agarwal
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat, India
| | - Pradeep K Agarwal
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat, India
| |
Collapse
|
46
|
Seifikalhor M, Aliniaeifard S, Hassani B, Niknam V, Lastochkina O. Diverse role of γ-aminobutyric acid in dynamic plant cell responses. PLANT CELL REPORTS 2019; 38:847-867. [PMID: 30739138 DOI: 10.1007/s00299-019-02396-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/02/2019] [Indexed: 05/05/2023]
Abstract
Gamma-aminobutyric acid (GABA), a four-carbon non-protein amino acid, is found in most prokaryotic and eukaryotic organisms. Although, ample research into GABA has occurred in mammals as it is a major inhibitory neurotransmitter; in plants, a role for GABA has often been suggested as a metabolite that changes under stress rather than as a signal, as no receptor or motif for GABA binding was identified until recently and many aspects of its biological function (ranging from perception to function) remain to be answered. In this review, flexible properties of GABA in regulation of plant responses to various environmental biotic and abiotic stresses and its integration in plant growth and development either as a metabolite or a signaling molecule are discussed. We have elaborated on the role of GABA in stress adaptation (i.e., salinity, hypoxia/anoxia, drought, temperature, heavy metals, plant-insect interplay and ROS-related responses) and its contribution in non-stress-related biological pathways (i.e., involvement in plant-microbe interaction, contribution to the carbon and nitrogen metabolism and governing of signal transduction pathways). This review aims to represent the multifunctional contribution of GABA in various biological and physiological mechanisms under stress conditions; the objective is to review the current state of knowledge about GABA role beyond stress-related responses. Our effort is to place findings about GABA in an organized and broader context to highlight its shared metabolic and biologic functions in plants under variable conditions. This will provide potential modes of GABA crosstalk in dynamic plant cell responses.
Collapse
Affiliation(s)
- Maryam Seifikalhor
- Department of Plant Biology, Center of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran, 14155, Iran
| | - Sasan Aliniaeifard
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Batool Hassani
- Department of Plant Sciences, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Niknam
- Department of Plant Biology, Center of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran, 14155, Iran
| | - Oksana Lastochkina
- Bashkir Research Institute of Agriculture, Russian Academy of Sciences, Ufa, Russia
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
47
|
Wei C, Zhang R, Yang X, Zhu C, Li H, Zhang Y, Ma J, Yang J, Zhang X. Comparative Analysis of Calcium-Dependent Protein Kinase in Cucurbitaceae and Expression Studies in Watermelon. Int J Mol Sci 2019; 20:ijms20102527. [PMID: 31126008 PMCID: PMC6566760 DOI: 10.3390/ijms20102527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/03/2019] [Accepted: 05/20/2019] [Indexed: 11/30/2022] Open
Abstract
Both the calcium-dependent protein kinases (CDPKs) and CDPK-related kinases (CRKs) play numerous roles in plant growth, development, and stress response. Despite genome-wide identification of both families in Cucumis, comparative evolutionary and functional analysis of both CDPKs and CRKs in Cucurbitaceae remain unclear. In this study, we identified 128 CDPK and 56 CRK genes in total in six Cucurbitaceae species (C. lanatus, C. sativus, C. moschata, C. maxima, C. pepo, and L. siceraria). Dot plot analysis indicated that self-duplication of conserved domains contributed to the structural variations of two CDPKs (CpCDPK19 and CpCDPK27) in C. pepo. Using watermelon genome as reference, an integrated map containing 25 loci (16 CDPK and nine CRK loci) was obtained, 16 of which (12 CDPK and four CRK) were shared by all seven Cucurbitaceae species. Combined with exon-intron organizations, topological analyses indicated an ancient origination of groups CDPK IV and CRK. Moreover, the evolutionary scenario of seven modern Cucurbitaceae species could also be reflected on the phylogenetic trees. Expression patterns of ClCDPKs and ClCRKs were studied under different abiotic stresses. Some valuable genes were uncovered for future gene function exploration. For instance, both ClCDPK6 and its ortholog CsCDPK14 in cucumber could be induced by salinity, while ClCDPK6 and ClCDPK16, as well as their orthologs in Cucumis, maintained high expression levels in male flowers. Collectively, these results provide insights into the evolutionary history of two gene families in Cucurbitaceae, and indicate a subset of candidate genes for functional characterizations in the future.
