1
|
Wang X, Niu X, Wang Y, Liu Y, Yang C, Chen X, Qi Z. C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 pathway as a therapeutic target and regulatory mechanism for spinal cord injury. Neural Regen Res 2025; 20:2231-2244. [PMID: 39104168 DOI: 10.4103/nrr.nrr-d-24-00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/07/2024] [Indexed: 08/07/2024] Open
Abstract
Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage. The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury. Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury, suggesting that this axis is a novel target and regulatory control point for treatment. This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis, along with the regenerative and repair mechanisms linking the axis to spinal cord injury. Additionally, we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis. This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs, along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs. Nevertheless, there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis. This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.
Collapse
Affiliation(s)
- Xiangzi Wang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaofei Niu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingkai Wang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yang Liu
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Cheng Yang
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Xuyi Chen
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Zhongquan Qi
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
- Fujian Maternity and Child Health Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Mansi, Khanna P, Yadav S, Singh A, Khanna L. Inclusion complexes of novel formyl chromone Schiff bases with β-Cyclodextrin: Synthesis, characterization, DNA binding studies and in-vitro release study. Carbohydr Polym 2025; 347:122667. [PMID: 39486925 DOI: 10.1016/j.carbpol.2024.122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 11/04/2024]
Abstract
The present study involved the synthesis of five novel Schiff bases (SB1-SB5) of formyl chromone and their inclusion complexes with β-cyclodextrin through kneading approach to enhance the solubility and stability of SBs. Characterization was conducted using FTIR, NMR, SEM, TEM, p-XRD, and Mass Spectrometry. UV fluorescence and pH stability studies confirmed the formation of the inclusion complex. Structural validation of complexes was conducted via molecular docking (PDB ID: 1BFN) and 50 ns MD simulation study. DFT studies were performed on SBs using B3LYP/6-31 + G(d,p) basis set. All SBs exhibited favorable ADME properties and high binding interactions were observed in molecular docking with ctDNA (PDB Id: 1BNA). Further, in-vitro UV absorption and fluorescence experiments demonstrated strong ctDNA interactions for all Schiff bases, with binding constants in the order of 105 M-1, indicating groove binding mode. Among the SBs, SB4 exhibited the highest affinity for DNA grooves, with a binding constant (Kb) of 1.7 × 106 M-1. However, the SB4/β-Cyd inclusion complex also interacted with DNA but with low binding constants compared to SB4. An in-vitro release study of SB4/β-Cyd, revealed 78.92 % dissolution of the inclusion complex, highlighting its potential for enhanced solubility and stability in biological systems.
Collapse
Affiliation(s)
- Mansi
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| | - Pankaj Khanna
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Shilpa Yadav
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| | - Asmita Singh
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| | - Leena Khanna
- University School of Basic & Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India.
| |
Collapse
|
3
|
Jiang G, Zhou X, Hu Y, Tan X, Wang D, Yang L, Zhang Q, Liu S. The antipsychotic drug pimozide promotes apoptosis through the RAF/ERK pathway and enhances autophagy in breast cancer cells. Cancer Biol Ther 2024; 25:2302413. [PMID: 38356266 PMCID: PMC10878017 DOI: 10.1080/15384047.2024.2302413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
The antipsychotic drug pimozide has been demonstrated to inhibit cancer. However, the precise anti-cancer mechanism of pimozide remains unclear. The purpose of this study was to investigate the effects of pimozide on human MCF-7 and MDA-MB-231 breast cancer cell lines, and the potential involvement in the RAF/ERK signaling. The effects of pimozide on cells were examined by 4,5-dimethylthiazol-2-yl-3,5-diphenylformazan, wound healing, colony formation, transwell assays, and caspase activity assay. Flow cytometry and acridine orange and ethidium bromide staining were performed to assess changes in cells. Transmission electron microscopy and monodansylcadaverine staining were used to observe autophagosomes. The cyclic adenosine monophosphate was evaluated using the FRET system. Immunohistochemistry, immunofluorescence, RNA interference, and western blot investigated the expression of proteins. Mechanistically, we focus on the RAF1/ERK signaling. We detected pimozide was docked to RAF1 by Schrodinger software. Pimozide down-regulated the phosphorylation of RAF1, ERK 1/2, Bcl-2, and Bcl-xl, up-regulated Bax, and cleaved caspase-9 to induce apoptosis. Pimozide might promote autophagy by up-regulating cAMP. The enhancement of autophagy increased the conversion of LC3-I to LC3-II and down-regulated p62 expression. But mTOR signaling was not involved in promoting autophagy. The knockdown of RAF1 expression induced autophagy and apoptosis in breast cancer cells, consistent with the results of pimozide or sorafenib alone. Blocked autophagy by chloroquine resulted in the impairment of pimozide-induced apoptosis. These data showed that pimozide inhibits breast cancer by regulating the RAF/ERK signaling pathway and might activate cAMP-induced autophagy to promote apoptosis and it may be a potential drug for breast cancer treatment.
Collapse
Affiliation(s)
- Ge Jiang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Biology, Life Science and Technology College, Dalian University, Dalian, Liaoning, China
| | - Xingzhi Zhou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ye Hu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xiaoyu Tan
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Dalian University, Dalian, China
| | - Dan Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Lina Yang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
4
|
Krátký M, Houngbedji NH, Vinšová J. Hydrazinecarboxamides: Comprehensive review of their anticancer, anticonvulsive, anti-inflammatory, enzyme inhibition, antioxidant and other activities. Eur J Med Chem 2024; 279:116835. [PMID: 39270449 DOI: 10.1016/j.ejmech.2024.116835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
This review comprehensively summarizes recent advances in the field of hydrazinecarboxamide (semicarbazide) derivatives, highlighting their significant therapeutic potential and a broad spectrum of biological activities. As a promising and privileged scaffold in medicinal chemistry, hydrazinecarboxamides have emerged as a versatile class of compounds with significant bioactive properties. Based on their substitutions, their structural diversity permits extensive chemical modifications to enhance their interactions with various biological targets to combat multiple disorders. Notable, this group of compounds has shown significant efficacy against numerous cancer cell lines through diverse mechanisms of action and potent inhibition of enzymes, including cholinesterases, carbonic anhydrases, cyclooxygenases, lipoxygenases, etc. Beyond these, they have also been investigated for their anticonvulsive, analgesic/anti-inflammatory, and antioxidant properties, with detailed structure-activity relationships. For many applications, the hybridization of hydrazinecarboxamides with other bioactive scaffolds, such as primaquine, is of particular interest and offers advantages. Despite their promises, challenges such as suboptimal physicochemical properties and selectivity issues of certain derivatives require further effort. The review aims to inspire future innovation in the design and development of new potential hydrazinecarboxamide-based drugs, addressing existing challenges and expanding their therapeutic applications.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic.
| | - Neto-Honorius Houngbedji
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Lekkala R, Ng YH, Feroz SR, Norazmi NAZB, Ali AH, Hasbullah SA, Ismail N, Agustar HK, Lau YL, Hassan NI. Design and synthesis of pyrano[2,3-c]pyrazole-4-aminoquinoline hybrids as effective antimalarial compounds. Eur J Med Chem 2024; 279:116828. [PMID: 39244861 DOI: 10.1016/j.ejmech.2024.116828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
In this work, a series of nineteen novel pyrano[2,3-c]pyrazole-4-aminoquinoline hybrids were synthesized as potent antimalarial agents by covalently linking the scaffolds of 4-aminoquinoline and pyrano[2,3-c]pyrazoles via an ethyl linker and characterized using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). Molecular docking was used to test each hybrid's and standard chloroquine's ability to bind to Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH), an important enzyme in the parasite's glycolytic pathway. The hybrid compounds had a stronger binding affinity than the standard chloroquine (CQ). The schizontical antimalarial test of pyrano[2,3-c]pyrazole-4-aminoquinoline hybrid compound shows that all nineteen hybrid compounds were potent with the IC50 values ranging from 0.0151 to 0.301 μM against the CQ-sensitive 3D7 P. falciparum strain, and were active against the CQ-resistant K1 P. falciparum strain with the IC50 values ranging from 0.01895 to 2.746 μM. All the tested hybrid compounds were less potent than the standard drug chloroquine dipaspate (CQDP) against the CQ-sensitive 3D7 strain. In contrast, nine of the nineteen hybrids (16d, 16g, 16h, 16i, 16l, 16n, 16o, 16r, and 16s) displayed superior antimalarial activity than the CQDP against the CQ-resistant K1 P. falciparum strain. Among all the tested hybrids, 16c against the 3D7 strain and 16h against the K1 strain were the most promising antimalarial agents with 0.0151 and 0.01895 μM of IC50 values, respectively. In addition, the compounds were selective, showing moderate to low cytotoxic activity against a human normal liver WRL68 cell line. The synthesis of pyrano[2,3-c]pyrazole-4-aminoquinoline hybrids introduces new chemical entities that have the potential to exhibit potent antimalarial activity. It could address the ongoing challenge of drug resistance in malaria treatment.
Collapse
Affiliation(s)
- Ravindar Lekkala
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Yan Hong Ng
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Shevin Rizal Feroz
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nur Aqilah Zahirah Binti Norazmi
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Amatul Hamizah Ali
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Norzila Ismail
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150, KubangKerian, Kelantan, Malaysia
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
6
|
Aggarwal M, Patra A, Awasthi I, George A, Gagneja S, Gupta V, Capalash N, Sharma P. Drug repurposing against antibiotic resistant bacterial pathogens. Eur J Med Chem 2024; 279:116833. [PMID: 39243454 DOI: 10.1016/j.ejmech.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The growing prevalence of MDR and XDR bacterial pathogens is posing a critical threat to global health. Traditional antibiotic development paths have encountered significant challenges and are drying up thus necessitating innovative approaches. Drug repurposing, which involves identifying new therapeutic applications for existing drugs, offers a promising alternative to combat resistant pathogens. By leveraging pre-existing safety and efficacy data, drug repurposing accelerates the development of new antimicrobial therapy regimes. This review explores the potential of repurposing existing FDA approved drugs against the ESKAPE and other clinically relevant bacterial pathogens and delves into the identification of suitable drug candidates, their mechanisms of action, and the potential for combination therapies. It also describes clinical trials and patent protection of repurposed drugs, offering perspectives on this evolving realm of therapeutic interventions against drug resistance.
Collapse
Affiliation(s)
- Manya Aggarwal
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Anushree Patra
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Ishita Awasthi
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Annu George
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Simran Gagneja
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Varsha Gupta
- Department of Microbiology, Government Multi-speciality hospital, Sector 16, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Departmen of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
7
|
Ahmed NM, Mohamed MS, Awad SM, Abd El-Hameed RH, El-tawab NAA, Gaballah MS, Said AM. Design, synthesis, molecular modelling and biological evaluation of novel 6-amino-5-cyano-2-thiopyrimidine derivatives as potent anticancer agents against leukemia and apoptotic inducers. J Enzyme Inhib Med Chem 2024; 39:2304625. [PMID: 38348824 PMCID: PMC10866072 DOI: 10.1080/14756366.2024.2304625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Herein, a novel series of 6-amino-5-cyano-2-thiopyrimidines and condensed pyrimidines analogues were prepared. All the synthesized compounds (1a-c, 2a-c, 3a-c, 4a-r and 5a-c) were evaluated for in vitro anticancer activity by the National Cancer Institute (NCI; MD, USA) against 60 cell lines. Compound 1c showed promising anticancer activity and was selected for the five-dose testing. Results demonstrated that compound 1c possessed broad spectrum anti-cancer activity against the nine cancerous subpanels tested with selectivity ratio ranging from 0.7 to 39 at the GI50 level with high selectivity towards leukaemia. Mechanistic studies showed that Compound 1c showed comparable activity to Duvelisib against PI3Kδ (IC50 = 0.0034 and 0.0025 μM, respectively) and arrested cell cycle at the S phase and displayed significant increase in the early and late apoptosis in HL60 and leukaemia SR cells. The necrosis percentage showed a significant increase from 1.13% to 3.41% in compound 1c treated HL60 cells as well as from 1.51% to 4.72% in compound 1c treated leukaemia SR cells. Also, compound 1c triggered apoptosis by activating caspase 3, Bax, P53 and suppressing Bcl2. Moreover, 1c revealed a good safety profile against human normal lung fibroblast cell line (WI-38 cells). Molecular analysis of Duvelisib and compound 1c in PI3K was performed. Finally, these results suggest that 2-thiopyrimidine derivative 1c might serve as a model for designing novel anticancer drugs in the future.
