1
|
Han R, Luo L, Wei C, Qiao Y, Xie J, Pan X, Xing J. Stiffness-tunable biomaterials provide a good extracellular matrix environment for axon growth and regeneration. Neural Regen Res 2025; 20:1364-1376. [PMID: 39075897 DOI: 10.4103/nrr.nrr-d-23-01874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/16/2024] [Indexed: 07/31/2024] Open
Abstract
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix-a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.
Collapse
Affiliation(s)
- Ronglin Han
- Department of Pathophysiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Lanxin Luo
- Department of Pathophysiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Caiyan Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yaru Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jiming Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xianchao Pan
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Juan Xing
- Department of Pathophysiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
2
|
Ren Y, Cheng Z, Cheng L, Liu Y, Li M, Yuan T, Shen Z. Theoretical calculation on degradation mechanism of novel copolyesters under CALB enzyme. J Environ Sci (China) 2025; 149:242-253. [PMID: 39181639 DOI: 10.1016/j.jes.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/13/2023] [Accepted: 12/23/2023] [Indexed: 08/27/2024]
Abstract
Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions. Notably, the first step of the hydrolysis is identified as the rate-determining step. Moreover, by introducing single-point mutations to expand the substrate entrance tunnel, the catalytic distance of the first acylation step decreases. Additionally, energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme's active site. This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme's active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB.
Collapse
Affiliation(s)
- Yuanyang Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiwen Cheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Luwei Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yawei Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China.
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Kavanagh EW, Tzeng SY, Sharma N, Cutting GR, Green JJ. Ligand-free biodegradable poly(beta-amino ester) nanoparticles for targeted systemic delivery of mRNA to the lungs. Biomaterials 2025; 313:122753. [PMID: 39217793 DOI: 10.1016/j.biomaterials.2024.122753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Non-viral nanoparticles (NPs) have seen heightened interest as a delivery method for a variety of clinically relevant nucleic acid cargoes in recent years. While much of the focus has been on lipid NPs, non-lipid NPs, including polymeric NPs, have the possibility of improved efficacy, safety, and targeting, especially to non-liver organs following systemic administration. A safe and effective systemic approach for intracellular delivery to the lungs could overcome limitations to intratracheal/intranasal delivery of NPs and improve clinical benefit for a range of diseases including cystic fibrosis. Here, engineered biodegradable poly (beta-amino ester) (PBAE) NPs are shown to facilitate efficient delivery of mRNA to primary human airway epithelial cells from both healthy donors and individuals with cystic fibrosis. Optimized NP formulations made with differentially endcapped PBAEs and systemically administered in vivo lead to high expression of mRNA within the lungs in BALB/c and C57 B/L mice without requiring a complex targeting ligand. High levels of mRNA-based gene editing were achieved in an Ai9 mouse model across bronchial, epithelial, and endothelial cell populations. No toxicity was observed either acutely or over time, including after multiple systemic administrations of the NPs. The non-lipid biodegradable PBAE NPs demonstrate high levels of transfection in both primary human airway epithelial cells and in vivo editing of lung cell types that are targets for numerous life-limiting diseases particularly single gene disorders such as cystic fibrosis and surfactant deficiencies.
