1
|
|
Abid F, Saleem M, Leghari T, Rafi I, Maqbool T, Fatima F, Arshad AM, Khurshid S, Naz S, Hadi F, Tahir M, Akhtar S, Yasir S, Mobashar A, Ashraf M. Evaluation of in vitro anticancer potential of pharmacological ethanolic plant extracts Acacia modesta and Opuntia monocantha against liver cancer cells. BRAZ J BIOL 2024;84:e252526. [DOI: 10.1590/1519-6984.252526] [Cited by in Crossref: 0] [Cited by in RCA: 1] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/30/2022] Open
Abstract
Abstract Acacia modesta (AM) and Opuntia monocantha (OM) are distributed in Pakistan, Afghanistan and India. Both of these plants have different pharmacological properties. This study was designed to evaluate anticancer potential of Acacia modesta (AM) and Opuntia monocantha (OM). Liver cancer cell line HepG2 was used for assessment of anticancer activity. For the evaluation of anti-proliferative effects, cell viability and cell death in all groups of cells were evaluated via MTT, crystal violet and trypan blue assays. For the evaluation of apoptosis ELISA of p53 performed. Furthermore, LDH assay to find out the ability of malignant cells to metabolize pyruvate to lactate and antioxidant enzymes activity (GSH, CAT and SOD) at the end HPLC was performed to find active compound of AM and OM. Cytotoxicity (MTT), Viability assays (trypan blue, crystal viability, MUSE analysis) showed more dead, less live cells in plant treated groups with increase of concentration. Scratch assay for the anti-migratory effect of these plants showed treated groups have not ability to heal scratch/wound. ELISA of p53 for cellular apoptosis showed more release of p53 in treated groups. Antioxidant assay via glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) showed less anti-oxidative potential in treated cancer groups. LDH assay showed more lactate dehydrogenase release in treated groups compared with untreated. HPLC analysis showed the presence of phytochemicals such as steroids, alkaloids, phenols, flavonoids, saponins, tannins, anthraquinone and amino acids in AM and OM plant extracts. Based on all these findings, it can be concluded that ethanolic extracts of Acacia modesta and Opuntia monocantha have promising anti-cancer potential.
Collapse
|
2
|
|
Freitas RM, Felipe SMS, Ribeiro JKC, Araújo VR, Martin CPS, Oliveira MAF, Martins SD, Pontes JPA, Alves JO, Soares PM, Ceccatto VM. Evaluation of miRNAs regulation of BDNF and IGF1 genes in T2DM insulin resistance in experimental models: bioinformatics based approach. BRAZ J BIOL 2024;84:e256691. [DOI: 10.1590/1519-6984.256691] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/22/2022] Open
Abstract
Abstract microRNAs (miRNAs) are recognized as diabetes mellitus type 2 (T2DM) biomarkers useful for disease metabolism comprehension and have great potential as therapeutics targets. BDNF and IGF1 increased expression are highly involved in the benefits of insulin and glucose paths, however, they are down-regulated in insulin resistance conditions, while their expression increase is correlated to the improvement of glucose and insulin metabolism. Studies suggest the microRNA regulation of these genes in several different contexts, providing a novel investigation approach for comprehending T2DM metabolism and revealing potential therapeutic targets. In the present study, we investigate in different animal models (human, rat, and mouse) miRNAs that target BDNF and IGF1 in skeletal muscle tissue with T2DM physiological conditions. Bioinformatics tools and databases were used to miRNA prediction, molecular homology, experimental validation of interactions, expression in the studied physiological condition, and network interaction. The findings showed three miRNAs candidates for IGF1(miR-29a, miR-29b, and miR-29c) and one for BDNF (miR-206). The experimental evaluations and the search for the expression in skeletal muscle from T2DM subjects confirmed the predicted interaction between miRNA-mRNA for miR-29b and miR-206 through human, rat, and mouse models. This interaction was reaffirmed in multiple network analyses. In conclusion, our results show the regulation relationship between miR-29b and miR-206 with the investigated genes, in several tissues, suggesting an inhibition pattern. Nevertheless, these data show a large number of possible interaction physiological processes, for future biotechnological prospects.
Collapse
|
3
|
|
Latif F, Iqbal R, Ambreen F, Kousar S, Ahmed T, Aziz S. Studies on bioaccumulation patterns, biochemical and genotoxic effects of copper on freshwater fish, Catla catla: an in vivo analysis. BRAZ J BIOL 2024;84:e256905. [DOI: 10.1590/1519-6984.256905] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/22/2022] Open
Abstract
Abstract During present study, the copper (Cu) mediated oxidative stress was measured that induced DNA damage by concentrating in the tissues of fish, Catla catla (14.45±1.24g; 84.68±1.45mm) (Hamilton,1822). Fish fingerlings were retained in 5 groups for 14, 28, 42, 56, 70 and 84 days of the exposure period. They were treated with 2/3, 1/3, 1/4 and 1/5 (T1-T4) of 96h lethal concentration of copper. Controls were run along with all the treatments for the same durations. A significant (p < 0.05) dose and time dependent concentration of Cu was observed in the gills, liver, kidney, muscles, and brain of C. catla. Among organs, the liver showed a significantly higher concentration of Cu followed by gills, kidney, brain, and muscles. Copper accumulation in these organs caused a significant variation in the activities of enzymes viz. superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). The SOD activity varied significantly in response to the exposure time of Cu as 56 > 70 > 42 > 84 > 28 > 14 days while CAT activity exhibited an inverse relationship with the increase in Cu concentration. POD activity showed a significant rise with an increase in Cu exposure duration. Comet assay exhibited significant DNA damage in the peripheral erythrocytes of Cu exposed C. catla. Among four exposure concentrations, 2/3rd of LC50 (T1) caused significantly higher damage to the nuclei compared to control. Increased POD and SOD activity, as well as a decrease in CAT activity in response to Cu, demonstrates the involvement of a protective mechanism against reactive oxygen species (ROS), whereas increased ROS resulted in higher DNA damage. These above-mentioned molecular markers can be efficiently used for the biomonitoring of aquatic environments and conservation of edible fish fauna.
Collapse
|
4
|
|
Salazar-mendoza P, Bento JMS, Silva DB, Pascholati SF, Han P, Rodriguez-saona C. Bottom-up effects of fertilization and jasmonate-induced resistance independently affect the interactions between tomato plants and an insect herbivore. J PLANT INTERACT 2023;18. [DOI: 10.1080/17429145.2022.2154864] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/30/2022] Open
|
5
|
|
Saif Ur Rahman M, Wu J, Chen H, Sun C, Liu Y, Xu S. Matrix mechanophysical factor: pore size governs the cell behavior in cancer. Adv Phys X 2023;8. [DOI: 10.1080/23746149.2022.2153624] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/12/2022]
|
6
|
|
Ji Y, Guo Y, Deng H, Zhang J, Wang Y, Dai E, Fan Z, Tang G, Jia M, Ding B. Rapid diagnosis of Tobacco mosaic virus in tobacco using time-resolved fluorescence immunoassay. FOOD AGR IMMUNOL 2023;34:10-20. [DOI: 10.1080/09540105.2023.2185568] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/20/2023] Open
|
7
|
|
Kuan Y, Tsai C, Sakakibara S, Standley DM, Kikutani H. External stimulation induces the secretion of autophagosome-like vesicles by B cells. Autophagy Reports 2023;2. [DOI: 10.1080/27694127.2023.2179287] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/23/2023]
|
8
|
|
Karachanak-yankova S, Serbezov D, Mihaylova M, Nikolova D, Balabanski L, Damyanova V, Antonova O, Staneva R, Ganev M, Spasova V, Rukova B, Nesheva D, Josifovska S, Stancheva M, Belejanska D, Petrova M, Mehrabian S, Traykov L, Hadjidekova S, Toncheva D. Detection of pathogenic variants in Alzheimer’s disease related genes in Bulgarian patients by pooled whole-exome sequencing. BIOTECHNOL BIOTEC EQ 2023;37:74-78. [DOI: 10.1080/13102818.2022.2155572] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/11/2023] Open
|
9
|
|
Saatian B, Kohalmi SE, Cui Y. Localization of Arabidopsis Glucan Synthase-Like 5, 8, and 12 to plasmodesmata and the GSL8-dependent role of PDLP5 in regulating plasmodesmal permeability. Plant Signal Behav 2023;18:2164670. [PMID: 36645916 DOI: 10.1080/15592324.2022.2164670] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/18/2023] Open
Abstract
Cell-to-cell communication via membranous channels called plasmodesmata (PD) plays critical roles during plant development and in response to biotic and abiotic stresses. Several enzymes and receptor-like proteins (RLPs), including Arabidopsis thaliana glucan synthase-likes (GSLs), also known as callose synthases (CALSs), and PD-located proteins (PDLPs), have been implicated in plasmodesmal permeability regulation and intercellular communication. Localization of PDLPs to punctate structures at the cell periphery and their receptor-like identity have raised the hypothesis that PDLPs are involved in the regulation of symplastic trafficking during plant development and in response to endogenous and exogenous signals. Indeed, it was shown that PDLP5 could limit plasmodesmal permeability through inducing an increase in callose accumulation at PD. However, mechanistically, how this is achieved remains to be elucidated. To address this key issue in understanding the regulation of PD, physical and functional interactions between PDLPs and GSLs (using the PDLP5-GSL8/CALS10 pair as a model) were investigated. Our results show that GSL8/CALS10 plays essential roles and is required for the function and plasmodesmal localization of PDLP5. Furthermore, it was demonstrated that the localization of PDLP5 to PD and its function in inducing callose deposition are GSL8-dependent. Importantly, our transgenic study shows that three key members of the GSL family, i.e., GSL5/CALS12, GSL8/CALS10, and GSL12/CALS3, localize to PD and co-localize with PDLP5, suggesting that GSL8/CALS10 might not be the only callose synthase with the determining role in PD regulation. These findings, together with our previous observation showing the direct interaction of GSL8/CALS10 with PDLP5, indicate the pivotal role of the GSL8/CALS10-PDLP5 interplay in regulating PD permeability. Future work is needed to investigate whether the PDLP5 functionality and localization are also disrupted in gsl5 and gsl12, or it is just gsl8-specific.