Collapse
Affiliation(s)
- Naglaa M. Ahmed
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | - Mosaad S. Mohamed
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | - Samir M. Awad
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
| | | | | | - Mohamed S. Gaballah
- Biochemistry and Molecular Biology Department, Helwan University, Ein-Helwan, Egypt
| | - Ahmed M. Said
- Pharmaceutical Organic Chemistry Department, Helwan University, Ein-Helwan, Egypt
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, USA
- Athenex Inc, Buffalo, NY, USA
| |
Collapse
|
8
|
Prasad S, Younis K, Yousuf O. Investigating potent cardioprotective compounds as ACE inhibitors in Saraca asoca. Toxicol Rep 2024; 13:101731. [PMID: 39309635 PMCID: PMC11416659 DOI: 10.1016/j.toxrep.2024.101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Saraca asoca is a traditional medicinal plant whose all plant parts are exceptionally effective in terms of antimicrobial, anti-inflammatory, antioxidant, anti-carcinogenic, free radical scavenging,anti-arthritic, and hypolipidemic properties. As cardio-vascular problems occur for many reasons, antioxidants with free radical scavenging properties of plants and herbs are highly effective in treating cardio-related disorders. Though Saraca asoca has been preferred as a tonic and medicinal supplement for women's health, because of the huge variety of bioactive compounds, Saraca asoca needs to be explored for its cardio-protective properties. This review aims to summarize the in vivo and in vitro studies done on Saraca asoca along with the exploration of bioactive compounds in various parts of the plant which will display its cardio-protective potential with its rich bioactive compounds as ACE inhibitors. All relevant information on Saraca asoca in treating and preventing cardio-related disorders has been collected from electronic databases including PubMed, Google Scholar, Web of Science, and Science Direct. Various parts of Saraca asoca were studied to assess its pharmacological and cardioprotective properties. The bioactive compounds of Saraca asoca have been assessed to explore its role as anti-hypertensive, antioxidant, ACE inhibitors, and cardio-protective with the help of in-vivo, in-vitro studies and other research studies. This thorough review focuses on the potent natural bioactive compounds in various parts of Saraca asoca exhibiting its potential as a cardioprotective agent while incorporating historical, chemical, and therapeutic views.
Collapse
Affiliation(s)
- Sonal Prasad
- Faculty of BioSciences, IBST, Shri Ramswaroop Memorial University, Lucknow, Deva road, Barabanki-22500, India
| | - Kaiser Younis
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Owais Yousuf
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| |
Collapse
|
9
|
Liu K, Luo B, Zhang L, Hou P, Pan D, Liu T, Zhao C, Li A. Flexible and wearable sensor for in situ monitoring of gallic acid in plant leaves. Food Chem 2024; 460:140740. [PMID: 39126955 DOI: 10.1016/j.foodchem.2024.140740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Gallic acid (GA) is one of the main phenolic components naturally occurring in many plants and foods and has been a subject of increasing interest owing to its antioxidant and anti-mutagenic properties. This study introduces a novel flexible sensor designed for in situ detecting GA in plant leaves. The sensor employs a laser-induced graphene (LIG) flexible electrode, enhanced with MXene and molybdenum disulfide (MoS2) nanosheets. The MXene/MoS2/LIG flexible sensor not only demonstrates exceptional mechanical properties, covering a wide detection range of 1-1000 μM for GA, but also exhibits remarkable selectivity and stability. The as-prepared sensor was successfully applied to in situ determination of GA content in strawberry leaves under salt stress. This innovative sensor opens an attractive avenue for in situ measurement of metabolites in plant bodies with flexible electronics.
Collapse
Affiliation(s)
- Ke Liu
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Le Zhang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Peichen Hou
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dayu Pan
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tianyang Liu
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chunjiang Zhao
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China.
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
10
|
Yilmaz A, Koca M, Ercan S, Acar OO, Boga M, Sen A, Kurt A. Amelioration potential of synthetic oxime chemical cores against multiple sclerosis and Alzheimer's diseases: Evaluation in aspects of in silico and in vitro experiments. J Mol Struct 2024; 1318:139193. [DOI: 10.1016/j.molstruc.2024.139193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
11
|
González-González A, Sánchez-Sánchez O, Yépez-Mulia L, Delgado-Maldonado T, Vázquez-Jiménez LK, López-Velázquez G, de la Mora-de la Mora JI, Pacheco-Gutierrez S, Chino-Ríos L, Arias D, Moreno-Rodríguez A, Paz-González A, Ortíz-Pérez E, Rivera G. Expanding the antiprotozoal activity and the mechanism of action of n-butyl and iso-butyl ester of quinoxaline-1,4-di- N-oxide derivatives against Giardia lamblia, Trichomonas vaginalis, and Entamoeba histolytica. An in vitro and in silico approach. J Enzyme Inhib Med Chem 2024; 39:2413018. [PMID: 39470324 PMCID: PMC11523249 DOI: 10.1080/14756366.2024.2413018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/27/2024] [Accepted: 09/22/2024] [Indexed: 10/30/2024] Open
Abstract
In this study, n-butyl and iso-butyl quinoxaline-7-carboxylate-1,4-di-N-oxide derivatives were evaluated in vitro against Giardia lamblia (G. lamblia), Trichomonas vaginalis (T. vaginalis), and Entamoeba histolytica (E. histolytica). The potential mechanism of action determination was approached by in silico analysis on G. lamblia and T. vaginalis triosephosphate isomerase (GlTIM and TvTIM, respectively), and on E. histolytica thioredoxin reductase (EhTrxR). Enzyme inactivation assays were performed on recombinant GlTIM and EhTrxR. Compound T-167 showed the best giardicidal activity (IC50 = 25.53 nM) and the highest inactivation efficiency against GlTIM without significantly perturbing its human homolog. Compounds T-142 and T-143 showed the best amoebicidal (IC50 = 9.20 nM) and trichomonacidal (IC50 = 45.20 nM) activity, respectively. Additionally, T-143 had a high activity as giardicial (IC50 = 29.13 nM) and amoebicidal (IC50 = 15.14 nM), proposing it as a broad-spectrum antiparasitic agent. Compounds T-145, and T-161 were the best EhTrxR inhibitors with IC50 of 16 µM, and 18 µM, respectively.
Collapse
Affiliation(s)
- Alonzo González-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Oscar Sánchez-Sánchez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Instituto Mexicano del Seguro Social, México, México City
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Lenci K. Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, México, México City
| | | | | | - Laura Chino-Ríos
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, México, México City
| | - Diego Arias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Adriana Moreno-Rodríguez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma “Benito Juárez” de Oaxaca
| | - Alma Paz-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Eyra Ortíz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| |
Collapse
|
12
|
Odugbemi AI, Nyirenda C, Christoffels A, Egieyeh SA. Artificial intelligence in antidiabetic drug discovery: The advances in QSAR and the prediction of α-glucosidase inhibitors. Comput Struct Biotechnol J 2024; 23:2964-2977. [PMID: 39148608 PMCID: PMC11326494 DOI: 10.1016/j.csbj.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
Artificial Intelligence is transforming drug discovery, particularly in the hit identification phase of therapeutic compounds. One tool that has been instrumental in this transformation is Quantitative Structure-Activity Relationship (QSAR) analysis. This computer-aided drug design tool uses machine learning to predict the biological activity of new compounds based on the numerical representation of chemical structures against various biological targets. With diabetes mellitus becoming a significant health challenge in recent times, there is intense research interest in modulating antidiabetic drug targets. α-Glucosidase is an antidiabetic target that has gained attention due to its ability to suppress postprandial hyperglycaemia, a key contributor to diabetic complications. This review explored a detailed approach to developing QSAR models, focusing on strategies for generating input variables (molecular descriptors) and computational approaches ranging from classical machine learning algorithms to modern deep learning algorithms. We also highlighted studies that have used these approaches to develop predictive models for α-glucosidase inhibitors to modulate this critical antidiabetic drug target.
Collapse
Affiliation(s)
- Adeshina I Odugbemi
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, Cape Town 7535, South Africa
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
| | - Clement Nyirenda
- Department of Computer Science, University of the Western Cape, Cape Town 7535, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, Cape Town 7535, South Africa
- Africa Centres for Disease Control and Prevention, African Union, Addis Ababa, Ethiopia
| | - Samuel A Egieyeh
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
| |
Collapse
|
13
|
Gohar NA, Fayed EA, A. Ammar Y, A. Abu Ali O, Ragab A, Mahfoz AM, Abusaif MS. Fluorinated indeno-quinoxaline bearing thiazole moieties as hypoglycaemic agents targeting α-amylase, and α-glucosidase: synthesis, molecular docking, and ADMET studies. J Enzyme Inhib Med Chem 2024; 39:2367128. [PMID: 38913598 PMCID: PMC467095 DOI: 10.1080/14756366.2024.2367128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
Inhibition of α-glucosidase and α-amylase are key tactics for managing blood glucose levels. Currently, stronger, and more accessible inhibitors are needed to treat diabetes. Indeno[1,2-b] quinoxalines-carrying thiazole hybrids 1-17 were created and described using NMR. All analogues were tested for hypoglycaemic effect against STZ-induced diabetes in mice. Compounds 4, 6, 8, and 16 were the most potent among the synthesised analogues. These hybrids were examined for their effects on plasma insulin, urea, creatinine, GSH, MDA, ALT, AST, and total cholesterol. Moreover, these compounds were tested against α-glucosidase and α-amylase enzymes in vitro. The four hybrids 4, 6, 8, and 16 represented moderate to potent activity with IC50 values 0.982 ± 0.04, to 10.19 ± 0.21 for α-glucosidase inhibition and 17.58 ± 0.74 to 121.6 ± 5.14 μM for α-amylase inhibition when compared to the standard medication acarbose with IC50=0.316 ± 0.02 μM for α-glucosidase inhibition and 31.56 ± 1.33 μM for α-amylase inhibition. Docking studies as well as in silico ADMT were done.
Collapse
Affiliation(s)
- Nirvana A. Gohar
- Department of Pharmaceutical Organic Chemistry, Modern University for Technology and Information, Cairo, Egypt
| | - Eman A. Fayed
- Department of Pharmaceutical Organic Chemistry, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Yousry A. Ammar
- Department of Chemistry, , Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ola A. Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed Ragab
- Department of Chemistry, , Al-Azhar University, Nasr City, Cairo, Egypt
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Amal M. Mahfoz
- Department of Pharmacology and Toxicology, , Modern University for Technology and Information, Cairo, Egypt
| | | |
Collapse
|
14
|
Basu Baul TS, Hlychho B, Das Pramanik S, Lyčka A, Roy P, Mahmoud AG, Guedes da Silva MFC. Organotin(IV) complexes derived from 2,6-diacetylpyridine bis(2-hydroxybenzoylhydrazone) as prospective anti-proliferative agents: Synthesis, characterization, structures and in vitro anticancer activity. J Inorg Biochem 2024; 261:112693. [PMID: 39208488 DOI: 10.1016/j.jinorgbio.2024.112693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Six organotin(IV) complexes, viz., [Me2Sn(L)] (1), [n-Bu2Sn(L)] (2), [n-Oct2Sn(L)] (3), [Bz2Sn(L)]·0.5C7H8 (4), [n-BuSn(L)Cl] (5), and [PhSn(L)Cl] (6), were synthesized using a 2,6-diacetylpyridine bis(2-hydroxybenzoylhydrazone), H2L. Compounds were characterized by Fourier transform infrared (FT-IR), High-resolution mass spectrometry (HRMS), and solutions Fourier transform nuclear magnetic resonance (FT-NMR) spectroscopies. The structures 1-6 were established by single-crystal X-ray diffraction (SC-XRD) analysis. Diffraction results evidenced that complexes 1-6 were seven-coordinated mononuclear species with the equatorial plane comprising the pentagonal N3O2 chelate ring of the doubly deprotonated L and two axial ligands, either R (R = Me, n-Bu, n-Oct, Bz) or R (n-Bu or Ph) and Cl ligands. Additionally, the photophysical properties were examined due to the enhanced conjugation and rigidity of the molecules while thermogravimetric analysis was carried out to evaluate the thermal stabilities of compounds. The anti-proliferative activity of the complexes 1-6 was tested against prostate cancer cells (DU-145) and normal human embryonic kidney cells (HEK-293). Among the compounds, dibutyltin compound 2 exhibited increased anti-proliferative activity, with an IC50 value of 6.16 ± 1.56 μM. The investigation of its mechanism of action involves using AO/EB (acridine orange/ethidium bromide) and ROS (reactive oxygen species) generation assays. This likely detects apoptotic morphological alterations in the nucleus of the cells, with ROS generation ultimately leading to apoptosis and cell death. The superior activity of 2 may be attributed to the C···H contacts and respective higher de outside and di inside distances from the Hirshfeld surface. Thus, these compounds could be a promising alternative to classical chemotherapy agents.
