1
|
Liu C, Wang G, Han W, Tian Q, Li M. Ferroptosis: a potential therapeutic target for stroke. Neural Regen Res 2024; 19:988-997. [PMID: 37862200 DOI: 10.4103/1673-5374.385284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by massive iron accumulation and iron-dependent lipid peroxidation, differing from apoptosis, necroptosis, and autophagy in several aspects. Ferroptosis is regarded as a critical mechanism of a series of pathophysiological reactions after stroke because of iron overload caused by hemoglobin degradation and iron metabolism imbalance. In this review, we discuss ferroptosis-related metabolisms, important molecules directly or indirectly targeting iron metabolism and lipid peroxidation, and transcriptional regulation of ferroptosis, revealing the role of ferroptosis in the progression of stroke. We present updated progress in the intervention of ferroptosis as therapeutic strategies for stroke in vivo and in vitro and summarize the effects of ferroptosis inhibitors on stroke. Our review facilitates further understanding of ferroptosis pathogenesis in stroke, proposes new targets for the treatment of stroke, and suggests that more efforts should be made to investigate the mechanism of ferroptosis in stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Zeng S, Wang K, Liu X, Hu Z, Zhao L. Potential of longan (Dimocarpus longan Lour.) in functional food: A review of molecular mechanism-directing health benefit properties. Food Chem 2024; 437:137812. [PMID: 37897820 DOI: 10.1016/j.foodchem.2023.137812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Longan (Dimocarpus longan Lour.) has received widespread attention worldwide as a therapeutic food with nutritional, economic, and medicinal value. Its fruit, seed, pericarp, and flower becoming dietary tools for health maintenance when it comes to targeting chronic diseases or sub-health conditions. In recent years, research focusing on longan and human health has intensified, and the high-value products of the whole fruit, including polyphenols, polysaccharides, angiotensin-I-converting enzyme (ACE)-inhibiting peptides, gamma-aminobutyric acid (GABA), and Maillard reaction products etc., may have beneficial effects on human health by preventing the onset of chronic diseases and cancer, maintaining intestinal homeostasis and skin health. Here, we review and summarize the new available evidence on the bioactive role of phytochemicals in longan and explore the relationship between longan bioactive compounds and health benefits, with a focus on the molecular mechanisms of the health effects.
Collapse
Affiliation(s)
- Shiai Zeng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Lee MH, Kim HD, Jang YJ. Delivery systems designed to enhance stability and suitability of lipophilic bioactive compounds in food processing: A review. Food Chem 2024; 437:137910. [PMID: 37931451 DOI: 10.1016/j.foodchem.2023.137910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Lipophilic compounds, such as flavors, fat-soluble vitamins, and hydrophobic nutrients possess vital properties including antioxidant effects, functional attributes, and nutritional value that can improve human health. However, their susceptibility to environmental factors including heat, pH changes, and ionic strength encountered during food processing poses significant challenges. To address these issues, diverse bioactive delivery systems have been developed. This review explores delivery systems designed to optimize the stability and suitability of lipophilic bioactive compounds in food processing. Extensive literature analysis reveals that tailoring delivery systems with various biopolymers can protect bioactives through steric hindrance and formation of thick interfacial layers on the emulsion surfaces. Thus, the access of oxygen, prooxidants, and free radicals at the emulsion interface could be inhibited, resulting in enhanced processing suitability of bioactives as well as chemical stability under diverse environmental conditions. The insights presented in this review hold immense value for the food and beverage industries.