Collapse
|
10
|
|
Kim S, Kim Y, Yu S, Lee S, Park JH, Cho G, Choi C, Han K, Kim C, Kang YC. Platelet-derived mitochondria transfer facilitates wound-closure by modulating ROS levels in dermal fibroblasts. Platelets 2023;34. [DOI: 10.1080/09537104.2022.2151996] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/23/2022]
|
11
|
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Lopes Alberto Duque T, He CY, Heussler V, Le Roch KG, Li F, Perrone Bezerra de Menezes J, Menna-barreto RFS, Mottram JC, Schmuckli-maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? Autophagy Reports 2023;2. [DOI: 10.1080/27694127.2022.2149211] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/12/2023]
|
12
|
|
Alharbi TMD. Recent progress on vortex fluidic synthesis of carbon nanomaterials. J TAIBAH UNIV SCI 2023;17. [DOI: 10.1080/16583655.2023.2172954] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/22/2023] Open
|
13
|
|
Riyad P, Purohit A, Sen K, Panwar A, Ram H. HMG – CoA reductase inhibition mediated hypocholesterolemic potential of myricetin and quercetin: in-silico and in-vivo studies. CyTA - Journal of Food 2023;21:115-125. [DOI: 10.1080/19476337.2022.2162976] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/19/2023] Open
|
14
|
|
Park MG, Kim SY, Lee CJ. DMSO-tolerant ornithine decarboxylase (ODC) tandem assay optimised for high-throughput screening. J Enzyme Inhib Med Chem 2023;38:309-318. [DOI: 10.1080/14756366.2022.2150186] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/03/2022] Open
|
15
|
|
Yaqoob H, Tariq A, Bhat BA, Bhat KA, Nehvi IB, Raza A, Djalovic I, Prasad PV, Mir RA. Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system. GM Crops Food 2023;14:1-20. [PMID: 36606637 DOI: 10.1080/21645698.2022.2146952] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/07/2023] Open
Abstract
Domestication of orphan crops could be explored by editing their genomes. Genome editing has a lot of promise for enhancing agricultural output, and there is a lot of interest in furthering breeding in orphan crops, which are sometimes plagued with unwanted traits that resemble wild cousins. Consequently, applying model crop knowledge to orphan crops allows for the rapid generation of targeted allelic diversity and innovative breeding germplasm. We explain how plant breeders could employ genome editing as a novel platform to accelerate the domestication of semi-domesticated or wild plants, resulting in a more diversified base for future food and fodder supplies. This review emphasizes both the practicality of the strategy and the need to invest in research that advances our understanding of plant genomes, genes, and cellular systems. Planting more of these abandoned orphan crops could help alleviate food scarcities in the challenge of future climate crises.
Collapse
|
16
|
|
Shi R. Numerical simulation of inertial microfluidics: a review. ENG APPL COMP FLUID 2023;17. [DOI: 10.1080/19942060.2023.2177350] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/25/2023] Open
|
17
|
|
Mao S, Li Q, Yang Z, Li Y, Ye X, Wang H. Design, synthesis, and biological evaluation of benzoheterocyclic sulfoxide derivatives as quorum sensing inhibitors in Pseudomonas aeruginosa. J Enzyme Inhib Med Chem 2023;38:2175820. [PMID: 36748317 DOI: 10.1080/14756366.2023.2175820] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/08/2023] Open
Abstract
Six series of benzoheterocyclic sulfoxide derivatives were designed and synthesised as Pseudomonas aeruginosa (P. aeruginosa) quorum sensing inhibitors in this paper. We experimentally demonstrated that 6b significantly inhibited the formation of P. aeruginosa PAO1 biofilm without affecting the growth. Further mechanistic studies showed that 6b affected the luminescence of quorum sensing reported strain PAO1-lasB-gfp and the production of P. aeruginosa PAO1 elastase virulence factor which was regulated by las system. These experimental results indicate that 6b acts as a quorum sensing inhibitor mainly through the las system. Furthermore, silico molecular docking studies demonstrated that 6b and the P. aeruginosa quorum sensing receptor LasR were molecularly bound via hydrogen bonding interactions. Preliminary structure-activity relationship and docking studies illustrated that 6b shows great promise as anti-biofilm compounds for further studies in order to solve the problem of microbial resistance in future.
Collapse
|
18
|
|
Governa P, Romagnoli G, Albanese P, Rossi F, Manetti F, Biagi M. Effect of in vitro simulated digestion on the anti-Helicobacter Pylori activity of different Propolis extracts. J Enzyme Inhib Med Chem 2023;38:2183810. [PMID: 36916299 DOI: 10.1080/14756366.2023.2183810] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/15/2023] Open
Abstract
Helicobacter pylori (HP) is among the most common pathogens causing infection in humans worldwide. Oxidative stress and gastric inflammation are involved in the progression of HP-related gastric diseases, and they can be targeted by integrating conventional antibiotic treatment with polyphenol-enriched natural products. In this work, we characterised three different propolis extracts and evaluated their stability under in vitro simulated gastric digestion, compared to their main constituents alone. The extract with the highest stability to digestion (namely, the dark propolis extract, DPE) showed a minimum bactericidal concentration (MBC) lower than 1 mg/mL on HP strains with different virulence factors. Finally, since urease is one of the virulence factors contributing to the establishment of a microenvironment that promotes HP infection, we evaluated the possible inhibition of this enzyme by using molecular docking simulations and in vitro colorimetric assay, showing that galangin and pinocembrin may be involved in this activity.
Collapse
|
19
|
|
A J, S S S, K S, T S M. Extracellular vesicles in bacterial and fungal diseases - Pathogenesis to diagnostic biomarkers. Virulence 2023;14:2180934. [PMID: 36794396 DOI: 10.1080/21505594.2023.2180934] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/17/2023] Open
Abstract
Intercellular communication among microbes plays an important role in disease exacerbation. Recent advances have described small vesicles, termed as "extracellular vesicles" (EVs), previously disregarded as "cellular dust" to be vital in the intracellular and intercellular communication in host-microbe interactions. These signals have been known to initiate host damage and transfer of a variety of cargo including proteins, lipid particles, DNA, mRNA, and miRNAs. Microbial EVs, referred to generally as "membrane vesicles" (MVs), play a key role in disease exacerbation suggesting their importance in pathogenicity. Host EVs help coordinate antimicrobial responses and prime the immune cells for pathogen attack. Hence EVs with their central role in microbe-host communication, may serve as important diagnostic biomarkers of microbial pathogenesis. In this review, we summarize current research regarding the roles of EVs as markers of microbial pathogenesis with specific focus on their interaction with host immune defence and their potential as diagnostic biomarkers in disease conditions.
