1
|
Cui Z, He J, Li A, Wang J, Yang Y, Wang K, Liu Z, Ouyang Q, Su Z, Hu P, Xiao G. Novel insights into non-coding RNAs and their role in hydrocephalus. Neural Regen Res 2026; 21:636-647. [PMID: 39688559 DOI: 10.4103/nrr.nrr-d-24-00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation. This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiological mechanisms underlying hydrocephalus, one of the most common neurological conditions worldwide. In this review, we first outline the basic concepts and incidence of hydrocephalus along with the limitations of existing treatments for this condition. Then, we outline the definition, classification, and biological role of non-coding RNAs. Subsequently, we analyze the roles of non-coding RNAs in the formation of hydrocephalus in detail. Specifically, we have focused on the potential significance of non-coding RNAs in the pathophysiology of hydrocephalus, including glymphatic pathways, neuroinflammatory processes, and neurological dysplasia, on the basis of the existing evidence. Lastly, we review the potential of non-coding RNAs as biomarkers of hydrocephalus and for the creation of innovative treatments.
Collapse
Affiliation(s)
- Zhiyue Cui
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - An Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Junqiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yijian Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Kaiyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhikun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qian Ouyang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Neurosurgery, Zhuzhou Hospital, Central South University Xiangya School of Medicine, Zhuzhou, Hunan Province, China
| | - Zhangjie Su
- Department of Neurosurgery, Addenbrooke 's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, UK
| | - Pingsheng Hu
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Gao B, Wang H, Hu S, Zhong K, Liu X, Deng Z, Li Y, Tong A, Zhou L. Sox2-overexpressing neural stem cells alleviate ventricular enlargement and neurological dysfunction in posthemorrhagic hydrocephalus. Neural Regen Res 2026; 21:769-779. [PMID: 40326987 DOI: 10.4103/nrr.nrr-d-24-01491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/17/2025] [Indexed: 05/07/2025] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202602000-00045/figure1/v/2025-05-05T160104Z/r/image-tiff Neural stem cells (NSCs) have the potential for self-renewal and multidirectional differentiation, and their transplantation has achieved good efficacy in a variety of diseases. However, only 1%-10% of transplanted NSCs survive in the ischemic and hypoxic microenvironment of posthemorrhagic hydrocephalus. Sox2 is an important factor for NSCs to maintain proliferation. Therefore, Sox2-overexpressing NSCs (NSCSox2) may be more successful in improving neurological dysfunction after posthemorrhagic hydrocephalus. In this study, human NSCSox2 was transplanted into a posthemorrhagic hydrocephalus mouse model, and retinoic acid was administered to further promote NSC differentiation. The results showed that NSCSox2 attenuated the ventricular enlargement caused by posthemorrhagic hydrocephalus and improved neurological function. NSCSox2 also promoted nerve regeneration, inhibited neuroinflammation and promoted M2 polarization (anti-inflammatory phenotype), thereby reducing cerebrospinal fluid secretion in choroid plexus. These findings suggest that NSCSox2 rescued ventricular enlargement and neurological dysfunction induced by posthemorrhagic hydrocephalus through neural regeneration and modulation of inflammation.
Collapse
Affiliation(s)
- Baocheng Gao
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Haoxiang Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shuang Hu
- Department of Otolaryngology & Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Kunhong Zhong
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ziang Deng
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuanyou Li
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan Province, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Neurosurgery, NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital),School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan Province, China
- Department of Neurosurgery, Fifth People's Hospital of Ningxia Hui Autonomous Region, Shizuishan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
3
|
Barroso IG, Ferreira C, Terra WR. Water Transport and Enzyme Recycling in Tenebrio molitor Midgut: Insights From Transcriptomics, Proteomics, and In Vivo Inhibition Assays. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70059. [PMID: 40199745 DOI: 10.1002/arch.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
The low excretory rates of secreted digestive enzymes, such as trypsins, in insect species with peritrophic membranes led to the hypothesis of ectoperitrophic countercurrent water fluxes causing enzyme recycling. The midgut water flux model of Tenebrio molitor (T. molitor) is revisited and supported by in vivo experiments. Sequences from proteins putatively involved in water transport were retrieved from the T. molitor transcriptome by Blast and analyzed using bioinformatics tools. Gene expression of selected proteins was determined in three midgut sections (anterior, AM; middle, MM; posterior, PM) by RNA-seq, and transporter proteins were verified in microvillar-membrane-enriched midgut samples by proteomics. Genes encoding three cation chloride cotransporters (CCC) and four aquaporins were expressed in the midgut. TmNaCCC2, TmPrip, and TmEglp1 showed higher expression in the front half, while TmKCC, TmNKCC1, TmDrip, and TmEglp2 were more highly expressed in the back half. However, only TmNaCCC2 was found by proteomics. Midgut water fluxes were quantified by feeding T. molitor larvae with nonabsorbable dye and measuring its concentration along the midgut. The results suggest water absorption in AM and secretion in MM and PM, potentially caused by TmNaCCC2 and TmPrip in AM, and TmKCC and TmDrip in PM, whereas MM serves as a transition region. Larvae fed on furosemide, an NKCC and KCC inhibitor, showed altered midgut water fluxes, resulting in higher trypsin excretion into the hindgut, thus reinforcing the hypothesis of a countercurrent water flux generated by CCCs powering enzyme recycling in insect midguts.