Collapse
Affiliation(s)
- Tushar S Basu Baul
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India; Sophisticated Analytical Instrument Facility, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India.
| | - Bietlaichhai Hlychho
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India
| | - Siddhartha Das Pramanik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Antonin Lyčka
- University of Hradec Králové, Faculty of Science, Rokitanského 62, CZ-500 03, Hradec Králové 3, Czech Republic
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Abdallah G Mahmoud
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
15
|
Gamal H, Ismail KA, Omar AMME, Teleb M, Abu-Serie MM, Huang S, Abdelsattar AS, Zamponi GW, Fahmy H. Non-small cell lung cancer sensitisation to platinum chemotherapy via new thiazole-triazole hybrids acting as dual T-type CCB/MMP-9 inhibitors. J Enzyme Inhib Med Chem 2024; 39:2388209. [PMID: 39140776 PMCID: PMC11328607 DOI: 10.1080/14756366.2024.2388209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Cisplatin remains the unchallenged standard therapy for NSCLC. However, it is not completely curative due to drug resistance and oxidative stress-induced toxicity. Drug resistance is linked to overexpression of matrix metalloproteinases (MMPs) and aberrant calcium signalling. We report synthesis of novel thiazole-triazole hybrids as MMP-9 inhibitors with T-type calcium channel blocking and antioxidant effects to sensitise NSCLC to cisplatin and ameliorate its toxicity. MTT and whole cell patch clamp assays revealed that 6d has a balanced profile of cytotoxicity (IC50 = 21 ± 1 nM, SI = 12.14) and T-type calcium channel blocking activity (⁓60% at 10 μM). It exhibited moderate ROS scavenging activity and nanomolar MMP-9 inhibition (IC50 = 90 ± 7 nM) surpassing NNGH with MMP-9 over -2 and MMP-10 over -13 selectivity. Docking and MDs simulated its receptor binding mode. Combination studies confirmed that 6d synergized with cisplatin (CI = 0.69 ± 0.05) lowering its IC50 by 6.89 folds. Overall, the study introduces potential lead adjuvants for NSCLC platinum-based therapy.
Collapse
Affiliation(s)
- Hassan Gamal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Khadiga A Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Egypt
| | - A-Mohsen M E Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Sun Huang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Abdalla S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Sciences and Technology, October Gardens, Giza, Egypt
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Hesham Fahmy
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
16
|
Carranza-Aranda AS, Jave-Suárez LF, Flores-Hernández FY, Huizar-López MDR, Herrera-Rodríguez SE, Santerre A. In silico and in vitro study of FLT3 inhibitors and their application in acute myeloid leukemia. Mol Med Rep 2024; 30:229. [PMID: 39392050 PMCID: PMC11475230 DOI: 10.3892/mmr.2024.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most common hematological cancer in the adult population worldwide. Approximately 35% of patients with AML present internal tandem duplication (ITD) mutations in the FMS‑like tyrosine kinase 3 (FLT3) receptor associated with poor prognosis, and thus, this receptor is a relevant target for potential therapeutics. Tyrosine kinase inhibitors (TKIs) are used to treat AML; however, their molecular interactions and effects on leukemic cells are poorly understood. The present study aimed to gain insights into the molecular interactions and affinity forces of four TKI drugs (sorafenib, midostaurin, gilteritinib and quizartinib) with the wild‑type (WT)‑FLT3 and ITD‑mutated (ITD‑FLT3) structural models of FLT3, in its inactive aspartic acid‑phenylalanine‑glycine motif (DFG‑out) and active aspartic acid‑phenylalanine‑glycine motif (DFG‑in) conformations. Furthermore, the present study evaluated the effects of the second‑generation TKIs gilteritinib and quizartinib on cancer cell viability, apoptosis and proliferation in the MV4‑11 (ITD‑FLT3) and HL60 (WT‑FLT3) AML cell lines. Peripheral blood mononuclear cells (PBMCs) from a healthy volunteer were included as an FLT3‑negative group. Molecular docking analysis indicated higher affinities of second‑generation TKIs for WT‑FLT3/DFG‑out and WT‑FLT3/DFG‑in compared with those of the first‑generation TKIs. However, the ITD mutation changed the affinity of all TKIs. The in vitro data supported the in silico predictions: MV4‑11 cells presented high selective sensibility to gilteritinib and quizartinib compared with the HL60 cells, whereas the drugs had no effect on PBMCs. Thus, the current study presented novel information about molecular interactions between the FLT3 receptors (WT or ITD‑mutated) and some of their inhibitors. It also paves the way for the search for novel inhibitory molecules with potential use against AML.
Collapse
Affiliation(s)
- Ahtziri S. Carranza-Aranda
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| | - Luis Felipe Jave-Suárez
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Flor Y. Flores-Hernández
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco, Guadalajara, Jalisco 44270, Mexico
| | - María Del Rosario Huizar-López
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| | - Sara E. Herrera-Rodríguez
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco, Merida, Yucatan 97302, Mexico
| | - Anne Santerre
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| |
Collapse
|
17
|
Mahnashi MH, Nahari M, Almasoudi H, Alhasaniah A, Elgazwi S, Abou-Salim MA. Novel NO-TZDs and trimethoxychalcone-based DHPMs: design, synthesis, and biological evaluation as potential VEGFR-2 inhibitors. J Enzyme Inhib Med Chem 2024; 39:2358934. [PMID: 38904116 PMCID: PMC467104 DOI: 10.1080/14756366.2024.2358934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/19/2024] [Indexed: 06/22/2024] Open
Abstract
Novel series of nitric oxide-releasing thiazolidine-2,4-diones (NO-TZD-3a-d,5,6) and 3,4,5-trimethoxychalcone-based multifunctional 1,4-dihydropyrimidines (CDHPM-10a-g) have been designed and synthesised as potent broad-spectrum anticancer agents with potential VEGFR-2 inhibition. The designed analogs were evaluated for their anticancer activities towards a full panel of NCI-60 tumour cell lines and CDHPM-10a-g emerged mean %inhibitions ranging from 76.40 to 147.69%. Among them, CDHPM-10e and CDHPM-10f demonstrated the highest MGI% of 147.69 and 140.24%, respectively. Compounds CDHPM-10a,b,d-f showed higher mean %inhibitory activity than the reference drug sorafenib (MGI% = 105.46%). Superiorly, the hybrid CDHPM-10e displayed the highest potencies towards all the herein tested subpanels of nine types of cancer with MGI50 of 1.83 µM. Also, it revealed potent cytostatic single-digit micromolar activity towards the herein examined cancer cell lines. The designed compounds CDHPM-10a-g were exposed as potent non-selective broad-spectrum anticancer agents over all NCI subpanels with an SI range of 0.66-1.97. In addition, the target analog CDHPM-10e revealed potency towards VEGFR-2 kinase comparable to that of sorafenib with a sub-micromolar IC50 value of 0.11 µM. Also, CDHPM-10e could effectively induce Sub-G1-phase arrest and prompt apoptosis via caspase and p53-dependent mechanisms. Furthermore, CDHPM-10e revealed significant anti-metastatic activity as detected by wound healing assay. The modelling study implies that CDHPM-10e overlaid well with sorafenib and formed a strong H-bond in the DFG binding domain. The ADMET studies hinted out that CDHPM-10e met Pfizer's drug-likeness criteria. The presented novel potent anticancer agent merits further devotion as a new lead product in developing more chalcone-based VEGFR-2 inhibitors.
Collapse
Affiliation(s)
- Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohammed Nahari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Hassan Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Abdulaziz Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Sara Elgazwi
- Department of Chemistry, University of Derna, Derna, Libya
| | - Mahrous A. Abou-Salim
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
18
|
Su HL, Lai SJ, Tsai KC, Fung KM, Lung TL, Hsu HM, Wu YC, Liu CH, Lai HX, Lin JH, Tseng TS. Structure-guided identification and characterization of potent inhibitors targeting PhoP and MtrA to combat mycobacteria. Comput Struct Biotechnol J 2024; 23:1477-1488. [PMID: 38623562 PMCID: PMC11016868 DOI: 10.1016/j.csbj.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Mycobacteria are causative agents of tuberculosis (TB), which is a global health concern. Drug-resistant TB strains are rapidly emerging, thereby necessitating the urgent development of new drugs. Two-component signal transduction systems (TCSs) are signaling pathways involved in the regulation of various bacterial behaviors and responses to environmental stimuli. Applying specific inhibitors of TCSs can disrupt bacterial signaling, growth, and virulence, and can help combat drug-resistant TB. We conducted a comprehensive pharmacophore-based inhibitor screening and biochemical and biophysical examinations to identify, characterize, and validate potential inhibitors targeting the response regulators PhoP and MtrA of mycobacteria. The constructed pharmacophore model Phar-PR-n4 identified effective inhibitors of formation of the PhoP-DNA complex: ST132 (IC50 = 29 ± 1.6 µM) and ST166 (IC50 = 18 ± 1.3 µM). ST166 (KD = 18.4 ± 4.3 μM) and ST132 (KD = 14.5 ± 0.1 μM) strongly targeted PhoP in a slow-on, slow-off manner. The inhibitory potency and binding affinity of ST166 and ST132 for MtrAC were comparable to those of PhoP. Structural analyses and molecular dynamics simulations revealed that ST166 and ST132 mainly interact with the α8-helix and C-terminal β-hairpin of PhoP, with functionally essential residue hotspots for structure-based inhibitor optimization. Moreover, ST166 has in vitro antibacterial activity against Macrobacterium marinum. Thus, ST166, with its characteristic 1,2,5,6-tetrathiocane and terminal sulphonic groups, has excellent potential as a candidate for the development of novel antimicrobial agents to combat pathogenic mycobacteria.
Collapse
Affiliation(s)
- Han-Li Su
- Department of Emergency Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 600, Taiwan
| | - Shu-Jung Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kit-Man Fung
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei 11529, Taiwan
| | - Tse-Lin Lung
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| | - Hsing-Mien Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| | - Yi-Chen Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| | - Ching-Hui Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| | - Hui-Xiang Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| | - Jiun-Han Lin
- Department of Industrial Technology, Ministry of Economic Affairs, Taipei, Taiwan
- Food Industry Research and Development Institute, Hsinchu City, Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| |
Collapse
|
19
|
Adhavan R, Selvam K, Prakash P, Manimegalai P, Kirubakaran D, Shivakumar MS. Bioefficacy of Zinc oxide nanoparticle synthesis and their Biological, Environmental applications from Eranthemum roseum. Toxicol Rep 2024; 13:101758. [PMID: 39484638 PMCID: PMC11526060 DOI: 10.1016/j.toxrep.2024.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Synthesis of metal oxide nanoparticles using medicinal plants increasing rapidly due to its eco-friendly to environment. In this study Zinc oxide nanoparticle is synthesized using the leaf extract of plant E. roseum. Synthesized NPs was characterized using UV- Vis Spectroscopy analysis where the peak observed at 374 nm with band gap of 2.5 eV, FTIR and XRD analysis validate pure hexagonal structure, Spherical shape of NPs was confirmed by SEM with EDX analysis and main compounds are zinc 75 % and oxygen 22 %. Transmission Electron Microscopy Analysis confirms the oval shaped ZnO NPs Biological activity of E. roseum ZnO NPs such as antioxidant assay DPPH, ABTS, hydroxyl radical activity shows good inhibition against free radicals. The In-vitro Hypoglycemic effects has maximum inhibition of 96 % on α- amylase activity and 87 % on α- Glycosidase activity. Anti-inflammatory activity recorded 93 % maximum inhibition at Albumin denaturation assay and 75 % at Membrane stabilization assay. E. roseum ZnO NPs shows 67.79 % on HepG2 Anti-proliferative cells line. AO/EtBr staining assays confirms the apoptosis effect. Larvicidal activity shows highest mortality of 98.44 % on species C. quinquefasciatus. Photocatalytic dyedegradation of Methylene blue dye shows 65 % of dye degradation.
Collapse
|
20
|
Aljuhani A, Alsehli M, Seleem MA, Alraqa SY, Ahmed HEA, Rezki N, Aouad MR. Exploring of N-phthalimide-linked 1,2,3-triazole analogues with promising -anti-SARS-CoV-2 activity: synthesis, biological screening, and molecular modelling studies. J Enzyme Inhib Med Chem 2024; 39:2351861. [PMID: 38847308 PMCID: PMC11164105 DOI: 10.1080/14756366.2024.2351861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
In this study, a library of phthalimide Schiff base linked to 1,4-disubstituted-1,2,3-triazoles was designed, synthesised, and characterised by different spectral analyses. All analogues have been introduced for in vitro assay of their antiviral activity against COVID-19 virus using Vero cell as incubator with different concentrations. The data revealed most of these derivatives showed potent cellular anti-COVID-19 activity and prevent viral growth by more than 90% at two different concentrations with no or weak cytotoxic effect on Vero cells. Furthermore, in vitro assay was done against this enzyme for all analogues and the results showed two of them have IC50 data by 90 µM inhibitory activity. An extensive molecular docking simulation was run to analyse their antiviral mechanism that found the proper non-covalent interaction within the Mpro protease enzyme. Finally, we profiled two reversible inhibitors, COOH and F substituted analogues that might be promising drug candidates for further development have been discovered.