Collapse
|
20
|
|
Wang N, Ma J, Song W, Zhao C. An injectable hydrogel to disrupt neutrophil extracellular traps for treating rheumatoid arthritis. Drug Deliv 2023;30:2173332. [PMID: 36724178 DOI: 10.1080/10717544.2023.2173332] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/02/2023] Open
Abstract
Rheumatoid arthritis (RA), an autoimmune disease, is characterized by inflammatory cell infiltration that damages cartilage, disrupts bone, and impairs joint function. The therapeutic efficacy of RA treatments with the severely affected side remains unsatisfactory despite current treatment methods that primarily focus on anti-inflammatory activity, largely because of the complicatedly pathological mechanisms. A recently identified mechanism for RA development involves the interaction of RA autoantibodies with various proinflammatory cytokines to facilitate the formation of neutrophil extracellular traps (NETs), which increased inflammatory responses to express inflammatory cytokines and chemokines. Therefore, NETs architecture digestion may inhibit the positive-feedback inflammatory signal pathway and lessen joint damage in RA. In this work, deoxyribonuclease I (DNase) is connected to oxidized hyaluronic acid (OHA) via Schiff base reaction to extend the half-life of DNase. The modification does not influence the DNase activity for plasmid deoxyribonucleic acid hydrolysis and NETs' architecture disruption. Carboxymethyl chitosan is crosslinked with DNase-functionalised OHA (DHA) to form an injectable, degradable, and biocompatible hydrogel (DHY) to further strengthen the adhesive capability of DHA. Importantly, the collagen-induced arthritis model demonstrates that intra-articular injection of DHY can significantly reduce inflammatory cytokine expression and alleviate RA symptoms, which can be significantly improved by combining methotrexate. Here, a DNase-functionalised hydrogel has been developed for RA treatment by constantly degrading the novel drug target of NETs to decrease inflammatory response in RA.
Collapse
|
21
|
|
Luo M, Zhou B, Reddem ER, Tang B, Chen B, Zhou R, Liu H, Liu L, Katsamba PS, Au KK, Man HO, To KK, Yuen KY, Shapiro L, Dang S, Ho DD, Chen Z. Structural insights into broadly neutralizing antibodies elicited by hybrid immunity against SARS-CoV-2. Emerg Microbes Infect 2023;12:2146538. [PMID: 36354024 DOI: 10.1080/22221751.2022.2146538] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/11/2022]
Abstract
ABSTRACTIncreasing spread by SARS-CoV-2 Omicron variants challenges existing vaccines and broadly reactive neutralizing antibodies (bNAbs) against COVID-19. Here we determine the diversity, potency, breadth and structural insights of bNAbs derived from memory B cells of BNT162b2-vaccinee after homogeneous Omicron BA.1 breakthrough infection. The infection activates diverse memory B cell clonotypes for generating potent class I/II and III bNAbs with new epitopes mapped to the receptor-binding domain (RBD). The top eight bNAbs neutralize wildtype and BA.1 potently but display divergent IgH/IgL sequences and neuralization profiles against other variants of concern (VOCs). Two of them (P2D9 and P3E6) belonging to class III NAbs display comparable potency against BA.4/BA.5, although structural analysis reveals distinct modes of action. P3E6 neutralizes all variants tested through a unique bivalent interaction with two RBDs. Our findings provide new insights into hybrid immunity on BNT162b2-induced diverse memory B cells in response to Omicron breakthrough infection for generating diverse bNAbs with distinct structural basis.
Collapse
|
22
|
|
Xia H, Yeung J, Kalveram B, Bills CJ, Chen JY, Kurhade C, Zou J, Widen SG, Mann BR, Kondor R, Davis CT, Zhou B, Wentworth DE, Xie X, Shi PY. Cross-neutralization and viral fitness of SARS-CoV-2 Omicron sublineages. Emerg Microbes Infect 2023;12:e2161422. [PMID: 36594261 DOI: 10.1080/22221751.2022.2161422] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/04/2023]
Abstract
The rapid evolution of SARS-CoV-2 Omicron sublineages mandates a better understanding of viral replication and cross-neutralization among these sublineages. Here we used K18-hACE2 mice and primary human airway cultures to examine the viral fitness and antigenic relationship among Omicron sublineages. In both K18-hACE2 mice and human airway cultures, Omicron sublineages exhibited a replication order of BA.5 ≥ BA.2 ≥ BA.2.12.1 > BA.1; no difference in body weight loss was observed among different sublineage-infected mice. The BA.1-, BA.2-, BA.2.12.1-, and BA.5-infected mice developed distinguishable cross-neutralizations against Omicron sublineages, but exhibited little neutralization against the index virus (i.e. USA-WA1/2020) or the Delta variant. Surprisingly, the BA.5-infected mice developed higher neutralization activity against heterologous BA.2 and BA.2.12.1 than that against homologous BA.5; serum neutralizing titres did not always correlate with viral replication levels in infected animals. Our results revealed a distinct antigenic cartography of Omicron sublineages and support the bivalent vaccine approach.
Collapse
|
23
|
|
Zhou Y, Deng Y, Wang J, Yan Z, Wei Q, Ye J, Zhang J, He TC, Qiao M. Effect of antibiotic monensin on cell proliferation and IGF1R signaling pathway in human colorectal cancer cells. Ann Med 2023;55:954-64. [PMID: 36896461 DOI: 10.1080/07853890.2023.2166980] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND/AIMS Colorectal cancer is the third leading cause of death in patients with cancers in America. Monensin has represented anti-cancer effect on various human cancer cells. We seek to investigate the effect of monensin on proliferation of human colorectal cancer cells and explore whether IGF1R signaling pathway is involved in anti-cancer mechanism of monensin. METHODS Cell proliferation and migration were assessed by crystal violet staining and cell wounding assay respectively. Cell apoptosis was analyzed by Hoechst 33258 staining and flow cytometry. Cell cycle progression was detected with the use of flow cytometry. Cancer-associated pathways were assessed with the use of pathway-specific reporters. Gene expression was detected by touchdown-quantitative real-time PCR. Inhibition of IGF1R was tested by immunofluorescence staining. Inhibition of IGF1R signaling was accomplished by adenovirus-mediated expression of IGF1. RESULTS We found that monensin not only effectively inhibited cell proliferation, cell migration as well as cell cycle progression, but also induced apoptosis and G1 arrest in human colorectal cancer cells. Monensin was shown to target multiple cancer-related signaling pathways such as Elk1, AP1, as well as Myc/max, and suppressed IGF1R expression via increasing IGF1 in colorectal cancer cells. CONCLUSION Monensin could suppressed IGF1R expression via increasing IGF1 in colorectal cancer cells. It has the potential to be repurposed as an anti-colorectal cancer agent, but further studies are still required to investigate the detailed mechanisms of monensin underlying its anti-cancer motion.Key MessagesMonensin inhibits the cell proliferation and the migration, induces apoptosis and inhibits cell cycle progression in human colorectal cancer cells.Monensin may exert anti-cancer activity by targeting multiple signaling pathways, including the IGF1R signaling pathway.Monensin has the potential to be repurposed as an anti-colorectal cancer agent.
Collapse
|
24
|
|
Du J, Zhao L, Kang Q, He Y, Bi Y. An optimized method for Oil Red O staining with the salicylic acid ethanol solution. Adipocyte 2023;12:2179334. [PMID: 36779587 DOI: 10.1080/21623945.2023.2179334] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/14/2023] Open
Abstract
Oil Red O (ORO) staining is a commonly used experimental technique to detect lipid content in cells or tissues. Freshly prepared ORO in 60% isopropanol is the most widely used method at present. However, isopropanol is volatile and harmful to the human body. It will also affect the interpretation of the results due to the formation of crystals and non-specific diffuse staining. In this paper, by screening and validation, we report a salicylic acid ethanol solution (containing 50% ethanol, 5%-10% salicylic acid) for the preparation of ORO solution, which has a better staining effect on lipid staining in cells and tissues, with a clean background and short dyeing time. What's more, this ORO solution is non-toxic, convenient to prepare, and can be stored for a long time. Therefore, it is reliable, easy to operate, and can be widely popularized and applied in laboratories.
Collapse
|
25
|
|
Gaa R, Kumari K, Mayer HM, Yanakieva D, Tsai SP, Joshi S, Guenther R, Doerner A. An integrated mammalian library approach for optimization and enhanced microfluidics-assisted antibody hit discovery. Artif Cells Nanomed Biotechnol 2023;51:74-82. [PMID: 36762883 DOI: 10.1080/21691401.2023.2173219] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/11/2023] Open
Abstract
Recent years have seen the development of a variety of mammalian library approaches for display and secretion mode. Advantages include library approaches for engineering, preservation of precious immune repertoires and their repeated interrogation, as well as screening in final therapeutic format and host. Mammalian display approaches for antibody optimization exploit these advantages, necessitating the generation of large libraries but in turn enabling early screening for both manufacturability and target specificity. For suitable libraries, high antibody integration rates and resulting monoclonality need to be balanced - we present a solution for sufficient transmutability and acceptable monoclonality by applying an optimized ratio of coding to non-coding lentivirus. The recent advent of microfluidic-assisted hit discovery represents a perfect match to mammalian libraries in secretion mode, as the lower throughput fits well with the facile generation of libraries comprising a few million functional clones. In the presented work, Chinese Hamster Ovary cells were engineered to both express the target of interest and secrete antibodies in relevant formats, and specific clones were strongly enriched by high throughput screening for autocrine cellular binding. The powerful combination of mammalian secretion libraries and microfluidics-assisted hit discovery could reduce attrition rates and increase the probability to identify the best possible therapeutic antibody hits faster.