Collapse
Affiliation(s)
- Ignacio G Barroso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Clelia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Lin WH, Tung YH, Wu ZS, Chang PK, Yang ST, Yang YL, Lu KT. Loop diuretics mitigate juvenile immobilization treatment-induced hippocampal dysfunction. Eur J Pharmacol 2025; 996:177447. [PMID: 40023355 DOI: 10.1016/j.ejphar.2025.177447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Juvenile traumatic experiences can lead to adult cognitive impairments, including learning deficits and increased anxiety risk. Dysfunction of the hippocampus is crucial in stress-induced behavioral disorders, and recent evidence suggests that disrupted chloride homeostasis through the chloride transporter NKCC1 may alter GABAergic signaling and contribute to neuropathology. This study investigates the role of NKCC1 in long-term hippocampal dysfunction induced by juvenile immobilization (J_IMO). Male C57BL/6 mice underwent J_IMO treatment at five weeks of age and were assessed at six and twelve weeks using inhibitory avoidance (IA), open field tests (OFT), extracellular recording, qPCR, and Western blot analyses. Following J_IMO treatment, mice exhibited significant learning deficits in IA, with no notable differences in total movement distance in the OFT. Electrophysiological analysis revealed a marked increase in long-term potentiation (LTP) within the hippocampal Schaffer collateral pathway, while paired-pulse facilitation remained unchanged. An altered input-output curve indicated post-synaptic dysregulation in J_IMO-treated mice. Additionally, Western blot and qPCR analyses showed significant upregulation of Slc12a2 (NKCC1) expression, primarily localized to neural cells, as confirmed by double-staining immunohistochemistry. These findings suggest that NKCC1 plays a pivotal role in J_IMO-induced hippocampal dysfunction, particularly by impairing GABAergic inhibitory neurotransmission. The GABAA agonist isoguvacine's inhibitory effect on the fEPSP was diminished in J_IMO-treated mice but restored with NKCC1 inhibitor co-treatment, indicating that altered NKCC1 function undermines GABAergic inhibitory neurotransmission in this stress model. In conclusion, our results indicate that NKCC1 contributes to J_IMO-induced hippocampal dysfunction by diminishing GABAergic inhibitory neurotransmission. NKCC1 inhibitors may significantly alleviate these dysfunctions.
Collapse
Affiliation(s)
- Wei-Hsing Lin
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan
| | - Yu-Hsuen Tung
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan
| | - Zong-Syun Wu
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan
| | - Peng-Kai Chang
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan
| | - Shih-Te Yang
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan; Department of Science Education, National Museum of Marine Biology and Aquarium, Pintung, Taiwan
| | - Yi-Ling Yang
- Department of Biochemical Science and Technology, National Chia-Yi University, Chia-Yi, 60004, Taiwan.
| | - Kwok-Tung Lu
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan.
| |
Collapse
|
5
|
Cagalinec M, Mohd A, Borecka S, Bultynck G, Choubey V, Yanovsky-Dagan S, Ezer S, Gasperikova D, Harel T, Jurkovicova D, Kaasik A, Liévens JC, Maurice T, Peviani M, Richard EM, Skoda J, Skopkova M, Tarot P, Van Gorp R, Zvejniece L, Delprat B. Improving mitochondria-associated endoplasmic reticulum membranes integrity as converging therapeutic strategy for rare neurodegenerative diseases and cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119954. [PMID: 40216201 DOI: 10.1016/j.bbamcr.2025.119954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/04/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Membrane contact sites harbor a distinct set of proteins with varying biological functions, thereby emerging as hubs for localized signaling nanodomains underlying adequate cell function. Here, we will focus on mitochondria-associated endoplasmic reticulum membranes (MAMs), which serve as hotspots for Ca2+ signaling, redox regulation, lipid exchange, mitochondrial quality and unfolded protein response pathway. A network of MAM-resident proteins contributes to the structural integrity and adequate function of MAMs. Beyond endoplasmic reticulum (ER)-mitochondrial tethering proteins, MAMs contain several multi-protein complexes that mediate the transfer of or are influenced by Ca2+, reactive oxygen species and lipids. Particularly, IP3 receptors, intracellular Ca2+-release channels, and Sigma-1 receptors (S1Rs), ligand-operated chaperones, serve as important platforms that recruit different accessory proteins and intersect with these local signaling processes. Furthermore, many of these proteins are directly implicated in pathophysiological conditions, where their dysregulation or mutation is not only causing diseases such as cancer and neurodegeneration, but also rare genetic diseases, for example familial Parkinson's disease (PINK1, Parkin, DJ-1), familial Amyotrophic lateral sclerosis (TDP43), Wolfram syndrome1/2 (WFS1 and CISD2), Harel-Yoon syndrome (ATAD3A). In this review, we will discuss the current state-of-the-art regarding the molecular components, protein platforms and signaling networks underlying MAM integrity and function in cell function and how their dysregulation impacts MAMs, thereby driving pathogenesis and/or impacting disease burden. We will highlight how these insights can generate novel, potentially therapeutically relevant, strategies to tackle disease outcomes by improving the integrity of MAMs and the signaling processes occurring at these membrane contact sites.
Collapse
Affiliation(s)
- Michal Cagalinec
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Adnan Mohd
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Borecka
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Geert Bultynck
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | - Vinay Choubey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Shlomit Ezer
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Daniela Gasperikova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Marco Peviani
- Cellular and Molecular Neuropharmacology Lab., Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martina Skopkova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pauline Tarot
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Robbe Van Gorp
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | | | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France.
| |
Collapse
|
6
|
Chen Z, He J, Guo Y, Hao Y, Lv W, Chen Z, Wang J, Yang Y, Wang K, Liu Z, Ouyang Q, Su Z, Hu P, Xiao G. Adherent junctions: Physiology, role in hydrocephalus and potential therapeutic targets. IBRO Neurosci Rep 2025; 18:283-292. [PMID: 39995568 PMCID: PMC11849119 DOI: 10.1016/j.ibneur.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
In all epithelial cells, the adherent junctions (AJs) with cadherin as the core play an important role in the maintenance of the connection and the formation of apical-basal polarity. The ependymal cells close to the ventricular system rely on AJs with N-cadherin at the core to maintain their normal morphology and function. Therefore, it has an important impact on the function and disease of the central nervous system. Hydrocephalus is a pathological phenomenon of excessive cerebrospinal fluid accumulating in the ventricular system accompanied by continuous ventricular dilatation, which can be divided into obstructive hydrocephalus and communicating hydrocephalus according to the pathogenesis. Obstructive hydrocephalus is often associated with excessive ependymal cells produced by differentiation of radial glial cells. The etiology of communicating hydrocephalus is mainly related to the dyskinesia of cerebrospinal fluid. In addition, the damage of the brain barrier can lead to brain edema and aggravate the symptoms. At present, the researches on the pathogenesis of hydrocephalus are mainly focused on the development of ependymal cells and cilia, while less attention has been paid to molecules such as AJs, which play an important role in maintaining the polarity of ependymal cells. This paper discusses the formation and function of AJs and their role in preventing hydrocephalus by preserving the polarity of ependymal cilia, regulating the number of ependymal cells, and upholding the brain barrier integrity to impede hydrocephalus exacerbation, which provides a new direction for the study of hydrocephalus.