Collapse
Affiliation(s)
| | - Mosa Alsehli
- Chemistry Department, College of Sciences, Taibah University, Saudi Arabia
| | - Mohamed A. Seleem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr, City, Cairo, Egypt
| | - Shaya Y. Alraqa
- Chemistry Department, College of Sciences, Taibah University, Saudi Arabia
| | - Hany E. A. Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr, City, Cairo, Egypt
| | - Nadjet Rezki
- Chemistry Department, College of Sciences, Taibah University, Saudi Arabia
| | - Mohamed R. Aouad
- Chemistry Department, College of Sciences, Taibah University, Saudi Arabia
| |
Collapse
|
21
|
Soriano-Agueda L, Guevara-García A. A refreshing approach to understanding the action on DNA of vanadium (IV) and (V) complexes derived from the anticancer VCp 2Cl 2. J Inorg Biochem 2024; 261:112705. [PMID: 39217821 DOI: 10.1016/j.jinorgbio.2024.112705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
A computational study based on derivatives of the anticancer VCp2Cl2 compound and their interaction with representative models of deoxyribonucleic acid (DNA) is presented. The derivatives were obtained by substituting the cyclopentadienes of VCp2Cl2 with H2O, NH3, OH-, Cl-, O2- and C2O42- ligands. The oxidation states IV and V of vanadium were considered, so a total of 20 derivative complexes are included. The complexes interactions with DNA were studied using two different models, the first model considers the interactions of the complexes with the pair Guanine-Cytosine (G-C) and the second involves the interaction of the complexes with adjacent pairs, that is, d(GG). This study compares methodologies based on density functional theory with coupled cluster like calculations (DLPNO-CCSD(T)), the gold standard of electronic structure methods. Furthermore, the change in the electron density of the hydrogen bonds that keep bonded the G-C pair and d(GG) pairs, due to the presence of vanadium (IV) and (V) complexes is rationalize. To this aim, quantities obtained from the topology of the electron densities are inspected, particularly the value of the electron density at the hydrogen bond critical points. The approach allowed to identify vanadium complexes that lead to significant changes in the hydrogen bonds indicated above, a key aspect in the understanding, development, and proposal of mechanisms of action between metal complexes and DNA.
Collapse
Affiliation(s)
- Luis Soriano-Agueda
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.
| | - Alfredo Guevara-García
- Departamento de Química, CONAHCYT-Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Leyes de Reforma 1ra Secc, Iztapalapa, 09340 Ciudad de México, México
| |
Collapse
|
22
|
Bello JLG, Luna TB, Lara Lafargue A, Ciria HMC, Zulueta YA. Bioimpedance formalism: A new approach for accessing the health status of cell and tissues. Bioelectrochemistry 2024; 160:108799. [PMID: 39173547 DOI: 10.1016/j.bioelechem.2024.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
This manuscript describes a novel methodology for studying relaxation dynamics in tissues and cells using characteristic frequency of bioimpedance spectroscopy measurements. The Bioimpedance Formalism allows for the simultaneous study of bioelectrical parameters in the frequency and time domains, providing insight into possible relaxation processes occurring in the tissue or cell of interest. Results from the Cole-Cole analysis showed no multiple relaxation processes associated with heterogeneity, with a visible age group separation in males compared with females. The study of the relaxation dynamic in the time domain revealed that the β parameter can be used to analyse the charge carriers in tissues, cells, or cancer cells, potentially leading to new diagnostic and therapeutic approaches for cancer and other diseases. Overall, this approach presents a promising area of research for gaining insights into the electrical properties of tissues and cells using bioimpedance methods.
Collapse
Affiliation(s)
- Jose Luis García Bello
- Autonomous University of Santo Domingo (UASD), San Francisco de Macorís Campus, Dominican Republic.
| | - Taira Batista Luna
- Autonomous University of Santo Domingo (UASD), UASD Nagua Center, Dominican Republic.
| | - Alcibíades Lara Lafargue
- National Center for Applied Electromagnetism (CNEA), Universidad de Oriente, CP 90500, Santiago de Cuba, Cuba.
| | - Héctor Manuel Camué Ciria
- National Center for Applied Electromagnetism (CNEA), Universidad de Oriente, CP 90500, Santiago de Cuba, Cuba.
| | - Yohandys A Zulueta
- Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, CP 90500, Santiago de Cuba, Cuba.
| |
Collapse
|
23
|
El-Bakry R, Mahmoud DM, Eskander Attia M, Gamal Fouad A, H Mohammed N, Belal A, Miski SF, Khalid Aref Albezrah N, Abduljabbar MH, Mahmoud TM. Improving the targeting and therapeutic efficacy of anastrazole for the control of breast cancer: In vitro and in vivo characterization. Int J Pharm 2024; 665:124684. [PMID: 39270763 DOI: 10.1016/j.ijpharm.2024.124684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
Anastrazole (ASZ) is an effective aromatase inhibitor that is used for breast cancer treatment. Nevertheless, ASZ's effectiveness is diminished due to its low water solubility, unregulated release, absence of targeting, and inadequate patient compliance. The goal of the research was to create a hydrogel formulation of ASZ-loaded invasomes (ALI) to enhance the solubility, permeability, targeting, and efficacy of ASZ while also sustaining its release for treatment of breast cancer. The optimized ALI formulation was determined to be 3%w/v phospholipid, 0.15%w/v cholesterol, 3%v/v ethanol, and 1 %v/v cineole based on the results of the pre-formulation study. After conducting in vitro characterization of the optimum formulation, it was combined with carbopol for in vivo examination of its anti-tumor efficacy in a rat model of 7, 12-dimethylbenzanthracene. Compared to free ASZ, ALI hydrogel increased its penetration by 10.67 times and prolonged its release by 64.02%. Compared to the control positive group, ALI hydrogel reduced tumor volume by 99.19% and mortality by 10.93%. The anti-tumor effect of the ALI hydrogel was demonstrated by its ability to accumulate more ASZ in tumors and reduce hypercellular tumors. Overall, transdermal ALI hydrogel shows potential as a promising approach for treating breast cancer.
Collapse
Affiliation(s)
- Rana El-Bakry
- Department of Pharmacology and Toxicology, EL Saleheya EL Gadida University, EL Saleheya El Gadida, Sharkia, Egypt.
| | - Dina M Mahmoud
- Department of Pharmaceutics, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, Sharkia, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| | - Mary Eskander Attia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Amr Gamal Fouad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Nada H Mohammed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Deraya University, Minya, 61768, Egypt.
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia.
| | - Samar F Miski
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia.
| | | | - Maram H Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Tamer M Mahmoud
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
24
|
Kias F, Bodmeier R. Accelerated removal of solvent residuals from PLGA microparticles by alcohol vapor-assisted fluidized bed drying. Int J Pharm 2024; 665:124737. [PMID: 39307443 DOI: 10.1016/j.ijpharm.2024.124737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The removal of residual solvents from biodegradable poly(D,L-lactide-co-glycolide) (PLGA) microparticles by fluidized bed drying was investigated. Microparticles were prepared by the O/W solvent extraction/evaporation method and the influence of various process and formulation parameters on the secondary drying was studied. PLGA microparticles and films were characterized for residual organic solvent and water content, recrystallisation, surface morphology, drug loading and in-vitro release of the drugs dexamethasone and risperidone. While alcohol-free fluidized bed drying decreased the residual dichloromethane content only from about 7 % (w/w) to 6.4 % (w/w) (18 °C) or 3.2 % (w/w) (35 °C) within 24 h, 140 mg/L methanol vapor in purge gas facilitated almost complete removal of dichloromethane or ethyl acetate from microparticles (0-0.11 % (w/w) after 6 h). By controlling the alcohol concentration and temperature of the purge gas, the alcohol absorption and complete removal was controlled. Risperidone increased the methanol absorption enhancing the plasticization. A high initial residual water content was identified to promote aggregation and was eliminated by starting fluidized bed drying without alcohol. Alcohol vapor-assisted fluidized bed drying accelerated microparticle manufacturing without affecting the redispersibility, the drug loading and the in-vitro release of risperidone and dexamethasone.
Collapse
Affiliation(s)
- Florian Kias
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany.
| |
Collapse
|
25
|
Pires JM, Negri G, Duarte-Almeida JM, Carlini EA, Mendes FR. Phytochemical analysis and investigation of analgesic, anti-inflammatory, and antispasmodic activities of hydroethanolic extracts of Alternanthera dentata, Ocimum carnosum, and Plectranthus barbatus, three species with vernacular names derived from analgesic drugs. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118508. [PMID: 38950795 DOI: 10.1016/j.jep.2024.118508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant vernacular names can provide clues about the popular use of a species in different regions and are valuable sources of information about the culture or vocabulary of a population. Several medicinal plants in Brazil have received names of medicines and brand-name products. AIM OF THE STUDY The present work aimed to evaluate the chemical composition and pharmacological activity in the central nervous system of three species known popularly by brand names of analgesic, anti-inflammatory, antispasmodic, and digestive drugs. MATERIALS AND METHODS Hydroethanolic extracts of Alternanthera dentata (AD), Ocimum carnosum (OC), and Plectranthus barbatus (PB) aerial parts were submitted to phytochemical analysis by HPLC-PAD-ESI-MS/MS and evaluated in animal models at doses of 500 and 1000 mg/kg. Mice were tested on hot plate, acetic acid-induced writing, formalin-induced licking, and intestinal transit tests. Aspirin and morphine were employed as standard drugs. RESULTS The three extracts did not change the mice's response on the hot plate. Hydroethanolic extracts of AD and PB reduced the number of writhes and licking time, while OC was only effective on the licking test at dose of 1000 mg/kg. In addition, AD and OC reduced intestinal transit, while PB increased gut motility. CONCLUSIONS Pharmacological tests supported some popular uses, suggesting peripheral antinociceptive and anti-inflammatory effects, while the phytochemical analysis showed the presence of several flavonoids in the three hydroethanolic extracts and steroids in PB, with some barbatusterol derivatives described for the first time in the species.
Collapse
Affiliation(s)
- Júlia Movilla Pires
- Department of Psychobiology. Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, 04023-062, SP, Brazil.
| | - Giuseppina Negri
- Department of Psychobiology. Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, 04023-062, SP, Brazil.
| | - Joaquim Mauricio Duarte-Almeida
- Centro Oeste Dona Lindu Campus / Universidade Federal de São João del Rei, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, MG, Brazil.
| | - Elisaldo Araújo Carlini
- Department of Psychobiology. Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, 04023-062, SP, Brazil.
| | - Fúlvio Rieli Mendes
- Center for Natural and Human Sciences, Universidade Federal do ABC, Alameda da Universidade, SN, São Bernardo do Campo, 09606-045, SP, Brazil.
| |
Collapse
|
26
|
Bai X, Wang J, Jiao F, Zhang H, Zhang T. Synthesis and biological evaluation of novel aminoguanidine derivatives as potential antibacterial agents. Sci Rep 2024; 14:26896. [PMID: 39506054 DOI: 10.1038/s41598-024-77668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
In an effort to identify novel antibacterial agents, we presented two series of aminoguanidine derivatives that were designed by incorporating 1,2,4-triazol moieties. All compounds exhibited strong in vitro antibacterial activity against a variety of testing strains. Compound 5f was identified as a potent antibacterial agent with a minimum inhibitory concentration (MIC) of 2-8 µg/mL against S. aureus, E. coli, S. epidermidis, B. subtilis, C. albicans, multi-drug resistant Staphylococcus aureus and multi-drug resistant Escherichia coli and low toxicity (Hela > 100 µM). Membrane permeability and transmission electron microscopy (TEM) image studies demonstrated that compound 5f permeabilized bacterial membranes, resulting in irregular cell morphology and the rapid death of bacteria. The results of the present study suggested that aminoguanidine derivatives with 1,2,4-triazol moieties were the intriguing scaffolds for the development of bactericidal agents.
Collapse
Affiliation(s)
- Xueqian Bai
- Jilin Medical University, Jilin, Jilin Province, 132013, People's Republic of China
| | - Jinghan Wang
- Jilin Medical University, Jilin, Jilin Province, 132013, People's Republic of China
| | - Feitong Jiao
- Jilin Medical University, Jilin, Jilin Province, 132013, People's Republic of China
| | - Hongmei Zhang
- Jilin Medical University, Jilin, Jilin Province, 132013, People's Republic of China.
| | - Tianyi Zhang
- Jilin Medical University, Jilin, Jilin Province, 132013, People's Republic of China.
| |
Collapse
|
27
|
Dolejšová T, Lišková P, Sahatsapan N, Mojr V, Pohl R, Brzobohatá H, Dugić M, Křížek T, Cwiklik L, Mikušová G, Rejman D, Fišer R. Naphthylated LEGO-lipophosphonoxin antibiotics used as a fluorescent tool for the observation of target membrane perturbations preceding its disruption. Methods Appl Fluoresc 2024; 13:015001. [PMID: 39442542 DOI: 10.1088/2050-6120/ad8abf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Linker-Evolved-Group-Optimized-Lipophosphonoxins (LEGO-LPPO) are small synthetic modular peptidomimetics with promising antimicrobial activity. The LEGO-LPPO mechanism of antibacterial action has been determined to be the depolarization and disruption of bacterial membranes. Their modular nature is advantageous for fine tuning their biological properties. In order to optimize the structure of LEGO-LPPO even further, it is important to understand the interaction of LEGO-LPPO with bacterial membranes at the molecular level. In this work, we present the synthesis of five LEGO-LPPO (designated as1_naph2-4-G to5_naph2-4-G) molecules bearing fluorescent naphtylethyl moieties and their usage in the study of LEGO-LPPO behaviour in the membrane. Our goal was to characterize fluorescently labelled LEGO-LPPO under conditions that do not completely disrupt the membrane, mostly in the form of membrane-bound monomers. We observed the intramolecular interactions of hydrophobic modules of1_naph2-4-G in the buffer by detecting dynamic naphthyl excimers and their disappearance after1_naph2-4-G bind into the membranes. In the membrane, the molecule1_naph2-4-G slightly affects the membrane fluidity of DOPG membranes above the phase transition. The naphthyl fluorophore itself has fast and almost unrestricted rotation around ethylene linking groups (rinf= 0.010), which indicates a considerable chaotropic effect of the hydrophobic modules of1_naph2-4-G at the given depth of the membrane.1_naph2-4-G proved to be a useful model for observing the interaction of LEGO-LPPO antibiotics with the phospholipid bilayer enabling us to decipher its effects on membrane state and dynamics; its binding and penetration into the membrane, its structure and the particular depth that it occupies.
