1
|
Nawab R, Ali M, Haroon U, Kamal A, Akbar M, Anwar F, Ahmed J, Chaudhary HJ, Iqbal A, Hashem M, Alamri S, ALHaithloul HAS, Munis MFH. Calotropis procera (L.) mediated synthesis of AgNPs and their application to control leaf spot of Hibiscus rosa-sinensis (L.). BRAZ J BIOL 2024; 84:e261123. [DOI: 10.1590/1519-6984.261123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Nature is gifted with a wide range of ornamental plants, which beautify and clean the nature. Due to its great aesthetic value, there is a need to protect these plants from a variety of biotic and abiotic stresses. Hibiscus rosa-sinensis (L.) is an ornamental plant and it is commonly known as China rose or shoeblack plant. It is affected by several fungal and bacterial pathogens. Current study was designed to isolate leaf spot pathogen of H. rosa-sinensis and its control using silver nanoparticles (AgNPs). Based on molecular and morphological features, the isolated leaf spot pathogen was identified as Aspergillus niger. AgNPs were synthesized in the leaf extract of Calotropis procera and characterized. UV-vis spectral analysis displayed discrete plasmon resonance bands on the surface of synthesized AgNPs, depicting the presence of aromatic amino acids. Fourier transform infrared spectroscopy (FTIR) described the presence of C-O, NH, C-H, and O-H functional groups, which act as stabilizing and reducing molecules. X-ray diffraction (XRD) revealed the average size (~32.43 nm) of AgNPs and scanning electron microscopy (SEM) depicted their spherical nature. In this study, in vitro and in vivo antifungal activity of AgNPs was investigated. In vitro antifungal activity analysis revealed the highest growth inhibition of mycelia (87%) at 1.0 mg/ml concentration of AgNPs. The same concentration of AgNPs tremendously inhibited the spread of disease on infected leaves of H. rosa-sinensis. These results demonstrated significant disease control ability of AgNPs and suggested their use on different ornamental plants.
Collapse
Affiliation(s)
- R. Nawab
- Quaid-i-Azam University, Pakistan
| | - M. Ali
- Quaid-i-Azam University, Pakistan
| | | | - A. Kamal
- Quaid-i-Azam University, Pakistan
| | - M. Akbar
- Quaid-i-Azam University, Pakistan
| | - F. Anwar
- Quaid-i-Azam University, Pakistan
| | - J. Ahmed
- Quaid-i-Azam University, Pakistan
| | | | - A. Iqbal
- Quaid-i-Azam University, Pakistan
| | - M. Hashem
- King Khalid University, Saudi Arabia; Assiut University, Egypt
| | - S. Alamri
- King Khalid University, Saudi Arabia
| | | | | |
Collapse
|
2
|
Tanona M, Czarnota P. The response of lichens inhabiting exposed wood of spruce logs to post-hurricane disturbances in Western Carpathian forests. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2023.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
3
|
Munim Twaij B, Jameel Ibraheem L, Al-Shammari RHH, Hasan M, Akter Khoko R, Sunzid Ahomed M, Prodhan SH, Nazmul Hasan M. Identification and characterization of aldehyde dehydrogenase (ALDH) gene superfamily in garlic and expression profiling in response to drought, salinity, and ABA. Gene 2023; 860:147215. [PMID: 36709878 DOI: 10.1016/j.gene.2023.147215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
In response to biotic and abiotic stressors, aldehydes are detoxified and converted to carboxylic acids by aldehyde dehydrogenases (ALDHs), which are enzymes that use NAD+/NADP+ as cofactors. Garlic (Allium sativum L.) has not yet undergone a systematic examination of the ALDH superfamily, despite the genome sequence having been made public. In this investigation, we identified, characterized, and profiled the expression of the garlic ALDH gene family over the entire genome. The ALDH Gene Nomenclature Committee (AGNC) classification was used to classify and name the 34 ALDH genes that were discovered. Except for chromosome 8, all AsALDH genes were dispersed across the chromosomes. AsALDH genes have various localizations, according to predictions about subcellular localization. The AsALDH proteins are more varied and closely related to rice than to Arabidopsis, according to a study of conserved motifs and phylogenetic relationships. The presence of stress modulation pathways is indicated by the abundance of stress-related cis-elements in the AsALDH genes' promoter regions. Analysis of the RNA-seq data showed that AsALDHs expressed differently in various tissues and at various developmental stages. Nine AsALDHs were chosen for study using RT-qPCR, and the results revealed that the majority of the genes were upregulated in response to ABA and downregulated in response to salinity and drought. The results of this study improved our knowledge of the traits, evolutionary background, and biological functions of AsALDHs genes in growth and development.
Collapse
Affiliation(s)
- Baan Munim Twaij
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq.
| | | | | | - Mahmudul Hasan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Roksana Akter Khoko
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Md Sunzid Ahomed
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Shamsul H Prodhan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| |
Collapse
|
4
|
Pradhan S, Dash S, Parida S, Sahoo B, Rath B. Antioxidant and antimicrobial activities and GC/MS-based phytochemical analysis of two traditional Lichen species Trypethellium virens and Phaeographis dendritica. J Genet Eng Biotechnol 2023; 21:41. [PMID: 37014475 PMCID: PMC10073361 DOI: 10.1186/s43141-023-00490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/12/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Lichens are complex plants living in symbiotic relationship between fungi and algae. They are used for human and animal nutrition and are used in folk medicine in many countries over a considerable period of time. In the present study, various solvent extracts of Trypethelslium virens and Phaeographis dendritica were tested for their antioxidant and antimicrobial activity. RESULTS The phytochemical analysis by GC/MS revealed phenolics (1.273%), terpene (0.963%), hydrocarbons (2.081%), benzofurans (2.081%), quinone (1.273%), alkanes (0.963%), and aliphatic aldehydes (0.963%) as the predominant compounds in Trypethellium virens SPTV02, whereas secondary alcohol (1.184%), alkaloids (1.184%), and fatty acids (4.466) were the major constituents in Phaeographis dendritica. The antioxidant property of methanolic extract of T. virens and P. dendritica revealed the presence of total phenolic and terpenoids. The methanolic extracts of both the lichens exhibited encouraging DPPH antiradical activity, with the IC50 of 62.4 ± 0.76 µg/ml for T. virens and 68.48 ± 0.45 µg/ml for P. dendritica. Similarly, ferric reducing power assay result exhibited higher reducing activity. Further, the lichen extracts (methanolic) indicated promising antimicrobial activities against pathogens showing MIC from 62.5 to 500 µg/ml. CONCLUSION The study results concludes that both the lichens could be used as new natural source of antioxidants and antimicrobial agents which can be exploited for pharmaceutical applications.
Collapse
Affiliation(s)
- Shubham Pradhan
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Sriram Chandra Vihar, Takatpur, Baripada-757003, Odisha, India
| | - Satyabrata Dash
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Sriram Chandra Vihar, Takatpur, Baripada-757003, Odisha, India
| | - Sabyasachy Parida
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Sriram Chandra Vihar, Takatpur, Baripada-757003, Odisha, India
| | - Bijayananda Sahoo
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Sriram Chandra Vihar, Takatpur, Baripada-757003, Odisha, India
| | - Biswajit Rath
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Sriram Chandra Vihar, Takatpur, Baripada-757003, Odisha, India.
| |
Collapse
|
5
|
Weeraphan T, Somphong A, Poengsungnoen V, Buaruang K, Harunari E, Igarashi Y, Tanasupawat S, Phongsopitanun W. Bacterial microbiome in tropical lichens and the effect of the isolation method on culturable lichen-derived actinobacteria. Sci Rep 2023; 13:5483. [PMID: 37016075 PMCID: PMC10073151 DOI: 10.1038/s41598-023-32759-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/01/2023] [Indexed: 04/06/2023] Open
Abstract
Ten samples of tropical lichens collected from Doi Inthanon, Thailand, were explored for the diversity of their bacterial microbiomes through 16S rRNA-based metagenomics analysis. The five predominant lichen-associated bacteria belonged to the phyla Proteobacteria (31.84%), Planctomycetota (17.08%), Actinobacteriota (15.37%), Verrucomicrobiota (12.17%), and Acidobacteriota (7.87%). The diversity analysis metric showed that Heterodermia contained the highest bacterial species richness. Within the lichens, Ramalina conduplicans and Cladonia rappii showed a distinct bacterial community from the other lichen species. The community of lichen-associated actinobacteria was investigated as a potential source of synthesized biologically active compounds. From the total Operational Taxonomic Units (OTUs) found across the ten different lichen samples, 13.21% were identified as actinobacteria, including the rare actinobacterial genera that are not commonly found, such as Pseudonocardia, Kineosporia, Dactylosporangium, Amycolatopsis, Actinoplanes, and Streptosporangium. Evaluation of the pretreatment method (heat, air-drying, phenol, and flooding) and isolation media used for the culture-dependent actinobacterial isolation revealed that the different pretreatments combined with different isolation media were effective in obtaining several species of actinobacteria. However, metagenomics analyses revealed that there were still several strains, including rare actinobacterial species, that were not isolated. This research strongly suggests that lichens appear to be a promising source for obtaining actinobacteria.
Collapse
Affiliation(s)
- Trinset Weeraphan
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Achiraya Somphong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Vasun Poengsungnoen
- Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Kawinnat Buaruang
- Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
- Natural Products and Nanoparticles Research Unit (RP2), Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Si H, Wang Y, Liu Y, Li S, Bose T, Chang R. Fungal Diversity Associated with Thirty-Eight Lichen Species Revealed a New Genus of Endolichenic Fungi, Intumescentia gen. nov. (Teratosphaeriaceae). J Fungi (Basel) 2023; 9:jof9040423. [PMID: 37108878 PMCID: PMC10143819 DOI: 10.3390/jof9040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Fungi from the Teratosphaeriaceae (Mycosphaerellales; Dothideomycetes; Ascomycota) have a wide range of lifestyles. Among these are a few species that are endolichenic fungi. However, the known diversity of endolichenic fungi from Teratosphaeriaceae is far less understood compared to other lineages of Ascomycota. We conducted five surveys from 2020 to 2021 in Yunnan Province of China, to explore the biodiversity of endolichenic fungi. During these surveys, we collected multiple samples of 38 lichen species. We recovered a total of 205 fungal isolates representing 127 species from the medullary tissues of these lichens. Most of these isolates were from Ascomycota (118 species), and the remaining were from Basidiomycota (8 species) and Mucoromycota (1 species). These endolichenic fungi represented a wide variety of guilds, including saprophytes, plant pathogens, human pathogens, as well as entomopathogenic, endolichenic, and symbiotic fungi. Morphological and molecular data indicated that 16 of the 206 fungal isolates belonged to the family Teratosphaeriaceae. Among these were six isolates that had a low sequence similarity with any of the previously described species of Teratosphaeriaceae. For these six isolates, we amplified additional gene regions and conducted phylogenetic analyses. In both single gene and multi-gene phylogenetic analyses using ITS, LSU, SSU, RPB2, TEF1, ACT, and CAL data, these six isolates emerged as a monophyletic lineage within the family Teratosphaeriaceae and sister to a clade that included fungi from the genera Acidiella and Xenopenidiella. The analyses also indicated that these six isolates represented four species. Therefore, we established a new genus, Intumescentia gen. nov., to describe these species as Intumescentia ceratinae, I. tinctorum, I. pseudolivetorum, and I. vitii. These four species are the first endolichenic fungi representing Teratosphaeriaceae from China.