Collapse
Affiliation(s)
- Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Ruimin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Xiaozhen Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Chunyu Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Hao Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Yong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Jianxiang Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Jianqiang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
48
|
Scotti R, D’Agostino N, Zaccardelli M. Gene expression profiling of tomato roots interacting with Pseudomonas fluorescens unravels the molecular reprogramming that occurs during the early phases of colonization. Symbiosis 2019. [DOI: 10.1007/s13199-019-00611-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Wang Z, Ma LY, Cao J, Li YL, Ding LN, Zhu KM, Yang YH, Tan XL. Recent Advances in Mechanisms of Plant Defense to Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2019; 10:1314. [PMID: 31681392 PMCID: PMC6813280 DOI: 10.3389/fpls.2019.01314] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/20/2019] [Indexed: 05/20/2023]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is an unusual pathogen which has the broad host range, diverse infection modes, and potential double feeding lifestyles of both biotroph and necrotroph. It is capable of infecting over 400 plant species found worldwide and more than 60 names have agriculturally been used to refer to diseases caused by this pathogen. Plant defense to S. sclerotiorum is a complex biological process and exhibits a typical quantitative disease resistance (QDR) response. Recent studies using Arabidopsis thaliana and crop plants have obtained new advances in mechanisms used by plants to cope with S. sclerotiorum infection. In this review, we focused on our current understanding on plant defense mechanisms against this pathogen, and set up a model for the defense process including three stages: recognition of this pathogen, signal transduction and defense response. We also have a particular interest in defense signaling mediated by diverse signaling molecules. We highlight the current challenges and unanswered questions in both the defense process and defense signaling. Essentially, we discussed candidate resistance genes newly mapped by using high-throughput experiments in important crops, and classified these potential gene targets into different stages of the defense process, which will broaden our understanding of the genetic architecture underlying quantitative resistance to S. sclerotiorum. We proposed that more powerful mapping population(s) will be required for accurate and reliable QDR gene identification.
Collapse
|
50
|
Agapito-Tenfen SZ, Vilperte V, Traavik TI, Nodari RO. Systematic miRNome profiling reveals differential microRNAs in transgenic maize metabolism. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:37. [PMID: 30294516 PMCID: PMC6153861 DOI: 10.1186/s12302-018-0168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND While some genetically modified organisms (GMOs) are created to produce new double-stranded RNA molecules (dsRNA), in others, such molecules may occur as an unintended effect of the genetic engineering process. Furthermore, GMOs might produce naturally occurring dsRNA molecules in higher or lower quantities than its non-transgenic counterpart. This study is the first to use high-throughput technology to characterize the miRNome of commercialized GM maize events and to investigate potential alterations in miRNA regulatory networks. RESULTS Thirteen different conserved miRNAs were found to be dys-regulated in GM samples. The insecticide Bt GM variety had the most distinct miRNome. These miRNAs target a range of endogenous transcripts, such as transcription factors and nucleic acid binding domains, which play key molecular functions in basic genetic regulation. In addition, we have identified 20 potential novel miRNAs with target transcripts involved in lipid metabolism in maize. isomiRs were also found in 96 conserved miRNAs sequences, as well as potential transgenic miRNA sequences, which both can be a source of potential off-target effects in the plant genome. We have also provided information on technical limitations and when to carry on additional in vivo experimental testing. CONCLUSIONS These findings do not reveal hazards per se but show that robust and reproducible miRNA profiling technique can strengthen the assessment of risk by detecting any new intended and unintended dsRNA molecules, regardless of the outcome, at any stage of GMO development.
Collapse
Affiliation(s)
| | - Vinicius Vilperte
- Departamento de Fitotecnia, Universidade Federal de Santa Catarina, Florianópolis, 88034000 Brazil
- Present Address: Institute for Plant Genetics, Faculty of Natural Sciences, Leibniz University of Hannover, 30419 Hannover, Germany
| | - Terje Ingemar Traavik
- GenØk–Centre for Biosafety, Forskningsparken i Breivika, Sykehusveien 23, 9294 Tromsø, Norway
| | - Rubens Onofre Nodari
- Departamento de Fitotecnia, Universidade Federal de Santa Catarina, Florianópolis, 88034000 Brazil
| |
Collapse
|