Collapse
Affiliation(s)
- Zhiye Chen
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, PR China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yating Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yue Hao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wentao Lv
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zexin Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Junqiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yijian Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Kaiyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhikun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Qian Ouyang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Department of Neurosurgery, Zhuzhou Hospital, Central South University Xiangya School of Medicine, Zhuzhou, Hunan 412000, PR China
| | - Zhangjie Su
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB21 2QQ, UK
| | - Pingsheng Hu
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, PR China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
7
|
Liu R, Berry R, Wang L, Chaudhari K, Winters A, Sun Y, Caballero C, Ampofo H, Shi Y, Thata B, Colon-Perez L, Sumien N, Yang SH. Experimental Ischemic Stroke Induces Secondary Bihemispheric White Matter Degeneration and Long-Term Cognitive Impairment. Transl Stroke Res 2025; 16:645-654. [PMID: 38488999 DOI: 10.1007/s12975-024-01241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Clinical studies have identified widespread white matter degeneration in ischemic stroke patients. However, contemporary research in stroke has predominately focused on the infarct and periinfarct penumbra regions. The involvement of white matter degeneration after ischemic stroke and its contribution to post-stroke cognitive impairment and dementia (PSCID) has remained less explored in experimental models. In this study, we examined the progression of locomotor and cognitive function up to 4 months after inducing ischemic stroke by middle cerebral artery occlusion in young adult rats. Despite evident ongoing locomotor recovery, long-term cognitive and affective impairments persisted after ischemic stroke, as indicated by Morris water maze, elevated plus maze, and open field performance. At 4 months after stroke, multimodal MRI was conducted to assess white matter degeneration. T2-weighted MRI (T2WI) unveiled bilateral cerebroventricular enlargement after ischemic stroke. Fluid Attenuated Inversion Recovery MRI (FLAIR) revealed white matter hyperintensities in the corpus callosum and fornix across bilateral hemispheres. A positive association between the volume of white matter hyperintensities and total cerebroventricular volume was noted in stroke rats. Further evidence of bilateral white matter degeneration was indicated by the reduction of fractional anisotropy and quantitative anisotropy at bilateral corpus callosum in diffusion-weighted MRI (DWI) analysis. Additionally, microglia and astrocyte activation were identified in the bilateral corpus callosum after stroke. Our study suggests that experimental ischemic stroke induced by MCAO in young rat replicate long-term cognitive impairment and bihemispheric white matter degeneration observed in ischemic stroke patients. This model provides an invaluable tool for unraveling the mechanisms underlying post-stroke secondary white matter degeneration and its contribution to PSCID.
Collapse
Affiliation(s)
- Ran Liu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Raymond Berry
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Linshu Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Kiran Chaudhari
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Ali Winters
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Claire Caballero
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Hannah Ampofo
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Yiwei Shi
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Bibek Thata
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Luis Colon-Perez
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
8
|
Imran M, Alshrari AS, Hafiz MN, Jawad MM, Khan A, Alanazi FJ, Asdaq SMB. Exploring therapeutic paradigm focusing on genes, proteins, and pathways to combat leprosy and tuberculosis: A network medicine and drug repurposing approach. J Infect Public Health 2025; 18:102763. [PMID: 40153981 DOI: 10.1016/j.jiph.2025.102763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/27/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Leprosy and tuberculosis caused by Mycobacterium leprae and Mycobacterium tuberculosis, respectively, are chronic infections with significant public health implications. While leprosy affects the skin and peripheral nerves and tuberculosis primarily targets the lungs, both diseases involve systemic immune responses. This study integrates transcriptomic analysis cheminformatics and molecular dynamics simulations to identify molecular mechanisms and potential therapeutic targets. METHODS Transcriptomic datasets were analyzed to identify dysregulated genes and pathways. Pathway enrichment tissue-specific and bulk RNA-seq expression analyses provided biological context. System biology networks revealed regulatory hub genes and molecular docking studies evaluated CHEMBL compounds as potential therapeutics. Molecular dynamics (MD) simulations assessed the stability of top ligand-protein complexes through RMSD RMSF and MM-GBSA free energy calculations. RESULTS Gene expression analysis identified 13 core dysregulated genes, including HSP90AA1 MAPK8IP3 and ZMPSTE24. Tissue-specific expression localized pivotal genes to lung tissues and immune cells with HSP90AA1 highly expressed in alveolar macrophages and epithelial cells. HSP90AA1 gene emerged as a central hub gene with 96 interactions involved in stress response pathways. Docking studies identified CHEMBL3653862 and CHEMBL3653884 with strong binding affinities (-10.16 to -12.69 kcal/mol) interacting with Asp93 and Tyr139. MD simulations confirmed binding stability with RMSD fluctuations within 2.1-3.5 Å and MM-GBSA energy values supporting ligand-protein stability. CONCLUSION This study identifies HSP90AA1 as a potential drug target in leprosy and tuberculosis. Findings support host-directed therapy approaches and highlight the importance of computational modeling in accelerating drug discovery. The study provides a foundation for future experimental validation, including in vitro and in vivo testing to advance drug repurposing strategies for these chronic infections.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia; Center For Health Research, Northern Border University, Arar 73213, Saudi Arabia.