Collapse
Affiliation(s)
- Tereza Dolejšová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague, Czech Republic
| | - Petra Lišková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague, Czech Republic
| | - Nitjawan Sahatsapan
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Viktor Mojr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Hana Brzobohatá
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague, Czech Republic
| | - Milica Dugić
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00, Prague, Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences v.v.i., Dolejškova 3, 182 23, Prague, Czech Republic
| | - Gabriela Mikušová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Radovan Fišer
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague, Czech Republic
| |
Collapse
|
28
|
Dormán G, Szalai Z, Keglevich G. Cytotoxic Activity of Distinct Families of Phosphonic Acid Derivatives - A Chemocentric Approach to Assess Their Molecular Action. ChemMedChem 2024; 19:e202400370. [PMID: 38965788 DOI: 10.1002/cmdc.202400370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Phosphorus containing small molecules (particularly α-aminophosphonates, α-hydroxyphosphonates and bisphosphonates) represent a unique chemical space among the biologically active compounds. We selected 35 diverse compounds that showed remarkable cytotoxicity effects on various cancer cell lines. However, the exact mechanism of action often requires further investigations, in vitro or in silico target identification even though many target-based activity data were gathered for the above cluster of compounds. In our conceptual account, we offer a systematic in silico analysis between the cytotoxicity, cell lines, their (over)expressed protein targets associated with malignant diseases, and the activity data on protein targets already reported for those compounds in the hope that we gain better understanding and explanation, what is behind their cytotoxic behavior.
Collapse
Affiliation(s)
- György Dormán
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111, Budapest, Műegyetem rkp. 3., Hungary
- TargetEx llc., 2120, Dunakeszi, Madách Imre Street 31/2., Hungary
| | - Zsuzsanna Szalai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111, Budapest, Műegyetem rkp. 3., Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111, Budapest, Műegyetem rkp. 3., Hungary
| |
Collapse
|
29
|
Dastyafteh N, Negahdaripour M, Sayahi MH, Emami M, Ghasemi Y, Safaei E, Azizian H, Pakrouh Jahromi Z, Asadi M, Mohajeri-Tehrani MR, Zare F, Shahidi M, Pooraskari Z, Sajjadi-Jazi SM, Larijani B, Mahdavi M, Ranjbar S. Design, synthesis, biological evaluation, and in silico studies of novel N-substituted-2-(3,4,5-trimethoxyphenyl)-1 H-benzo[ d]imidazole-6-carboxamides as promising anticancer agents. RSC Adv 2024; 14:35323-35335. [PMID: 39502175 PMCID: PMC11536976 DOI: 10.1039/d4ra04492d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Novel benzimidazole-based derivatives were synthesized and their cytotoxic activities were evaluated against two human cancer cells, SW480 and A549, and the normal human MRC-5 cells, using the MTT assay. N-(2,4-Dimethoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-1H-benzo[d]imidazole-6-carboxamide (5o) showed excellent cytotoxicity with IC50 values of 0.15 ± 0.01 and 3.68 ± 0.59 μM against A549 and SW480. Compound 5o had 38.5-, 62.9- and 3.1-fold superior cytotoxicity than cisplatin (IC50 = 5.77 ± 1.60 μM), etoposide (IC50 = 9.44 ± 1.98 μM), and doxorubicin (IC50 = 0.46 ± 0.02 μM), respectively against A549 cells. Moreover, 5o exhibited high selectivity towards A549 (SI = 794.6) and SW480 (SI = 32.4) cancer cells compared with the normal MRC-5. Further studies revealed the ability of 5o to induce apoptosis and arrest the cell cycle at the S phase in A549 cells. Molecular docking studies revealed 5o was well accommodated within the pocket of topoisomerase IIα-DNA, as a possible target. Molecular dynamics simulation studies confirmed the stability of the 5o-IIα-DNA complex. Compound 5o was predicted to have appropriate drug-likeness and pharmacokinetic properties.
Collapse
Affiliation(s)
- Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences Iran
| | | | - Mina Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences Iran
| | - Elham Safaei
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| | - Zahra Pakrouh Jahromi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, School of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Fateme Zare
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran
| | - Minoo Shahidi
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences Tehran Iran
| | - Zahra Pooraskari
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences Tehran Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Sara Ranjbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
30
|
Abdelaal N, Ragheb MA, Hassaneen HM, Elzayat EM, Abdelhamid IA. Design, in silico studies and biological evaluation of novel chalcones tethered triazolo[3,4-a]isoquinoline as EGFR inhibitors targeting resistance in non-small cell lung cancer. Sci Rep 2024; 14:26647. [PMID: 39496648 PMCID: PMC11535068 DOI: 10.1038/s41598-024-76459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024] Open
Abstract
A novel series of six [1,2,4]triazolo[3,4-a]isoquinolin-3-yl)-3-(1,3-diphenyl-1H-pyrazol-4-yl)prop-2-en-1-ones (3a-3f) was designed and synthesized. They were characterized based on spectral and elemental analyses. In silico studies were also committed to provide insights and a better understanding of their structural features. The six compounds were screened for their antiproliferative activity using the MTT assay against five human cancer cell lines, namely, A549, HCT116, PC3, HT29, and MCF-7 in parallel with the non-cancerous human lung cell line WI-38. The results showed that 3e and 3f have potential cytotoxic activities, especially on A549 cells with IC50 = 2.3 µM and 1.15 µM, respectively. Meanwhile, they recorded a minimal cytotoxic effect on WI-38 cells. Concerning the molecular mechanism of action, the present study showed the inhibitory effect of the six compounds against total EGFR. The most potent EGFR inhibitors were 3e and 3f with IC50 = 0.031 µM and 0.023 µM, respectively. The selectivity index of 3f for EGFRT790M was 1.81 times more selective than that of lapatinib. In addition, 3e and 3f initiated cell cycle arrest at the G2/M and pre-G1 phases along with the downregulation of anti-apoptotic protein Bcl2 and the upregulation of pro-apoptotic proteins: p53, Bax, and caspases 3, 8, and 9. Further studies are recommended to evaluate animal models' promising anticancer activity and molecular mechanism of triazolo[3,4-a]isoquinoline derivatives 3e and 3f.
Collapse
Affiliation(s)
- Nesma Abdelaal
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Hamdi M Hassaneen
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Emad M Elzayat
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt.
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | | |
Collapse
|
31
|
Dutta D, Pajaniradje S, Nair AS, Chandramohan S, Bhat SA, Manikandan E, Rajagopalan R. An in-vitro study of active targeting & anti-cancer effect of folic acid conjugated chitosan encapsulated indole curcumin analogue nanoparticles. Int J Biol Macromol 2024:136990. [PMID: 39505180 DOI: 10.1016/j.ijbiomac.2024.136990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
Natural compounds like Curcumin with anti-cancer, anti-inflammatory and anti-bacterial properties are good target for drug development but its poor aqueous solubility, bioavailability, and low retention properties makes it a poor drug candidate in clinical settings. Here in this study, we have used an indole curcumin analogue (ICA) that has better bioavailability and enhanced permeability and retention (EPR) effect than curcumin. To make an active targeting drug we have designed folic acid conjugated chitosan-based nanoparticles encapsulating Indole curcumin analogue (CS-FA-ICA-np). The physical characteristics of CS-FA-ICA-np were evaluated by DLS, SEM, FTIR, XPS, XRD and TGA. Anti-cancer activity was analyzed using MTT, Fluorescence staining, Flow cytometry, comet assay, DNA fragmentation assay, wound healing, gelatin zymography, chick chorioallantoic membrane (CAM) assay and hemolysis assay. The size of CS-FA-ICA-nps were found to be 111 nm, and spherical in shape as observed in SEM. In-vitro assays show that CS-FA-ICA np has IC50 of 90 μg/mL in MDA-MB-231, increases ROS concentration, arrests cell cycle in G2-M phase, reduces matrix metalloproteinase-9 (MMP-9) activity and initiates apoptosis in cancer cells. Our results indicate that encapsulation of ICA increases its anti-cancer effect, drug stability, enhanced drug delivery to cancer microenvironment.
Collapse
Affiliation(s)
- Dipranil Dutta
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - Anjali Suresh Nair
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - Sathyapriya Chandramohan
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - Suhail Ahmad Bhat
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - E Manikandan
- Centre for Nano Sciences and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University, Puducherry 605014, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
32
|
Chen L, Guo X, Lin W, Huang Y, Zhuang S, Li Q, Xu J, Ye S. Curcumin derivative C210 induces Epstein-Barr virus lytic cycle and inhibits virion production by disrupting Hsp90 function. Sci Rep 2024; 14:26694. [PMID: 39496752 PMCID: PMC11535535 DOI: 10.1038/s41598-024-77294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Lytic induction therapy was devised to selectively combat malignancies associated with Epstein-Barr virus (EBV) by triggering viral reactivation from latency. At present, the major challenges of lytic induction therapy are to maximize reactivating efficiencies and meanwhile minimize infectious virion production. C210, a novel curcumin derivative with potent Hsp90 inhibitory activity, was explored for EBV-reactivating and virion-producing effects in EBV-positive nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC) cell lines. And the molecular mechanisms underlying these effects were determined. Follow C210 treatment, EBV lytic RNAs and proteins were upregulated, but infectious virions were not produced. Knockdown of heat shock protein 90 (Hsp90) induced expression of lytic RNAs and proteins, and diminished C210-driven EBV lytic induction. Pretreatment with an X box binding protein 1 (XBP1) inhibitor reduced C210-induced EBV lytic RNA. Furthermore, we demonstrated that C210 inhibited the binding of Hsp90 with its clients, signal transducer and activator of transcription 3 (STAT3) and xeroderma pigmentosum group B-complementing protein (XPB), which subsequently promoted their proteasomal degradation. Degradation of STAT3 by C210 enhanced the EBV-reactivating and anticancer capacity of suberoylanilide hydroxamic acid (SAHA). Depletion of XPB blocked SAHA-induced expression of late viral genes and production of infectious virions. These results elucidate a novel Hsp90 inhibitor targeting EBV lytic phase and extend the research on lytic induction strategy, which may offer reference value in the treatment of EBV-positive malignancies.
Collapse
Grants
- 2019Y9131 the Joint Funds for the Innovation of Science and Technology, Fujian province, China
- 2019Y9131 the Joint Funds for the Innovation of Science and Technology, Fujian province, China
- 2019Y9131 the Joint Funds for the Innovation of Science and Technology, Fujian province, China
- 2019Y9131 the Joint Funds for the Innovation of Science and Technology, Fujian province, China
- 2019Y9131 the Joint Funds for the Innovation of Science and Technology, Fujian province, China
- 2019Y9131 the Joint Funds for the Innovation of Science and Technology, Fujian province, China
- 2019Y9131 the Joint Funds for the Innovation of Science and Technology, Fujian province, China
- 2019Y9131 the Joint Funds for the Innovation of Science and Technology, Fujian province, China
- 2022QH2038 the Startup Fund for scientific research, Fujian Medical University
- 2022QH2038 the Startup Fund for scientific research, Fujian Medical University
- 2022QH2038 the Startup Fund for scientific research, Fujian Medical University
- 2022QH2038 the Startup Fund for scientific research, Fujian Medical University
- 2022QH2038 the Startup Fund for scientific research, Fujian Medical University
- 2022QH2038 the Startup Fund for scientific research, Fujian Medical University
- 2022QH2038 the Startup Fund for scientific research, Fujian Medical University
- 2022QH2038 the Startup Fund for scientific research, Fujian Medical University
Collapse
Affiliation(s)
- Linli Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaojing Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wen Lin
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yingying Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Suling Zhuang
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qianfeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianhua Xu
- The School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| | - Shengnan Ye
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
33
|
Valente Teixeira SAM, Moraes de Castro M, Novaes CM, Marques Dos Santos DC, da Penha Neves C, Guimarães-Ervilha LO, Feio RN, Machado-Neves M. Characteristics of the Integument of Phyllomedusa burmeisteri (Anura, Phyllomedusidae) and Boana semilineata (Anura, Hylidae) Males Can Contribute to Understanding its Relation to Habitat. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:1011-1020. [PMID: 39302889 DOI: 10.1093/mam/ozae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/04/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
The integument of anurans plays vital physiological roles, crucial for understanding the species' survival in their environment. Despite its significance, there are few studies describing the cutaneous morphology of anurans from the Brazilian Atlantic Forest. This study aimed to characterize the integument of Phyllomedusa burmeisteri and Boana semilineata in males using microscopic and histochemical approaches. Histological sections were stained with various dyes, and additional fragments underwent electron microscopy and energy-dispersive X-ray spectroscopy. Results showed different projections on the dorsal and ventral regions of males from these species, without the Eberth-Katschenko layer. Differences in the arrangement of chromatophore cells in regions with varying solar incidence were observed in the spongy dermis. Various gland types were identified, aiding taxonomic differentiation and validation of behavioral data. Both species had seromucous and granular glands, while only P. burmeisteri displayed lipid glands. Histochemical analysis revealed higher production of polysaccharides and proteins, contributing to the integument's moisture and protection. Lipid secretions in P. burmeisteri helped waterproof the integument more effectively against desiccation. This study concludes that analyzing anuran integument provides valuable insights into their behavior, with integument composition potentially influenced by habitat choice among different species.