Collapse
Affiliation(s)
- Erin W Kavanagh
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neeraj Sharma
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Garry R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Chemical & Biomolecular Engineering, Materials Science & Engineering, Neurosurgery, Oncology, and Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Shen J, Feng K, Yu J, Zhao Y, Chen R, Xiong H, Ruan Y, Xu Z, Zhang T, Sun X. Responsive and traceless assembly of iron nanoparticles and 131I labeled radiopharmaceuticals for ferroptosis enhanced radio-immunotherapy. Biomaterials 2025; 313:122795. [PMID: 39232333 DOI: 10.1016/j.biomaterials.2024.122795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/07/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death with the potential to reverse traditional cancer therapy resistance. The combination of ferroptosis with chemotherapy, photodynamic therapy and X-ray therapy has demonstrated remarkably improved therapeutic efficiency. Radiopharmaceutical therapy (RPT) is an emerging approach that achieves precise radiation to diseased tissues via radionuclide delivery. However, insufficient accumulation and retention of therapeutic radiopharmaceuticals in tumor region as well as cancer radioresistance impact treatment efficacy. Here, a nanoassembly of renal clearable ultrasmall iron nanoparticles (USINPs) and 131I-aPD-L1 is prepared via the affinity of fluorophenylboronic acid modified on the USINPs with 131I-aPD-L1. The 150 nm USINAs(131I-aPD-L1) nanoassembly is stable in blood circulation, effectively targets to the tumor and disassembles in the presence of ATP in the tumor microenvironment. Both in vitro and in vivo experiments prove that USINPs-induced ferroptosis boosted the tumor radiosensitization to 131I while 131I-mediated RPT further enhanced ferroptosis. Meanwhile, the immunogenic cell death caused by RPT and ferroptosis combined with PD-L1 immune checkpoint blockade therapy exhibits a strong antitumor immunity. This study provides a novel way to improve the tumor accumulation of ferroptosis inducer and radiopharmaceuticals, insights into the interaction between RPT and ferroptosis and an effective SPECT-guided ferroptosis-enhanced radio-immunotherapy.
Collapse
Affiliation(s)
- Jingjing Shen
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kai Feng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing Yu
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yaxuan Zhao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ruifang Chen
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hehua Xiong
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengtao Xu
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Tao Zhang
- Northern Jiangsu Institute of Clinical Medicine, Department of Radiopharmaceuticals, Nuclear Medicine Clinical Translation Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Mohseni SO, Au KM, Issa W, Ruan L, Stuve O, Wang AZ. Multiple sclerosis treatments a review of current biomedical engineering approaches. Biomaterials 2025; 313:122807. [PMID: 39241553 DOI: 10.1016/j.biomaterials.2024.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Multiple Sclerosis (MS) is an autoimmune condition targeting the central nervous system (CNS) characterized by focal demyelination with inflammation, causing neurodegeneration and gliosis. This is accompanied by a refractory period in relapsing MS or chronic progression in primary progressive MS. Current MS treatments target disease relapses and aim to reduce further demyelination and disability. These include the treatment of acute exacerbations through global immunomodulation upon corticosteroid administration, which are accompanied by adverse reactions. Disease modifying therapies (DMTs) which provide targeted immunosuppression of T and B cells, and sequestration of leukocytes out of CNS, have led to further improvements in demyelination prevention and disease burden reduction. Despite their efficacy, DMTs are ineffective in remyelination, pathology reversal and have minimal effects in progressive MS. The advent of modern biomedical engineering approaches in combination with a better understanding of MS pathology, has led to the development of novel, regenerative approaches to treatment. Such treatments utilize neural stem cells (NSCs) and can reduce disease relapses and reverse damage caused by the disease through localized tissue regeneration. While at initial stages, pre-clinical and clinical studies utilizing NSCs and immune modulation have shown promising outcomes in tissue regeneration, creating a potential new era in MS therapy.