Collapse
|
26
|
|
Quadir N, Shariq M, Sheikh JA, Singh J, Sharma N, Hasnain SE, Ehtesham NZ. Mycobacterium tuberculosis protein MoxR1 enhances virulence by inhibiting host cell death pathways and disrupting cellular bioenergetics. Virulence 2023;14:2180230. [PMID: 36799069 DOI: 10.1080/21505594.2023.2180230] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/18/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) utilizes the multifunctionality of its protein factors to deceive the host. The unabated global incidence and prevalence of tuberculosis (TB) and the emergence of multidrug-resistant strains warrant the discovery of novel drug targets that can be exploited to manage TB. This study reports the role of M. tb AAA+ family protein MoxR1 in regulating host-pathogen interaction and immune system functions. We report that MoxR1 binds to TLR4 in macrophage cells and further reveal how this signal the release of proinflammatory cytokines. We show that MoxR1 activates the PI3K-AKT-MTOR signalling cascade by inhibiting the autophagy-regulating kinase ULK1 by potentiating its phosphorylation at serine 757, leading to its suppression. Using autophagy-activating and repressing agents such as rapamycin and bafilomycin A1 suggested that MoxR1 inhibits autophagy flux by inhibiting autophagy initiation. MoxR1 also inhibits apoptosis by suppressing the expression of MAPK JNK1/2 and cFOS, which play critical roles in apoptosis induction. Intriguingly, MoxR1 also induced robust disruption of cellular bioenergetics by metabolic reprogramming to rewire the citric acid cycle intermediates, as evidenced by the lower levels of citric acid and electron transport chain enzymes (ETC) to dampen host defence. These results point to a multifunctional role of M. tb MoxR1 in dampening host defences by inhibiting autophagy, apoptosis, and inducing metabolic reprogramming. These mechanistic insights can be utilized to devise strategies to combat TB and better understand survival tactics by intracellular pathogens.
Collapse
|
27
|
|
Krusnauskas R, Stakaitis R, Steponaitis G, Almstrup K, Vaitkiene P. Identification and comparison of m6A modifications in glioblastoma non-coding RNAs with MeRIP-seq and Nanopore dRNA-seq. Epigenetics 2023;18:2163365. [PMID: 36597408 DOI: 10.1080/15592294.2022.2163365] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/05/2023] Open
Abstract
The most prominent RNA modification - N6-methyladenosine (m6A) - affects gene regulation and cancer progression. The extent and effect of m6A on long non-coding RNAs (lncRNAs) is, however, still not clear. The most established method for m6A detection is methylated RNA immunoprecipitation and sequencing (MeRIP-seq). However, Oxford Nanopore Technologies recently developed direct RNA-seq (dRNA-seq) method, allowing m6A identification at higher resolution and in its native form. We performed whole transcriptome sequencing of the glioblastoma cell line U87-MG with both MeRIP-seq and dRNA-seq. For MeRIP-seq, m6A peaks were identified using nf-core/chipseq, and for dRNA-seq - EpiNano pipeline. MeRIP-seq analysis revealed 5086 lncRNAs transcripts, while dRNA-seq identified 336 lncRNAs transcripts from which 556 and 198 were found to be m6A modified, respectively. While 24 lncRNAs with m6A overlapped between two methods. Gliovis database analysis revealed that the expression of the major part of identified overlapping lncRNAs was associated with glioma grade or patient survival prognosis. We found that the frequency of m6A occurrence in lncRNAs varied more than 9-fold throughout the provided list of 24 modified lncRNAs. The highest m6A frequency was detected in MIR1915HG, THAP9-AS1, MALAT1, NORAD1, and NEAT1 (49-88nt), while MIR99AHG, SNHG3, LOXL1-AS1, ILF3-DT showed the lowest m6A frequency (445-261nt). Taken together, (1) we provide a high accuracy list of 24 m6A modified lncRNAs of U87-MG cells; (2) we conclude that MeRIP-seq is more suitable for an initial m6A screening study, due to its higher lncRNA coverage, whereas dRNA-seq is most useful when more in-depth analysis of m6A quantity and precise location is of interest.Abbreviations: (dRNA-seq) direct RNA-seq, (GBM) glioblastoma, (LGG) low-grade glioma, (lncRNAs) long non-coding RNAs, (m6A) N6-methyladenosine, (MeRIP-seq) methylated RNA immunoprecipitation and sequencing, (ncRNA) non-coding RNA, (ONT) Oxford Nanopore Technologi; Lietuvos Mokslo Taryba.
Collapse
|
28
|
|
Jia C, Zhang R, Wei L, Xie J, Zhou S, Yin W, Hua X, Xiao N, Ma M, Jiao H. Investigation of the mechanism of tanshinone IIA to improve cognitive function via synaptic plasticity in epileptic rats. Pharm Biol 2023;61:100-10. [PMID: 36548216 DOI: 10.1080/13880209.2022.2157843] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/24/2022] Open
Abstract
CONTEXT Tanshinone IIA is an extract of Salvia miltiorrhiza Bunge (Labiatae) used to treat cardiovascular disorders. It shows potential anticonvulsant and cognition-protective properties. OBJECTIVE We investigated the mechanism of tanshinone IIA on antiepileptic and cognition-protective effects in the model of epileptic rats. MATERIALS AND METHODS Lithium chloride (LiCl)-pilocarpine-induced epileptic Wistar rats were randomly assigned to the following groups (n = 12): control (blank), model, sodium valproate (VPA, 189 mg/kg/d, positive control), tanshinone IIA low dose (TS IIA-L, 10 mg/kg/d), medium dose (TS IIA-M, 20 mg/kg/d) and high dose (TS IIA-H, 30 mg/kg/d). Then, epileptic behavioural observations, Morris water maze test, Timm staining, transmission electron microscopy, immunofluorescence staining, western blotting and RT-qPCR were measured. RESULTS Compared with the model group, tanshinone IIA reduced the frequency and severity of seizures, improved cognitive impairment, and inhibited hippocampal mossy fibre sprouting score (TS IIA-M 1.50 ± 0.22, TS IIA-H 1.17 ± 0.31 vs. model 2.83 ± 0.31), as well as improved the ultrastructural disorder. Tanshinone IIA increased levels of synapse-associated proteins synaptophysin (SYN) and postsynaptic dense substance 95 (PSD-95) (SYN: TS IIA 28.82 ± 2.51, 33.18 ± 2.89, 37.29 ± 1.69 vs. model 20.23 ± 3.96; PSD-95: TS IIA 23.10 ± 0.91, 26.82 ± 1.41, 27.00 ± 0.80 vs. model 18.28 ± 1.01). DISCUSSION AND CONCLUSIONS Tanshinone IIA shows antiepileptic and cognitive function-improving effects, primarily via regulating synaptic plasticity. This research generates a theoretical foundation for future research on potential clinical applications for tanshinone IIA.
Collapse
|
29
|
|
El-Miligy MMM, Abdelaziz ME, Fahmy SM, Ibrahim TM, Abu-Serie MM, Mahran MA, Hazzaa AA. Discovery of new pyridine-quinoline hybrids as competitive and non-competitive PIM-1 kinase inhibitors with apoptosis induction and caspase 3/7 activation capabilities. J Enzyme Inhib Med Chem 2023;38:2152810. [PMID: 36629075 DOI: 10.1080/14756366.2022.2152810] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/12/2023] Open
Abstract
New quinoline-pyridine hybrids were designed and synthesised as PIM-1/2 kinase inhibitors. Compounds 5b, 5c, 6e, 13a, 13c, and 14a showed in-vitro low cytotoxicity against normal human lung fibroblast Wi-38 cell line and potent in-vitro anticancer activity against myeloid leukaemia (NFS-60), liver (HepG-2), prostate (PC-3), and colon (Caco-2) cancer cell lines. In addition, 6e, 13a, and 13c significantly induced apoptosis with percentage more than 66%. Moreover, 6e, 13a, and 13c significantly induced caspase 3/7 activation in HepG-2 cell line. Furthermore, 5c, 6e, and 14a showed potent in-vitro PIM-1 kinase inhibitory activity. While, 5b showed potent in-vitro PIM-2 kinase inhibitory activity. Kinetic studies using Lineweaver-Burk double-reciprocal plot indicated that 5b, 5c, 6e, and 14a behaved as competitive inhibitors while 13a behaved as both competitive and non-competitive inhibitor of PIM-1 kinase enzyme. Molecular docking studies indicated that, in-silico affinity came in coherence with the observed in-vitro inhibitory activities against PIM-1/2 kinases.