Collapse
Affiliation(s)
- Min Hyeock Lee
- Department of Food Science and Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.
| | - Hyeong Do Kim
- Department of Food Science and Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| | - Yun Jae Jang
- Department of Food Science and Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| |
Collapse
|
4
|
Yu H, Kim H, Chang PS. Fabrication and characterization of chitosan-pectin emulsion-filled hydrogel prepared by cold-set gelation to improve bioaccessibility of lipophilic bioactive compounds. Food Chem 2024; 437:137927. [PMID: 37944393 DOI: 10.1016/j.foodchem.2023.137927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Chitosan-pectin emulsion-filled hydrogel (EFH) was developed to enhance the bioaccessibility of lipophilic bioactive compounds through intestinal delivery. The EFH, incorporating a sodium caseinate-stabilized emulsion, was prepared using cold-set gelation under acidic conditions without crosslinking agents. Increasing the pectin concentration (0.75-1.50%, w/v) improved the mechanical strength and compactness of the EFH. The pH-responsive EFH retained the emulsion at pH 2.0 and released it at pH 7.4. In vitro digestion demonstrated that the EFH remained intact during oral and gastric stages, while the emulsion alone became destabilized. During intestinal digestion, the release of free fatty acids from the EFH decreased from 58.67% to 43.76% as the pectin concentration increased from 0.75% to 1.50%. EFH with 0.75% and 1.00% pectin significantly improved curcumin bioaccessibility compared to the emulsion alone. These findings demonstrate the potential of chitosan-pectin EFH as a novel carrier system for enhancing the bioaccessibility of lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Hyunjong Yu
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea
| | - Huisu Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Wang L, Ma F, Li Z, Zhang Y. Immobilizing amyloglucosidase on inorganic hybrid nanoflowers to prepare time-temperature integrators for chilled pork quality monitoring. Food Chem 2024; 437:137876. [PMID: 37931448 DOI: 10.1016/j.foodchem.2023.137876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Time-temperature integrators (TTIs) based on amyloglucosidase@Cu3(PO4)2 nanoflowers (AMG@NFs) were developed to monitor the freshness of chilled pork. AMG@NFs were synthesized through biomineralization, resulting in enhanced activity and stability of amyloglucosidase. The TTI prototypes were constructed by hydrolyzing maltodextrin with AMG@NFs. The hue of the TTIs varied from burgundy to colorless, and the discoloration kinetics were investigated. The deterioration process of chilled pork was explored, and the activation energy (Ea) was calculated as 67.32 ± 5.13 kJ/mol. To optimize costs and match TTIs with food, 6#TTI was selected to predict the quality of chilled pork. The dynamic temperature test revealed that the cumulative effective temperatures of chilled pork and 6#TTI were 289.34 K and 290.05 K, respectively, which indicated that 6#TTI was highly reliable and suitable for monitoring the actual chilled pork system. This study offers a new approach for real-time and accurate visual monitoring of chilled pork quality.
Collapse
Affiliation(s)
- Lin Wang
- Henan University of Animal Husbandry and Economy, No. 6 Longzihu North Road, Zhengzhou, Henan 450046, China.
| | - Falai Ma
- Zhengzhou Golden Leaf Industrial Co., Ltd., No. 73 Longhai East Road, Zhengzhou, Henan 450002, China
| | - Zihan Li
- Henan University of Animal Husbandry and Economy, No. 6 Longzihu North Road, Zhengzhou, Henan 450046, China
| | - Yan Zhang
- Henan University of Animal Husbandry and Economy, No. 6 Longzihu North Road, Zhengzhou, Henan 450046, China.
| |
Collapse
|
6
|
Chen Z, Chen J, Ni D, Xu W, Zhang W, Mu W. Microbial dextran-hydrolyzing enzyme: Properties, structural features, and versatile applications. Food Chem 2024; 437:137951. [PMID: 37951078 DOI: 10.1016/j.foodchem.2023.137951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Dextran, an α-glucan mainly composed of (α1 → 6) linkages, has been widely applied in the food, cosmetic, and medicine industries. Dextranase can hydrolyze dextran to synthesize oligodextrans, which show prominent properties and promising applications in the food industry. Dextranases are widely distributed in bacteria, yeasts, and fungus, and classified into glycoside hydrolase (GH) 13, 15, 31, 49, and 66 families according to their sequence similarity, structural features, and reaction types. Dextranase, as a dextran-hydrolyzing enzyme, displays great application potential in the sugar-making, oral health care, medicine, and biotechnology industries. Here we mainly focused on presenting the enzymatic properties, structural features, and versatile (potential) applications of dextranase. To date, seven crystal structures of dextranases from GH 13, 15, 31, 49, and 66 families have been successfully solved. However, their molecular mechanisms for hydrolyzing dextran, especially on the size determinants of the hydrolysates, remain largely unknown. Additionally, the classification, microbial distribution, and immobilization technology of dextranase were also discussed in detail. This review discussed dextranase from different aspects with the ambition to present how they constitute the groundwork for promising future developments.