Collapse
Affiliation(s)
- Sayyed Ourmazd Mohseni
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kin Man Au
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Wadih Issa
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Lifu Ruan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew Z Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
6
|
Cao X, Fang L, Jiang Y, Zeng T, Bai S, Li S, Liu Y, Zhong W, Lu C, Yang H. Nanoscale octopus guiding telomere entanglement: An innovative strategy for inducing apoptosis in cancer cells. Biomaterials 2025; 313:122777. [PMID: 39222545 DOI: 10.1016/j.biomaterials.2024.122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Telomere length plays a crucial role in cellular aging and the risk of diseases. Unlike normal cells, cancer cells can extend their own survival by maintaining telomere stability through telomere maintenance mechanism. Therefore, regulating the lengths of telomeres have emerged as a promising approach for anti-cancer treatment. In this study, we introduce a nanoscale octopus-like structure designed to induce physical entangling of telomere, thereby efficiently triggering telomere dysfunction. The nanoscale octopus, composed of eight-armed PEG (8-arm-PEG), are functionalized with cell penetrating peptide (TAT) to facilitate nuclear entry and are covalently bound to N-Methyl Mesoporphyrin IX (NMM) to target G-quadruplexes (G4s) present in telomeres. The multi-armed configuration of the nanoscale octopus enables targeted binding to multiple G4s, physically disrupting and entangling numerous telomeres, thereby triggering telomere dysfunction. Both in vitro and in vivo experiments indicate that the nanoscale octopus significantly inhibits cancer cell proliferation, induces apoptosis through telomere entanglement, and ultimately suppresses tumor growth. This research offers a novel perspective for the development of innovative anti-cancer interventions and provides potential therapeutic options for targeting telomeres.
Collapse
Affiliation(s)
- Xiuping Cao
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Liyang Fang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Yifan Jiang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Tao Zeng
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Shiyan Bai
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Shiqing Li
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Yana Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Wukun Zhong
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Chunhua Lu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| |
Collapse
|
7
|
Wang D, Ma W, Zhang Y, Wang Y, Sun L, Jiang J, Jiao L, Li R, Zhang Y, Zhang M, Zhou Q. A versatile nanoplatform carrying cascade Pt nanozymes remodeling tumor microenvironment for amplified sonodynamic/chemo therapy of thyroid cancer. Biomaterials 2025; 313:122778. [PMID: 39213978 DOI: 10.1016/j.biomaterials.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Thyroid cancer is increasing globally, with anaplastic thyroid carcinoma (ATC) being the most aggressive type and having a poor prognosis. Current clinical treatments for thyroid cancer present numerous challenges, including invasiveness and the necessity of lifelong medication. Furthermore, a significant portion of patients with ATC experience cancer recurrence and metastasis. To overcome this dilemma, we developed a pH-responsive biomimetic nanocarrier (CLP@HP-A) through the incorporation of Chlorin e6 (Ce6) and Lenvatinib (Len) within hollow polydopamine nanoparticles (HP) that were further modified with platinum nanoparticles (Pt), enabling synergistic chemotherapy and sonodynamic therapy. The CLP@HP-A nanocarriers exhibited specific binding with galectin-3 receptors, facilitating their internalization through receptor-mediated endocytosis for targeted drug delivery. Upon exposure to ultrasound (US) irradiation, Ce6 rapidly generated reactive oxygen species (ROS) to induce significant oxidative stress and trigger apoptosis in tumor cells. Additionally, Pt not only alleviated tumor hypoxia by catalyzing the conversion of H2O2 to oxygen (O2) but also augmented intracellular ROS levels through the production of hydroxyl radicals (•OH), thereby enhancing the efficacy of sonodynamic therapy. Moreover, Len demonstrated a potent cytotoxic effect on thyroid cancer cells through the induction of apoptosis. Transcriptomics analysis findings additionally corroborated that CLP@HP-A effectively triggered cancer cell apoptosis, thereby serving as a crucial mechanism for its cytotoxic effects. In conclusion, the integration of sonodynamic/chemo combination therapy with targeted drug delivery systems offers a novel approach to the management of malignant tumors.