| | - Ahmed S Alshrari
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Mariah N Hafiz
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Mohammed M Jawad
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Abida Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center For Health Research, Northern Border University, Arar 73213, Saudi Arabia
| | - Fadiyah Jadid Alanazi
- Center For Health Research, Northern Border University, Arar 73213, Saudi Arabia; Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia
| | | |
Collapse
|
9
|
Luo C, Tang X, Shao H, Guo F. High-frequency repetitive transcranial magnetic stimulation attenuates white matter damage and improves functional recovery in rats with ischemic stroke. Neuroscience 2025; 575:48-56. [PMID: 40239890 DOI: 10.1016/j.neuroscience.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 03/25/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Stroke is a major cause of acquired disability and the second most frequent cause of dementia, while specific therapeutic rehabilitation strategies remain limited. Repetitive transcranial magnetic stimulation(rTMS) is a well-known rehabilitation modality after cerebral ischemic injury. White matter damage is an important contributor to motor and cognitive dysfunctions after stroke. This study aimed to evaluate the effect of rTMS on white matter recovery and neurological deficits in ischemic stroke. Grip strength test and novel object recognition test were conducted to assess motor and cognitive functions after middle cerebral artery occlusion(MCAO). MRI, including Diffusion tensor imaging (DTI) and Diffusion Tensor Tractography (DTT) were performed to evaluate white matter injury in MCAO rats. Moreover, Western blotting were detected to observe related myelin damage proteins in the ischemic brain. The results revealed that 10 Hz rTMS alleviated the motor and cognitive deficits in rats after ischemic surgery. Besides, the data from DTI and DTT showing that 10 Hz rTMS ameliorated the white matter lesion of rats after cerebral ischemia. In addition, 10 Hz rTMS attenuated significant loss of the myelin sheath by enhanced myelin associated proteins levels in the ischemic brain of ischemic rats. These findings suggest that 10 Hz rTMS exerted therapeutic neuroprotective properties after ischemic stroke, in a manner that may be associated with enhancing structural repairment of the white matter, which may provide a potential therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Can Luo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoyue Shao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Guo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Hyderi Z, Farhana MS, Singh TP, Ravi AV. Therapeutic targeting of autosomal Parkinson's disease by modulation of Leucine-Rich Repeat Kinase 2 (LRRK2) protein. Brain Res 2025:149674. [PMID: 40345365 DOI: 10.1016/j.brainres.2025.149674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/18/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025]
Abstract
Leucine-Rich Repeat Kinase 2 (LRRK2) is gaining attention as a key therapeutic target for autosomal dominant Parkinson's disease (PD). The primary genetic aetiology of familial PD, accounting for around 5-6 % of familial cases and 2 % of sporadic cases, is mutations in the LRRK2 gene. The most prevalent mutation, G2019S, increases kinase activity, which phosphorylates important serine residues that control LRRK2 function, such as Ser910 and Ser935, leading to the development of PD. The development of LRRK2 inhibitors has emerged as a key area of study for PD therapy. In preclinical research, these inhibitors have demonstrated promise in reducing PD-related damage by altering the cellular localisation of LRRK2 and reduced phosphorylation. In addition to kinase action, LRRK2 is involved in autophagy and mitochondrial function. This participation implies that PD markers including mitochondrial dysfunction and defective autophagy may be addressed by LRRK2-targeted treatments. Moreover, selective LRRK2 inhibitors show promise in the treatment of PD, and more research into the molecular role of LRRK2 in PD is essential to developing efficient therapies that will improve patient outcomes and reduce the course of the illness. This review discusses the role of LRRK2 in pathogenesis of PD and current treatment approaches, particularly LRRK2 kinase inhibitors, and their potential to slow disease progression, along with recent advancements in clinical trials and future outlooks for improving outcomes in PD.
Collapse
Affiliation(s)
- Zeeshan Hyderi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, Alagappa University, Karaikudi 630003, India
| | - M Shirin Farhana
- Department of Biotechnology, Alagappa University, Karaikudi 630003, India
| | - Tej Pal Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Arumugam Veera Ravi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, Alagappa University, Karaikudi 630003, India.
| |
Collapse
|
11
|
Wade Wei TY, Hsia JY, Yang TY, Huang YX, Wang GZ, Liu YC, Wang YW, He F, Maureen Chen JM, Zhao GJ, Lyu PC, Su LJ, Chiu SC, Ricky Yu CT. Mechanistic Insights into CLNS1A-Mediated Chemoresistance and Tumor Progression in Non-small Cell Lung Cancer. Cancer Lett 2025:217783. [PMID: 40345428 DOI: 10.1016/j.canlet.2025.217783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
CLNS1A is a chloride channel protein and an essential component of the methylosome complex, which additionally comprises PRMT5 and MEP50. In this study, we investigated its contribution to lung cancer and its potential as a therapeutic target. Analysis of transcriptomic datasets and western blotting revealed that CLNS1A, PRMT5, and MEP50 were overexpressed in lung cancer tissues, with elevated CLNS1A expression correlating with poor patient survival. CLNS1A overexpression enhanced platinum clearance from cells, increased the IC50 values for chemotherapy, and improved cell survival. Conversely, the knockdown of CLNS1A increased drug accumulation, reduced survival, and increased sensitivity to chemotherapy. The 3W mutant, a chloride channel-defective variant with steric hindrance at key bottleneck residues, impaired chloride ion transport, thereby reducing drug resistance, migration, and anchorage-independent growth. Mechanistically, CLNS1A promotes drug efflux through its chloride channel activity and activates the FAK-SRC-RAC1 pathway to enhance motility and clonogenicity. It also facilitates PRMT5-mediated RUVBL1 methylation to support anti-apoptotic DNA damage response signaling. In vivo, CLNS1A overexpression accelerated tumor growth and reduced survival, whereas CLNS1A knockdown sensitized tumors to cisplatin, enhancing therapeutic efficacy. These findings suggest that CLNS1A is a potential biomarker and therapeutic target, and its inhibition offers a strategy to overcome drug resistance and limit the metastatic progression of lung cancer.
Collapse
Affiliation(s)
- Tong-You Wade Wei
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan; Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
| | - Jiun-Yi Hsia
- Division of Thoracic Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tsung-Ying Yang
- Department of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Xu Huang
- Department of Medicine, JingGangShan University, Ji'an, China
| | - Guo-Zhi Wang
- Division of Thoracic Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Chung Liu
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Wun Wang
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Fangzhou He
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Guo-Jun Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Jen Su
- Department of Biomedical Sciences and Engineering, Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, and Core Facilities for High Throughput Experimental Analysis, National Central University, Taoyuan, Taiwan
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.