Collapse
Affiliation(s)
- Hongli Si
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yichen Wang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yanyu Liu
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Shiguo Li
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Tanay Bose
- Department of Biochemistry, Genetics & Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
- Correspondence: (T.B.); (R.C.)
| | - Runlei Chang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (T.B.); (R.C.)
| |
Collapse
|
7
|
dos Santos LA, Aptroot A, Lücking R, Cáceres MEDS. Lecanora s.lat. (Ascomycota, Lecanoraceae) in Brazil: DNA Barcoding Coupled with Phenotype Characters Reveals Numerous Novel Species. J Fungi (Basel) 2023; 9:jof9040415. [PMID: 37108870 PMCID: PMC10141014 DOI: 10.3390/jof9040415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
We sequenced over 200 recent specimens of Lecanora s.lat. from Brazil, delimiting 28 species in our material. Many seem to represent undescribed species, some of which being morphologically and chemically similar to each other or to already described species. Here, we present a phylogenetic analysis based on ITS, including our specimens and GenBank data. We describe nine new species. The purpose of the paper is to illustrate the diversity of the genus in Brazil, not to focus on segregate genera. However, we found that all Vainionora species cluster together and these will be treated separately. Other Lecanora species with dark hypothecium clustered in several different clades. Species with the morphology of Lecanora caesiorubella, in which currently several subspecies with different chemistry and distribution are recognized, fall apart in different, distantly related clades, so they cannot be regarded as subspecies but should be recognized at species level. A key is given for the Lecanora species from Brazil.
Collapse
Affiliation(s)
- Lidiane Alves dos Santos
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, Campus Universitário, Recife 50670-901, PE, Brazil;
| | - André Aptroot
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva, s/n Bairro Universitário, Campo Grande 79070-900, MS, Brazil
- Correspondence:
| | - Robert Lücking
- Botanischer Garten, Freie Universität Berlin, Königin-Luise-Str. 6–8, 14195 Berlin, Germany;
| | | |
Collapse
|
8
|
Soares Campos-Filho I, Chagas A, Sfenthourakis S, Bichuette ME. A new species of Metaprosekia Leistikow, 2000 (Oniscidea, Philosciidae) from caves of the State of Mato Grosso, Brazil. STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT 2023. [DOI: 10.1080/01650521.2023.2188009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Lorenz C, Bianchi E, Poggiali G, Alemanno G, Benesperi R, Brucato JR, Garland S, Helbert J, Loppi S, Lorek A, Maturilli A, Papini A, de Vera JP, Baqué M. Survivability of the lichen Xanthoria parietina in simulated Martian environmental conditions. Sci Rep 2023; 13:4893. [PMID: 36966209 PMCID: PMC10039903 DOI: 10.1038/s41598-023-32008-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023] Open
Abstract
Xanthoria parietina (L.) Th. Fr. is a widely spread foliose lichen showing high tolerance against UV-radiation thanks to parietin, a secondary lichen substance. We exposed samples of X. parietina under simulated Martian conditions for 30 days to explore its survivability. The lichen's vitality was monitored via chlorophyll a fluorescence that gives an indication for active light reaction of photosynthesis, performing in situ and after-treatment analyses. Raman spectroscopy and TEM were used to evaluate carotenoid preservation and possible variations in the photobiont's ultrastructure respectively. Significant differences in the photo-efficiency between UV irradiated samples and dark-kept samples were observed. Fluorescence values correlated with temperature and humidity day-night cycles. The photo-efficiency recovery showed that UV irradiation caused significant effects on the photosynthetic light reaction. Raman spectroscopy showed that the carotenoid signal from UV exposed samples decreased significantly after the exposure. TEM observations confirmed that UV exposed samples were the most affected by the treatment, showing chloroplastidial disorganization in photobionts' cells. Overall, X. parietina was able to survive the simulated Mars conditions, and for this reason it may be considered as a candidate for space long-term space exposure and evaluations of the parietin photodegradability.
Collapse
Affiliation(s)
- Christian Lorenz
- Department of Biology, University of Florence, Via la Pira 4, 50121, Florence, Italy
| | - Elisabetta Bianchi
- Department of Biology, University of Florence, Via la Pira 4, 50121, Florence, Italy
| | - Giovanni Poggiali
- LESIA-Observatoire de Paris, CNRS, Université PSL, Sorbonne Université, Université de Paris, 5 Place Jules Janssen, 92190, Meudon, France
- INAF-Astrophysical Observatory of Arcetri, Largo E. Fermi 5, 50125, Florence, Italy
| | - Giulia Alemanno
- Planetary Laboratories Department, Institute of Planetary Research, German Aerospace Center (DLR), Ruthefordstraße 2, 12489, Berlin, Germany
| | - Renato Benesperi
- Department of Biology, University of Florence, Via la Pira 4, 50121, Florence, Italy
| | - John Robert Brucato
- INAF-Astrophysical Observatory of Arcetri, Largo E. Fermi 5, 50125, Florence, Italy.
| | - Stephen Garland
- Planetary Laboratories Department, Institute of Planetary Research, German Aerospace Center (DLR), Ruthefordstraße 2, 12489, Berlin, Germany
| | - Jörn Helbert
- Planetary Laboratories Department, Institute of Planetary Research, German Aerospace Center (DLR), Ruthefordstraße 2, 12489, Berlin, Germany
| | - Stefano Loppi
- Department of Environmental Sciences, University of Siena, Via P. A. Mattioli 4, 53100, Siena, Italy
| | - Andreas Lorek
- Planetary Laboratories Department, Institute of Planetary Research, German Aerospace Center (DLR), Ruthefordstraße 2, 12489, Berlin, Germany
| | - Alessandro Maturilli
- Planetary Laboratories Department, Institute of Planetary Research, German Aerospace Center (DLR), Ruthefordstraße 2, 12489, Berlin, Germany
| | - Alessio Papini
- Department of Biology, University of Florence, Via la Pira 4, 50121, Florence, Italy
| | - Jean-Pierre de Vera
- Microgravity User Support Center (MUSC), Space Operations and Astronaut Training, German Aerospace Center (DLR), Linder Höhe, 51147, Cologne, Germany
| | - Mickaël Baqué
- Planetary Laboratories Department, Institute of Planetary Research, German Aerospace Center (DLR), Ruthefordstraße 2, 12489, Berlin, Germany
| |
Collapse
|
10
|
Salih H, Bai W, Zhao M, Liang Y, Yang R, Zhang D, Li X. Genome-Wide Characterization and Expression Analysis of Transcription Factor Families in Desert Moss Syntrichia caninervis under Abiotic Stresses. Int J Mol Sci 2023; 24:ijms24076137. [PMID: 37047111 PMCID: PMC10094499 DOI: 10.3390/ijms24076137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Transcription factor (TF) families play important roles in plant stress responses. S. caninervis is a new model moss for plant desiccation tolerance studies. Here, we report a high-confidence identification and characterization of 591 TFs representing 52 families that covered all chromosomes in S. caninervis. GO term and KEGG pathway analysis showed that TFs were involved in the regulation of transcription, DNA-templated, gene expression, binding activities, plant hormone signal transduction, and circadian rhythm. A number of TF promoter regions have a mixture of various hormones-related cis-regulatory elements. AP2/ERF, bHLH, MYB, and C2H2-zinc finger TFs were the overrepresented TF families in S. caninervis, and the detailed classification of each family is performed based on structural features. Transcriptome analysis revealed the transcript abundances of some ScAP2/ERF, bHLH, MYB, and C2H2 genes were accumulated in the treated S. caninervis under cold, dehydration, and rehydration stresses. The RT-qPCR results strongly agreed with RNA-seq analysis, indicating these TFs might play a key role in S. caninervis response to abiotic stress. Our comparative TF characterization and classification provide the foundations for functional investigations of the dominant TF genes involved in S. caninervis stress response, as well as excellent stress tolerance gene resources for plant stress resistance breeding.
Collapse
|
11
|
Akram W, Rihan M, Ahmed S, Arora S, Ahmad S, Vashishth R. Marine-Derived Compounds Applied in Cardiovascular Diseases: Submerged Medicinal Industry. Mar Drugs 2023; 21:md21030193. [PMID: 36976242 PMCID: PMC10052127 DOI: 10.3390/md21030193] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the most impactful illnesses globally. Currently, the available therapeutic option has several side effects, including hypotension, bradycardia, arrhythmia, and alteration in different ion concentrations. Recently, bioactive compounds from natural sources, including plants, microorganisms, and marine creatures, have gained a lot of interest. Marine sources serve as reservoirs for new bioactive metabolites with various pharmacological activities. The marine-derived compound such as omega-3 acid ethyl esters, xyloketal B, asperlin, and saringosterol showed promising results in several CVDs. The present review focuses on marine-derived compounds' cardioprotective potential for hypertension, ischemic heart disease, myocardial infarction, and atherosclerosis. In addition to therapeutic alternatives, the current use of marine-derived components, the future trajectory, and restrictions are also reviewed.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmacology, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali 160062, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali 160062, India
| | - Swamita Arora
- Department of Pharmacology, R. V. Northland Institute of Pharmacy, Dadri 203207, India
| | - Sameer Ahmad
- Department of Food Technology Jamia Hamdard, New Delhi 110062, India
| | - Rahul Vashishth
- School of BioSciences and Technology-Food Technology, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
12
|
Yang H, Yang Q, Zhang D, Wang J, Cao T, Bozorov TA, Cheng L, Zhang D. Transcriptome Reveals the Molecular Mechanism of the ScALDH21 Gene from the Desert Moss Syntrichia caninervis Conferring Resistance to Salt Stress in Cotton. Int J Mol Sci 2023; 24:5822. [PMID: 36982895 PMCID: PMC10053822 DOI: 10.3390/ijms24065822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
The desert moss Syntrichia caninervis has proven to be an excellent plant material for mining resistance genes. The aldehyde dehydrogenase 21 (ScALDH21) gene from S. caninervis has been shown to confer tolerance to salt and drought, but it is unclear how the transgene ScALDH21 regulates tolerance to abiotic stresses in cotton. In the present work, we studied the physiological and transcriptome analyses of non-transgenic (NT) and transgenic ScALDH21 cotton (L96) at 0 day, 2 days, and 5 days after salt stress. Through intergroup comparisons and a weighted correlation network analysis (WGCNA), we found that there were significant differences between NT and L96 cotton in the plant hormone, Ca2+, and mitogen-activated protein kinase (MAPK) signaling pathways as well as for photosynthesis and carbohydrate metabolism. Overexpression of ScALDH21 significantly increased the expression of stress-related genes in L96 compared to NT cotton under both normal growth and salt stress conditions. These data suggest that the ScALDH21 transgene can scavenge more reactive oxygen species (ROS) in vivo relative to NT cotton and improve cotton resistance to salt stress by increasing the expression of stress-responsive genes, responding quickly to stress stimuli, enhancing photosynthesis and improving carbohydrate metabolism. Therefore, ScALDH21 is a promising candidate gene to improve resistance to salt stress, and the application of this gene in cotton provides new insights into molecular plant breeding.
Collapse
Affiliation(s)
- Honglan Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Qilin Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Zhang
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Jiancheng Wang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Ting Cao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tohir A. Bozorov
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Yukori-Yuz, 111226, Kibray District, Uzbekistan
| | - Lihua Cheng
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
13
|
High Andean Steppes of Southern Chile Contain Little-Explored Peltigera Lichen Symbionts. J Fungi (Basel) 2023; 9:jof9030372. [PMID: 36983540 PMCID: PMC10058012 DOI: 10.3390/jof9030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/08/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Peltigera lichens can colonize extreme habitats, such as high-elevation ecosystems, but their biodiversity is still largely unknown in these environments, especially in the southern hemi- sphere. We assessed the genetic diversity of mycobionts and cyanobionts of 60 Peltigera lichens collected in three high Andean steppes of southern Chile using LSU, β-tubulin, COR3 and ITS loci for mycobionts, and SSU and rbcLX loci for cyanobionts. We obtained 240 sequences for the different mycobiont markers and 118 for the cyanobiont markers, including the first report of β-tubulin sequences of P. patagonica through modifying a previously designed primer. Phylogenetic analyses, ITS scrutiny and variability of haplotypes were used to compare the sequences with those previously reported. We found seven mycobiont species and eleven cyanobiont haplotypes, including considerable novel symbionts. This was reflected by ~30% of mycobionts and ~20% of cyanobionts haplotypes that yielded less than 99% BLASTn sequence identity, 15 new sequences of the ITS1-HR, and a putative new Peltigera species associated with 3 Nostoc haplotypes not previously reported. Our results suggest that high Andean steppe ecosystems are habitats of unknown or little-explored lichen species and thus valuable environments to enhance our understanding of global Peltigera biodiversity.