Collapse
Affiliation(s)
- Dan Wang
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Wenqi Ma
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lei Sun
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jue Jiang
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Lianying Jiao
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Runqing Li
- Department of Radiology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Qi Zhou
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
8
|
She JW, Young CM, Chou SJ, Wu YR, Lin YT, Huang TY, Shen MY, Chen CY, Yang YP, Chien Y, Ayalew H, Liao WH, Tung YC, Shyue JJ, Chiou SH, Yu HH. Gradient conducting polymer surfaces with netrin-1-conjugation promote axon guidance and neuron transmission of human iPSC-derived retinal ganglion cells. Biomaterials 2025; 313:122770. [PMID: 39226653 DOI: 10.1016/j.biomaterials.2024.122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Major advances have been made in utilizing human-induced pluripotent stem cells (hiPSCs) for regenerative medicine. Nevertheless, the delivery and integration of hiPSCs into target tissues remain significant challenges, particularly in the context of retinal ganglion cell (RGC) restoration. In this study, we introduce a promising avenue for providing directional guidance to regenerated cells in the retina. First, we developed a technique for construction of gradient interfaces based on functionalized conductive polymers, which could be applied with various functionalized ehthylenedioxythiophene (EDOT) monomers. Using a tree-shaped channel encapsulated with a thin PDMS and a specially designed electrochemical chamber, gradient flow generation could be converted into a functionalized-PEDOT gradient film by cyclic voltammetry. The characteristics of the successfully fabricated gradient flow and surface were analyzed using fluorescent labels, time of flight secondary ion mass spectrometry (TOF-SIMS), and X-ray photoelectron spectroscopy (XPS). Remarkably, hiPSC-RGCs seeded on PEDOT exhibited improvements in neurite outgrowth, axon guidance and neuronal electrophysiology measurements. These results suggest that our novel gradient PEDOT may be used with hiPSC-based technologies as a potential biomedical engineering scaffold for functional restoration of RGCs in retinal degenerative diseases and optic neuropathies.
Collapse
Affiliation(s)
- Jia-Wei She
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan; Taiwan International Graduate Program (TIGP), Nano Science & Technology Program, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan; Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Guangfu Road, East District, 300, Hsinchu City, Taiwan
| | - Chia-Mei Young
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan
| | - Shih-Jie Chou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - You-Ren Wu
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan
| | - Yu-Ting Lin
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Tzu-Yang Huang
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Mo-Yuan Shen
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Chih-Ying Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Hailemichael Ayalew
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Wei-Hao Liao
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jing-Jong Shyue
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Hwa Chiou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11217, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Genomic Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
9
|
Simon L, Constanzo J, Terraza-Aguirre C, Ibn Elfekih Z, Berthelot J, Benkhaled BT, Haute T, Pednekar K, Clark K, Emerson SJ, Atis S, Benedetti C, Langlois S, Marquant A, Prakash J, Wang A, Devoisselle JM, Montier T, Djouad F, Pouget JP, Lapinte V, Morille M. Surface modification of extracellular vesicles with polyoxazolines to enhance their plasma stability and tumor accumulation. Biomaterials 2025; 313:122748. [PMID: 39180918 DOI: 10.1016/j.biomaterials.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Extracellular vesicles (EVs) are future promising therapeutics, but their instability in vivo after administration remains an important barrier to their further development. Many groups evaluated EV surface modification strategies to add a targeting group with the aim of controlling EV biodistribution. Conversely, fewer groups focused on their stabilization to obtain "stealth" allogenic EVs. Modulating their stabilization and biodistribution is an essential prerequisite for their development as nano-therapeutics. Here, we explored polyoxazolines with lipid anchors association to the EV membrane (POxylation as an alternative to PEGylation) to stabilize EVs in plasma and control their biodistribution, while preserving their native properties. We found that this modification maintained and seemed to potentiate the immunomodulatory properties of EVs derived from mesenchymal stem/stromal cells (MSC). Using a radiolabeling protocol to track EVs at a therapeutically relevant concentration in vivo, we demonstrated that POxylation is a promising option to stabilize EVs in plasma because it increased EV half-life by 6 fold at 6 h post-injection. Moreover, EV accumulation in tumors was higher after POxylation than after PEGylation.