| |
Collapse
|
12
|
Wang HX, Deng ZA, Li YY, Li J, Chen YX, Zhao YJ, Huang KR, Tian WN, Tong AP, Zhou LX. Inhibition of histone deacetylase 6 activity mitigates neurological impairment and post-hemorrhagic hydrocephalus after intraventricular hemorrhage by modulating pyroptosis and autophagy pathways. Fluids Barriers CNS 2025; 22:45. [PMID: 40336077 PMCID: PMC12057270 DOI: 10.1186/s12987-025-00658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Posthemorrhagic hydrocephalus (PHH) is a frequent and significant complication that impacts the prognosis of patients suffering from intraventricular hemorrhage (IVH). However, the underlying mechanism is uncertain. Neuronal pyroptosis is characterized by neuronal lysis and destruction, along with the release of inflammatory factors. Autophagy is known to inhibit inflammation, and histone deacetylase-6 (HDAC6) is implicated in the regulation of both autophagy and the NLRP3 inflammasome. However, the role of these proteins in the regulation of neuronal pyroptosis in an IVH model has not been determined. METHODS In this study, an IVH mouse (6-8 weeks) model was generated via the intracerebroventricular administration of autologous blood at a volume of 40 µL/animal. After the surgical operation, we monitored the mice at various time points, assessing ventricle size via MRI. Additionally, during both the acute (3 days) and chronic (28 days) phases post-surgery, we examined neuronal cell damage and ventricular cilia, as well as neurological function, using HE staining, Nissl staining, scanning electron microscopy, and behavioral experiments such as neurological function scoring and water maze tests. Finally, we detected activation of the pyroptosis and autophagy pathway through western blotting and immunofluorescence staining. RESULTS Autophagy induction attenuated cerebral neuronal pyroptosis caused by acute-phase autologous blood injection. HDAC6 was implicated in regulating pyroptosis in the acute phase IVH through its influence on the transcription of nuclear factor kappa-B (NF-κB). Furthermore, HDAC6 regulates excessive autophagic activation in neurons in the chronic phase of IVH. Treatment with ricolinostat improved neurological deficits and ventricular damage during the acute phase of IVH. Moreover, it alleviated mood, memory, and learning deficits in the chronic phase of IVH while also improving PHH. CONCLUSIONS Enhanced autophagy attenuates activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and inhibits neuronal pyroptosis in the acute phase of IVH. HDAC6 plays an important role in regulating the interaction between autophagy and pyroptosis. Ricolinostat treatment significantly attenuated the upregulation of inflammatory factors and neurological impairments induced by pyroptosis in the acute phase of IVH. In addition, ricolinostat effectively reduced excessive autophagy and apoptosis in neurons in the chronic phase and attenuated the formation of PHH.
Collapse
Affiliation(s)
- Hao-Xiang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zi-Ang Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan-You Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jun Li
- Department of Neurosurgery, The Fifth People's Hospital of Ningxia Hui Autonomous Region, Shizuishan, Ningxia Hui Autonomous Region, China
| | - Ya-Xing Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yan-Jie Zhao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ke-Ru Huang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei-Ning Tian
- Department of Neurosurgery, The Fifth People's Hospital of Ningxia Hui Autonomous Region, Shizuishan, Ningxia Hui Autonomous Region, China.
| | - Ai-Ping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China.
| | - Liang-Xue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Department of Neurosurgery, The Fifth People's Hospital of Ningxia Hui Autonomous Region, Shizuishan, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
13
|
Zhang R, Lin M, Cho J, Yu X, Jiaerken Y, Wang S, Hong H, Guan X, Zhang Y, Xie L, Liu L, Cui L, Zhang M, Biessels GJ, Siero JCW, Huang P. Oxygen extraction fraction in small vessel disease: relationship to disease burden and progression. Brain 2025:awae383. [PMID: 40323889 DOI: 10.1093/brain/awae383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/17/2024] [Accepted: 10/24/2024] [Indexed: 05/07/2025] Open
Abstract
Chronic hypoperfusion has been considered a major mechanism of cerebral small vessel disease. Nonetheless, brain tissue may increase oxygen extraction fraction to mitigate hypoxia and delay parenchymal damage. This study aims to investigate oxygen extraction fraction in cerebral small vessel disease and understand its relationship to disease burden and progression. We retrospectively included 195 patients with cerebral small vessel disease and 178 normal controls. Cerebral blood flow was measured by arterial spin labelling. Oxygen extraction fraction was estimated by quantitative susceptibility mapping plus quantitative blood oxygen-level dependence imaging. We compared baseline cerebral blood flow and oxygen extraction fraction in the whole white matter, normal-appearing white matter and white matter hyperintensities between the patient and control groups. Then, we studied whether cerebral blood flow and oxygen extraction fraction differed among patients with varying disease burdens. Longitudinally, we used linear mixed models to evaluate whether cerebral blood flow and oxygen extraction fraction could together predict the progression of white matter hyperintensities or free water (mean follow-up time = 2.6 years) in a subset of 47 patients. Compared to the control group, the patient group exhibited reduced cerebral blood flow in the whole white matter, normal-appearing white matter and white matter hyperintensities. Additionally, the oxygen extraction fraction increased in normal-appearing white matter but decreased in white matter hyperintensities. Notably, the white matter oxygen extraction fraction was elevated in patients with mild-to-moderate disease burden but decreased in those with the most severe disease burden. Longitudinal analyses revealed that adding oxygen extraction fraction measurements to cerebral blood flow measurements can improve the prediction of disease progression. Higher baseline values of cerebral blood flow and oxygen extraction fraction in the white matter were both linked to a slower increase in free water. In summary, oxygen extraction fraction exhibited an 'increase-then-decrease' pattern in patients with cerebral small vessel disease. Together, oxygen extraction fraction and cerebral blood flow can predict disease progression. Non-invasive MRI assessment of oxygen extraction fraction may provide valuable tools for future research on cerebral small vessel disease.
Collapse
Affiliation(s)
- Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Miao Lin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Junghun Cho
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yao Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Linyun Xie
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lingyun Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lei Cui
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Geert Jan Biessels
- Department of Neurology, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Jeroen C W Siero
- Department of Radiology, Center for Image Sciences, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands
- Spinoza Centre for Neuroimaging Amsterdam, Amsterdam 1105 BK, The Netherlands
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
14
|
Qi C, Sima W, Mao H, Hu E, Ge J, Deng M, Chen A, Ye W, Xue Q, Wang W, Chen Q, Wu S. Anterior cingulate cortex parvalbumin and somatostatin interneurons shape social behavior in male mice. Nat Commun 2025; 16:4156. [PMID: 40320404 PMCID: PMC12050299 DOI: 10.1038/s41467-025-59473-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
The anterior cingulate cortex (ACC) is essential for social behavior, and its dysfunction is implicated in social interaction deficits in autism. Pyramidal neuron activity in the ACC is modulated by parvalbumin (PV) and somatostatin (SST) interneurons, though their specific roles in social interactions remain unclear. Here, we demonstrate that PV and SST interneurons differentially contribute to the regulation of social interactions. In a Shank3-deficient autistic model, the expression of Kcnh7, a risk gene for autism, is reduced in both PV and SST interneurons. Knocking out Kcnh7 in either interneuron subtype leads to social interaction deficits. Furthermore, projections from the lateral posterior thalamic nucleus (mediorostral part, LPMR) to PV interneurons and from the ventral hippocampus (vHPC) to SST interneurons differentially modulate social interactions. These findings provide new insights into the distinct roles of PV and SST interneurons in social processes and their contributions to autism-related pathophysiology.