Collapse
Affiliation(s)
| | - Mariana Moraes de Castro
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, DBG, Campus Universitário, CEP: 36570-900, Viçosa, Brasil
| | - Camila Moura Novaes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, DBG, Campus Universitário, CEP: 36570-900, Viçosa, Brasil
| | - Daiane Cristina Marques Dos Santos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, DBG, Campus Universitário, CEP: 36570-900, Viçosa, Brasil
| | - Charlene da Penha Neves
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, DBA, Campus Universitário, CEP: 36570-900, Viçosa, Brasil
| | - Luiz Otávio Guimarães-Ervilha
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, DBG, Campus Universitário, CEP: 36570-900, Viçosa, Brasil
| | - Renato Neves Feio
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, DBA, Campus Universitário, CEP: 36570-900, Viçosa, Brasil
| | - Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, DBG, Campus Universitário, CEP: 36570-900, Viçosa, Brasil
| |
Collapse
|
34
|
Setlur AS, Karunakaran C, Anusha V, Shendre AA, Uttarkar A, Niranjan V, Ashok Kumar HG, Kusanur R. Investigating the Molecular Interactions of Quinoline Derivatives for Antibacterial Activity Against Bacillus subtilis: Computational Biology and In Vitro Study Interpretations. Mol Biotechnol 2024; 66:3252-3273. [PMID: 37930509 DOI: 10.1007/s12033-023-00933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Bacterial infections are evolving and one of the chief problems is emergence and prevalence of antibacterial resistance. Moreover, certain strains of Bacillus subtilis have become resistant to several antibiotics. To counteract this menace, the present work aimed to comprehend the antibacterial activity of synthesized two quinoline derivatives against Bacillus subtilis. Toxicity predictions via Protox II, SwissADME and T.E.S.T (Toxicity Estimation Software Tool) revealed that these derivatives were non-toxic and had little to no adverse effects. Molecular docking studies carried out in Schrodinger with two quinoline derivatives (referred Q1 and Q2) docked against selected target proteins (PDB IDs: 2VAM and1FSE) of B. subtilis demonstrated ideal binding energies (2VAM-Q1: - 4.63 kcal/mol and 2VAM-Q2: - 4.46 kcal/mol, and 1FSE-Q1: - 3.51 kcal/mol, 1FSE-Q2: - 6.34 kcal/mol). These complexes were simulated at 100 ns and the outcomes revealed their stability with slight conformational changes. Anti-microbial assay via disc diffusion method revealed zones of inhibition showing that B. subtilis was inhibited by both Q1 and Q2, with Q2 performing slightly better than Q1, pointing towards its effectiveness against this organism and necessitating further study on other bacteria in prospective studies. Thus, this study demonstrates that our novel quinoline derivatives exhibit antibacterial properties against Bacillus subtilis and can act as potent anti-bacterials.
Collapse
Affiliation(s)
- Anagha S Setlur
- Department of Biotechnology, R.V College of Engineering, Bangalore, 560059, India
| | | | - V Anusha
- Department of Biotechnology, R.V College of Engineering, Bangalore, 560059, India
| | - Aditya A Shendre
- Department of Biotechnology, R.V College of Engineering, Bangalore, 560059, India
| | - Akshay Uttarkar
- Department of Biotechnology, R.V College of Engineering, Bangalore, 560059, India
| | - Vidya Niranjan
- Department of Biotechnology, R.V College of Engineering, Bangalore, 560059, India
| | - H G Ashok Kumar
- Department of Biotechnology, R.V College of Engineering, Bangalore, 560059, India
| | - Raviraj Kusanur
- Department of Chemistry, R.V. College of Engineering, Bangalore, 560059, India.
| |
Collapse
|
35
|
Sun J, Wang H, Zhang R, Sun X, Wu Z, Wang J, Wang Y. IGF2BP3/CTCF Axis-Dependent NT5DC2 Promotes M2 Macrophage Polarization to Enhance the Malignant Progression of Lung Squamous Cell Carcinomas. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70031. [PMID: 39506204 DOI: 10.1111/crj.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is a type of lung cancer that develops in the squamous cells. It is known to be promoted by the activation of various signaling pathways and the dysregulation of key regulatory molecules. One such molecule, 5'-nucleotidase domain containing 2 (NT5DC2), has been identified as a critical regulator in various cancers including lung cancer. However, there are no data regarding its role in LUSC. METHODS The mRNA expression of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), CCCTC-binding factor (CTCF), and NT5DC2 was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR), whereas their protein expression was assessed using a western blotting assay. Cell proliferation was determined using a cell counting kit-8 (CCK-8) assay. Cell apoptosis, CD11b expression, and CD206 expression were analyzed using flow cytometry. Tube formation was assessed through a tube formation assay. Glucose consumption, lactate production, and ATP levels were measured using colorimetric methods. The effect of NT5DC2 on the malignant progression of LUSC cells was analyzed using a xenograft mouse model assay. The levels of transforming growth factor-beta 1 (TGF-β1) and interleukin-10 (IL-10) were detected using enzyme-linked immunosorbent assays. The associations among IGF2BP3, CTCF and NT5DC2 were identified using dual-luciferase reporter assay, RNA immunoprecipitation assay and m6A RNA immunoprecipitation assay. RESULTS The expression of NT5DC2 was found to be upregulated in LUSC tissues and cells when compared with normal lung tissues and normal human bronchial epithelial cells. Silencing of NT5DC2 inhibited LUSC cell proliferation, tube formation, glycolysis, M2 macrophage polarization, and tumor formation while inducing cell apoptosis. In addition, CTCF was found to transcriptionally activate NT5DC2 in LUSC cells. IGF2BP3 stabilized the mRNA expression of CTCF through m6A methylation. Further, overexpression of CTCF or NT5DC2 attenuated the effects of IGF2BP3 silencing in both NCI-520 and SK-MES-1 cells. CONCLUSION The IGF2BP3/CTCF axis-dependent NT5DC2 promotes M2 macrophage polarization, thereby enhancing the malignant progression of LUSC. This study was the first to reveal the role of NT5DC2 in LUSC and the underlying mechanism. The result suggests that targeting the IGF2BP3/CTCF/NT5DC2 axis may have clinical significance in the treatment of LUSC.
Collapse
Affiliation(s)
- Jifeng Sun
- Department of Radiotherapy, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Hao Wang
- Department of Breast Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Ran Zhang
- Department of Thoracic Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Xiaoxuan Sun
- Department of Thoracic Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Zhanbo Wu
- Cancer Immunotherapy Department, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Jun Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yuwen Wang
- Department of Radiotherapy, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| |
Collapse
|
36
|
Ahmad S, Abdul Qadir M, Ahmed M, Imran M, Yousaf N, Asari A, Hameed A, Muddassar M. Acetylsalicylic acid-sulfa drugs conjugates as potential urease inhibitors and anti-inflammatory agents: bio-oriented drug synthesis, molecular docking, and dynamics simulation studies. J Biomol Struct Dyn 2024; 42:9373-9387. [PMID: 37643014 DOI: 10.1080/07391102.2023.2252083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
To explore the new mode of action and reduce side effects, making conjugates of existing drugs is becoming an attractive tool in the realm of medicinal chemistry. In this work, we exploited this approach and synthesized new conjugates to assess their activities against the enzymes involved in different pathological conditions. Specifically, we design and synthesized conjugates involving acetylsalicylic acid and sulfa drugs, validating the newly crafted conjugates using techniques like IR, 1HNMR, 13CNMR, and elemental analysis. These conjugates underwent assessment for their ability to inhibit cyclooxygenase-2 (COX-2), urease enzymes, and their anti-inflammatory potential. A competitive mode of urease inhibition was observed for acetylsalicylic acid conjugated with sulfanilamide, sulfacetamide, and sulfadiazine with IC50 of 2.49 ± 0.35 µM, 6.21 ± 0.28 µM, and 6.57 ± 0.44 µM, respectively. Remarkably, the acetylsalicylic acid-sulfamethoxazole conjugate exhibited exceptional anti-inflammatory activity, effectively curtailing induced edema by 83.7%, a result akin to the reference anti-inflammatory drug indomethacin's performance (86.8%). Additionally, it demonstrated comparable COX-2 inhibition (75.8%) to the reference selective COX-2 inhibitor celecoxib that exhibited 77.1% inhibition at 10 µM concentration. To deepen our understanding, we employed molecular docking techniques to predict the binding interactions of competitive inhibitors with COX-2 and urease receptors. Additionally, MD simulations were carried out, confirming the stability of inhibitor-target complexes throughout the simulation period, devoid of significant conformational changes. Collectively, our research underscores the potential of coupling approved medicinal compounds to usher in novel categories of pharmacological agents, holding promise for addressing a wide spectrum of pathological disorders involving COX-2 and urease enzymes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saghir Ahmad
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | | | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Imran
- KAM School of Life Sciences, FC College (A Chartered University) Lahore, Pakistan
| | - Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Asnuzilawati Asari
- Faculty of Science and Marine Environment, University Malaysia Terengganu, Terengganu, Malaysia
| | - Abdul Hameed
- Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
37
|
Zheng Y, Fu H, Zheng X, Chen H, Li R. Ruthenium-Catalyzed Synthesis of 2-Pyrazolines via Acceptorless Dehydrogenative Coupling of Allylic Alcohols with Hydrazines. Org Lett 2024; 26:9340-9345. [PMID: 39432013 DOI: 10.1021/acs.orglett.4c03525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Described herein is the synthesis of 2-pyrazolines via acceptorless dehydrogenative coupling of allylic alcohols with hydrazines based on a Ru3(CO)12/NHC-phosphine-phosphine ligand L catalytic system. The reaction not only exhibits low catalyst loading (only 0.3 mol %), wide substrate scope, good to excellent yields, and high selectivity but also omits the use of sacrificial hydrogen acceptor with only H2 and H2O as byproducts, making the reaction green and atom-economical.
Collapse
Affiliation(s)
- Yanling Zheng
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, P. R. China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
38
|
Gonzalo-Navarro C, Troyano AJ, Bermejo BGB, Organero JÁ, Massaguer A, Santos L, Rodríguez AM, Manzano BR, Durá G. Ru-terpyridine complexes containing clotrimazole as potent photoactivatable selective antifungal agents. J Inorg Biochem 2024; 260:112692. [PMID: 39151234 DOI: 10.1016/j.jinorgbio.2024.112692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The overuse of antimicrobial agents in medical and veterinary applications has led to the development of antimicrobial resistance in some microorganisms and this is now one of the major concerns in modern society. In this context, the use of transition metal complexes with photoactivatable properties, which can act as drug delivery systems triggered by light, could become a potent strategy to overcome the problem of resistance. In this work several Ru complexes with terpyridine ligands and the clotrimazole fragment, which is a potent antimycotic drug, were synthesized. The main goal was to explore the potential photoactivated activity of the complexes as antifungal agents and evaluate the effect of introducing different substituents on the terpyridine ligand. The complexes were capable of delivering the clotrimazole unit upon irradiation with visible light in a short period of time. The influence of the substituents on the photodissociation rate was explained by means of TD-DFT calculations. The complexes were tested against three different yeasts, which were selected based on their prevalence in fungal infections. The complex in which a carboxybenzene unit was attached to the terpyridine ligand showed the best activity against the three species under light, with minimal inhibitory concentration values of 0.88 μM and a phototoxicity index of 50 achieved. The activity of this complex was markedly higher than that of free clotrimazole, especially upon irradiation with visible light (141 times higher). The complexes were more active on yeast species than on cancer cell lines.