Collapse
Affiliation(s)
- L Simon
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | | | - Z Ibn Elfekih
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Berthelot
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - B T Benkhaled
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - T Haute
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - K Pednekar
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, the Netherlands
| | - K Clark
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - S J Emerson
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - S Atis
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | - C Benedetti
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - S Langlois
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - A Marquant
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, the Netherlands
| | - A Wang
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - J M Devoisselle
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - T Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de La Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200, Brest, France
| | - F Djouad
- IRMB, University of Montpellier, INSERM, 34295, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, 34095, Montpellier, France
| | - J P Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | - V Lapinte
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - Marie Morille
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
10
|
Qin Y, Zhu Y, Lu L, Wu H, Hu J, Wang F, Zhang B, Wang J, Yang X, Luo R, Chen J, Jiang Q, Yang L, Wang Y, Zhang X. Tailored extracellular matrix-mimetic coating facilitates reendothelialization and tissue healing of cardiac occluders. Biomaterials 2025; 313:122769. [PMID: 39208698 DOI: 10.1016/j.biomaterials.2024.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Minimally invasive transcatheter interventional therapy utilizing cardiac occluders represents the primary approach for addressing congenital heart defects and left atrial appendage (LAA) thrombosis. However, incomplete endothelialization and delayed tissue healing after occluder implantation collectively compromise clinical efficacy. In this study, we have customized a recombinant humanized collagen type I (rhCol I) and developed an rhCol I-based extracellular matrix (ECM)-mimetic coating. The innovative coating integrates metal-phenolic networks with anticoagulation and anti-inflammatory functions as a weak cross-linker, combining them with specifically engineered rhCol I that exhibits high cell adhesion activity and elicits a low inflammatory response. The amalgamation, driven by multiple forces, effectively serves to functionalize implantable materials, thereby responding positively to the microenvironment following occluder implantation. Experimental findings substantiate the coating's ability to sustain a prolonged anticoagulant effect, enhance the functionality of endothelial cells and cardiomyocyte, and modulate inflammatory responses by polarizing inflammatory cells into an anti-inflammatory phenotype. Notably, occluder implantation in a canine model confirms that the coating expedites reendothelialization process and promotes tissue healing. Collectively, this tailored ECM-mimetic coating presents a promising surface modification strategy for improving the clinical efficacy of cardiac occluders.
Collapse
Affiliation(s)
- Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, 200302, China
| | - Haoshuang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Jinpeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China; Shanghai Shape Memory Alloy Co., Ltd, Shanghai, 200940, China
| | - Fan Wang
- Shanghai Shape Memory Alloy Co., Ltd, Shanghai, 200940, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Jian Wang
- Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan, 030032, China
| | - Xia Yang
- Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan, 030032, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Juan Chen
- Shanghai Shape Memory Alloy Co., Ltd, Shanghai, 200940, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
11
|
Liu T, Liu J, Zhu Q, Mu W, Chen L, Weng L, Kong G, Chen X. NIR responsive scaffold with multistep shape memory and photothermal-chemodynamic properties for complex tissue defects repair and antibacterial therapy. Biomaterials 2025; 313:122794. [PMID: 39241552 DOI: 10.1016/j.biomaterials.2024.122794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Complex tissue damage accompanying with bacterial infection challenges healthcare systems globally. Conventional tissue engineering scaffolds normally generate secondary implantation trauma, mismatched regeneration and infection risks. Herein, we developed an easily implanted scaffold with multistep shape memory and photothermal-chemodynamic properties to exactly match repair requirements of each part from the tissue defect by adjusting its morphology as needed meanwhile inhibiting bacterial infection on demand. Specifically, a thermal-induced shape memory scaffold was prepared using hydroxyethyl methacrylate and polyethylene glycol diacrylate, which was further combined with the photothermal agent iron tannate (FeTA) to produce NIR light-induced shape memory property. By varying ingredients ratios in each segment, this scaffold could perform a stepwise recovery under different NIR periods. This process facilitated implantation after shape fixing to avoid trauma caused by conventional methods and gradually filled irregular defects under NIR to perform suitable tissue regeneration. Moreover, FeTA also catalyzed Fenton reaction at bacterial infections with abundant H2O2, which produced excess ROS for chemodynamic antibacterial therapy. As expected, bacteriostatic rate was further enhanced by additional photothermal therapy under NIR. The in vitro and vivo results showed that our scaffold was able to perform high efficacy in both antibiosis, inflammation reduction and wound healing acceleration, indicating a promising candidate for the regeneration of complex tissue damage with bacterial infection.