Collapse
|
14
|
Lõhmus A, Motiejūnaitė J, Lõhmus P. Regionally Varying Habitat Relationships in Lichens: The Concept and Evidence with an Emphasis on North-Temperate Ecosystems. J Fungi (Basel) 2023; 9:jof9030341. [PMID: 36983509 PMCID: PMC10056719 DOI: 10.3390/jof9030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Habitat ecology of lichens (lichen-forming fungi) involves diverse adaptations to stressful environments where lichens use specific habitat conditions. Field observations confirm that such habitat ‘preferences’ can vary significantly across species’ distribution ranges, sometimes revealing abrupt changes over short distances. We critically review and generalize such empirical evidence as broad ecological patterns, link these with the likely physiological mechanisms and evolutionary processes involved, and outline the implications for lichen conservation. Non-replicated correlative studies remain only suggestive because the data are frequently compromised by sampling bias and pervasive random errors; further noise is related to unrecognized cryptic species. Replicated evidence exists for three macroecological patterns: (a) regional limiting factors excluding a species from a part of its microhabitat range in suboptimal areas; (b) microhabitat shifts to buffer regionally adverse macroclimates; (c) substrate suitability changed by the chemical environment, notably air pollution. All these appear to be primarily buffering physiological challenges of the adverse conditions at the macrohabitat scale or, in favorable environments, coping with competition or predation. The roles of plasticity, adaptation, dispersal, and population-level stochasticity remain to be studied. Although lichens can inhabit various novel microhabitats, there is no evidence for a related adaptive change. A precautionary approach to lichen conservation is to maintain long-term structural heterogeneity in lichen habitats, and consider lichen ecotypes as potential evolutionarily significant units and a bet-hedging strategy for addressing the climate change-related challenges to biodiversity.
Collapse
Affiliation(s)
- Asko Lõhmus
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
- Correspondence:
| | - Jurga Motiejūnaitė
- Laboratory of Mycology, Institute of Botany, Nature Research Centre, Žaliųjų Ežerų 49, LT-08406 Vilnius, Lithuania
| | - Piret Lõhmus
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
15
|
Munzi S, Graça C, Martins D, Máguas C. Differential response of two acidophytic lichens to increased reactive nitrogen availability. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
AbstractLichens are one of the most responsive components of the ecosystem to reactive forms of nitrogen. In this work, we selected the lichen genera Cladonia and Usnea, composed of terricolous and epiphytic lichens respectively, and described as sensitive to nitrogen, to test the effects of different doses of nitrogen on lichen physiological parameters (photobiont and mycobiont vitality, chitin quantification, nitrogen content and stable isotopes analysis). The main objectives were to check if the activation of protective mechanisms could be stimulated in case of chronic stress (low nitrogen increase for prolonged time), and, if so, if a toxicity threshold could be identified above which these mechanisms fail. The two lichen genera were generally affected by prolonged exposure to increased nitrogen availability. However, Cladonia rangiformis was able to maintain physiological functioning at the lowest nitrogen doses used, whereas thalli of Usnea become overwhelmed. Moreover, the mycobiont appeared to be more sensitive than the photobiont responding to lower nitrogen doses. Although only studies of longer duration and testing more nitrogen doses will be able to determine an accurate toxicity threshold, these results give important clues on the use of lichens as biomonitors for the establishment of environmental policies.
Collapse
|
16
|
Culturable Diversity of Lichen-Associated Yeasts through Enrichment Strategies. ECOLOGIES 2023. [DOI: 10.3390/ecologies4010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Lichens are symbiotic partnerships between a filamentous fungus and a photosymbiotic “alga”. Studies show that lichens harbor endothallic fungi, but that some taxa have been difficult to isolate from the main filamentous thallus-forming fungus and other faster growing lichenicolous/endothallic fungi. Therefore, we aimed to develop and evaluate liquid yeast-enrichment strategies to (1) isolate lichen-associated yeasts in pure culture, and (2) determine the taxonomic placement and breadth of the diversity of culturable yeasts. Eighty-two lichen samples were collected and washed with distilled water, and healthy thalli were ground up and added to seven different yeast-enrichment broths. Yeast colonies were isolated in pure culture and identified using molecular techniques. Initial isolates were identified using BLASTn analysis, and a taxonomic refinement was completed using PhyML analysis. In total, 215 isolates were obtained. The most prevalently isolated ascomycetous yeasts were within the Dothideomycetes (Aureobasidium, Plowrightia, and Dothiora), while the most frequently isolated basidiomycetous yeasts belonged to the genera Curvibasidium, Sporobolomyces, and Tremella. The generic placements could not be determined for 17 isolates, and in total 25 novel species were recovered. The results of this research indicate that (1) lichen-associated yeasts are diverse, (2) employing liquid enrichment strategies is effective for isolating many of these, and (3) lichen thalli represent a valuable untapped reservoir of diverse and novel yeast species.
Collapse
|
17
|
Mahood AL, Koontz MJ, Balch JK. Fuel connectivity, burn severity, and seed bank survivorship drive ecosystem transformation in a semiarid shrubland. Ecology 2023; 104:e3968. [PMID: 36571436 DOI: 10.1002/ecy.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/27/2022]
Abstract
A key challenge in ecology is understanding how multiple drivers interact to precipitate persistent vegetation state changes. These state changes may be both precipitated and maintained by disturbances, but predicting whether the state change will be fleeting or persistent requires an understanding of the mechanisms by which disturbance affects the alternative communities. In the sagebrush shrublands of the western United States, widespread annual grass invasion has increased fuel connectivity, which increases the size and spatial contiguity of fires, leading to postfire monocultures of introduced annual grasses (IAG). The novel grassland state can be persistent and is more likely to promote large fires than the shrubland it replaced. But the mechanisms by which prefire invasion and fire occurrence are linked to higher postfire flammability are not fully understood. A natural experiment to explore these interactions presented itself when we arrived in northern Nevada immediately after a 50,000 ha wildfire was extinguished. We hypothesized that the novel grassland state is maintained via a reinforcing feedback where higher fuel connectivity increases burn severity, which subsequently increases postfire IAG dispersal, seed survivorship, and fuel connectivity. We used a Bayesian joint species distribution model and structural equation model framework to assess the strength of the support for each element in this feedback pathway. We found that prefire fuel connectivity increased burn severity and that higher burn severity had mostly positive effects on the occurrence of IAG and another nonnative species and mostly negative or neutral relationships with all other species. Finally, we found that the abundance of IAG seeds in the seed bank immediately after a fire had a positive effect on the fuel connectivity 3 years after the fire, completing a positive feedback promoting IAG. These results demonstrate that the strength of the positive feedback is controlled by measurable characteristics of ecosystem structure, composition, and disturbance. Further, each node in the loop is affected independently by multiple global change drivers. It is possible that these characteristics can be modeled to predict threshold behavior and inform management actions to mitigate or slow the establishment of the grass-fire cycle, perhaps via targeted restoration applications or prefire fuel treatments.
Collapse
Affiliation(s)
- Adam L Mahood
- Department of Geography, University of Colorado Boulder, Boulder, Colorado, USA.,Earth Lab, University of Colorado, Boulder, Colorado, USA.,Water Resources, Agricultural Research Service, United States Department of Agriculture, Fort Collins, Colorado, USA
| | | | - Jennifer K Balch
- Department of Geography, University of Colorado Boulder, Boulder, Colorado, USA.,Earth Lab, University of Colorado, Boulder, Colorado, USA.,Environmental Data Science Innovation and Inclusion Lab, University of Colorado, Boulder, Colorado, United States
| |
Collapse
|
18
|
Almer J, Resl P, Gudmundsson H, Warshan D, Andrésson ÓS, Werth S. Symbiont-specific responses to environmental cues in a threesome lichen symbiosis. Mol Ecol 2023; 32:1045-1061. [PMID: 36478478 DOI: 10.1111/mec.16814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Photosymbiodemes are a special case of lichen symbiosis where one lichenized fungus engages in symbiosis with two different photosynthetic partners, a cyanobacterium and a green alga, to develop two distinctly looking photomorphs. We compared gene expression of thallus sectors of the photosymbiodeme-forming lichen Peltigera britannica containing cyanobacterial photobionts with thallus sectors with both green algal and cyanobacterial photobionts and investigated differential gene expression at different temperatures representing mild and putatively stressful conditions. First, we quantified photobiont-mediated differences in fungal gene expression. Second, because of known ecological differences between photomorphs, we investigated symbiont-specific responses in gene expression to temperature increases. Photobiont-mediated differences in fungal gene expression could be identified, with upregulation of distinct biological processes in the different morphs, showing that interaction with specific symbiosis partners profoundly impacts fungal gene expression. Furthermore, high temperatures expectedly led to an upregulation of genes involved in heat shock responses in all organisms in whole transcriptome data and to an increased expression of genes involved in photosynthesis in both photobiont types at 15 and 25°C. The fungus and the cyanobacteria exhibited thermal stress responses already at 15°C, the green algae mainly at 25°C, demonstrating symbiont-specific responses to environmental cues and symbiont-specific ecological optima.
Collapse
Affiliation(s)
- Jasmin Almer
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, Munich, Germany.,Institute of Biology, University of Graz, Graz, Austria
| | - Philipp Resl
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, Munich, Germany.,Institute of Biology, University of Graz, Graz, Austria
| | - Hörður Gudmundsson
- Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Denis Warshan
- Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Ólafur S Andrésson
- Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Silke Werth
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, Munich, Germany
| |
Collapse
|
19
|
Hoffman JR, Karol KG, Ohmura Y, Pogoda CS, Keepers KG, McMullin RT, Lendemer JC. Mitochondrial genomes in the iconic reindeer lichens: Architecture, variation, and synteny across multiple evolutionary scales. Mycologia 2023; 115:187-205. [PMID: 36736327 DOI: 10.1080/00275514.2022.2157665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Variation in mitochondrial genome composition across intraspecific, interspecific, and higher taxonomic scales has been little studied in lichen obligate symbioses. Cladonia is one of the most diverse and ecologically important lichen genera, with over 500 species representing an array of unique morphologies and chemical profiles. Here, we assess mitochondrial genome diversity and variation in this flagship genus, with focused sampling of two clades of the "true" reindeer lichens, Cladonia subgenus Cladina, and additional genomes from nine outgroup taxa. We describe composition and architecture at the gene and the genome scale, examining patterns in organellar genome size in larger taxonomic groups in Ascomycota. Mitochondrial genomes of Cladonia, Pilophorus, and Stereocaulon were consistently larger than those of Lepraria and contained more introns, suggesting a selective pressure in asexual morphology in Lepraria driving it toward genomic simplification. Collectively, lichen mitochondrial genomes were larger than most other fungal life strategies, reaffirming the notion that coevolutionary streamlining does not correlate to genome size reductions. Genomes from Cladonia ravenelii and Stereocaulon pileatum exhibited ATP9 duplication, bearing paralogs that may still be functional. Homing endonuclease genes (HEGs), though scarce in Lepraria, were diverse and abundant in Cladonia, exhibiting variable evolutionary histories that were sometimes independent of the mitochondrial evolutionary history. Intraspecific HEG diversity was also high, with C. rangiferina especially bearing a range of HEGs with one unique to the species. This study reveals a rich history of events that have transformed mitochondrial genomes of Cladonia and related genera, allowing future study alongside a wealth of assembled genomes.