Collapse
Affiliation(s)
- Carlos Gonzalo-Navarro
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, 10, UCLM, Ciudad Real, Spain
| | - Antonio J Troyano
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, 10, UCLM, Ciudad Real, Spain
| | - Beatriz García-Béjar Bermejo
- Departamento de Química Analítica y Tecnología de los Alimentos, Ed. Marie Curie, Avenida C. J. Cela, s/n, UCLM, Ciudad Real, Spain
| | - Juan Ángel Organero
- Universidad de Castilla-La Mancha, Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímicas and INAMOL, 45071 Toledo, Spain
| | - Anna Massaguer
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003 Girona, Spain
| | - Lucía Santos
- Departamento de Q. Física, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, s/n, UCLM, Ciudad Real, Spain
| | - Ana M Rodríguez
- Departamento de Química Inorgánica, Orgánica y Bioquímica- IRICA, Escuela Técnica Superior de Ingenieros Industriales, Avda. C. J. Cela, 3, UCLM, Ciudad Real, Spain
| | - Blanca R Manzano
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, 10, UCLM, Ciudad Real, Spain
| | - Gema Durá
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avda. C. J. Cela, 10, UCLM, Ciudad Real, Spain.
| |
Collapse
|
39
|
Fu X, Lu H, Gao M, Li P, He Y, He Y, Luo X, Rao X, Liu W. Nitric oxide in the cardio-cerebrovascular system: Source, regulation and application. Nitric Oxide 2024; 152:48-57. [PMID: 39299647 DOI: 10.1016/j.niox.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Nitric oxide (NO) plays a crucial role as a messenger or effector in the body, yet it presents a dual impact on cardio-cerebrovascular health. Under normal physiological conditions, NO exhibits vasodilatory effects, regulates blood pressure, inhibits platelet aggregation, and offers neuroprotective actions. However, in pathological situations, excessive NO production contributes to or worsens inflammation within the body. Moreover, NO may combine with reactive oxygen species (ROS), generating harmful substances that intensify physical harm. This paper succinctly reviews pertinent literature to clarify the in vivo and in vitro origins of NO, its regulatory function in the cardio-cerebrovascular system, and the advantages and disadvantages associated with NO donor drugs, NO delivery systems, and vascular stent materials for treating cardio-cerebrovascular disease. The findings provide a theoretical foundation for the application of NO in cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaoming Fu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Haowei Lu
- Department of Pharmacy, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Meng Gao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Pinghe Li
- Lanzhou Foci Pharmaceutical Co., Ltd, Lanzhou, 730030, China
| | - Yan He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Yu He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Xiaojian Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Xiaoyong Rao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Wei Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
40
|
Abu-Hashem AA, Abdelgawad AA, Gouda MA. Chemistry and Biological Activity of Thieno[3,4- b]quinoline, Thieno[3,4- c]
quinolone, Thieno[3,2- g]quinoline and Thieno[2,3- g]quinoline Derivatives:
A Review (Part IX). MINI-REV ORG CHEM 2024; 21:764-778. [DOI: 10.2174/1570193x20666230601151439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 07/10/2024]
Abstract
Abstract:
Over the previous decades, thieno-quinoline derivatives have acquired great interest due to
their synthetic and biological applications. These reports have been disclosed on Thienoquinoline
synthesis such as thieno[3,4-b]quinoline; thieno[3,4-c]quinolone; thieno [3,2-g]quinoline; thieno[2,3-
g] quinoline; spiro-thieno[2,3-g]quinoline; benzo[b]thiophen-iso- quinoline derivatives, and therefore
in the existent review, we provided an inclusive update on the synthesis of thienoquinolines. Characterization
of the preparation methods and reactivity is categorized based on their types of reactions as
addition, alkylation, chlorination, acylation, oxidation, reduction, cyclization and cyclo-condensation.
Hence, this study will help the researchers to obtain knowledge from the last literature research to
conquer their resolve problems in designing new compounds and processes.
Collapse
Affiliation(s)
- Ameen A. Abu-Hashem
- Chemistry Department, Faculty of Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Ahmed A.M. Abdelgawad
- Chemistry Department, Faculty of Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Moustafa A. Gouda
- Department of Chemistry,
Faculty of Science and Arts, Taibah University, Ulla, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Science,
Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
41
|
Chen F, Jiang R, Yu X. Circular RNA circ_0002984 Facilitates the Proliferation and Migration of Ox-LDL-Induced Vascular Smooth Muscle Cells via the Let-7a-5p/KLF5 Pathway. Cardiovasc Toxicol 2024; 24:1253-1267. [PMID: 39181944 DOI: 10.1007/s12012-024-09911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Circular RNAs (circRNAs) play an important role in the progression of atherosclerosis (AS). This study aimed to explore the exact role and mechanism of circ_0002984 in oxidized low-density lipoprotein (ox-LDL)-mediated human vascular smooth muscle cells (HVSMCs). The model of smooth muscle cell phenotype switching was constructed by treating HVSMCs with ox-LDL. The levels of circ_0002984, let-7a-5p, and kruppel-like factor 5 (KLF5) were measured by quantitative real-time PCR or western blot assay. Cell proliferation, migration, and apoptosis were detected by Cell Counting Kit-8 (CCK-8), EdU staining, wound healing assay, transwell assay, and flow cytometry. The expression of cleaved-caspase-3 and KLF5 was examined by western blot. The relationship between let-7a-5p and circ_0002984 or KLF5 was verified by dual-luciferase reporter assay or RIP assay. The results showed that circ_0002984 and KLF5 were up-regulated, while let-7a-5p was down-regulated in AS patients and ox-LDL-disposed HVSMCs. Silence of circ_0002984 suppressed proliferation and migration, and promoted apoptosis in ox-LDL-stimulated HVSMCs. Moreover, circ_0002984 sponged let-7a-5p to regulate the proliferation, migration, and apoptosis in ox-LDL-resulted HVSMCs. In addition, KLF5 was a target of let-7a-5p and its overexpression reversed the effect of let-7a-5p on the proliferation, migration, and apoptosis in ox-LDL-treated HVSMCs. Also, circ_0002984 positively regulated KLF5 expression by absorbing let-7a-5p. The promotion effect of circ_0002984 on the proliferation and migration of ox-LDL-treated HVSMCs was reversed by KLF5 silencing. Taken together, depletion of circ_0002984 inhibited the proliferation and migration of ox-LDL-stimulated HVSMCs, which might be achieved by modulating the let-7a-5p/KLF5 axis.
Collapse
MESH Headings
- Lipoproteins, LDL/toxicity
- Humans
- Cell Proliferation/drug effects
- RNA, Circular/metabolism
- RNA, Circular/genetics
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Cell Movement/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Signal Transduction
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Apoptosis/drug effects
- Cells, Cultured
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Gene Expression Regulation
Collapse
Affiliation(s)
- Feng Chen
- Department of Cardiovascular Medicine, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Ruilai Jiang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiufeng Yu
- Department of Emergency Medicine, Lishui People's Hospital, No. 1188 Liyang Street, Yanquan Avenue, Liandu District, Lishui, 323050, Zhejiang, China.
| |
Collapse
|
42
|
Hameed H, Hussain J, Cláudia Paiva-Santos A, Zaman M, Hamza A, Sajjad I, Asad F. Comprehensive insights on treatment modalities with conventional and herbal drugs for the treatment of duodenal ulcers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8211-8229. [PMID: 38837070 DOI: 10.1007/s00210-024-03178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Areas of the body accessible to gastric secretions, such as the stomach and duodenum, are most commonly damaged by circumscribed lesions of the upper gastrointestinal tract mucosa. Peptic ulcer disease is the term for this illness (PUD). About 80% of peptic ulcers are duodenal ulcers, with stomach ulcers accounting for the remaining 20%. Duodenal ulcers are linked to the two primary results about Helicobacter pylori infection and COX inhibitor users. Additional causes might include drinking, smoking, stress, and coffee consumption. The indications and symptoms of a duodenal ulcer depend on the patient's age and the lesion's location. For duodenal ulcers, proton pump inhibitors (PPIs) are the usual course of treatment. This comprehensive study included an in-depth literature search in the literature and methods section using electronic databases such as PubMed, ScienceDirect, and Google Scholar. The search method included publications published from the inception of the relevant database to the present. Inclusion criteria included studies investigating different treatment options for duodenal ulcer disease, including traditional pharmacotherapy and naturopathic treatments. Data mining includes information on treatment techniques, treatment outcomes, and possible synergies between conventional and herbal treatments. In addition, this review critically examines the available information on the effectiveness, safety, and possible side effects of different treatments. The inclusion of conventional and herbal treatments is intended to provide a comprehensive overview of the many treatment options available for duodenal ulcer disease. A more comprehensive and personalized treatment plan can be achieved by incorporating dietary changes, lifestyle modifications, and, if necessary, herbal therapies to complement other treatments normally.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Jahangir Hussain
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, 3000-548, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ali Hamza
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Irsa Sajjad
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Faria Asad
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
43
|
Xu T, Hao W, Du R, Dai D, Wang C, Li S, Lin CSK, Cha R, Yan J, Li C. Mercaptoimidazole-capped gold nanoparticles as a potent agent against plant pathogenic fungi. J Mater Chem B 2024; 12:10949-10961. [PMID: 39344784 DOI: 10.1039/d4tb01032a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Plant pathogenic fungi pose a substantial challenge to agricultural production, but the conventional fungicide-based approaches are losing importance. As agents with broad-spectrum antibacterial effects, gold nanoparticles (Au NPs) are found to have antifungal effects; however, no study has examined their application in agriculture as fungicides. Accordingly, this study investigates the activity of 2-mercaptoimidazole-capped Au NPs (MI-Au NPs) against the 'top' plant pathogenic fungi, finding that they could inhibit Magnaporthe oryzae, Botrytis cinerea, Fusarium pseudograminearum and Colletotrichum destructivum by inducing cytoplasmic leakage. Moreover, MI-Au NPs are found to protect plants from infection by B. cinerea. Specifically, pot experiments demonstrate that MI-Au NPs decrease the incidence rate of B. cinerea infection in Arabidopsis thaliana from 74.6% to 6.2% and in Solanum lycopersicum from 100% to 10.9%, outperforming those achieved by imazalil. Furthermore, the biosafety assays reveal that MI-Au NPs cannot penetrate the cuticle of plant cells or negatively influence plant growth, and it is safe to mammalian cells. In summary, the findings of this study will support the development of NP-based antifungal agents for use in agriculture.
Collapse
Affiliation(s)
- Tang Xu
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenshuai Hao
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Dai Dai
- Department of Environmental Systems Science, ETH Zürich, Zurich 8092, Switzerland
| | - Cuixia Wang
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Suhua Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, 2 Tiantan Xi Li, Beijing, 100050, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Chong Li
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
44
|
You Z, Bai Y, Bo D, Feng Y, Shen J, Wang Y, Li J, Bai Y. A review of taste-active compounds in meat: Identification, influencing factors, and taste transduction mechanism. J Food Sci 2024. [PMID: 39468910 DOI: 10.1111/1750-3841.17480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Poultry and livestock meat are important parts of the human diet. As living standards have improved, food taste has become a major influence on consumer quality assessment and meat purchasing choices. There is increasing research interest in meat taste and meat taste-active compounds, which include free amino acids, flavor nucleotides, taste-active peptides, organic acids, soluble sugars, and inorganic ions. Taste component research is also an important part of sensory science. A deeper understanding of the meat taste perception mechanism and interactions among different taste compounds will promote the development of meat science and sensory evaluation. This article reviews the main taste compounds in meat, factors influencing their concentrations, and the identification and measurement of taste-active compounds, as well as summarizing the mechanisms of taste sensing and perception. Finally, the future of scientific taste component evaluation is discussed. This review provides a theoretical basis for research on meat taste and an important reference for the development of the meat industry.