Collapse
Affiliation(s)
- Ziwei Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Wang Z, Deng Y, Zhang Y, Tang X, Zhou P, Li P, Zhao Z, Wang Z, Liu G, Zhang M. Fibrous whey protein mediated homogeneous and soft-textured emulsion gels for elderly: Enhancement of bioaccessibility for curcumin. Food Chem 2024; 437:137850. [PMID: 37924761 DOI: 10.1016/j.foodchem.2023.137850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/01/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Homogeneous and soft-textured food gels are critical for designing precise and personalized nutrient food for elderly. Effects of whey protein morphology (fibrous and granular) with/without NaCl addition on oil-water state and texture properties of protein emulsion gels were investigated, to explore the feasibility of developing homogeneous and soft-textured food for elderly. Lower gelation temperature and higher stability of its emulsion droplets, resulted in fibrous whey protein emulsion gels (FWPG) had even distribution of embedded oil droplets, compared to native whey protein emulsion gels. FWPG had the lowest hardness and chewiness, and exhibited better tolerance to the harden effects of NaCl on emulsion gels. FWPG can deliver curcumin more effectively during simulated gastrointestinal digestion, as evidenced by higher retention ratio and enhancement of bioaccessibility (increased by ∼ 20 %). This study provided new strategy to fabricate a homogenous emulsion gel using fibrous whey protein and to design multi-nutrient food gels for elderly.
Collapse
Affiliation(s)
- Zhiming Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yan Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiaojun Tang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Pengfei Zhou
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ping Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhihao Zhao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhangying Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
8
|
Zhou W, Zhang R, Cai Z, Wu F, Hu Y, Huang C, Hu K, Chen Y. Preparation and properties of pH-sensitive cationic starch nanoparticles. Food Chem 2024; 437:137916. [PMID: 37944390 DOI: 10.1016/j.foodchem.2023.137916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Environmentally friendly and outstanding pH responsiveness cationic starch nanoparticles (CSNP) were prepared through ethanol precipitation from pH-sensitive starch, which preparation of cationic starch (CS) by grafting copolymerization with dimethylaminoethyl methacrylate (DMAEMA). In this work, CSNP showed a nanometer size and regular sphere, highly free-flowing molecular chains, and outstanding pH responsiveness which was proved by the high stability of its stabilized emulsion through 6 emulsification/ demulsification transition. The result of the SEM and particle size distribution indicated that the size of the CSNP-0 was about 800 nm, and decreased with the DMAEMA increased. Moreover, the CSNP-stabilized emulsion was stable at pH = 7 and pH = 12. However, this emulsion exhibited breakage at pH = 2. In addition, the CSNP-stabilized Pickering emulsion achieved an emulsification/demulsification switching by cycling the pH at least 6 times, during which the average droplet size gradually increased. At pH ≥ 7, the emulsions exhibit shear thinning behavior.
Collapse
Affiliation(s)
- Wei Zhou
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Rui Zhang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Zhen Cai
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Fangfang Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China
| | - Kun Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China.