Collapse
Affiliation(s)
- Jordan R Hoffman
- Department of Biology, The City University of New York Graduate Center, 365 5th Avenue, New York, New York 10016
- Institute of Systemic Botany, The New York Botanical Garden, Bronx, New York 10458-5126
| | - Kenneth G Karol
- Institute of Systemic Botany, The New York Botanical Garden, Bronx, New York 10458-5126
| | - Yoshihito Ohmura
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Japan
| | - Cloe S Pogoda
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309
| | - Kyle G Keepers
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309
| | - Richard T McMullin
- Research and Collections, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada
| | - James C Lendemer
- Institute of Systemic Botany, The New York Botanical Garden, Bronx, New York 10458-5126
| |
Collapse
|
20
|
Freire-Rallo S, Wedin M, Diederich P, Millanes AM. To explore strange new worlds - The diversification in Tremella caloplacae was linked to the adaptive radiation of the Teloschistaceae. Mol Phylogenet Evol 2023; 180:107680. [PMID: 36572164 DOI: 10.1016/j.ympev.2022.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Lichenicolous fungi are a heterogeneous group of organisms that grow exclusively on lichens, forming obligate associations with them. It has often been assumed that cospeciation has occurred between lichens and lichenicolous fungi, but this has been seldom analysed from a macroevolutionary perspective. Many lichenicolous species are rare or are rarely observed, which results in frequent and large gaps in the knowledge of the diversity of many groups. This, in turn, hampers evolutionary studies that necessarily are based on a reasonable knowledge of this diversity. Tremella caloplacae is a heterobasidiomycete growing on various hosts from the lichen-forming family Teloschistaceae, and evidence suggests that it may represent a species complex. We combine an exhaustive sampling with molecular and ecological data to study species delimitation, cophylogenetic events and temporal concordance of this association. Tremella caloplacae is here shown to include at least six distinct host-specific lineages (=putative species). Host switch is the dominant and most plausible event influencing diversification and explaining the coupled evolutionary history in this system, although cospeciation cannot be discarded. Speciation in T. caloplacae would therefore have occurred coinciding with the rapid diversification - by an adaptive radiation starting in the late Cretaceous - of their hosts. New species in T. caloplacae would have developed as a result of specialization on diversifying lichen hosts that suddenly offered abundant new ecological niches to explore or adapt to.
Collapse
Affiliation(s)
- Sandra Freire-Rallo
- Rey Juan Carlos University/Departamento de Biología y Geología, Física y Química Inorgánica, E-28933 Móstoles, Spain
| | - Mats Wedin
- Swedish Museum of Natural History/Botany Dept., PO Box 50007, SE-10405 Stockholm, Sweden.
| | - Paul Diederich
- Musée national d'histoire naturelle, 25 rue Munster, L-2160 Luxembourg, Luxembourg
| | - Ana M Millanes
- Rey Juan Carlos University/Departamento de Biología y Geología, Física y Química Inorgánica, E-28933 Móstoles, Spain
| |
Collapse
|
21
|
Rydgren K, Indreeide B, Slagsvold T, Lampe HM. Nest building in titmice Paridae: Selectivity in bryophyte use. Ecol Evol 2023; 13:e9852. [PMID: 36911310 PMCID: PMC9994477 DOI: 10.1002/ece3.9852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
In many bird species, reproductive success is dependent on nest quality. However, detailed data on nest composition are scarce, and quantitative analyses have generally used only rough categories, without species identification. Bryophytes dominate the nests of many passerine bird species, but little is known about whether birds have preferences for certain species. In this study, we determined the bryophyte species composition in nests of blue tits Cyanistes caeruleus and great tits Parus major in a forest near Oslo, Norway. We also sampled the abundance of the bryophyte species in plots on the forest floor surrounding a subset of the great tit nests. Blue tits and great tits both used 15 bryophyte species as nest materials, mainly the same pleurocarpous species but in different proportions. The tits preferred highly branched bryophyte species, i.e., Pleurozium schreberi, Rhytidiadelphus squarrosus, and Sanionia uncinata but avoided common forest floor bryophyte species that are sparsely branched. Great tits clearly collected bryophyte species selectively. We also found that bryophyte species content in great tit nests in the same nest box in different years was very similar. Our results also indicated that the great tits collected bryophyte nest materials close to their nests, mostly within 5 m, supporting the view that collecting nest materials is costly. We review several hypotheses to explain why the tits prefer certain species of bryophytes as nest materials. These include handling costs and their suitability as structural materials. We recommend field experiments to test specific hypotheses and to study whether preferences are heritable.
Collapse
Affiliation(s)
- Knut Rydgren
- Department of Environmental SciencesWestern Norway University of Applied SciencesSogndalNorway
| | | | - Tore Slagsvold
- Department of BiosciencesCEES, University of OsloOsloNorway
| | | |
Collapse
|
22
|
The origin of human pathogenicity and biological interactions in Chaetothyriales. FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
AbstractFungi in the order Chaetothyriales are renowned for their ability to cause human infections. Nevertheless, they are not regarded as primary pathogens, but rather as opportunists with a natural habitat in the environment. Extremotolerance is a major trend in the order, but quite different from black yeasts in Capnodiales which focus on endurance, an important additional parameter is advancing toxin management. In the ancestral ecology of rock colonization, the association with metabolite-producing lichens is significant. Ant-association, dealing with pheromones and repellents, is another mainstay in the order. The phylogenetically derived family, Herpotrichiellaceae, shows dual ecology in monoaromatic hydrocarbon assimilation and the ability to cause disease in humans and cold-blooded vertebrates. In this study, data on ecology, phylogeny, and genomics were collected and analyzed in order to support this hypothesis on the evolutionary route of the species of Chaetothyriales. Comparing the ribosomal tree with that of enzymes involved in toluene degradation, a significant expansion of cytochromes is observed and the toluene catabolism is found to be complete in some of the Herpotrichiellaceae. This might enhance human systemic infection. However, since most species have to be traumatically inoculated in order to cause disease, their invasive potential is categorized as opportunism. Only in chromoblastomycosis, true pathogenicity might be surmised. The criterion would be the possible escape of agents of vertebrate disease from the host, enabling dispersal of adapted genotypes to subsequent generations.
Collapse
|
23
|
Nguyen VK, Dong PSN, Nguyen-Si HV, Sangvichien E, Tran TN, Hoang LTTT, Dao MT, Hai-Nguyen, Phan HVT, Yusuke H, Mitsunaga T, Chavasiri W. Eumitrins I-K: three new xanthone dimers from the lichen Usnea baileyi. J Nat Med 2023; 77:403-411. [PMID: 36746835 DOI: 10.1007/s11418-023-01681-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023]
Abstract
In the continuing discovery and structure elucidation of natural xanthone dimers, which are still rarely reported in absolute configuration, three new xanthone dimers, eumitrins I-K (1-3) were isolated from the lichen Usnea baileyi, a rich source of natural xanthone dimers. Their structures were elucidated unambiguously by spectroscopic analyses, including high-resolution electrospray ionization mass spectrometry (HRESIMS), 1D and 2D nuclear magnetic resonance spectroscopy (1D and 2D NMR). The absolute configuration of all three compounds was established through DP4 probability and ECD calculation. All compounds revealed weak activity for their enzymatic inhibition against α-glucosidase and tyrosinase, as well as antibacterial activity.
Collapse
Affiliation(s)
- Van-Kieu Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam.
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam.
| | - Phan-Si-Nguyen Dong
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Hoai-Vu Nguyen-Si
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Ek Sangvichien
- Lichen Research Unit and Lichen Herbarium, Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok, 10240, Thailand
| | - Thanh-Nha Tran
- Department of Environmental Engineering, Thu Dau Mot University, Binh Duong, Vietnam
| | | | - Minh-Trung Dao
- Department of Environmental Engineering, Thu Dau Mot University, Binh Duong, Vietnam
| | - Hai-Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Hoang-Vinh-Truong Phan
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Hioki Yusuke
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Tohru Mitsunaga
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
24
|
Alcobiosis, an algal-fungal association on the threshold of lichenisation. Sci Rep 2023; 13:2957. [PMID: 36854763 PMCID: PMC9975235 DOI: 10.1038/s41598-023-29384-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
Alcobiosis, the symbiosis of algae and corticioid fungi, frequently occurs on bark and wood. Algae form a layer in or below fungal basidiomata reminiscent of the photobiont layer in lichens. Identities of algal and fungal partners were confirmed by DNA barcoding. Algal activity was examined using gas exchange and chlorophyll fluorescence techniques. Carbon transfer from algae to fungi was detected as 13C, assimilated by algae, transferred to the fungal polyol. Nine fungal partners scattered across Agaricomycetes are associated with three algae from Trebouxiophycae: Coccomyxa sp. with seven fungal species on damp wood, Desmococcus olivaceus and Tritostichococcus coniocybes, both with a single species on bark and rain-sheltered wood, respectively. The fungal partner does not cause any obvious harm to the algae. Algae enclosed in fungal tissue exhibited a substantial CO2 uptake, but carbon transfer to fungal tissues was only detected in the Lyomyces-Desmococcus alcobiosis where some algal cells are tightly enclosed by hyphae in goniocyst-like structures. Unlike lichen mycobionts, fungi in alcobioses are not nutritionally dependent on the algal partner as all of them can live without algae. We consider alcobioses to be symbioses in various stages of co-evolution, but still quite different from true lichens.
Collapse
|
25
|
K.S. Vinayaka, Mesta AR, N. Rajeshwari. New record of an usneoied lichen Usnea hirta (L.) Weber ex F.H.Wigg. from India. JOURNAL OF THREATENED TAXA 2023. [DOI: 10.11609/jott.8303.15.2.22764-22766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The present communication is reports a new record of Usnea hirta (L.) Weber ex F.H.Wigg. of family Parmeliaceae collected from the Western Ghats of Karnataka. Usnea hirta differs from already known U. ghattensis in having norstictic acid, a fatty acid murolic group and presence of isidia in thallus.
Collapse
|
26
|
Carnivorous Plants from Nepenthaceae and Droseraceae as a Source of Secondary Metabolites. Molecules 2023; 28:molecules28052155. [PMID: 36903400 PMCID: PMC10004607 DOI: 10.3390/molecules28052155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Carnivorous plants are able to attract small animals or protozoa and retain them in their specialized traps. Later, the captured organisms are killed and digested. The nutrients contained in the prey bodies are absorbed by the plants to use for growth and reproduction. These plants produce many secondary metabolites involved in the carnivorous syndrome. The main purpose of this review was to provide an overview of the secondary metabolites in the family Nepenthaceae and Droseraceae, which were studied using modern identification techniques, i.e., high-performance liquid chromatography or ultra-high-performance liquid chromatography with mass spectrometry and nuclear magnetic resonance spectroscopy. After literature screening, there is no doubt that tissues of species from the genera Nepenthes, Drosera, and Dionaea are rich sources of secondary metabolites that can be used in pharmacy and for medical purposes. The main types of the identified compounds include phenolic acids and their derivatives (gallic, protocatechuic, chlorogenic, ferulic, p-coumaric acids, gallic, hydroxybenzoic, vanillic, syringic caffeic acids, and vanillin), flavonoids (myricetin, quercetin, and kaempferol derivatives), including anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, and cyanidin), naphthoquinones (e.g., plumbagin, droserone, and 5-O-methyl droserone), and volatile organic compounds. Due to the biological activity of most of these substances, the importance of the carnivorous plant as a pharmaceutical crop will increase.
Collapse
|
27
|
Komatsu A, Kodama K, Mizuno Y, Fujibayashi M, Naramoto S, Kyozuka J. Control of vegetative reproduction in Marchantiapolymorpha by the KAI2-ligand signaling pathway. Curr Biol 2023; 33:1196-1210.e4. [PMID: 36863344 DOI: 10.1016/j.cub.2023.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
In vegetative reproduction of Marchantia polymorpha (M. polymorpha), propagules, called gemmae, are formed in gemma cups. Despite its significance for survival, control of gemma and gemma cup formation by environmental cues is not well understood. We show here that the number of gemmae formed in a gemma cup is a genetic trait. Gemma formation starts from the central region of the floor of the gemma cup, proceeds to the periphery, and terminates when the appropriate number of gemmae is initiated. The MpKARRIKIN INSENSITIVE2 (MpKAI2)-dependent signaling pathway promotes gemma cup formation and gemma initiation. The number of gemmae in a cup is controlled by modulating the ON/OFF switch of the KAI2-dependent signaling. Termination of the signaling results in the accumulation of MpSMXL, a suppressor protein. In the Mpsmxl mutants, gemma initiation continues, leading to the formation of a highly increased number of gemmae in a cup. Consistent with its function, the MpKAI2-dependent signaling pathway is active in gemma cups where gemmae initiate, as well as in the notch region of the mature gemma and midrib of the ventral side of the thallus. In this work, we also show that GEMMA CUP-ASSOCIATED MYB1 works downstream of this signaling pathway to promote gemma cup formation and gemma initiation. We also found that the availability of potassium affects gemma cup formation independently from the KAI2-dependent signaling pathway in M. polymorpha. We propose that the KAI2-dependent signaling pathway functions to optimize vegetative reproduction by adapting to the environment in M. polymorpha.