Collapse
Affiliation(s)
- Chuchu Qi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenqi Sima
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Erling Hu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Junye Ge
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mao Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Andi Chen
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weiyi Ye
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Qian Xue
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China.
- Innovation Research Institute, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Qian Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
15
|
Rai A, Saha SP, Sarkar P, Nath R, Hui M, Sarkar P, Gazmer S, Bhattacharjee A. Bioprospecting amylase from Samiti Lake, situated in the eastern Himalayas. Int J Biol Macromol 2025; 307:137353. [PMID: 39515722 DOI: 10.1016/j.ijbiomac.2024.137353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Enzymes, especially amylases, have been an economic boon to the industrial sector, their bioprospective and biotechnological use is an added advantage. Our primary focus of the study was to isolate the most potent amylase producer and to optimize its production parameters through One Factor At A Time (OFAT), Central Composite Rotatable Design Response Surface Methodology (CCRD RSM) and Artificial Neural Network (ANN). Based on the qualitative and quantitative analysis, SLAB1 was selected as the most potent amylase producer out of the potential isolates. Further SLAB1 was identified as Priestia flexa via 16SrRNA identification. Optimization of the production parameters showed the best carbon, nitrogen sources, temperature and pH to be fructose, peptone, 20 °C and pH 8.0 respectively. Further, the enzyme was purified using ammonium sulphate precipitation followed by dialysis. Later, DEAE Sepharose (Sigma) resin was used for ion exchange chromatography and the protein was eluted using NaCl gradients from 0.1 M - 0.6 M. Enzyme kinetics assessment of the purified amylase with the Lineweaver Burk plot showed values of maximum rate; Vmax (10.869 μmoL/min), and Michaelis-Menten constant Km to be around (14.91 mg/ml). To determine its potential application, analysis of this purified amylase in cleaning the tomato and chocolate stained cotton fabrics after comparing its compatibility with different detergents were executed. Further analysis of the washed stained fabrics via Scanning Electron Microscopy was carried out.
Collapse
Affiliation(s)
- Aditi Rai
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Shyama Prasad Saha
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Pratima Sarkar
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Rohan Nath
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Madhushree Hui
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Payel Sarkar
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Smriti Gazmer
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India
| | - Arindam Bhattacharjee
- Department of Microbiology, University of North Bengal, District Darjeeling 734013, India.
| |
Collapse
|
16
|
Xu Y, Kong T, Ma Y, Zhao Y, Chu L, Zheng M. Near-infrared spectroscopy: application in ensuring food quality and safety. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3381-3406. [PMID: 40264400 DOI: 10.1039/d4ay02039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
In recent years, the demand for intelligent control of food quality during processing has been increasing in the food industry. As a practical analytical tool, near-infrared (NIR) spectroscopy has become a common detection method to ensure food quality and safety because of its advantages of continuous, rapid on-line determination and strong analytical performance. In the past 20 years, many attempts and research studies have been conducted on the applications of NIR spectroscopy. Based on this, this review focuses on the specific application of near-infrared technology in the field of food, highlighting its breakthrough and applicability. NIR spectroscopy is widely used for online quantitative analysis of beneficial food components to the human body, which include proteins, polysaccharides, and polyphenols. Additionally, this technology is applied to food microbiological analysis, food safety detection (such as food adulteration), and food origin prediction. This review discusses the existing challenges, future development directions, and opportunities for NIR spectroscopy technology.
Collapse
Affiliation(s)
- Yuxia Xu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Tianyu Kong
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China.
| | - Yinfei Ma
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China.
| | - Yan Zhao
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China.
| | - Le Chu
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China.
| | - Mingzhu Zheng
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
17
|
Toft‐Bertelsen TL, Edelbo BL, Steffensen AB, Lolansen SD, Wardman JH, Jensen DB, MacAulay N. The Cerebrospinal Fluid Secretion Rate Increases in Awake and Freely Moving Rats but Differs With Experimental Methodology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412469. [PMID: 40071749 PMCID: PMC12061303 DOI: 10.1002/advs.202412469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/12/2025] [Indexed: 05/10/2025]
Abstract
Cerebrospinal fluid (CSF) dynamics hold implications for neurological health. Despite its importance, accurate quantification of the CSF secretion rate remains a challenge due to methodological controversies and the influence of anesthesia. A novel technique is established to determine CSF dynamics in awake and freely moving rats, and the CSF secretion is quantified with three different methodologies. The CSF secretion rate is higher in awake rats than in anesthetized rats, the latter demonstrating no requirement for mechanical ventilation for optimal CSF quantification. The CSF secretion rate is ≈10-fold lower with the "direct method" than with the ventriculo-cisternal perfusion assay, although the relative acetazolamide-mediated reduction in CSF secretion is similar across three tested methods. The findings demonstrate the importance of awake models for optimal quantification of the absolute rate of CSF secretion but highlight the versatility of methodologies for the determination of relative changes in CSF secretion associated with inhibitors, age, sex, and various pathologies.