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan, Guangdong Province 528458, China.
| |
Collapse
|
9
|
Qi X, Li Y, Zhang W, Shen M, Chen Y, Yu Q, Xie J. Proteolysis improves the foaming properties of rice protein fibrils: Structure, physicochemical properties changes, and application in angel food cake. Food Chem 2024; 437:137765. [PMID: 37907000 DOI: 10.1016/j.foodchem.2023.137765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Proteolysis prior to fibrillation can change the functional properties of protein fibrils. This study aimed to investigate the effects of proteolysis pretreatment by alkaline protease on formation, structure, and foaming properties of rice protein fibrils. Thioflavin T fluorescence and conversion assays showed that proteolysis reduced the fibril formation capacity of rice protein. After 12 h of heating, the percent conversion of rice protein and rice protein hydrolysates to fibrils reached 60.32 ± 1.07% and 30.43 ± 2.01%, respectively. Transmission electron microscopy images showed that fibrils derived from rice protein hydrolysates had a longer contour length than rice protein fibrils. The foaming capacity and stability of rice protein hydrolysate fibrils increased by 16.70% and 11.27%, respectively, compared with those of rice protein fibrils. The addition of rice protein hydrolysate fibrils improved the texture of cakes. These results suggested that rice protein hydrolysate fibrils could be a promising plant-based foaming agent.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yulin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Weidong Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
10
|
Yin L, Gao K, Mao X, Hu Y. Lipase B from Candida antarctica immobilized on amphiphilic Janus halloysite nanosheet and application in biphasic interface conversion. Food Chem 2024; 437:137787. [PMID: 37897826 DOI: 10.1016/j.foodchem.2023.137787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/24/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
Lipase B from Candida antarctica (CALB) plays a prominent role as a biocatalyst in several industries, especially for biphasic conversion of functional lipids. Herein, an amphiphilic Janus halloysite nanosheet (JHNS) was fabricated and employed simultaneously as a solid surfactant for stabilizing Pickering emulsion and as a carrier for immobilizing CALB, with the aim to realize highly efficient biphasic bioconversion. The obtained JHNS could stabilize Pickering emulsion for at least 7 days. Immobilization of CALB on JHNS improved the substrate affinity, catalytic efficiency, thermal stability, and alkaline tolerance of the enzyme. Moreover, JHNS-based immobilized CALB was exploited as a biocatalytic platform for the conversion of retinyl acetate, with almost twice increase in conversion efficiency. Taken together, the JHNS-based immobilized CALB paves the way for the design of efficient biphasic conversion system for the production of added-value lipids.
Collapse
Affiliation(s)
- Lili Yin
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Kunpeng Gao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Yang Hu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
11
|
Sunanta P, Rose Sommano S, Luiten CA, Ghofrani M, Sims IM, Bell TJ, Carnachan SM, Hinkley SFR, Kontogiorgos V. Fractionation and characterisation of pectin-rich extracts from garlic biomass. Food Chem 2024; 436:137697. [PMID: 37832418 DOI: 10.1016/j.foodchem.2023.137697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Polysaccharides from garlic waste leaf and skin biomass have been isolated using a sequential extraction protocol and characterised using constituent sugar composition and linkage analysis, spectroscopy, chromatography and dilute solution viscometry. The results revealed that the isolated polysaccharides were predominantly pectins. The predominant monosaccharide in all samples was galacturonic acid (>61 %), followed by galactose and rhamnose. The pectins extracted from skin biomass were mainly homogalacturonan (83-91 %), whereas those extracted from leaf biomass comprised both homogalacturonan (62-65 %) and rhamnogalacturonan-I (35-38 %). The degree of methyl esterification of uronic acids in all samples was 44-56 %. The peak molecular weight of the main polysaccharide population in each sample was ∼ 350 x103 g/mol, with leaf extracts and the skin acidic extract containing a second, lower molecular weight peak. Overall, waste garlic biomass is a potential resource for commercial pectin extraction for use in food or pharmaceutical industries.