Collapse
Affiliation(s)
- Aino Komatsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kyoichi Kodama
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yohei Mizuno
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Mizuki Fujibayashi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan.
| |
Collapse
|
28
|
Jayawardena RS, Hyde KD, Wang S, Sun YR, Suwannarach N, Sysouphanthong P, Abdel-Wahab MA, Abdel-Aziz FA, Abeywickrama PD, Abreu VP, Armand A, Aptroot A, Bao DF, Begerow D, Bellanger JM, Bezerra JDP, Bundhun D, Calabon MS, Cao T, Cantillo T, Carvalho JLVR, Chaiwan N, Chen CC, Courtecuisse R, Cui BK, Damm U, Denchev CM, Denchev TT, Deng CY, Devadatha B, de Silva NI, dos Santos LA, Dubey NK, Dumez S, Ferdinandez HS, Firmino AL, Gafforov Y, Gajanayake AJ, Gomdola D, Gunaseelan S, Shucheng-He, Htet ZH, Kaliyaperumal M, Kemler M, Kezo K, Kularathnage ND, Leonardi M, Li JP, Liao C, Liu S, Loizides M, Luangharn T, Ma J, Madrid H, Mahadevakumar S, Maharachchikumbura SSN, Manamgoda DS, Martín MP, Mekala N, Moreau PA, Mu YH, Pahoua P, Pem D, Pereira OL, Phonrob W, Phukhamsakda C, Raza M, Ren GC, Rinaldi AC, Rossi W, Samarakoon BC, Samarakoon MC, Sarma VV, Senanayake IC, Singh A, Souza MF, Souza-Motta CM, Spielmann AA, Su W, Tang X, Tian X, Thambugala KM, Thongklang N, Tennakoon DS, Wannathes N, Wei D, Welti S, Wijesinghe SN, Yang H, Yang Y, Yuan HS, Zhang H, Zhang J, Balasuriya A, Bhunjun CS, Bulgakov TS, Cai L, Camporesi E, Chomnunti P, Deepika YS, et alJayawardena RS, Hyde KD, Wang S, Sun YR, Suwannarach N, Sysouphanthong P, Abdel-Wahab MA, Abdel-Aziz FA, Abeywickrama PD, Abreu VP, Armand A, Aptroot A, Bao DF, Begerow D, Bellanger JM, Bezerra JDP, Bundhun D, Calabon MS, Cao T, Cantillo T, Carvalho JLVR, Chaiwan N, Chen CC, Courtecuisse R, Cui BK, Damm U, Denchev CM, Denchev TT, Deng CY, Devadatha B, de Silva NI, dos Santos LA, Dubey NK, Dumez S, Ferdinandez HS, Firmino AL, Gafforov Y, Gajanayake AJ, Gomdola D, Gunaseelan S, Shucheng-He, Htet ZH, Kaliyaperumal M, Kemler M, Kezo K, Kularathnage ND, Leonardi M, Li JP, Liao C, Liu S, Loizides M, Luangharn T, Ma J, Madrid H, Mahadevakumar S, Maharachchikumbura SSN, Manamgoda DS, Martín MP, Mekala N, Moreau PA, Mu YH, Pahoua P, Pem D, Pereira OL, Phonrob W, Phukhamsakda C, Raza M, Ren GC, Rinaldi AC, Rossi W, Samarakoon BC, Samarakoon MC, Sarma VV, Senanayake IC, Singh A, Souza MF, Souza-Motta CM, Spielmann AA, Su W, Tang X, Tian X, Thambugala KM, Thongklang N, Tennakoon DS, Wannathes N, Wei D, Welti S, Wijesinghe SN, Yang H, Yang Y, Yuan HS, Zhang H, Zhang J, Balasuriya A, Bhunjun CS, Bulgakov TS, Cai L, Camporesi E, Chomnunti P, Deepika YS, Doilom M, Duan WJ, Han SL, Huanraluek N, Jones EBG, Lakshmidevi N, Li Y, Lumyong S, Luo ZL, Khuna S, Kumla J, Manawasinghe IS, Mapook A, Punyaboon W, Tibpromma S, Lu YZ, Yan J, Wang Y. Fungal diversity notes 1512-1610: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2023; 117:1-272. [PMID: 36852303 PMCID: PMC9948003 DOI: 10.1007/s13225-022-00513-0] [Show More Authors] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/06/2022] [Indexed: 02/25/2023]
Abstract
This article is the 14th in the Fungal Diversity Notes series, wherein we report 98 taxa distributed in two phyla, seven classes, 26 orders and 50 families which are described and illustrated. Taxa in this study were collected from Australia, Brazil, Burkina Faso, Chile, China, Cyprus, Egypt, France, French Guiana, India, Indonesia, Italy, Laos, Mexico, Russia, Sri Lanka, Thailand, and Vietnam. There are 59 new taxa, 39 new hosts and new geographical distributions with one new combination. The 59 new species comprise Angustimassarina kunmingense, Asterina lopi, Asterina brigadeirensis, Bartalinia bidenticola, Bartalinia caryotae, Buellia pruinocalcarea, Coltricia insularis, Colletotrichum flexuosum, Colletotrichum thasutense, Coniochaeta caraganae, Coniothyrium yuccicola, Dematipyriforma aquatic, Dematipyriforma globispora, Dematipyriforma nilotica, Distoseptispora bambusicola, Fulvifomes jawadhuvensis, Fulvifomes malaiyanurensis, Fulvifomes thiruvannamalaiensis, Fusarium purpurea, Gerronema atrovirens, Gerronema flavum, Gerronema keralense, Gerronema kuruvense, Grammothele taiwanensis, Hongkongmyces changchunensis, Hypoxylon inaequale, Kirschsteiniothelia acutisporum, Kirschsteiniothelia crustaceum, Kirschsteiniothelia extensum, Kirschsteiniothelia septemseptatum, Kirschsteiniothelia spatiosum, Lecanora immersocalcarea, Lepiota subthailandica, Lindgomyces guizhouensis, Marthe asmius pallidoaurantiacus, Marasmius tangerinus, Neovaginatispora mangiferae, Pararamichloridium aquisubtropicum, Pestalotiopsis piraubensis, Phacidium chinaum, Phaeoisaria goiasensis, Phaeoseptum thailandicum, Pleurothecium aquisubtropicum, Pseudocercospora vernoniae, Pyrenophora verruculosa, Rhachomyces cruralis, Rhachomyces hyperommae, Rhachomyces magrinii, Rhachomyces platyprosophi, Rhizomarasmius cunninghamietorum, Skeletocutis cangshanensis, Skeletocutis subchrysella, Sporisorium anadelphiae-leptocomae, Tetraploa dashaoensis, Tomentella exiguelata, Tomentella fuscoaraneosa, Tricholomopsis lechatii, Vaginatispora flavispora and Wetmoreana blastidiocalcarea. The new combination is Torula sundara. The 39 new records on hosts and geographical distribution comprise Apiospora guiyangensis, Aplosporella artocarpi, Ascochyta medicaginicola, Astrocystis bambusicola, Athelia rolfsii, Bambusicola bambusae, Bipolaris luttrellii, Botryosphaeria dothidea, Chlorophyllum squamulosum, Colletotrichum aeschynomenes, Colletotrichum pandanicola, Coprinopsis cinerea, Corylicola italica, Curvularia alcornii, Curvularia senegalensis, Diaporthe foeniculina, Diaporthe longicolla, Diaporthe phaseolorum, Diatrypella quercina, Fusarium brachygibbosum, Helicoma aquaticum, Lepiota metulispora, Lepiota pongduadensis, Lepiota subvenenata, Melanconiella meridionalis, Monotosporella erecta, Nodulosphaeria digitalis, Palmiascoma gregariascomum, Periconia byssoides, Periconia cortaderiae, Pleopunctum ellipsoideum, Psilocybe keralensis, Scedosporium apiospermum, Scedosporium dehoogii, Scedosporium marina, Spegazzinia deightonii, Torula fici, Wiesneriomyces laurinus and Xylaria venosula. All these taxa are supported by morphological and multigene phylogenetic analyses. This article allows the researchers to publish fungal collections which are important for future studies. An updated, accurate and timely report of fungus-host and fungus-geography is important. We also provide an updated list of fungal taxa published in the previous fungal diversity notes. In this list, erroneous taxa and synonyms are marked and corrected accordingly.