Collapse
Affiliation(s)
| | - Beatriche L. Edelbo
- Department of NeuroscienceUniversity of CopenhagenBlegdamsvej 3Copenhagen NDK‐2200Denmark
| | - Annette B. Steffensen
- Department of NeuroscienceUniversity of CopenhagenBlegdamsvej 3Copenhagen NDK‐2200Denmark
| | - Sara D. Lolansen
- Department of NeuroscienceUniversity of CopenhagenBlegdamsvej 3Copenhagen NDK‐2200Denmark
| | - Jonathan H. Wardman
- Department of NeuroscienceUniversity of CopenhagenBlegdamsvej 3Copenhagen NDK‐2200Denmark
| | - Dennis B. Jensen
- Department of NeuroscienceUniversity of CopenhagenBlegdamsvej 3Copenhagen NDK‐2200Denmark
| | - Nanna MacAulay
- Department of NeuroscienceUniversity of CopenhagenBlegdamsvej 3Copenhagen NDK‐2200Denmark
| |
Collapse
|
18
|
Meneses JP, Qadir A, Surendran N, Arrieta C, Tejos C, Andia ME, Chen Z, Uribe S. Unbiased and reproducible liver MRI-PDFF estimation using a scan protocol-informed deep learning method. Eur Radiol 2025; 35:2843-2854. [PMID: 39500799 DOI: 10.1007/s00330-024-11164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 04/25/2025]
Abstract
OBJECTIVE To estimate proton density fat fraction (PDFF) from chemical shift encoded (CSE) MR images using a deep learning (DL)-based method that is precise and robust to different MR scanners and acquisition echo times (TEs). METHODS Variable echo times neural network (VET-Net) is a two-stage framework that first estimates nonlinear variables of the CSE-MR signal model, to posteriorly estimate water/fat signal components using the least-squares method. VET-Net incorporates a vector with TEs as an auxiliary input, therefore enabling PDFF calculation with any TE setting. A single-site liver CSE-MRI dataset (188 subjects, 4146 axial slices) was considered, which was split into training (150 subjects), validation (18), and testing (20) subsets. Testing subjects were scanned using several protocols with different TEs, which we then used to measure the PDFF reproducibility coefficient (RDC) at two regions of interest (ROIs): the right posterior and left hepatic lobes. An open-source multi-site and multi-vendor fat-water phantom dataset was also used for PDFF bias assessment. RESULTS VET-Net showed RDCs of 1.71% and 1.04% on the right posterior and left hepatic lobes, respectively, across different TEs, which was comparable to a reference graph cuts-based method (RDCs = 1.71% and 0.86%). VET-Net also showed a smaller PDFF bias (-0.55%) than graph cuts (0.93%) when tested on a multi-site phantom dataset. Reproducibility (1.94% and 1.59%) and bias (-2.04%) were negatively affected when the auxiliary TE input was not considered. CONCLUSION VET-Net provided unbiased and precise PDFF estimations using CSE-MR images from different hardware vendors and different TEs, outperforming conventional DL approaches. KEY POINTS Question Reproducibility of liver PDFF DL-based approaches on different scan protocols or manufacturers is not validated. Findings VET-Net showed a PDFF bias of -0.55% on a multi-site phantom dataset, and RDCs of 1.71% and 1.04% at two liver ROIs. Clinical relevance VET-Net provides efficient, in terms of scan and processing times, and unbiased PDFF estimations across different MR scanners and scan protocols, and therefore it can be leveraged to expand the use of MRI-based liver fat quantification to assess hepatic steatosis.
Collapse
Affiliation(s)
- Juan P Meneses
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
- i-HEALTH Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
- Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ayyaz Qadir
- Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, VIC, Australia
| | - Nirusha Surendran
- Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, VIC, Australia
| | - Cristobal Arrieta
- i-HEALTH Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
- Faculty of Engineering, Universidad Alberto Hurtado, Santiago, Chile
| | - Cristian Tejos
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
- i-HEALTH Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
- Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo E Andia
- i-HEALTH Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
- School of Medicine and Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- Department of Data Science and AI, Monash University, Melbourne, VIC, Australia
| | - Sergio Uribe
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
19
|
Li J, Villar-Calle P, Chiu C, Reza M, Narula N, Li C, Zhang J, Nguyen TD, Wang Y, Zhang RS, Kim J, Weinsaft JW, Spincemaille P. Spiral cardiac quantitative susceptibility mapping for differential cardiac chamber oxygenation-Initial validation in relation to invasive blood sampling. Magn Reson Med 2025; 93:2029-2039. [PMID: 39641910 PMCID: PMC11893258 DOI: 10.1002/mrm.30393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE To develop a breath-hold cardiac quantitative susceptibility mapping (QSM) sequence for noninvasive measurement of differential cardiac chamber blood oxygen saturation (ΔSO2). METHODS A non-gated three-dimensional stack-of-spirals QSM sequence was implemented to continuously sample the data throughout the cardiac cycle. Measurements of ΔSO2 between the right and left heart chamber obtained by the proposed sequence and a previously validated navigator Cartesian QSM sequence were compared in three cohorts consisting of healthy volunteers, coronavirus disease 2019 survivors, and patients with pulmonary hypertension. In the pulmonary-hypertension cohort, Bland-Altman plots were used to assess the agreement of ΔSO2 values obtained by QSM and those obtained by invasive right heart catheterization (RHC). RESULTS Compared with navigator QSM (average acquisition time 419 ± 158 s), spiral QSM reduced the scan time on average by over 20-fold to a 20-s breath-hold. In all three cohorts, spiral QSM and navigator QSM yielded similar ΔSO2. Among healthy volunteers and coronavirus disease 2019 survivors, ΔSO2 was 17.41 ± 4.35% versus 17.67 ± 4.09% for spiral and navigator QSM, respectively. In pulmonary-hypertension patients, spiral QSM showed a slightly smaller ΔSO2 bias and narrower 95% limits of agreement than that obtained by navigator QSM (1.09% ± 6.47% vs. 2.79% ± 6.99%) when compared with right heart catheterization. CONCLUSION Breath-hold three-dimensional spiral cardiac QSM for measuring differential cardiac chamber blood oxygenation is feasible and provides values in good agreement with navigator cardiac QSM and with reference right heart catheterization.