Collapse
Affiliation(s)
- Piyachat Sunanta
- Research unit for Innovation in responsible Food production for consumption of the Future (RIFF), Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand; Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Cara A Luiten
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Mahdieh Ghofrani
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Ian M Sims
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Tracey J Bell
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Susan M Carnachan
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Simon F R Hinkley
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Vassilis Kontogiorgos
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
12
|
Feng M, Zhou Q, Xie H, Liu C, Zheng M, Zhang S, Zhou S, Zhao J. Role of CD36 in central nervous system diseases. Neural Regen Res 2024; 19:512-518. [PMID: 37721278 PMCID: PMC10581564 DOI: 10.4103/1673-5374.380821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 09/19/2023] Open
Abstract
CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases. CD36 was recently found to be widely expressed in various cell types in the nervous system, including endothelial cells, pericytes, astrocytes, and microglia. CD36 mediates a number of regulatory processes, such as endothelial dysfunction, oxidative stress, mitochondrial dysfunction, and inflammatory responses, which are involved in many central nervous system diseases, such as stroke, Alzheimer's disease, Parkinson's disease, and spinal cord injury. CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand, thereby achieving inhibition of CD36-mediated pathways or functions. Here, we reviewed the mechanisms of action of CD36 antagonists, such as Salvianolic acid B, tanshinone IIA, curcumin, sulfosuccinimidyl oleate, antioxidants, and small-molecule compounds. Moreover, we predicted the structures of binding sites between CD36 and antagonists. These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Min Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huimin Xie
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Mengru Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shuyu Zhang
- Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
13
|
Lee J, Yoo E, Choi SJ. Fabrication and characterization of nanoparticles with lecithin liposomes and poloxamer micelles: Impact of conformational structures of poloxamers. Food Chem 2024; 435:137613. [PMID: 37806204 DOI: 10.1016/j.foodchem.2023.137613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/16/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
In this study, we fabricated and characterized nanoparticles with a core/shell structure using lecithin and poloxamer. We also evaluated their ability to load proteins. At a lecithin/poloxamer ratio of 0.2, the sizes of lecithin/P188 (low molecular weight poloxamer) and lecithin/P338 (high molecular weight poloxamer) nanoparticles were 316.1 and 280.7 nm, respectively. Lecithin/P188 nanoparticles easily lost core/shell structure at pH 3 and 7. Lecithin/P338 nanoparticles were stable at pH 7 but unstable at pH 3. Only lecithin/P338 nanoparticles exhibited stability in response to temperature changes, despite an increase in their size with decreasing temperature. Loading a model protein with a high isoelectric point (pI) in liposome/poloxamer nanoparticles seemed impossible. A model protein with low pI was efficiently loaded in lecithin/poloxamer nanoparticles, and the maximum loading capacity of lecithin/P188 and lecithin/P338 nanoparticles was 14.85 and 42.34 mg/g particle, respectively. However, lecithin/P188 nanoparticles loading this model protein lost their core/shell structure.
Collapse
Affiliation(s)
- Jihyo Lee
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Eunhee Yoo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Seung Jun Choi
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Center for Functional Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
14
|
Tan J, Deng C, Yao Y, Wu N, Xu M, Chen S, Yin Z, Zhao Y, Tu Y. Regulation of different copper salts on alkali-induced egg white gels: Physicochemical characteristics, microstructure and protein conformation. Food Chem 2024; 435:137346. [PMID: 37783128 DOI: 10.1016/j.foodchem.2023.137346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 07/22/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
The effects of different copper salts (CuSO4, CuCl2, Cu(CH3COO)2) on the physicochemical characteristics, microstructure and protein conformation of alkali-induced egg white (EW) gels were investigated. With increasing concentration, three copper salts promoted the aggregation of EW proteins while decreasing the β-sheet content. The three-dimensional gel network was promoted to form, and the water-holding capacity (WHC), texture and solubility of gels were improved by three copper salts at low concentrations. While at high concentrations, the gel deteriorated. The main forces maintaining the alkali-induced EW gels added with copper salts were mainly ionic and disulfide bonds. And the protein component was not affected by ion concentration. Due to the difference in charge density, the three anions had different effects on the stability of proteins, and finally showed different gel characteristics (gel strength, WHC, solubility): CuSO4 > CuCl2 > Cu(CH3COO)2. Therefore, copper salts (especially CuSO4) can be used to improve EW protein aggregation.