Collapse
Affiliation(s)
- Tao Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Jie Liu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Qixuan Zhu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Wenyun Mu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Li Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Lin Weng
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Guangyao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Xin Chen
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China; School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
12
|
Guo Z, Ge M, Ruan Z, Ma Y, Chen Y, Lin H. 2D Janus carrier-enabled trojan horse: Gallium delivery for the sequential therapy of biofilm associated infection. Biomaterials 2025; 313:122761. [PMID: 39241550 DOI: 10.1016/j.biomaterials.2024.122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Biofilm-associated infections (BAIs) continue to pose a major challenge in the medical field. Nanomedicine, in particular, promises significant advances in combating BAIs through the introduction of a variety of nanomaterials and nano-antimicrobial strategies. However, studies to date have primarily focused on the removal of the bacterial biofilm and neglect the subsequent post-biofilm therapeutic measures for BAIs, rendering pure anti-biofilm strategies insufficient for the holistic recovery of affected patients. Herein, we construct an emerging dual-functional composite nanosheet (SiHx@Ga) that responds to pHs fluctuation in the biofilm microenvironment to enable a sequential therapy of BAIs. In the acidic environment of biofilm, SiHx@Ga employs the self-sensitized photothermal Trojan horse strategy to effectively impair the reactive oxygen species (ROS) defense system while triggering oxidative stress and lipid peroxidation of bacteria, engendering potent antibacterial and anti-biofilm effects. Surprisingly, in the post-treatment phase, SiHx@Ga adsorbs free pathogenic nucleic acids released after biofilm destruction, generates hydrogen with ROS-scavenging and promotes macrophage polarization to the M2 type, effectively mitigating damaging inflammatory burst and promoting tissue healing. This well-orchestrated strategy provides a sequential therapy of BAIs by utilizing microenvironmental variations, offering a conceptual paradigm shift in the field of nanomedicine anti-infectives.
Collapse
Affiliation(s)
- Zhao Guo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Min Ge
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Zesong Ruan
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yihong Ma
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yunfeng Chen
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Han Lin
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China.
| |
Collapse
|
13
|
Alkhatib MBMM, Hussein MTHA, Alfantech MA, Shraim AM, Salih KSM. Spectroscopic and nonlinear optical investigations of biscinnamyl-sulfone derivatives: Computational and experimental insights. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:125023. [PMID: 39213832 DOI: 10.1016/j.saa.2024.125023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Novel geometrically asymmetric biscinnamyl-sulfone compounds (6a-c) with donor-π-conjugated spacer-acceptor functionality were successfully synthesized. This was achieved by coupling cinnamaldehyde precursors with 3,3'-diaminodiphenyl sulfone in dry organic solvents, resulting in high yields. Several spectroscopic techniques were employed to identify the derivatives. The absorption spectra of these compounds exhibited broad bands that spanned up to 120 nm, which can be attributed to their extended conjugation systems. In order to explore the electronic transitions of these materials, Time-Dependent Density-Functional Theory (TD-DFT) with EIFPCM solvation mode was utilized. We computationally investigated the static nonlinear optical (NLO) parameters, including dipole moments (μ), polarizability (α), anisotropic polarizability (Δα), first-order hyperpolarization (β), and second-order hyperpolarization (γ). Although the new structures possess different functional groups, they displayed similar electronic potentials when their molecular electrostatic potentials were plotted. These potentials are crucial in stabilizing the molecules in crystal systems through noncovalent forces such as C-H⋯π stacking and hydrogen bonding. They also provide insights into the electronic assessments and energetics of these individual forces. By estimating the frontier orbitals, we gained an understanding of the intramolecular charge transfer in the compounds. Energy gap values were determined using the orbitals of density of states method and experimentally via the Tauc method. The computational and experimental results were in good agreement. Lastly, we examined the influence of different protic and aprotic solvents on the absorption bands of compound 6b, as an example. This compound showed a significant bathochromic shift of 41 nm upon changing the solvent from acetic acid to dimethyl sulfoxide.