Collapse
|
30
|
|
Quan W, Wang Y, Chen YH, Shao Q, Gong YZ, Hu JW, Liu WH, Wu ZJ, Wang J, Ma SB, Li XQ. Screening of rosmarinic acid from Salvia miltiorrhizae acting on the novel target TRPC1 based on the 'homology modelling-virtual screening-molecular docking-affinity assay-activity evaluation' method. Pharm Biol 2023;61:155-64. [PMID: 36604840 DOI: 10.1080/13880209.2022.2160769] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/07/2023] Open
Abstract
CONTEXT Salvia miltiorrhizae Bunge (Lamiaceae) is a traditional Chinese medicine (TCM) for the treatment of 'thoracic obstruction'. Transient receptor potential canonical channel 1 (TRPC1) is a important target for myocardial injury treatment. OBJECTIVE This work screens the active component acting on TRPC1 from Salvia miltiorrhizae. MATERIALS AND METHODS TCM Systems Pharmacology Database and Analysis Platform (TCMSP) was used to retrieve Salvia miltiorrhiza compounds for preliminary screening by referring to Lipinski's rule of five. Then, the compound group was comprehensively scored by AutoDock Vina based on TRPC1 protein. Surface plasmon resonance (SPR) was used to determine the affinity of the optimal compound to TRPC1 protein. Western blot assay was carried out to observe the effect of the optimal compound on TRPC1 protein expression in HL-1 cells, and Fura-2/AM detection was carried out to observe the effect of the optimal compound on calcium influx in HEK293 cells. RESULTS Twenty compounds with relatively good characteristic parameters were determined from 202 compounds of Salvia miltiorrhiza. Rosmarinic acid (RosA) was obtained based on the molecular docking scoring function. RosA had a high binding affinity to TRPC1 protein (KD value = 1.27 µM). RosA (50 μM) could reduce the protein levels (417.1%) of TRPC1 after oxygen-glucose deprivation/reperfusion (OGD/R) in HL-1 cells and it could inhibit TRPC1-mediated Ca2+ influx injury (0.07 ΔRatio340/380) in HEK293 cells. DISCUSSION AND CONCLUSIONS We obtained the potential active component RosA acting on TRPC1 from Salvia miltiorrhizae, and we speculate that RosA may be a promising clinical candidate for myocardial injury therapy.
Collapse
|
31
|
|
Swidan MM, Essa BM, Sakr TM. Pristine/folate-functionalized graphene oxide as two intrinsically radioiodinated nano-theranostics: self/dual in vivo targeting comparative study. Cancer Nanotechnol 2023;14:6. [DOI: 10.1186/s12645-023-00157-y] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/05/2023] Open
Abstract
Abstract
Background
Nanomedicine offers great potentials for theranostic studies via providing higher efficacy and safety levels. This work aimed to develop and evaluate a new nanoplatform as a tumor theranostic probe.
Results
Carboxyl-functionalized graphene oxide nanosheets (FGO) was well synthesized from graphite powder and then conjugated with folic acid to act as a targeted nano-probe. Full characterization and in vitro cytotoxicity evaluation were conducted; besides, in vivo bio-evaluation was attained via intrinsic radioiodination approach in both normal and tumor-bearing Albino mice. The results indicated that FGO as well as conjugated graphene oxide nanosheets (CGO) are comparatively non-toxic to normal cells even at higher concentrations. Pharmacokinetics of FGO and CGO showed intensive and selective uptake in the tumor sites where CGO showed high T/NT of 7.27 that was 4 folds of FGO at 1 h post injection. Additionally, radioiodinated-CGO (ICGO) had declared a superior prominence over the previously published tumor targeted GO radiotracers regarding the physicochemical properties pertaining ability and tumor accumulation behavior.
Conclusions
In conclusion, ICGO can be used as a selective tumor targeting agent for cancer theranosis with aid of I-131 that has a maximum beta and gamma energies of 606.3 and 364.5 keV, respectively.
Collapse
|
32
|
|
Ke CL, Lew SQ, Hsieh Y, Chang SC, Lin CH. Convergent and divergent roles of the glucose-responsive kinase SNF4 in Candida tropicalis. Virulence 2023;14:2175914. [PMID: 36745535 DOI: 10.1080/21505594.2023.2175914] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/07/2023] Open
Abstract
The sucrose non-fermenting 1 (SNF1) complex is a heterotrimeric protein kinase complex that is an ortholog of the mammalian AMPK complex and is evolutionally conserved in most eukaryotes. This complex contains a catalytic subunit (Snf1), a regulatory subunit (Snf4) and a scaffolding subunit (Sip1/Sip2/Gal73) in budding yeast. Although the function of AMPK has been well studied in Saccharomyces cerevisiae and Candida albicans, the role of AMPK in Candida tropicalis has never been investigated. In this study, we focused on SNF4 in C. tropicalis as this fungus cannot produce a snf1Δ mutant. We demonstrated that C. tropicalis SNF4 shares similar roles in glucose derepression and is necessary for cell wall integrity and virulence. The expression of both SNF1 and SNF4 was significantly induced when glucose was limited. Furthermore, snf4Δ strains exhibited high sensitivity to many surface-perturbing agents because the strains contained lower levels of glucan, chitin and mannan. Interestingly, in contrast to C. albicans sak1Δ and snf4Δ, C. tropicalis snf4Δ exhibited phenotypes for cell aggregation and pseudohypha production. These data indicate that SNF4 performs convergent and divergent roles in C. tropicalis and possibly other unknown roles in the C. tropicalis SNF1-SNF4 AMPK pathway.
Collapse
|
33
|
|
Sharma A, Achi SC, Ibeawuchi SR, Anandachar MS, Gementera H, Chaudhury U, Usmani F, Vega K, Sayed IM, Das S. The crosstalk between microbial sensors ELMO1 and NOD2 shape intestinal immune responses. Virulence 2023;14:2171690. [PMID: 36694274 DOI: 10.1080/21505594.2023.2171690] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/26/2023] Open
Abstract
Microbial sensors play an essential role in maintaining cellular homoeostasis. Our knowledge is limited on how microbial sensing helps in differential immune response and its link to inflammatory diseases. Recently we have confirmed that ELMO1 (Engulfment and Cell Motility Protein-1) present in cytosol is involved in pathogen sensing, engulfment, and intestinal inflammation. Here, we show that ELMO1 interacts with another sensor, NOD2 (Nucleotide-binding oligomerization domain-containing protein 2), that recognizes bacterial cell wall component muramyl dipeptide (MDP). The polymorphism of NOD2 is linked to Crohn's disease (CD) pathogenesis. Interestingly, we found that overexpression of ELMO1 and mutant NOD2 (L1007fs) were not able to clear the CD-associated adherent invasive E. coli (AIEC-LF82). The functional implications of ELMO1-NOD2 interaction in epithelial cells were evaluated by using enteroid-derived monolayers (EDMs) from ELMO1 and NOD2 KO mice. Subsequently we also assessed the immune response in J774 macrophages depleted of either ELMO1 or NOD2 or both. The infection of murine EDMs with AIEC-LF82 showed higher bacterial load in ELMO1-KO, NOD2 KO EDMs, and ELMO1 KO EDMs treated with NOD2 inhibitors. The murine macrophage cells showed that the downregulation of ELMO1 and NOD2 is associated with impaired bacterial clearance that is linked to reduce pro-inflammatory cytokines and reactive oxygen species. Our results indicated that the crosstalk between microbial sensors in enteric infection and inflammatory diseases impacts the fate of the bacterial load and disease pathogenesis.