Collapse
Affiliation(s)
- Ji'en Tan
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chunyang Deng
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
15
|
Mulargia LI, Lemmens E, Korompokis K, Reyniers S, Gebruers K, Goos P, Gamboa Carlosama NA, Wouters AGB, Delcour JA. Tailoring the formulation of sugar-snap cookies to lower in vitro starch digestibility: A response surface modelling approach. Food Chem 2024; 435:137601. [PMID: 37776657 DOI: 10.1016/j.foodchem.2023.137601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
An I-optimal response surface experimental design revealed impacts of dough moisture content (DMC, 14-22%) and level of wheat flour substitution (10-50%) by wheat gluten and one of six different native starches [wheat, (waxy) maize, rice, potato, pea] on sugar-snap cookie starch thermal properties, in vitro starch digestion, dough and cookie hardness and spread ratio. Increasing DMCs from 14 to 22% increased the cookie starch digestion rate constants of each starch source used. A linear increase of the constant by 25-30% across the 14 to 22% DMC range for all starches was predicted and validated. That cookie spread and hardness were related to the water retention capacity of the native starches used suggested that they underwent limited changes during baking. For each starch examined, formulations were optimized to lower in vitro starch digestion rate and extent, and cookie hardness, while maximizing dough spread ratio.
Collapse
Affiliation(s)
- Leonardo I Mulargia
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Elien Lemmens
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Konstantinos Korompokis
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Stijn Reyniers
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Kurt Gebruers
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Peter Goos
- Department of Biosystems, Division of Mechatronics, Biostatistics and Sensors (MeBioS), B-3001 Leuven, Belgium.
| | - Nicolas Andres Gamboa Carlosama
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| |
Collapse
|
16
|
Zhang Y, Pu Y, Jiang H, Chen L, Shen C, Zhang W, Cao J, Jiang W. Improved sustained-release properties of ginger essential oil in a Pickering emulsion system incorporated in sodium alginate film and delayed postharvest senescence of mango fruits. Food Chem 2024; 435:137534. [PMID: 37769562 DOI: 10.1016/j.foodchem.2023.137534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
The insufficient water vapor barrier and mechanical capacity of sodium alginate (SA) film limited its application in fruit preservation. Herein, cellulose nanocrystals (CNCs) were used to stabilize Pickering emulsion. Then, we prepared SA composite films. Ginger essential oil (GEO) was loaded as antimicrobials and antioxidants. Finally, the application on mangos were investigated. Compared to coarse emulsion, Pickering emulsion and its film-formation-solution showed more stable system and larger droplet size. The emulsion significantly changed the properties of SA film. Specifically, CNCs improved the thermal, tensile, and barrier properties of the film and GEO enhanced the ultraviolet-visible light barrier capacity. Additionally, the SA/CNC film possessed a homogeneous micromorphology which had a sustained-release effect on GEO, thus maintaining high postharvest quality and long-term bioavailability for mangos. In conclusion, the film prepared via Pickering emulsion showed satisfactory properties which had great potential in fruit preservation.