Collapse
Affiliation(s)
- Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Song Wang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Ya-Ru Sun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Phongeun Sysouphanthong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Biotechnology and Ecology Institute, Ministry of Agriculture and Forestry, P.O.Box: 811, Vientiane Capital, Lao PDR
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Faten A. Abdel-Aziz
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Pranami D. Abeywickrama
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Vanessa P. Abreu
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Alireza Armand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - André Aptroot
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Dan-Feng Bao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 Yunnan China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Dominik Begerow
- Institute of Plant Science and Microbiology, Universität Hamburg, Organismic Botany and Mycology, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Jean-Michel Bellanger
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, INSERM, 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Jadson D. P. Bezerra
- Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, S/N, Setor Universitário, Goiânia, GO CEP: 74605-050 Brazil
| | - Digvijayini Bundhun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Mark S. Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Division of Biological Sciences, College of Arts and Sciences, University of the Philippines Visayas, 5023 Miagao, Iloilo Philippines
| | - Ting Cao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Taimy Cantillo
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, Feira de Santana, BA 44036-900 Brazil
| | - João L. V. R. Carvalho
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Centro de Biociências, Cidade Universitária, Recife, PE CEP: 50670-901 Brazil
| | - Napalai Chaiwan
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Che-Chih Chen
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, 11529 Taipei Taiwan
| | - Régis Courtecuisse
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Ulrike Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - Cvetomir M. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
- IUCN SSC Rusts and Smuts Specialist Group, Sofia, Bulgaria
| | - Teodor T. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
- IUCN SSC Rusts and Smuts Specialist Group, Sofia, Bulgaria
| | - Chun Y. Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan District, Guiyang, 550001 China
| | - Bandarupalli Devadatha
- Virus Diagnostic and Research Lab, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517501 India
- Department of Biotechnology, Pondicherry University, Kalapet, Pondicheryy 605014 India
| | - Nimali I. de Silva
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Lidiane A. dos Santos
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | - Nawal K. Dubey
- Center of Advanced Study in Botany, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Sylvain Dumez
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Himashi S. Ferdinandez
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - André L. Firmino
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Monte Carmelo, Minas Gerais Brazil
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
- AKFA University, 264 Milliy Bog Street, Tashkent, Uzbekistan 111221
| | - Achala J. Gajanayake
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Deecksha Gomdola
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Sugantha Gunaseelan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Shucheng-He
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Zin H. Htet
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Malarvizhi Kaliyaperumal
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Martin Kemler
- Institute of Plant Science and Microbiology, Universität Hamburg, Organismic Botany and Mycology, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Kezhocuyi Kezo
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Nuwan D. Kularathnage
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangdong, 510225 China
| | - Marco Leonardi
- University of L’Aquila Dept. MeSVA, sect. Environmental Sciences via Vetoio, 67100 Coppito, AQ Italy
| | - Ji-Peng Li
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan District, Guiyang, 550001 China
| | - Chunfang Liao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Shun Liu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 China
| | | | - Thatsanee Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Jian Ma
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Hugo Madrid
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Sede Iquique, Av. Luis Emilio Recabarren, 2477 Iquique, Chile
| | - S. Mahadevakumar
- Forest Pathology Department, KSCSTE-Kerala Forest Research Institute, Peechi, Thrissur, Kerala 680653 India
- Botanical Survey of India, Andaman and Nicobar Regional Centre, Haddo, Port Blair, South Andaman 744102 India
| | | | - Dimuthu S. Manamgoda
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - María P. Martín
- Real Jardín Botánico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Niranjan Mekala
- Department of Biotechnology, Pondicherry University, Kalapet, Pondicheryy 605014 India
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Papum Pare, Itanagar, Arunachal Pradesh 791112 India
| | | | - Yan-Hong Mu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Pasouvang Pahoua
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dhandevi Pem
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Olinto L. Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Wiphawanee Phonrob
- Microbiology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, 65000 Thailand
| | - Chayanard Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Mubashar Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Guang-Cong Ren
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Andrea C. Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Walter Rossi
- University of L’Aquila Dept. MeSVA, sect. Environmental Sciences via Vetoio, 67100 Coppito, AQ Italy
| | - Binu C. Samarakoon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Vemuri V. Sarma
- Department of Biotechnology, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Pondicherry 605014 India
| | - Indunil C. Senanayake
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangdong, 510225 China
| | - Archana Singh
- Center of Advanced Study in Botany, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Maria F. Souza
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Cristina M. Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Centro de Biociências, Cidade Universitária, Recife, PE CEP: 50670-901 Brazil
| | - Adriano A. Spielmann
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Wenxin Su
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Xia Tang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, 550025 Guizhou Province China
| | - XingGuo Tian
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan China
| | - Kasun M. Thambugala
- Generics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, 10250 Nugegoda Sri Lanka
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Danushka S. Tennakoon
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nopparat Wannathes
- Microbiology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, 65000 Thailand
| | - DingPeng Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Stéphane Welti
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Subodini N. Wijesinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Hongde Yang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Yunhui Yang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
| | - Huang Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Jingyi Zhang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Abhaya Balasuriya
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Timur S. Bulgakov
- Department of Plant Protection, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Jana Fabriciusa Str. 2/28, Krasnodar Region, Sochi, Russia 354002
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Erio Camporesi
- A.M.B, Circolo Micologico ‘‘Giovanni Carini’’, C.P. 314, 25121 Brescia, Italy
- A.M.B. Gruppo, Micologico Forlivese ‘‘Antonio Cicognani’’, via Roma 18, 47121 Forlì, Italy
- Società per gli Studi Naturalistici Della Romagna, C.P. 143, 48012 Bagnacavallo, RA Italy
| | - Putarak Chomnunti
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Y. S. Deepika
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006 India
| | - Mingkwan Doilom
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Wei-Jun Duan
- Ningbo Academy of Inspection and Quarantine, Ningbo, Zhejiang, 315012 PR China
- Ningbo Customs District, Ningbo, 315012 Zhejiang PR China
| | - Shi-Ling Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Naruemon Huanraluek
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - N. Lakshmidevi
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006 India
| | - Yu Li
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Zong-Long Luo
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Surapong Khuna
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Ishara S. Manawasinghe
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Wilawan Punyaboon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan China
| | - Yong-Zhong Lu
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - JiYe Yan
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| |
Collapse
|
29
|
Tan QW, Lim PK, Chen Z, Pasha A, Provart N, Arend M, Nikoloski Z, Mutwil M. Cross-stress gene expression atlas of Marchantia polymorpha reveals the hierarchy and regulatory principles of abiotic stress responses. Nat Commun 2023; 14:986. [PMID: 36813788 PMCID: PMC9946954 DOI: 10.1038/s41467-023-36517-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Abiotic stresses negatively impact ecosystems and the yield of crops, and climate change will increase their frequency and intensity. Despite progress in understanding how plants respond to individual stresses, our knowledge of plant acclimatization to combined stresses typically occurring in nature is still lacking. Here, we used a plant with minimal regulatory network redundancy, Marchantia polymorpha, to study how seven abiotic stresses, alone and in 19 pairwise combinations, affect the phenotype, gene expression, and activity of cellular pathways. While the transcriptomic responses show a conserved differential gene expression between Arabidopsis and Marchantia, we also observe a strong functional and transcriptional divergence between the two species. The reconstructed high-confidence gene regulatory network demonstrates that the response to specific stresses dominates those of others by relying on a large ensemble of transcription factors. We also show that a regression model could accurately predict the gene expression under combined stresses, indicating that Marchantia performs arithmetic multiplication to respond to multiple stresses. Lastly, two online resources ( https://conekt.plant.tools and http://bar.utoronto.ca/efp_marchantia/cgi-bin/efpWeb.cgi ) are provided to facilitate the study of gene expression in Marchantia exposed to abiotic stresses.
Collapse
Affiliation(s)
- Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Zhong Chen
- Amoeba Education Hub, 1 West Coast Road, 128020, Singapore, Singapore
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Nicholas Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Marius Arend
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.,Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.,Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
30
|
Perera RH, Hyde KD, Jones EBG, Maharachchikumbura SSN, Bundhun D, Camporesi E, Akulov A, Liu JK, Liu ZY. Profile of Bionectriaceae, Calcarisporiaceae, Hypocreaceae, Nectriaceae, Tilachlidiaceae, Ijuhyaceae fam. nov., Stromatonectriaceae fam. nov. and Xanthonectriaceae fam. nov. FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-022-00512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
31
|
Phylogeography of Ramalina farinacea (Lichenized Fungi, Ascomycota) in the Mediterranean Basin, Europe, and Macaronesia. DIVERSITY 2023. [DOI: 10.3390/d15030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Ramalina farinacea is an epiphytic lichen-forming fungus with a broad geographic distribution, especially in the Northern Hemisphere. In the eighties of the last century, it was hypothesized that R. farinacea had originated in the Macaronesian–Mediterranean region, with the Canary Islands as its probable southernmost limit, and thereafter it would have increased its distribution area. In order to explore the phylogeography of this emblematic lichen, we analyzed 120 thalli of R. farinacea collected in 38 localities distributed in temperate and boreal Europe, the Western Mediterranean Basin, and several Macaronesian archipelagos in the Atlantic Ocean. Data from two nuclear markers (nrITS and uid70) of the mycobiont were obtained to calculate genetic diversity indices to infer the phylogenies and haplotype networks and to investigate population structure. In addition, dating analysis was conducted to provide a valuable hypothesis of the timing of the origin and diversification of R. farinacea and its close allies. Our results highlight that phylogenetic species circumscription in the “Ramalina farinacea group” is complex and suggests that incomplete lineage sorting is at the base of conflicting phylogenetic signals. The existence of a high number of haplotypes restricted to the Macaronesian region, together with the diversification of R. farinacea in the Pleistocene, suggests that this species and its closest relatives originated during relatively recent geological times and then expanded its range to higher latitudes. However, our data cannot rule out whether the species originated from the Macaronesian archipelagos exclusively or also from the Mediterranean Basin. In conclusion, the present work provides a valuable biogeographical hypothesis for disentangling the evolution of this epiphytic lichen in space and time.
Collapse
|
32
|
Beimforde C, Schmidt AR, Tuovila H, Kaulfuss U, Germer J, Lee WG, Rikkinen J. Chaenothecopsis (Mycocaliciales, Ascomycota) from exudates of endemic New Zealand Podocarpaceae. MycoKeys 2023; 95:101-129. [DOI: 10.3897/mycokeys.95.97601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
The order Mycocaliciales (Ascomycota) comprises fungal species with diverse, often highly specialized substrate ecologies. Particularly within the genus Chaenothecopsis, many species exclusively occur on fresh and solidified resins or other exudates of vascular plants. In New Zealand, the only previously known species growing on plant exudate is Chaenothecopsis schefflerae, found on several endemic angiosperms in the family Araliaceae. Here we describe three new species; Chaenothecopsis matai Rikkinen, Beimforde, Tuovila & A.R. Schmidt, C. nodosa Beimforde, Tuovila, Rikkinen & A.R. Schmidt, and C. novae-zelandiae Rikkinen, Beimforde, Tuovila & A.R. Schmidt, all growing on exudates of endemic New Zealand conifers of the Podocarpaceae family, particularly on Prumnopitys taxifolia. Phylogenetic analyses based on ribosomal DNA regions (ITS and LSU) grouped them into a distinct, monophyletic clade. This, as well as the restricted host range, suggests that all three taxa are endemic to New Zealand. Copious insect frass between the ascomata contain ascospores or show an early stage of ascomata development, indicating that the fungi are spread by insects. The three new species represent the first evidence of Chaenothecopsis from any Podocarpaceae species and the first from any gymnosperm exudates in New Zealand.
Collapse
|
33
|
Lichen and Lichenicolous Fungal Communities Tested as Suitable Systems for the Application of Cross-Taxon Analysis. DIVERSITY 2023. [DOI: 10.3390/d15020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Lichens are outstanding examples of fungal symbioses that form long-lived structures, the lichen thalli, in which a multiplicity of other microorganisms are hosted. Among these, microfungi seem to establish diverse trophic relationships with their lichen hosts. The most specialised of these fungi are the parasitic lichenicolous fungi, of which the diversity has hardly been explained as a proxy for the diversity of lichen species. Here, we used an exemplar dataset of a well-studied alpine lichen community composed of 63 lichen and 41 lichenicolous fungal species and tested it to verify the strength of the co-occurrences of the two species groups with predictive co-correspondence analyses. The results showed that the distribution of lichen abundances affects the abundance and variation of lichenicolous fungi and supports our hypothesis to use lichens as surrogates for lichenicolous fungi in surrogacy analysis.
Collapse
|
34
|
Kaasalainen U, Kirika PM, Mollel NP, Hemp A, Rikkinen J. The Lichen Genus Sticta (Lobariaceae, Peltigerales) in East African Montane Ecosystems. J Fungi (Basel) 2023; 9:246. [PMID: 36836360 PMCID: PMC9961217 DOI: 10.3390/jof9020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
The lichen flora of Africa is still poorly known. In many parts of the tropics, recent studies utilizing DNA methods have revealed extraordinary diversity among various groups of lichenized fungi, including the genus Sticta. In this study, East African Sticta species and their ecology are reviewed using the genetic barcoding marker nuITS and morphological characters. The studied regions represent montane areas in Kenya and Tanzania, including the Taita Hills and Mt. Kilimanjaro, which belong to the Eastern Afromontane biodiversity hotspot. Altogether 14 Sticta species are confirmed from the study region, including the previously reported S. fuliginosa, S. sublimbata, S. tomentosa, and S. umbilicariiformis. Sticta andina, S. ciliata, S. duplolimbata, S. fuliginoides, and S. marginalis are reported as new to Kenya and/or Tanzania. Sticta afromontana, S. aspratilis, S. cellulosa, S. cyanocaperata, and S. munda, are described as new to science. The abundance of new diversity detected and the number of taxa represented by only few specimens show that more comprehensive sampling of the region may be needed to reveal the true diversity of Sticta in East Africa. More generally, our results highlight the need for further taxonomic studies of lichenized fungi in the region.
Collapse
Affiliation(s)
- Ulla Kaasalainen
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, 00014 Helsinki, Finland
- Department of Geobiology, University of Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
| | - Paul M. Kirika
- National Museums of Kenya, East African Herbarium, Museum Hill Road, P.O. Box 45166, Nairobi 00100, Kenya
| | - Neduvoto P. Mollel
- National Herbarium, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha 23201, Tanzania
| | - Andreas Hemp
- Department of Plant Systematics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Jouko Rikkinen
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, 00014 Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| |
Collapse
|
35
|
Kukwa M, Rodriguez-Flakus P, Aptroot A, Flakus A. Two new species of Astrothelium from Sud Yungas in Bolivia and the first discovery of vegetative propagules in the family Trypetheliaceae (lichen-forming Dothideomycetes, Ascomycota). MycoKeys 2023; 95:83-100. [PMID: 37251997 PMCID: PMC10210239 DOI: 10.3897/mycokeys.95.98986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Two new species of Astrothelium are described from the Yungas forest in Bolivian Andes. Astrotheliumchulumanense is characterised by pseudostromata concolorous with the thallus, perithecia immersed for the most part, with the upper portion elevated above the thallus and covered, except the tops, with orange pigment, apical and fused ostioles, the absence of lichexanthone (but thallus UV+ orange-yellow), clear hamathecium, 8-spored asci and amyloid, large, muriform ascospores with median septa. Astrotheliumisidiatum is known only in a sterile state and produces isidia that develop in groups on areoles, but easily break off to reveal a medulla that resembles soralia. Both species, according to the two-locus phylogeny, belong to Astrothelium s.str. The production of isidia is reported from the genus Astrothelium and the family Trypetheliaceae for the first time.