Collapse
|
34
|
|
El-Damasy AK, Jin H, Park JW, Kim HJ, Khojah H, Seo SH, Lee JH, Bang EK, Keum G. Overcoming the imatinib-resistant BCR-ABL mutants with new ureidobenzothiazole chemotypes endowed with potent and broad-spectrum anticancer activity. J Enzyme Inhib Med Chem 2023;38:2189097. [PMID: 36927348 DOI: 10.1080/14756366.2023.2189097] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/18/2023] Open
Abstract
The design of kinase inhibitors targeting the oncogenic kinase BCR-ABL constitutes a promising paradigm for treating chronic myeloid leukaemia (CML). Nevertheless, the efficacy of imatinib, the first FDA-approved targeted therapy for CML, is curbed by the emergence of resistance. Herein, we report the identification of the 2-methoxyphenyl ureidobenzothiazole AK-HW-90 (2b) as a potent pan-BCR-ABL inhibitor against imatinib-resistant mutants, particularly T315I. A concise array of six compounds 2a-f was designed based on our previously reported benzothiazole lead AKE-5l to improve its BCR-ABLT315I inhibitory activity. Replacing the 6-oxypicolinamide moiety of AKE-5l with o-methoxyphenyl and changing the propyl spacer with phenyl afforded 2a and AK-HW-90 (2b) with IC50 values of 2.0 and 0.65 nM against BCR-ABLT315I, respectively. AK-HW-90 showed superior anticancer potency to imatinib against multiple cancer cells (NCI), including leukaemia K-562. The obtained outcomes offer AK-HW-90 as a promising candidate for the treatment of CML and other types of cancer.
Collapse
|
35
|
|
Zhang Z, Wei Z, Zhao L, Gu C, Meng Y. Assessing the clinical utility of multi-omics data for predicting serous ovarian cancer prognosis. J OBSTET GYNAECOL 2023;43:2171778. [PMID: 36803381 DOI: 10.1080/01443615.2023.2171778] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/23/2023]
Abstract
Ovarian cancer (OC) is characterised by heterogeneity that complicates the prediction of patient survival and treatment outcomes. Here, we conducted analyses to predict the prognosis of patients from the Genomic Data Commons database and validated the predictions by fivefold cross-validation and by using an independent dataset in the International Cancer Genome Consortium database. We analysed the somatic DNA mutation, mRNA expression, DNA methylation, and microRNA expression data of 1203 samples from 599 serous ovarian cancer (SOC) patients. We found that principal component transformation (PCT) improved the predictive performance of the survival and therapeutic models. Deep learning algorithms also showed better predictive power than the decision tree (DT) and random forest (RF). Furthermore, we identified a series of molecular features and pathways that are associated with patient survival and treatment outcomes. Our study provides perspective on building reliable prognostic and therapeutic strategies and further illuminates the molecular mechanisms of SOC.Impact statementWhat is already known on this subject? Recent studies have focussed on predicting cancer outcomes based on omics data. But the limitation is the performance of single-platform genomic analyses or the small numbers of genomic analyses.What do the results of this study add? We analysed multi-omics data, found that principal component transformation (PCT) significantly improved the predictive performance of the survival and therapeutic models. Deep learning algorithms also showed better predictive power than did decision tree (DT) and random forest (RF). Furthermore, we identified a series of molecular features and pathways that are associated with patient survival and treatment outcomes.What are the implications of these findings for clinical practice and/or further research? Our study provides perspective on how to build reliable prognostic and therapeutic strategies and further illuminates the molecular mechanisms of SOC for future studies.
Collapse
|
36
|
|
Shi J, Jiang S, Wang Q, Dong J, Zhu H, Wang P, Meng S, Zhang Z, Chang L, Wang G, Xu X, Xu P, Zhang Y. Spleen-based proteogenomics reveals that Escherichia coli infection induces activation of phagosome maturation pathway in chicken. Virulence 2023;14:2150453. [PMID: 36411420 DOI: 10.1080/21505594.2022.2150453] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/23/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) leads to economic losses in poultry industry and is also a threat to human health. Various strategies were used for searching virulence factors, while little is known about the mechanism by which APEC survives in host or is eliminated by host. Thus, chicken colibacillosis model was constructed by intraperitoneally injecting E. coli O78 in this study, then the protein dynamic expression of spleen was characterized at different post-infection times by quantitative proteome. Comparative analysis showed that E. coli induced significant dysregulation at 72 h post infection in spleen tissue. Transcriptomic method was further used to assess the changes of dysregulated proteins at 72 h post infection at the mRNA level. Total 278 protein groups (5.7%) and 2,443 genes (24.4%) were dysregulated, respectively. The upregulated proteins and genes were consistently enriched in phagosome and lysosome pathways, indicating E. coli infection activates phagosome maturation pathway. The matured phagolysosome might kill the invasive E. coli. This study illuminated the genetic dysregulation in chicken spleen at the protein and mRNA levels after E. coli infecting and identified candidate genes for host response to APEC infection.
Collapse
|
37
|
|
Gnanagobal H, Cao T, Hossain A, Vasquez I, Chakraborty S, Chukwu-Osazuwa J, Boyce D, Espinoza MJ, García-Angulo VA, Santander J. Role of riboflavin biosynthesis gene duplication and transporter in Aeromonas salmonicida virulence in marine teleost fish. Virulence 2023;14:2187025. [PMID: 36895132 DOI: 10.1080/21505594.2023.2187025] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/11/2023] Open
Abstract
Active flavins derived from riboflavin (vitamin B2) are essential for life. Bacteria biosynthesize riboflavin or scavenge it through uptake systems, and both mechanisms may be present. Because of riboflavin's critical importance, the redundancy of riboflavin biosynthetic pathway (RBP) genes might be present. Aeromonas salmonicida, the aetiological agent of furunculosis, is a pathogen of freshwater and marine fish, and its riboflavin pathways have not been studied. This study characterized the A. salmonicida riboflavin provision pathways. Homology search and transcriptional orchestration analysis showed that A. salmonicida has a main riboflavin biosynthetic operon that includes ribD, ribE1, ribBA, and ribH genes. Outside the main operon, putative duplicated genes ribA, ribB and ribE, and a ribN riboflavin importer encoding gene, were found. Monocistronic mRNA ribA, ribB and ribE2 encode for their corresponding functional riboflavin biosynthetic enzyme. While the product of ribBA conserved the RibB function, it lacked the RibA function. Likewise, ribN encodes a functional riboflavin importer. Transcriptomics analysis indicated that external riboflavin affected the expression of a relatively small number of genes, including a few involved in iron metabolism. ribB was downregulated in response to external riboflavin, suggesting negative feedback. Deletion of ribA, ribB and ribE1 showed that these genes are required for A. salmonicida riboflavin biosynthesis and virulence in Atlantic lumpfish (Cyclopterus lumpus). A. salmonicida riboflavin auxotrophic attenuated mutants conferred low protection to lumpfish against virulent A. salmonicida. Overall, A. salmonicida has multiple riboflavin endowment forms, and duplicated riboflavin provision genes are critical for A. salmonicida infection.
Collapse
|
38
|
|
Li P, Wang Q, He Y, Yang C, Zhang Z, Liu Z, Liu B, Yin L, Cui Y, Hu P, Liu Y, Zheng P, Wang W, Qu L, Sun C, Guan S, Feng L, Chen L. Booster vaccination is required to elicit and maintain COVID-19 vaccine-induced immunity in SIV-infected macaques. Emerg Microbes Infect 2023;12:e2136538. [PMID: 36239345 DOI: 10.1080/22221751.2022.2136538] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/03/2022]
Abstract
ABSTRACTProlonged infection and possible evolution of SARS-CoV-2 in patients living with uncontrolled HIV-1 infection highlight the importance of an effective vaccination regimen, yet the immunogenicity of COVID-19 vaccines and predictive immune biomarkers have not been well investigated. Herein, we report that the magnitude and persistence of antibody and cell-mediated immunity (CMI) elicited by an Ad5-vectored COVID-19 vaccine are impaired in SIV-infected macaques with high viral loads (> 105 genome copies per ml plasma, SIVhi) but not in macaques with low viral loads (< 105, SIVlow). After a second vaccination, the immune responses are robustly enhanced in all uninfected and SIVlow macaques. These responses also show a moderate increase in 70% SIVhi macaques but decline sharply soon after. Further analysis reveals that decreased antibody and CMI responses are associated with reduced circulating follicular helper T cell (TFH) counts and aberrant CD4/CD8 ratios, respectively, indicating that dysregulation of CD4+ T cells by SIV infection impairs the COVID-19 vaccine-induced immunity. Ad5-vectored COVID-19 vaccine shows no impact on SIV loads or SIV-specific CMI responses. Our study underscores the necessity of frequent booster vaccinations in HIV-infected patients and provides indicative biomarkers for predicting vaccination effectiveness in these patients.