Collapse
Affiliation(s)
- Mohammad B M M Alkhatib
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Marawan T H A Hussein
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammad A Alfantech
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Amjad M Shraim
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Kifah S M Salih
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
14
|
Fan X, Harding PA, DiLeo MV. Controlled Release of Molecules to Enhance Cell Survival and Regeneration. Methods Mol Biol 2025; 2848:259-267. [PMID: 39240528 DOI: 10.1007/978-1-0716-4087-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Controlled release or controlled drug delivery comprises the set of techniques and approaches to improve bioavailability through improved safety and/or efficacy using a carrier material for the molecule of interest. The predictability and tunability of these carriers make them ideal for protection, localization, and sustained presentation of a wide range of therapeutics, including growth factors implicated in cell survival and regeneration. Here we provide a method for encapsulating epidermal growth factor in a degradable polymer matrix for delivery to the cornea. Additional notes are included to demonstrate the wide-ranging capabilities of such methods for other materials, therapeutic agents, and sites of action within the eye.
Collapse
Affiliation(s)
- Xin Fan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Phillip A Harding
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Morgan V DiLeo
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Zöller K, To D, Bernkop-Schnürch A. Biomedical applications of functional hydrogels: Innovative developments, relevant clinical trials and advanced products. Biomaterials 2025; 312:122718. [PMID: 39084097 DOI: 10.1016/j.biomaterials.2024.122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Functional hydrogels are used for numerous biomedical applications such as tissue engineering, wound dressings, lubricants, contact lenses and advanced drug delivery systems. Most of them are based on synthetic or natural polymers forming a three-dimensional network that contains aqueous media. Among synthetic polymers, poly(meth)acrylates, polyethyleneglycols, poly(vinylalcohols), poly(vinylpyrrolidones), PLGA and poly(urethanes) are of high relevance, whereas natural polymers are mainly polysaccharides such as hyaluronic acid, alginate or chitosan and proteins such as albumin, collagen or elastin. In contrast to most synthetic polymers, natural polymers are biodegradable. Both synthetic and natural polymers are often chemically modified in order to improve or induce favorable properties and functions like high mechanical strength, stiffness, elasticity, high porosity, adhesive properties, in situ gelling properties, high water binding capacity or drug release controlling properties. Within this review we provide an overview about the broad spectrum of biomedical applications of functional hydrogels, summarize innovative approaches, discuss the concept of relevant functional hydrogels that are in clinical trials and highlight advanced products as examples for successful developments.