Collapse
Affiliation(s)
- Martin Kukwa
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, PL-80-308 Gdańsk, PolandUniversity of GdańskGdańskPoland
| | - Pamela Rodriguez-Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, PolandW. Szafer Institute of Botany, Polish Academy of SciencesKrakowPoland
| | - André Aptroot
- Laboratório de Botânica / Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva s/n, Bairro Universitário, CEP 79070-900, Campo Grande, Mato Grosso do Sul, BrazilUniversidade Federal de Mato Grosso do SulMato Grosso do SulBrazil
| | - Adam Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, PolandW. Szafer Institute of Botany, Polish Academy of SciencesKrakowPoland
| |
Collapse
|
36
|
Peng Y, Ma T, Wang X, Zhang M, Xu Y, Wei J, Sha W, Li J. Proteomic and Transcriptomic Responses of the Desiccation-Tolerant Moss Racomitrium canescens in the Rapid Rehydration Processes. Genes (Basel) 2023; 14:390. [PMID: 36833319 PMCID: PMC9956249 DOI: 10.3390/genes14020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The moss Racomitrium canescens (R. canescens) has strong desiccation tolerance. It can remain desiccated for years and yet recover within minutes of rehydration. Understanding the responses and mechanisms underlying this rapid rehydration capacity in bryophytes could identify candidate genes that improve crop drought tolerance. We explored these responses using physiology, proteomics, and transcriptomics. Label-free quantitative proteomics comparing desiccated plants and samples rehydrated for 1 min or 6 h suggesting that damage to chromatin and the cytoskeleton had occurred during desiccation, and pointing to the large-scale degradation of proteins, the production of mannose and xylose, and the degradation of trehalose immediately after rehydration. The assembly and quantification of transcriptomes from R. canescens across different stages of rehydration established that desiccation was physiologically stressful for the plants; however, the plants recovered rapidly once rehydrated. According to the transcriptomics data, vacuoles appear to play a crucial role in the early stages of R. canescens recovery. Mitochondria and cell reproduction might recover before photosynthesis; most biological functions potentially restarted after ~6 h. Furthermore, we identified novel genes and proteins related to desiccation tolerance in bryophytes. Overall, this study provides new strategies for analyzing desiccation-tolerant bryophytes and identifying candidate genes for improving plant drought tolerance.
Collapse
Affiliation(s)
- Yifang Peng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
- The Key Laboratory of Resistance Genetic Engineering and Coldland Biodiversity Conservation, College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Tianyi Ma
- The Key Laboratory of Resistance Genetic Engineering and Coldland Biodiversity Conservation, College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Xin Wang
- The Key Laboratory of Resistance Genetic Engineering and Coldland Biodiversity Conservation, College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Meijuan Zhang
- The Key Laboratory of Resistance Genetic Engineering and Coldland Biodiversity Conservation, College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Yingxu Xu
- The Key Laboratory of Resistance Genetic Engineering and Coldland Biodiversity Conservation, College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Jie Wei
- The Key Laboratory of Resistance Genetic Engineering and Coldland Biodiversity Conservation, College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Wei Sha
- The Key Laboratory of Resistance Genetic Engineering and Coldland Biodiversity Conservation, College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
37
|
The Revision of Lichen Flora Around Maxwell Bay, King George Island, Maritime Antarctic. J Microbiol 2023; 61:159-173. [PMID: 36847971 PMCID: PMC9998320 DOI: 10.1007/s12275-023-00015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 03/01/2023]
Abstract
Since the floristic study of lichens at the Barton and Weaver Peninsulas of King George Island in 2006, there have been intense investigations of the lichen flora of the two peninsulas as well as that of Fildes Peninsula and Ardley Island in Maxwell Bay, King George Island, South Shetland Islands, maritime Antarctic. In this study, a total of 104 species belonging to 53 genera, are identified from investigations of lichens that were collected in austral summer seasons from 2008 to 2016. Phenotypic and molecular analyses were incorporated for taxonomic identification. In particular, 31 species are found to be endemic to the Antarctic and 22 species are newly recorded to the Maxwell Bay region. Lepra dactylina, Stereocaulon caespitosum, and Wahlenbergiella striatula are newly recorded in the Antarctic, and the previously reported taxon Cladonia furcata is excluded from the formerly recorded list due to misidentification. We also provide ecological and geographical information about lichen associations and habitat preferences.
Collapse
|
38
|
Lichens as material for Lepidoptera's housing: A molecular approach to a widespread and highly selective interaction. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Dos Santos WL, Bordin J, Pôrto KC, Pinheiro F. Life-history traits and density dependence in metapopulations of a tropical moss: a monoicous species that is almost dioicous. Oecologia 2023; 201:287-298. [PMID: 36517619 DOI: 10.1007/s00442-022-05303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Life-history traits, such as reproductive allocation, sexual expression, sex ratio, and reproductive success, are central aspects of a species' ecology and evolution. For example, bias in male and female sex expression may play a large role in determining the viability of populations in the face of environmental pressures, such as population fragmentation, climate change and habitat occupancy. Thus, in this study, we investigated reproductive traits in 10 meta-populations of Fissidens flaccidus Mitt. From each meta-population, 30 patches were randomly selected, and 1 cm2 samples were collected form each patch. A total of 20,173 ramets were analyzed and classified into male, non-sporophytic female, sporophytic female, and non-sex expressing. In addition, population density in each patch was quantified. Our results showed that relative reproductive allocation in perigonia and sporophytes is greater than perichaetia. Trade-off between sexual relative reproductive allocation and asexual gemma production was observed, suggesting an important role of female ramets in asexual reproduction. The number of male ramets does not influence the reproductive success observed in each patch, and ramet density may induce male sex expression. Thus, we concluded that reproductive allocation in male function is efficient, since fewer male ramets can assure a considerable reproductive success. Furthermore, our results suggest that there may be a habitat preference between the sexes, since male ramets are found in patches with high density and mostly below female ramets, suggesting an avoidance of direct sunlight by male ramets.
Collapse
Affiliation(s)
- Wagner Luiz Dos Santos
- Department of Plant Biology, University of Campinas, Rua Monteiro Lobato., 250, Barão Geraldo, Campinas, SP, Brazil.
| | - Juçara Bordin
- State University of Rio Grande do Sul, Machado de Assis, 1456, Porto Alegre, RS, 95520-000, Brazil
| | - Kátia Cavalcanti Pôrto
- Department of Botany, Federal University of Pernambuco, Moraes Rego Av., S/N, University City, Recife, PE, Brazil
| | - Fábio Pinheiro
- Department of Plant Biology, University of Campinas, Rua Monteiro Lobato., 250, Barão Geraldo, Campinas, SP, Brazil
| |
Collapse
|
40
|
Etayo J, Sancho LG, Pino-Bodas R. Taxonomic and phylogenetic approach to some Antarctic lichenicolous fungi. Mycol Prog 2023. [DOI: 10.1007/s11557-022-01860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Li Y, Du YB, Chen JT, Wang MQ, Guo SK, Schuldt A, Luo A, Guo PF, Mi XC, Liu XJ, Ma KP, Bruelheide H, Chesters D, Liu X, Zhu CD. Tree dissimilarity determines multi-dimensional beta-diversity of herbivores and carnivores via bottom-up effects. J Anim Ecol 2023; 92:442-453. [PMID: 36507573 DOI: 10.1111/1365-2656.13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Global biodiversity decline and its cascading effects through trophic interactions pose a severe threat to human society. Establishing the impacts of biodiversity decline requires a more thorough understanding of multi-trophic interactions and, more specifically, the effects that loss of diversity in primary producers has on multi-trophic community assembly. Within a synthetic conceptual framework for multi-trophic beta-diversity, we tested a series of hypotheses on neutral and niche-based bottom-up processes in assembling herbivore and carnivore communities in a subtropical forest using linear models, hieratical variance partitioning based on linear mixed-effects models (LMMs) and simulation. We found that the observed taxonomic, phylogenetic and functional beta-diversity of both herbivorous caterpillars and carnivorous spiders were significantly and positively related to tree dissimilarity. Linear models and variance partitioning for LMMs jointly suggested that as a result of bottom-up effects, producer dissimilarities were predominant in structuring consumer dissimilarity, the strength of which highly depended on the trophic dependencies on producers, the diversity facet examined, and data quality. Importantly, linear models for standardized beta-diversities against producer dissimilarities implied a transition between niche-based processes such as environmental filtering and competitive exclusion, which supports the role of bottom-up effect in determining consumer community assembly. These findings enrich our mechanistic understanding of the 'Diversity Begets Diversity' hypothesis and the complexity of higher-trophic community assembly, which is fundamental for sustainable biodiversity conservation and ecosystem management.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Bao Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing-Ting Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Qiang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shi-Kun Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Andreas Schuldt
- Forest Nature Conservation, Georg-August-University Göttingen, Göttingen, Germany
| | - Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Peng-Fei Guo
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiang-Cheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ke-Ping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Douglas Chesters
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Pérez-Uz B, Galfione VC, Ochoa-Hueso R, Martín-Cereceda M. Protist Diversity Responses to Experimental N Deposition in Biological Crusts of a Semiarid Mediterranean Ecosystem. Protist 2023; 174:125929. [PMID: 36455480 DOI: 10.1016/j.protis.2022.125929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
Biological soil crusts (BSC) are associations of different macro and microorganisms and aggregated soil particles located on the surface of soils in many different habitats. BSC harbour a diverse and complex community of ciliates and testate amoebae. These phagotrophic protists play an important role in C and N recycling in soil ecosystems but have not been frequently studied in BSC. In this context, the effects of three increasing N inputs on ciliates and testate amoebae in crusts from a semi-arid Mediterranean ecosystem were evaluated. A field experiment with artificial N-deposition was designed to mimic the effects caused by anthropogenic N depositions. The results have shown that the protist populations of these semi-arid Mediterranean environments have lower species richness than other soil environments. The increase in N produces a net loss of diversity in the populations studied and shifts in the community structure. It has also been shown that some ciliates and testate amoebae, due to their population responses to increased N concentrations, could potentially be used as bio-indicators of N contamination in these BSCs.
Collapse
Affiliation(s)
- Blanca Pérez-Uz
- Dept. Genética, Fisiología y Microbiología, Fac. Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain.
| | - Virginia C Galfione
- Dept. Genética, Fisiología y Microbiología, Fac. Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Raul Ochoa-Hueso
- Instituto de Investigación Vitivinicola y Agroalimentaria, Universidad de Cádiz, Puerto Real, Spain
| | - Mercedes Martín-Cereceda
- Dept. Genética, Fisiología y Microbiología, Fac. Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
43
|
Solliman MELD, Elbarbary HS, Abdullah MB, Kapiel TY, Aboul-Soud MA, Mohasseb HAA. Discovery of the human homolog of sex-determining region (SRY) gene in dioecious plants. Saudi J Biol Sci 2023; 30:103548. [PMID: 36619678 PMCID: PMC9812707 DOI: 10.1016/j.sjbs.2022.103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/19/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Sex determination in the early developmental stages of dioecious crops is economically-beneficial. During this study, a human homology of SRY gene was successfully identified in dioecious crops. SRY gene sequences of date palm and jojoba were submitted to GenBank under the accession numbers KC577225 and MK991776, respectively. This is the first report regarding the novel sex-determination methodology of four dioecious plants (jojoba, date palm, papaya, and pistachios). SRY sex gene was found in all the tested dioecious plant and human samples. This novel approach is simple and of significant importance for breeders. It facilitates the unambiguous selection of jojoba and date palm female plants at an early age and reduces the plantation cost of cultivating non-productive male plants. This is a rapid sex-determination technique for dioecious plants and mammals at an early stage. This technique specifically targets the SRY sequence that has been comprehensively investigated in humans. The kit development for the SRY-based sex determination of various crops is in progress.