Collapse
|
39
|
|
Goli AS, Sato VH, Sato H, Chewchinda S, Leanpolchareanchai J, Nontakham J, Yahuafai J, Thilavech T, Meesawatsom P, Maitree M. Antihyperglycemic effects of Lysiphyllum strychnifolium leaf extract in vitro and in vivo. Pharm Biol 2023;61:189-200. [PMID: 36625086 DOI: 10.1080/13880209.2022.2160771] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/11/2023] Open
Abstract
CONTEXT Lysiphyllum strychnifolium (Craib) A. Schmitz (LS) (Fabaceae) has traditionally been used to treat diabetes mellitus. OBJECTIVE This study demonstrates the antidiabetic and antioxidant effects of aqueous extract of LS leaves in vivo and in vitro. MATERIALS AND METHODS The effects of aqueous LS leaf extract on glucose uptake, sodium-dependent glucose cotransporter 1 (SGLT1) and glucose transporter 2 (GLUT2) mRNA expression in Caco-2 cells, α-glucosidase, and lipid peroxidation were evaluated in vitro. The antidiabetic effects were evaluated using an oral glucose tolerance test (OGTT) and a 28-day consecutive administration to streptozotocin (STZ)-nicotinamide (NA)-induced type 2 diabetic mice. RESULTS The extract significantly inhibited glucose uptake (IC50: 236.2 ± 36.05 µg/mL) and downregulated SGLT1 and GLUT2 mRNA expression by approximately 90% in Caco-2 cells. Furthermore, it non-competitively inhibited α-glucosidase in a concentration-dependent manner with the IC50 and Ki of 6.52 ± 0.42 and 1.32 µg/mL, respectively. The extract at 1000 mg/kg significantly reduced fasting blood glucose levels in both the OGTT and 28-day consecutive administration models as compared with untreated STZ-NA-induced diabetic mice (p < 0.05). Significant improvements of serum insulin, homeostasis model assessment of insulin resistance (HOMA-IR), and GLUT4 levels were observed. Furthermore, the extract markedly decreased oxidative stress markers by 37-53% reduction of superoxide dismutase 1 (SOD1) in muscle and malondialdehyde (MDA) in muscle and pancreas, which correlated with the reduction of MDA production in vitro (IC50: 24.80 ± 7.24 µg/mL). CONCLUSION The LS extract has potent antihyperglycemic activity to be used as alternative medicine to treat diabetes mellitus.
Collapse
|
40
|
|
Kato N, Yamada S, Suzuki R, Iida Y, Matsumoto M, Fumoto S, Arima H, Mukai H, Kawakami S. Development of an apolipoprotein E mimetic peptide-lipid conjugate for efficient brain delivery of liposomes. Drug Deliv 2023;30:2173333. [PMID: 36718920 DOI: 10.1080/10717544.2023.2173333] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/01/2023] Open
Abstract
Liposomes are versatile carriers that can encapsulate various drugs; however, for delivery to the brain, they must be modified with a targeting ligand or other modifications to provide blood-brain barrier (BBB) permeability, while avoiding rapid clearance by reticuloendothelial systems through polyethylene glycol (PEG) modification. BBB-penetrating peptides act as brain-targeting ligands. In this study, to achieve efficient brain delivery of liposomes, we screened the functionality of eight BBB-penetrating peptides reported previously, based on high-throughput quantitative evaluation methods with in vitro BBB permeability evaluation system using Transwell, in situ brain perfusion system, and others. For apolipoprotein E mimetic tandem dimer peptide (ApoEdp), which showed the best brain-targeting and BBB permeability in the comparative evaluation of eight peptides, its lipid conjugate with serine-glycine (SG)5 spacer (ApoEdp-SG-lipid) was newly synthesized and ApoEdp-modified PEGylated liposomes were prepared. ApoEdp-modified PEGylated liposomes were effectively associated with human brain capillary endothelial cells via the ApoEdp sequence and permeated the membrane in an in vitro BBB model. Moreover, ApoEdp-modified PEGylated liposomes accumulated in the brain 3.9-fold higher than PEGylated liposomes in mice. In addition, the ability of ApoEdp-modified PEGylated liposomes to localize beyond the BBB into the brain parenchyma in mice was demonstrated via three-dimensional imaging with tissue clearing. These results suggest that ApoEdp-SG-lipid modification is an effective approach for endowing PEGylated liposomes with the brain-targeting ability and BBB permeability.
Collapse
|
41
|
|
Kamperschroer C, Frank B, Genell C, Lebrec H, Mitchell-Ryan S, Molinier B, Newsome C, Piche MS, Weinstock D, Collinge M, Freebern W, Rubio D. Current approaches to evaluate the function of cytotoxic T-cells in non-human primates. J Immunotoxicol 2023;20:2176952. [PMID: 36788724 DOI: 10.1080/1547691X.2023.2176952] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/16/2023] Open
Abstract
Cytotoxic T-lymphocytes (CTL) are a subset of T-cells that play a critical role in protecting against intracellular infections and cancer, and have the ability to identify and kill infected or transformed cells expressing non-self peptides associated with major histocompatibility (MHC) Class I molecules. Conversely, aberrant CTL activity can contribute to immune-related pathology under conditions of overwhelming infection or autoimmunity. Disease-modifying therapeutics can have unintended effects on CTL, and a growing number of therapeutics are intended to either suppress or enhance CTL or their functions. The susceptibility of CTL to unintended effects from common therapeutic modalities underscores the need for a better understanding of the impact that such therapies have on CTL function and the associated safety implications. While there are reliable ways of quantifying CTL, notably via flow cytometric analysis of specific CTL markers, it has been a greater challenge to implement fit-for-purpose methods measuring CTL function in the context of safety studies of therapeutics. This review focuses on methods for measuring CTL responses in the context of drug safety and pharmacology testing, with the goals of informing the reader about current approaches, evaluating their pros and cons, and providing perspectives on the utility of these approaches for safety evaluation.
Collapse
|
42
|
|
Xian S, Zhu J, Wang Y, Song H, Wang H. Oral liposomal delivery of an activatable budesonide prodrug reduces colitis in experimental mice. Drug Deliv 2023;30:2183821. [PMID: 36861451 DOI: 10.1080/10717544.2023.2183821] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/03/2023] Open
Abstract
Inflammatory bowel disease (IBD) is one of the most common intestinal disorders, with increasing global incidence and prevalence. Numerous therapeutic drugs are available but require intravenous administration and are associated with high toxicity and insufficient patient compliance. Here, an oral liposome that entraps the activatable corticosteroid anti-inflammatory budesonide was developed for efficacious and safe IBD therapy. The prodrug was produced via the ligation of budesonide with linoleic acid linked by a hydrolytic ester bond, which was further constrained into lipid constituents to form colloidal stable nanoliposomes (termed budsomes). Chemical modification with linoleic acid augmented the compatibility and miscibility of the resulting prodrug in lipid bilayers to provide protection from the harsh environment of the gastrointestinal tract, while liposomal nanoformulation enables preferential accumulation to inflamed vasculature. Hence, when delivered orally, budsomes exhibited high stability with low drug release in the stomach in the presence of ultra-acidic pH but released active budesonide after accumulation in inflamed intestinal tissues. Notably, oral administration of budsomes demonstrated favorable anti-colitis effect with only ∼7% mouse body weight loss, whereas at least ∼16% weight loss was observed in other treatment groups. Overall, budsomes exhibited higher therapeutic efficiency than free budesonide treatment and potently induced remission of acute colitis without any adverse side effects. These data suggest a new and reliable approach for improving the efficacy of budesonide. Our in vivo preclinical data demonstrate the safety and increased efficacy of the budsome platform for IBD treatment, further supporting clinical evaluation of this orally efficacious budesonide therapeutic.
Collapse
|
43
|
|
Lombardo VA, Armesto R, Herrera-estrada I, Binolfi A. High resolution protein in-cell NMR in zebrafish embryos. Journal of Magnetic Resonance Open 2023;16-17:100111. [DOI: 10.1016/j.jmro.2023.100111] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/29/2023] Open
|
44
|
|
Lu S, Luo S, Liu C, Li M, An X, Li M, Hou J, Fan H, Mao P, Tong Y, Song L. Induction of significant neutralizing antibodies against SARS-CoV-2 by a highly attenuated pangolin coronavirus variant with a 104nt deletion at the 3'-UTR. Emerg Microbes Infect 2023;12:2151383. [PMID: 36453209 DOI: 10.1080/22221751.2022.2151383] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/05/2022]
Abstract
SARS-CoV-2 related coronaviruses (SARS-CoV-2r) from Guangdong and Guangxi pangolins have been implicated in the emergence of SARS-CoV-2 and future pandemics. We previously reported the culture of a SARS-CoV-2r GX_P2V from Guangxi pangolins. Here we report the GX_P2V isolate rapidly adapted to Vero cells by acquiring two genomic mutations: an alanine to valine substitution in the nucleoprotein and a 104-nucleotide deletion in the hypervariable region (HVR) of the 3'-terminus untranslated region (3'-UTR). We further report the characterization of the GX_P2V variant (renamed GX_P2V(short_3UTR)) in in vitro and in vivo infection models. In cultured Vero, BGM and Calu-3 cells, GX_P2V(short_3UTR) had similar robust replication kinetics, and consistently produced minimum cell damage. GX_P2V(short_3UTR) infected golden hamsters and BALB/c mice but was highly attenuated. Golden hamsters infected intranasally had a short duration of productive infection in pulmonary, not extrapulmonary, tissues. These productive infections induced neutralizing antibodies against pseudoviruses of GX_P2V and SARS-CoV-2. Collectively, our data show that the GX_P2V(short_3UTR) is highly attenuated in in vitro and in vivo infection models. Attenuation of the variant is likely partially due to the 104-nt deletion in the HVR in the 3'-UTR. This study furthers our understanding of pangolin coronaviruses pathogenesis and provides novel insights for the design of live attenuated vaccines against SARS-CoV-2.