Collapse
Affiliation(s)
- Yiqin Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Chaoyu Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Wanli Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
17
|
Huang X, Lou Y, Duan Y, Liu H, Tian J, Shen Y, Wei X. Biomaterial scaffolds in maxillofacial bone tissue engineering: A review of recent advances. Bioact Mater 2024; 33:129-156. [PMID: 38024227 PMCID: PMC10665588 DOI: 10.1016/j.bioactmat.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Maxillofacial bone defects caused by congenital malformations, trauma, tumors, and inflammation can severely affect functions and aesthetics of maxillofacial region. Despite certain successful clinical applications of biomaterial scaffolds, ideal bone regeneration remains a challenge in maxillofacial region due to its irregular shape, complex structure, and unique biological functions. Scaffolds that address multiple needs of maxillofacial bone regeneration are under development to optimize bone regeneration capacity, costs, operational convenience. etc. In this review, we first highlight the special considerations of bone regeneration in maxillofacial region and provide an overview of the biomaterial scaffolds for maxillofacial bone regeneration under clinical examination and their efficacy, which provide basis and directions for future scaffold design. Latest advances of these scaffolds are then discussed, as well as future perspectives and challenges. Deepening our understanding of these scaffolds will help foster better innovations to improve the outcome of maxillofacial bone tissue engineering.
Collapse
Affiliation(s)
- Xiangya Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yaxin Lou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yihong Duan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jun Tian
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
18
|
Zhang K, Shen R, Zhang Y, Tian X, Wang W. Modulating in vitro gastrointestinal digestion of nanocellulose-stabilized pickering emulsions by altering particle surface charge. Food Chem 2024; 434:137521. [PMID: 37769602 DOI: 10.1016/j.foodchem.2023.137521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
An in vitro model of human gastrointestinal digestion was introduced to investigate the effects of surface charge of cellulose nanoparticles on emulsion structure during gastric phase, lipase activity, bile salt diffusion, and free fatty acid (FFA) release. Four carboxymethylated cellulose nanofibrils (CNF; C0, C0.36, C0.72, and C1.24) were used, showing different surface charge (p < 0.05). First, four carboxymethylated CNFs had no inhibition effects on lipase activity and bile salt diffusion. Moreover, we found that the lipid emulsion containing CNF formed gel structure to induce oil droplets aggregation during simulated gastric phase. Additionally, the particle surface charge greatly influenced the gel structure of emulsion where a denser gel structure was observed in the C0 (lowest surface charged CNF) stabilized emulsion. Finally, the released FFA results showed that the formed gel structure lowered the lipid emulsion digestion attributed to the restricted adherent area of oil droplets for lipase and bile salt.
Collapse
Affiliation(s)
- Kai Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ruixi Shen
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yafei Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China.
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
19
|
Sharma G, Sultana A, Abdullah KM, Pothuraju R, Nasser MW, Batra SK, Siddiqui JA. Epigenetic regulation of bone remodeling and bone metastasis. Semin Cell Dev Biol 2024; 154:275-285. [PMID: 36379849 PMCID: PMC10175516 DOI: 10.1016/j.semcdb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bone remodeling is a continuous and dynamic process of bone formation and resorption to maintain its integrity and homeostasis. Bone marrow is a source of various cell lineages, including osteoblasts and osteoclasts, which are involved in bone formation and resorption, respectively, to maintain bone homeostasis. Epigenetics is one of the elementary regulations governing the physiology of bone remodeling. Epigenetic modifications, mainly DNA methylation, histone modifications, and non-coding RNAs, regulate stable transcriptional programs without causing specific heritable alterations. DNA methylation in CpG-rich promoters of the gene is primarily correlated with gene silencing, and histone modifications are associated with transcriptional activation/inactivation. However, non-coding RNAs regulate the metastatic potential of cancer cells to metastasize at secondary sites. Deregulated or altered epigenetic modifications are often seen in many cancers and interwound with bone-specific tropism and cancer metastasis. Histone acetyltransferases, histone deacetylase, and DNA methyltransferases are promising targets in epigenetically altered cancer. High throughput epigenome mapping and targeting specific epigenetics modifiers will be helpful in the development of personalized epi-drugs for advanced and bone metastasis cancer patients. This review aims to discuss and gather more knowledge about different epigenetic modifications in bone remodeling and metastasis. Further, it provides new approaches for targeting epigenetic changes and therapy research.
Collapse
|