Collapse
Affiliation(s)
- Mohei EL-Din Solliman
- Plant Biotechnology Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Plant Biotechnology Department, National Research Centre, Dokki-Egypt, Cairo, Egypt
| | - Hany S. Elbarbary
- College of Medicine, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Internal Medicine Departments, Faculty of Medicine, Menoufiya University, Egypt
| | - Mohammed Ba Abdullah
- Biology Dept., College of Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Tarek Y.S. Kapiel
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mourad A.M. Aboul-Soud
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Heba Allah A. Mohasseb
- Plant Biotechnology Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Plant Biotechnology Department, National Research Centre, Dokki-Egypt, Cairo, Egypt
| |
Collapse
|
44
|
Li D, Zhang F, Luo G, Zhang T, Lv J, Wang W, Yang J, You D, Xu N, Guo S, Yu J. Taxon-dependent effects of dispersal limitation versus environmental filters on bryophyte assemblages-Multiple perspective studies in land-bridge islands. Ecol Evol 2023; 13:e9844. [PMID: 36844668 PMCID: PMC9951200 DOI: 10.1002/ece3.9844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/28/2023] Open
Abstract
To explore the taxon-dependent contribution of dispersal limitation versus environmental filters to bryophyte assemblages. We investigated bryophytes and six environmental variables on 168 islands in the Thousand Island Lake,China. We compared the observed beta diversity with the expected values based on six null models (EE, EF, FE, FF, PE, and PF), detected the partial correlation of beta diversity with geographical distances. We quantified the contributions of spatial versus environmental variables and island isolation per se to species composition (SC) using variance partitioning. We modeled the species-area relationships (SARs) for bryophytes and the other eight biotas. To explore the taxon-dependent effects of spatial versus environmental filters on bryophytes, 16 taxa including five categories (total bryophytes, total mosses, liverworts, acrocarpous, and pleurocarpous mosses) and 11 species-richest families were included in the analyses. The observed beta diversity values were significantly different from the predicted values for all 16 taxa. For all five categories, the observed partial correlations between beta diversity and geographical distance after controlling environmental effects were not only positive, but also significantly different from the predicted values based on the null models. Spatial eigenvectors are more important in shaping SC than environmental variables for all 16 taxa except Brachytheciaceae and Anomodontaceae. Spatial eigenvectors contributed more to SC variation in liverworts than in mosses and in pleurocarpous mosses than in acrocarpous mosses. The effects of island isolation on SC were significant for all five categories, highly varied at the family level. The z values of the SARs for the five bryophyte categories were all larger than those of the other eight biotas. In subtropical fragmented forests, dispersal limitation exerted significant, taxon-dependent effects on bryophyte assemblages. It was dispersal limitation rather than environmental filtering that predominantly regulated the SC patterns of bryophytes.
Collapse
Affiliation(s)
- Dandan Li
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Feng Zhang
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Guangyu Luo
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Ting Zhang
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Jinqiao Lv
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Wenchao Wang
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Jun Yang
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Dejun You
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Nanlong Xu
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Shuiliang Guo
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Jing Yu
- College of Life SciencesShanghai Normal UniversityShanghaiChina
| |
Collapse
|
45
|
Moutaouakil S, Boulanouar M, Ghamizi M, Lips J, Ferreira RL. Two new sympatric cave species of Castellanethes (Isopoda, Oniscidea, Olibrinidae) from Western High Atlas of Morocco. SUBTERRANEAN BIOLOGY 2023. [DOI: 10.3897/subtbiol.45.95845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two new sympatric isopod species of the genus Castellanethes (Olibrinidae) are described from caves located in the Western High Atlas of Morocco. Both species present troglomorphic traits, such as the absence of body pigmentation and eyes and are, therefore, considered cave-dwelling species (troglobitic). Castellenethes ougougensissp. nov. was found in five caves, while C. ighousisp. nov. is an amphibious species found in only two caves, which also harbour populations of C. ougougensissp. nov. Additionally, notes on their habitats are provided, as well as a discussion on their conservation status.
Collapse
|
46
|
Monogeneans from Catfishes in Lake Tanganyika. II: New Infection Site, New Record, and Additional Details on the Morphology of the Male Copulatory Organ of Gyrodactylus transvaalensis Prudhoe and Hussey, 1977. Pathogens 2023; 12:pathogens12020200. [PMID: 36839471 PMCID: PMC9958766 DOI: 10.3390/pathogens12020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
The ichthyofauna of Lake Tanganyika consists of 12 families of fish of which five belong to Siluriformes (catfishes). Studies on Siluriformes and their parasites in this lake are very fragmentary. The present study was carried out to help fill the knowledge gap on the monogeneans infesting the siluriform fishes of Lake Tanganyika in general and, more particularly, Clarias gariepinus. Samples of gills of Clarias gariepinus (Clariidae) were examined for ectoparasites. We identified the monogenean Gyrodactylus transvaalensis (Gyrodactylidae). This is the first time this parasite was found infecting gills. We are the first to observe a large spine in the male copulatory organ of this species and to provide measurements of its genital spines; this completes the description of the male copulatory organ, which is important in standard monogenean identification. This is the first monogenean species reported in C. gariepinus at Lake Tanganyika and the third known species on a representative of Siluriformes of this lake. It brings the total number of species of Gyrodactylus recorded in Lake Tanganyika to four. Knowing that other locations where this species has been reported are geographically remote from Lake Tanganyika, we propose a "failure to diverge" phenomenon for G. transvaalensis.
Collapse
|
47
|
V.K. Rajilesh, C.N. Manju, R. Prakashkumar. Rhynchostegiella menadensis (Sande Lac.) E.B. Bartram and R. scabriseta (Schwagr.) Broth.: two new records of mosses (Brachytheciaceae: Bryophyta) for peninsular India. JOURNAL OF THREATENED TAXA 2023. [DOI: 10.11609/jott.7735.15.1.22543-22547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Rhynchostegiella menadensis (Sande Lac) E.B. Bartram and R. scabriseta (Schwagr.) Broth. are the two species in the moss genus Rhynchostegiella from the family Brachytheciaceae, previously known only from northern India, is now recorded for the first time from peninsular India. They are described in detail along with a photoplate.
Collapse
|
48
|
Lawal O, Ogugbue CJ, Imam TS. Mining association rules between lichens and air quality to support urban air quality monitoring in Nigeria. Heliyon 2023; 9:e13073. [PMID: 36747933 PMCID: PMC9898642 DOI: 10.1016/j.heliyon.2023.e13073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Urban environments represent the most intense human-environment interaction. This interaction can result in negative outcomes like air pollution and its health implications. There is a significant data deficit in air quality monitoring across many developing nations, which prevents effective policies and measures from being taken to promote the accomplishment of sustainable development. Around the world, lichens have been used to track environmental changes due to their sensitivity to changes and concentration of atmospheric pollutants. This study investigated the relationships between lichen and air quality across some Nigerian cities. Lichen surveys were conducted in four cities. At various periods during the day, NO2, SO2, PM2.5, and PM10 levels were measured. Association rule mining was carried out to investigate the relationship between lichen found and air quality categories. Results showed that the most prevalent lichen Genera are Pyxine in Abuja and Kano, Diorygma in Lagos, and Dirinaria in Port Harcourt. Out of the 40 rules found from the rule mining, 17 are important (lift values ≥ 1.1), capturing six of the fourteen lichen genera identified in the field. The findings indicated that there are important relationships between lichens and air quality indices, suggesting that some lichen species in Nigeria may serve as indicators of long-term air quality. To develop a network of urban environmental quality bioindicators across Nigerian cities, surveying and transplanting are advised. The use of lichen for air quality monitoring can provide information for sustainable management of air quality and environmental quality in Nigeria.
Collapse
Affiliation(s)
- Olanrewaju Lawal
- Department of Geography and Environmental Management, University of Port Harcourt, Port Harcourt, Nigeria,Corresponding author.;
| | | | | |
Collapse
|
49
|
Llewellyn T, Nowell RW, Aptroot A, Temina M, Prescott TAK, Barraclough TG, Gaya E. Metagenomics Shines Light on the Evolution of "Sunscreen" Pigment Metabolism in the Teloschistales (Lichen-Forming Ascomycota). Genome Biol Evol 2023; 15:6986375. [PMID: 36634008 PMCID: PMC9907504 DOI: 10.1093/gbe/evad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Fungi produce a vast number of secondary metabolites that shape their interactions with other organisms and the environment. Characterizing the genes underpinning metabolite synthesis is therefore key to understanding fungal evolution and adaptation. Lichenized fungi represent almost one-third of Ascomycota diversity and boast impressive secondary metabolites repertoires. However, most lichen biosynthetic genes have not been linked to their metabolite products. Here we used metagenomic sequencing to survey gene families associated with production of anthraquinones, UV-protectant secondary metabolites present in various fungi, but especially abundant in a diverse order of lichens, the Teloschistales (class Lecanoromycetes, phylum Ascomycota). We successfully assembled 24 new, high-quality lichenized-fungal genomes de novo and combined them with publicly available Lecanoromycetes genomes from taxa with diverse secondary chemistry to produce a whole-genome tree. Secondary metabolite biosynthetic gene cluster (BGC) analysis showed that whilst lichen BGCs are numerous and highly dissimilar, core enzyme genes are generally conserved across taxa. This suggests metabolite diversification occurs via re-shuffling existing enzyme genes with novel accessory genes rather than BGC gains/losses or de novo gene evolution. We identified putative anthraquinone BGCs in our lichen dataset that appear homologous to anthraquinone clusters from non-lichenized fungi, suggesting these genes were present in the common ancestor of the subphylum Pezizomycotina. Finally, we identified unique transporter genes in Teloschistales anthraquinone BGCs that may explain why these metabolites are so abundant and ubiquitous in these lichens. Our results support the importance of metagenomics for understanding the secondary metabolism of non-model fungi such as lichens.
Collapse
Affiliation(s)
| | - Reuben W Nowell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK,Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Andre Aptroot
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva s/n Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| | - Marina Temina
- Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave, Mount Carmel, Haifa, 3498838, Israel
| | - Thomas A K Prescott
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Jodrell Laboratory, Richmond, TW9 3DS, UK
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK,Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Ester Gaya
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Jodrell Laboratory, Richmond, TW9 3DS, UK
| |
Collapse
|
50
|
Otero A, Barcenas-Peña A, Lumbsch HT, Grewe F. Reference-Based RADseq Unravels the Evolutionary History of Polar Species in 'the Crux Lichenologorum' Genus Usnea (Parmeliaceae, Ascomycota). J Fungi (Basel) 2023; 9:99. [PMID: 36675920 PMCID: PMC9865703 DOI: 10.3390/jof9010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Nearly 90% of fungal diversity, one of the most speciose branches in the tree of life, remains undescribed. Lichenized fungi as symbiotic associations are still a challenge for species delimitation, and current species diversity is vastly underestimated. The ongoing democratization of Next-Generation Sequencing is turning the tables. Particularly, reference-based RADseq allows for metagenomic filtering of the symbiont sequence and yields robust phylogenomic trees of closely related species. We implemented reference-based RADseq to disentangle the evolution of neuropogonoid lichens, which inhabit harsh environments and belong to Usnea (Parmeliaceae, Ascomycota), one of the most taxonomically intriguing genera within lichenized fungi. Full taxon coverage of neuropogonoid lichens was sampled for the first time, coupled with phenotype characterizations. More than 20,000 loci of 126 specimens were analyzed through concatenated and coalescent-based methods, including time calibrations. Our analysis addressed the major taxonomic discussions over recent decades. Subsequently, two species are newly described, namely U. aymondiana and U. fibriloides, and three species names are resurrected. The late Miocene and Pliocene-Pleistocene boundary is inferred as the timeframe for neuropogonoid lichen diversification. Ultimately, this study helped fill the gap of fungal diversity by setting a solid backbone phylogeny which raises new questions about which factors may trigger complex evolutionary scenarios.
Collapse
Affiliation(s)
- Ana Otero
- The Grainger Bioinformatics Center & Negaunee Integrative Research Center, Science & Education, The Field Museum, Chicago, IL 60605, USA
| | | | | | | |
Collapse
|