Collapse
|
45
|
|
Marroquin TY, Guauque-Olarte S. Integrative analysis of gene and protein expression in atherosclerosis-related pathways modulated by periodontal pathogens. Systematic review. Jpn Dent Sci Rev 2023;59:8-22. [PMID: 36654677 DOI: 10.1016/j.jdsr.2022.12.001] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/11/2023] Open
Abstract
The mechanisms modulated by periodontal pathogens in atherosclerosis are not fully understood. Aim: to perform an integrative analysis of gene and protein expression modulated by periodontal pathogens in cells and animal models for atherosclerosis. Methods Cochrane, PRISMA and AMSTAR2 guidelines for systematic reviews were followed. Data search was conducted in Pub-med, LILACS and Science Direct databases. Gene and protein expression data were collected from the included papers to perform an overrepresentation analysis using the Reactome Pathway Analysis tool and the KEGG database. Results Thirty-two papers were included in the review, they analyzed the effect of Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus anginosus, Streptococcus sanguinis, Tannerella forsythia, and Treponema denticola or/and their virulent factors on gene and protein expression in human cells and animal models of atherosclerosis. Some of the modulated pathways include the immune system, programmed cell death, cellular responses to external stimuli, transport of small molecules, and signal transduction (p < 0.05). Those pathways are known to be involved in different stages of atherosclerosis progression. Conclusion Based on the performed analysis, it is possible to state that periodontal pathogens have the potential to be a contributing factor for atherosclerosis even in absence of a high-fat diet or high shear stress.
Collapse
|
46
|
|
Zhang C, Jian H, Shang S, Lu L, Lou Y, Kang Y, Bai H, Fu Z, Lv Y, Kong X, Li X, Feng S, Zhou H. Crosstalk between m6A mRNAs and m6A circRNAs and the time-specific biogenesis of m6A circRNAs after OGD/R in primary neurons. Epigenetics 2023;18:2181575. [PMID: 36861189 DOI: 10.1080/15592294.2023.2181575] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/03/2023] Open
Abstract
Cerebral ischaemiareperfusion injury is an important pathological process in nervous system diseases during which neurons undergo oxygenglucose deprivation and reoxygenation (OGD/R) injury. No study has used epitranscriptomics to explore the characteristics and mechanism of injury. N6methyladenosine (m6A) is the most abundant epitranscriptomic RNA modification. However, little is known about m6A modifications in neurons, especially during OGD/R. m6A RNA immunoprecipitation sequencing (MeRIPseq) and RNA-sequencing data for normal and OGD/R-treated neurons were analysed by bioinformatics. MeRIP quantitative real-time polymerase chain reaction was used to determine the m6A modification levels on specific RNAs. We report the m6A modification profiles of the mRNA and circRNA transcriptomes of normal and OGD/R-treated neurons. Expression analysis revealed that the m6A levels did not affect m6A mRNA or m6A circRNA expression. We found crosstalk between m6A mRNAs and m6A circRNAs and identified three patterns of m6A circRNA production in neurons; thus, distinct OGD/R treatments induced the same genes to generate different m6A circRNAs. Additionally, m6A circRNA biogenesis during distinct OGD/R processes was found to be time specific. These results expand our understanding of m6A modifications in normal and OGD/R-treated neurons, providing a reference to explore epigenetic mechanisms and potential treatments for OGD/R-related diseases.
Collapse
|
47
|
|
Yang C, Xiao Y, Wang X, Wei X, Wang J, Gao Y, Jiang Q, Ju Z, Zhang Y, Liu W, Huang N, Li Y, Gao Y, Wang L, Huang J. Coordinated alternation of DNA methylation and alternative splicing of PBRM1 affect bovine sperm structure and motility. Epigenetics 2023;18:2183339. [PMID: 36866611 DOI: 10.1080/15592294.2023.2183339] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/04/2023] Open
Abstract
DNA methylation and gene alternative splicing drive spermatogenesis. In screening DNA methylation markers and transcripts related to sperm motility, semen from three pairs of full-sibling Holstein bulls with high and low motility was subjected to reduced representation bisulphite sequencing. A total of 948 DMRs were found in 874 genes (gDMRs). Approximately 89% of gDMR-related genes harboured alternative splicing events, including SMAD2, KIF17, and PBRM1. One DMR in exon 29 of PBRM1 with the highest 5mC ratio was found, and hypermethylation in this region was related to bull sperm motility. Furthermore, alternative splicing events at exon 29 of PBRM1 were found in bull testis, including PBRM1-complete, PBRM1-SV1 (exon 28 deletion), and PBRM1-SV2 (exons 28-29 deletion). PBRM1-SV2 exhibited significantly higher expression in adult bull testes than in newborn bull testes. In addition, PBRM1 was localized to the redundant nuclear membrane of bull sperm, which might be related to sperm motility caused by sperm tail breakage. Therefore, the hypermethylation of exon 29 may be associated with the production of PBRM1-SV2 in spermatogenesis. These findings indicated that DNA methylation alteration at specific loci could regulate gene splicing and expression and synergistically alter sperm structure and motility.
Collapse
|
48
|
|
Zeng Y, Cao G, Lin L, Zhang Y, Luo X, Ma X, Aiyisake A, Cheng Q. Resveratrol Attenuates Sepsis-Induced Cardiomyopathy in Rats through Anti-Ferroptosis via the Sirt1/Nrf2 Pathway. J INVEST SURG 2023;36:2157521. [PMID: 36576230 DOI: 10.1080/08941939.2022.2157521] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/29/2022]
Abstract
Background: Sepsis-induced cardiomyopathy (SIC) is a severe myocardial dysfunction secondary to septicemia. It is a major concern owing to the high mortality and morbidity, which are greatly influenced by ferroptosis. Resveratrol (RSV) is a naturally existing agonist of the silent information regulator 1 (Sirt1). It has cardioprotective effects against sepsis-induced myocardial injury, However, the detailed mechanism is unknown.Methods: In this study, cecal ligation and puncture (CLP)-induced septic rats were employed to assess the changes in ferroptosis with RSV administration. According to the different treatments the rats were divided into the following groups: (1) the Sham, (2) CLP, (3) CLP + RSV at various doses (10, 30, and 50 mg/kg), and (4) CLP + Fer-1(a ferroptotic inhibitor) groups. After 24 h, the structure and function of the cardiac system in rats were evaluated, and mitochondrial morphology, ferroptosis-related biomarkers, and the levels of Sirt1/Nrf2 were assessed.Results: The rats that underwent CLP had suffered cardiac dysfunction, accompanied with myocardial damage, impaired mitochondria, elevated lipid peroxidation, and reduced Sirt1/Nrf2 expression in the myocardium. High-dose RSV successfully improved heart function, reversing the abnormalities in a dose-dependent manner. We then used EX527, a selective Sirt1 inhibitor, to further identify the intermediate signaling targets of RSV that regulate ferroptosis. EX527 diminished the curative effects of high-doses RSV.Conclusions: Summarily, our findings suggest a novel mechanism of RSV in reducing SIC: ferroptosis inhibition via upregulation of Sirt1/Nrf2 signaling pathways. This may be an effective therapeutic approach against organ failure in sepsis, particularly SIC.
Collapse
|
49
|
|
Qu R, Chen M, Liu J, Xie Q, Liu N, Ge F. Blockage of ATPase-mediated energy supply inducing metabolic disturbances in algal cells under silver nanoparticles stress. J Environ Sci (China) 2023;131:141-150. [DOI: 10.1016/j.jes.2022.10.029] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/13/2022]
|
50
|
|
Liu H, Fan Y, Zhong J, Malkoch M, Cai Z, Wang Z. Advance in oral delivery of living material. Biomedical Technology 2023;3:26-39. [DOI: 10.1016/j.bmt.2022.12.003] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/23/2023]
|