Collapse
Affiliation(s)
- Zerui You
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yilin Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongdong Bo
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuqing Feng
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiameng Shen
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Wang
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Li
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yueyu Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Masood F, Khan W, Khan I, Khan U, Majid A, Khan SU, Sahin O, Alqathama A, Riaz M, Ahmad R, Alam MM. Exploring the Antibacterial and Antibiofilm Efficacy of Psammogeton biternatum Edgew and Identification of a Novel Quinoline Alkaloid using X-ray Crystallography. ACS OMEGA 2024; 9:43557-43569. [PMID: 39494018 PMCID: PMC11525522 DOI: 10.1021/acsomega.4c05459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/21/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024]
Abstract
The prevalence of resistance to harmful human pathogens is steadily rising, emphasizing the urgent need to identify novel antimicrobial compounds. For this purpose, plants stand out as a significant source of bioactives worthy of exploration. Among these, alkaloids, a vast and structurally diverse category of plant secondary metabolites, have emerged as a foundation for crucial antibacterial medications such as metronidazole and the quinolones. In the current work, the crude methanol leaf extract of Psammogeton biternatum Edgew collected from District Bannu, Pakistan, was subjected to TLC (indirect) bioautography and X-ray crystallography for the isolation of potential antibacterial agents. From the crude extract, a novel quinoline alkaloid called quinoline dione ((3R,3aS,5aR)-3,5a,9-trimethyl-3a,4,5,5a-tetrahydro-2H-isoxazolo[2,3-a] quinoline-2,8(3H)-dione (C14H17NO3)) was isolated. The crystal information (M = 247.296 g/mol) is as follows: orthorhombic, P212121, a = 7.7339(14) Å, b = 10.7254(19) Å, c = 15.730(2) Å, V = 1304.8(4) Å3, Z = 4, T = 296 K, μ(Mo Kα) = 0.088 mm-1, ρ calc = 1.259 g/cm3, 13928 reflections measured (5.86° ≤ 2Θ ≤ 51.98°), 2478 unique (R int = 0.1613, R σ = 0.1335). The final R 1 was 0.1098 (I ≥ 2u(I)), and wR 2 was 0.2183. The antibacterial activity for both crude extract of leaves and quinoline dione was determined by a well diffusion method. The quinoline dione alkaloid demonstrated excellent inhibition zones against methicillin-resistant Staphylococcus aureus (18 mm), Bacillus subtills (17 mm), Escherichia coli (20 mm), and Pseudomonas aeruginosa (23 mm) compared to the crude extract. The antibiofilm potential was recorded against Pseudomonas aeruginosa by the 96-well microtiter plate method. A dose-dependent biofilm inhibition response was recorded, which increased with the increase in concentration. Moreover, quinoline dione showed a greater antibiofilm effect as compared to the crude extract, which may be linked to the presence of a particular active functional group positioned on the compound isolated in its pure form. Through in silico studies, i.e., molecular docking, quinoline dione shows strong binding energies with the LasR transcriptional regulator (6MVN) at -9.3 and LasR transcriptional activator (3IX4) at -9.2 kcal/mol, as well as moderate affinities with other targets such as AHL synthase LasI (PDB ID 1RO5) and OprM channel (PDB ID 3D5K), indicating its potential as a quorum sensing inhibitor. Thus, the antibacterial and antibiofilm potential of quinoline dione was confirmed.
Collapse
Affiliation(s)
- Faiza Masood
- Department
of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa 21300, Pakistan
| | - Wajiha Khan
- Department
of Environmental SciencesCOMSAT, Abbottabad, Khyber Pakhtunkhwa 22060, Pakistan
| | - Imran Khan
- Department
of Botany, Shaheed Benazir Bhutto University, Dir Upper, Khyber Pakhtunkhwa 18050, Pakistan
| | - Uzma Khan
- Department
of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa 21300, Pakistan
| | - Abdul Majid
- Department
of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa 21300, Pakistan
| | - Sebghat Ullah Khan
- Department
of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa 21300, Pakistan
| | - Onur Sahin
- Faculty
of Health Sciences, Department of Occupational Health and Safety, Sinop University, Sinop 57000, Turkey
| | - Aljawharah Alqathama
- Department
of Pharmaceutical Sciences, Pharmacy College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Muhammad Riaz
- Department
of Pharmacy, Shaheed Benazir Bhutto University, Dir Upper, Khyber Pakhtunkhwa 18050, Pakistan
| | - Rizwan Ahmad
- Department
of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O Box #1982, Dammam 31441, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department
of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
- Central Laboratories, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| |
Collapse
|
46
|
Xiong W, Yang J. CircSEC24A induces KLF8 expression to promote the malignant progression of non-small cell lung cancer by regulating miR-1253. Thorac Cancer 2024. [PMID: 39465973 DOI: 10.1111/1759-7714.15450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVES This study aimed to analyze the role of circSEC24A in non-small cell lung cancer (NSCLC) and its underlying mechanism. METHODS RNA levels of circSEC24A, microRNA-1253 (miR-1253), and KLF transcription factor 8 (KLF8) were detected by quantitative real-time polymerase chain reaction. Protein expression was analyzed by western blot or immunohistochemistry assay. Cell proliferation and apoptosis were investigated by colony formation assay, 5-ethynyl-2'-deoxyuridine assay, and flow cytometry analysis. Glycolysis was evaluated by commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to identify the associations among circSEC24A, miR-1253, and KLF8. Xenograft mouse model assay was used to evaluate the effect of circSEC24A on tumor tumorigenesis. RESULTS CircSEC24A and KLF8 were upregulated, while miR-1253 was downregulated in NSCLC. CircSEC24A knockdown inhibited proliferation and glycolysis but induced the apoptosis of NSCLC cells. CircSEC24A acted as a miR-1253 sponge and regulated NSCLC cell malignancy by targeting miR-1253. KLF8 was identified as a target of miR-1253, and its overexpression attenuated miR-1253-induced effects in NSCLC cells. Besides, circSEC24A upregulated KLF8 by sponging miR-1253. Further, circSEC24A knockdown suppressed NSCLC cell tumorigenesis in vivo. CONCLUSIONS CircSEC24A silencing inhibited NSCLC cell malignancy through the miR-1253/KLF8 pathway, providing a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Thoracic and Cardiovascular Surgery, Zigong First People's Hospital, Zigong, China
| | - Jinhua Yang
- Department of Thoracic and Cardiovascular Surgery, Zigong First People's Hospital, Zigong, China
| |
Collapse
|
47
|
Li X, Wang J, Li S, Yu S, Liu H, Liu Y. A systematic review on botany, ethnopharmacology, phytochemistry and pharmacology of Potentilla anserina L. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118481. [PMID: 38909825 DOI: 10.1016/j.jep.2024.118481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Potentilla Anserina Linnaeus, a traditional Chinese herb with ethnic characteristics, is considered a superior material by the people of Qinghai and Tibet. Traditionally, it has been used to invigorate the spleen, quench thirst, tonify the blood, astringing to stop bleeding, and relieve diarrhea. This is the reason for its frequent usage in treating spleen deficiency, diarrhea, and various bleeding disorders. At the same time, P. anserina is often consumed as food by the Tibetan people to obtain nourishment and health benefits. AIM OF THE REVIEW The present review provides a systematic description of P. anserina, covering its botany, ethnopharmacology, phytochemical constituents, and various pharmacological activities of extracts. This overview aims to provide insights into research directions and potential applications of P. anserina. MATERIALS AND METHODS Information on P. anserina was gathered through various sources, including Google Scholar, PubMed, Elsevier, CNKI, and Web of Science. In addition, information was available from native texts and prominent ethnopharmacologists. RESULTS So far, 154 different chemical substances have been isolated and identified from P. anserina, with tannins, flavonoids, and triterpenes accounting for the majority. Polysaccharides and triterpenes are the main material components responsible for the pharmacological activity of P. anserina. Research shows that P. anserina exhibits rich pharmacological activities, including antioxidant, antiviral, blood tonic, immune regulation, cardiovascular system treatment, diabetes treatment, and liver protection. CONCLUSIONS Some traditional applications of P. anserina have been confirmed. However, due to incomplete evaluation indicators and other reasons, further in vitro and in vivo studies are needed to clarify its pharmacological evaluation, which remains a focus of future research. Additionally, we recommend that future studies concentrate on the quality control and safety evaluation of P. anserina to address research gaps and offer theoretical support for the plant's potential functions and clinical applications.
Collapse
Affiliation(s)
- Xiaojing Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Jiahui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Shuqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Shaojun Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Hao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| |
Collapse
|
48
|
Mohammed OA, Alghamdi M, Bahashwan E, Al Jarallah AlQahtani A, Alfaifi A, Hassan RH, Alfaifi J, Alamri MMS, Alhalafi AH, Adam MIE, BinAfif WF, Abdel-Reheim MA, Mageed SSA, S Doghish A. Emerging insights into the role of natural products and miRNAs in psoriasis: from pathophysiology to precision medicine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03528-3. [PMID: 39466441 DOI: 10.1007/s00210-024-03528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
Psoriasis is a sustainable skin disease characterized by inflammation resulting from the interaction between immune cells and keratinocytes. Significant advancements have been achieved in studying the molecular process behind noncoding and coding genes, leading to valuable insights for clinical therapy. Nevertheless, our comprehension of this intricate ailment remains ambiguous. Natural products such as curcumin, vitamin D, omega-3, vitamin E, psoralen, gallic acid (GA), and resveratrol offer a promising alternative or adjunct therapy for psoriasis by modulating multiple pathways and exhibiting fewer side effects compared to conventional treatments. MicroRNAs (miRNAs) are short RNAs that are involved in regulating gene expression after transcription, namely by suppressing gene activity. Recent research on miRNAs has uncovered their significant significance in the development of psoriasis. In this review, we examined the latest developments in the investigation of miRNAs in psoriasis. Previous studies have revealed that imbalanced miRNAs in psoriasis have a significant impact on the processes of keratinocyte differentiation, proliferation, and the progression of inflammation. Furthermore, miRNAs exert an impact on the activity of immune cells involved in psoriasis, such as Langerhans cells, dendritic cells, and CD4+ T cells. Furthermore, we explore potential miRNA-focused treatment options for psoriasis, including the localized administration of external miRNA mimics, and miRNA inhibitors. The effectiveness of natural products and miRNAs in treating psoriasis, as well as the signaling pathways that may be involved, are summarized in this article.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Adel Alfaifi
- Department of Dermatology, Armed Forces Hospital - Southern Region, 62413, Khamis Mushait, Saudi Arabia
| | - Rania H Hassan
- Dermatology Clinic, Abbasseya Psychiatric Hospital, Abbasseya, Cairo, 11517, Egypt
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Badr City, 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Badr City, , 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Nasr City, 11231, Egypt.
| |
Collapse
|
49
|
Diaa Abdullah H, Kamal I, Sabry SA, Abd Elghany M, El Hakim Ramadan A. Clarithromycin-tailored cubosome: A sustained release oral nano platform for evaluating antibacterial, anti-biofilm, anti-inflammatory, anti-liver cancer, biocompatibility, ex-vivo and in-vivo studies. Int J Pharm 2024; 667:124865. [PMID: 39490789 DOI: 10.1016/j.ijpharm.2024.124865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The clinical implication of clarithromycin (CLT) is compromised owing to its poor solubility and, subsequently, bioavailability, unpalatable taste, rapid metabolism, short half-life, frequent dosing, and adverse effects. The present investigation provides an innovative sustained-release oral drug delivery strategy that tackles these challenges. Accordingly, CLT was loaded into a cubosome, a vesicular system with a bicontinuous cubic structure that promotes solubility and bioavailability, provides a sustained release system combating short half-life and adverse effects, masks unpleasant taste, and protects the drug from destruction in gastrointestinal tract (GIT). Nine various formulas were fabricated using the emulsification method. The resulting vesicles increased the encapsulation efficiency (EE %) from 57.64 ± 0.04 % to 96.80 ± 1.50 %, the particle size (PS) from 147.30 ± 21.77 nm to 216.61 ± 5.37 nm, and the polydispersity index (PDI) values ranged from 0.117 ± 0.024 to 0.278 ± 0.073. The zeta potential (ZP) changed from -20.65 ± 2.01 mV to -33.98 ± 2.60 mV. Further, the release profile exhibited a dual release pattern within 24 h., with the percentage of cumulative release (CR %) expanding from 30.06 ± 0.42 % to 98.49 ± 2.88 %, optimized formula was found to be CC9 with EE % = 96.80 ± 1.50 %, PS = 216.61 ± 5.37 nm, ZP = -33.98 ± 2.60 mV, PDI = 0.117 ± 0.024, CR % = 98.49 ± 2.88 % and IC50 of 0.74 ± 0.19 µg/mL against HepG-2 cells with scattered unilamellar cubic non-agglomerated vesicles. Additionally, it exhibited higher anti-MRSA biofilm, relative bioavailability (2.8 fold), and anti-inflammatory and antimicrobial capacity against Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, and Staphylococcus aureus compared to free CLT. Our data demonstrate that cubosome is a powerful nanocarrier for oral delivery of CLT, boosting its biological impacts and pharmacokinetic profile.
Collapse
Affiliation(s)
- Hend Diaa Abdullah
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt.
| | - Islam Kamal
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt.
| | - Shereen A Sabry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Abd Elghany
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Abd El Hakim Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt.
| |
Collapse
|
50
|
Wu C, Zhai Y, Ji J, Yang X, Ye L, Lu G, Shi X, Zhai G. Advances in tumor stroma-based targeted delivery. Int J Pharm 2024; 664:124580. [PMID: 39142464 DOI: 10.1016/j.ijpharm.2024.124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The tumor stroma plays a crucial role in tumor progression, and the interactions between the extracellular matrix, tumor cells, and stromal cells collectively influence tumor progression and the efficacy of therapeutic agents. Currently, utilizing components of the tumor stroma for drug delivery is a noteworthy strategy. A number of targeted drug delivery systems designed based on tumor stromal components are entering clinical trials. Therefore, this paper provides a thorough examination of the function of tumor stroma in the advancement of targeted drug delivery systems. One approach is to use tumor stromal components for targeted drug delivery, which includes certain stromal components possessing inherent targeting capabilities like HA, laminin, along with targeting stromal cells homologously. Another method entails directly focusing on tumor stromal components to reshape the tumor stroma and facilitate drug delivery. These drug delivery systems exhibit great potential in more effective cancer therapy strategies, such as precise targeting, enhanced penetration, improved safety profile, and biocompatibility. Ultimately, the deployment of these drug delivery systems can deepen our comprehension of tumor stroma and the advanced development of corresponding drug delivery systems.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|