Collapse
Affiliation(s)
- Katrin Zöller
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
| |
Collapse
|
16
|
Zhang S, Gong L, Sun Y, Zhang F, Gao W. An ultra-long-acting L-asparaginase synergizes with an immune checkpoint inhibitor in starvation-immunotherapy of metastatic solid tumors. Biomaterials 2025; 312:122740. [PMID: 39096839 DOI: 10.1016/j.biomaterials.2024.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Metastasis stands as the primary contributor to mortality associated with tumors. Chemotherapy and immunotherapy are frequently utilized in the management of metastatic solid tumors. Nevertheless, these therapeutic modalities are linked to serious adverse effects and limited effectiveness in preventing metastasis. Here, we report a novel therapeutic strategy named starvation-immunotherapy, wherein an immune checkpoint inhibitor is combined with an ultra-long-acting L-asparaginase that is a fusion protein comprising L-asparaginase (ASNase) and an elastin-like polypeptide (ELP), termed ASNase-ELP. ASNase-ELP's thermosensitivity enables it to generate an in-situ depot following an intratumoral injection, yielding increased dose tolerance, improved pharmacokinetics, sustained release, optimized biodistribution, and augmented tumor retention compared to free ASNase. As a result, in murine models of oral cancer, melanoma, and cervical cancer, the antitumor efficacy of ASNase-ELP by selectively and sustainably depleting L-asparagine essential for tumor cell survival was substantially superior to that of ASNase or Cisplatin, a first-line anti-solid tumor medicine, without any observable adverse effects. Furthermore, the combination of ASNase-ELP and an immune checkpoint inhibitor was more effective than either therapy alone in impeding melanoma metastasis. Overall, the synergistic strategy of starvation-immunotherapy holds excellent promise in reshaping the therapeutic landscape of refractory metastatic tumors and offering a new alternative for next-generation oncology treatments.
Collapse
Affiliation(s)
- Sanke Zhang
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China; Peking University International Cancer Institute, Beijing, 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Like Gong
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China; Peking University International Cancer Institute, Beijing, 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Yuanzi Sun
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China; Peking University International Cancer Institute, Beijing, 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Fan Zhang
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China; Peking University International Cancer Institute, Beijing, 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Weiping Gao
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China; Peking University International Cancer Institute, Beijing, 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China; Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
17
|
Sun S, Li R, Sun D, Guo L, Cui B, Zou F. Improving paste stabilities of cassava starch through molecular density after maltogenic amylase and transglucosidase. Food Chem 2025; 462:140993. [PMID: 39197246 DOI: 10.1016/j.foodchem.2024.140993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
To improve paste stability of cassava starch, including acid resistance, high-temperature shear resistance and freeze-thaw stability, cassava starch was modified by sequential maltogenic amylase and transglucosidase to form an optimally denser structure, or branched density (12.76 %), molecular density (15.17 g/mol/nm3), and the proportions of short-branched chains (41.41 % of A chains and 44.01 % of B1 chains). Viscosity stability (88.52 %) of modified starch was higher than that (64.92 %) of native starch. After acidic treatment for 1 h, the viscosity of modified starch and native starch decreased by 56.53 % and 65.70 %, respectively. Compared to native starch, modified starch had lower water loss in freeze-thaw cycles and less viscosity reduction during high-temperature and high-shear processing. So, the appropriate molecular density and denser molecule structure enhanced paste stabilities of modified starch. The outcome expands the food and non-food applications of cassava starch.
Collapse
Affiliation(s)
- Shuo Sun
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruobing Li
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Li Guo
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Feixue Zou
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
18
|
Hashemi-Afzal F, Fallahi H, Bagheri F, Collins MN, Eslaminejad MB, Seitz H. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioact Mater 2025; 43:1-31. [PMID: 39318636 PMCID: PMC11418067 DOI: 10.1016/j.bioactmat.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
This review paper explores the cutting-edge advancements in hydrogel design for articular cartilage regeneration (CR). Articular cartilage (AC) defects are a common occurrence worldwide that can lead to joint breakdown at a later stage of the disease, necessitating immediate intervention to prevent progressive degeneration of cartilage. Decades of research into the biomedical applications of hydrogels have revealed their tremendous potential, particularly in soft tissue engineering, including CR. Hydrogels are highly tunable and can be designed to meet the key criteria needed for a template in CR. This paper aims to identify those criteria, including the hydrogel components, mechanical properties, biodegradability, structural design, and integration capability with the adjacent native tissue and delves into the benefits that CR can obtain through appropriate design. Stratified-structural hydrogels that emulate the native cartilage structure, as well as the impact of environmental stimuli on the regeneration outcome, have also been discussed. By examining recent advances and emerging techniques, this paper offers valuable insights into developing effective hydrogel-based therapies for AC repair.
Collapse
|