Collapse
Affiliation(s)
- Jiahao Li
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
- Radiology, Weill Cornell Medicine, New York, NY, United States
| | | | - Caitlin Chiu
- Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Mahniz Reza
- Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Nupoor Narula
- Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Chao Li
- Radiology, Weill Cornell Medicine, New York, NY, United States
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Jinwei Zhang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
- Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Thanh D. Nguyen
- Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Yi Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
- Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Robert S. Zhang
- Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Jiwon Kim
- Medicine, Weill Cornell Medicine, New York, NY, United States
| | | | | |
Collapse
|
20
|
Chaudhary S, Lane EG, Levy A, McGrath A, Mema E, Reichmann M, Dodelzon K, Simon K, Chang E, Nickel MD, Moy L, Drotman M, Kim SG. Estimation of fatty acid composition in mammary adipose tissue using deep neural network with unsupervised training. Magn Reson Med 2025; 93:2163-2175. [PMID: 39641987 PMCID: PMC11893257 DOI: 10.1002/mrm.30401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/02/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE To develop a deep learning-based method for robust and rapid estimation of the fatty acid composition (FAC) in mammary adipose tissue. METHODS A physics-based unsupervised deep learning network for estimation of fatty acid composition-network (FAC-Net) is proposed to estimate the number of double bonds and number of methylene-interrupted double bonds from multi-echo bipolar gradient-echo data, which are subsequently converted to saturated, mono-unsaturated, and poly-unsaturated fatty acids. The loss function was based on a 10 fat peak signal model. The proposed network was tested with a phantom containing eight oils with different FAC and on post-menopausal women scanned using a whole-body 3T MRI system between February 2022 and January 2024. The post-menopausal women included a control group (n = 8) with average risk for breast cancer and a cancer group (n = 7) with biopsy-proven breast cancer. RESULTS The FAC values of eight oils in the phantom showed strong correlations between the measured and reference values (R2 > 0.9 except chain length). The FAC values measured from scan and rescan data of the control group showed no significant difference between the two scans. The FAC measurements of the cancer group conducted before contrast and after contrast showed a significant difference in saturated fatty acid and mono-unsaturated fatty acid. The cancer group has higher saturated fatty acid than the control group, although not statistically significant. CONCLUSION The results in this study suggest that the proposed FAC-Net can be used to measure the FAC of mammary adipose tissue from gradient-echo MRI data of the breast.
Collapse
Affiliation(s)
- Suneeta Chaudhary
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Elizabeth G Lane
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Allison Levy
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Anika McGrath
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Eralda Mema
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Melissa Reichmann
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Katerina Dodelzon
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Katherine Simon
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Eileen Chang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | | | - Linda Moy
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Michele Drotman
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Sungheon Gene Kim
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
21
|
Wang ZH, Xu C, Ma YY, Xue WX, Wang HY, Fan LY, Zhang CY, Li L, Zhang XY, Zhu JN, Zhang QP. Oxytocin Improves Autistic Behaviors by Positively Shifting GABA Reversal Potential via NKCC1 in Early-Postnatal-Stage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415432. [PMID: 40305761 DOI: 10.1002/advs.202415432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/30/2025] [Indexed: 05/02/2025]
Abstract
Accumulating evidence has identified disrupted oxytocin signaling in both autistic patients and animal models of autism. Nevertheless, the specific timing of the impact of oxytocin on social behavior has remained unclear. Using mouse strains from oxytocin-Cre mice crossed with Cre-dependent chemogenetic mice, oxytocinergic neuronal activity is selectivity manipulated during the early or late postnatal stages and revealed, for the first time, that the suppression of oxytocinergic neurons in the early rather than late postnatal stage led to the emergence of autistic-like behaviors. Notably, significantly reduced oxytocin levels are identified specifically during the early postnatal stage in both valproic acid (VPA)-exposed and Fmr1-KO mouse brains, along with an impairment of the GABA reversal potential and downregulation of the Na+-K+-2Cl- cotransporter (NKCC1) post-birth. Furthermore, chemogenetic activation of oxytocinergic neurons during the early rather than late postnatal stage effectively restored the aberrant NKCC1 expression and GABAA receptor reversal potential and consequently alleviated autistic-like behaviors in VPA-exposed mice. Overall, the results demonstrate that the early postnatal stage may be the unique critical period for oxytocin signaling to regulate GABA reversal potential and promote brain development for prosocial behaviors. These findings suggest an earlier intervention window and strategy for the clinical oxytocin treatment of autism.
Collapse
Affiliation(s)
- Zi-Hui Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| | - Chang Xu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| | - Yao-Yao Ma
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| | - Wei-Xuan Xue
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| | - Hao-Yuan Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| | - Lin-Yao Fan
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| | - Chen-Yu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
- NJU Institute of AI Biomedicine and Biotechnology, Nanjing University, Nanjing, Jiangsu, 210023, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, 210023, China
| | - Liang Li
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| | - Xiao-Yang Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
| | - Jing-Ning Zhu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Qi-Peng Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, 210023, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
22
|
Li Y, Huang F, Jin Y, Wang D, Yao Y, Lee OH, Kuhnert N, Fu X. Characterization of Cold-Adapted Lipase from Exiguobacterium sp. and Its Cold Adaptation Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10369-10377. [PMID: 40254850 DOI: 10.1021/acs.jafc.4c11222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Cold-adapted lipase has a wide range of applications in the fields of food, detergent, and pharmaceuticals. In this study, a low-temperature alkaline lipase gene EaLIP27 from an Exiguobacterium species found in marine environments was cloned and expressed in Escherichia coli (E. coli). The purified recombinant enzyme, weighing 27 kDa, showed significant activity at 337.2 U/mg. Optimal performance occurred at 35 °C and pH 8.0, retaining 43% activity even at 15 °C. It displayed broad pH stability and variable responses to metal ions and organic solvents. Fe3+, Fe2+, and Ni2+ inhibited its activity, whereas Ca2+, K+, Na+, and Mg2+ enhanced it. Isooctane and n-heptane boosted activity; methanol and n-butanol had inhibitory effects. Notably, EaLIP27 exhibited strong resistance to most organic solvents and minimal surfactant concentrations, indicating the potential for use in detergents. Analysis revealed a high proportion of α-helices and Gly, with a relatively loose structure, contributing to its cold-adapted structure. This study discovered novel and enzymatically excellent low-temperature lipases and provided new insights into cold adaptation mechanisms from a molecular structure perspective.
Collapse
Affiliation(s)
- Yanpo Li
- School of Health and Elderly Care, Shandong Women's University, Jinan 250300, China
| | - Fang Huang
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongguo Jin
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Danjuan Wang
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yan Yao
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Nikolai Kuhnert
- School of Science, Constructor University, 28759 Bremen, Germany
| | - Xing Fu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
23
|
Zhang YS, Chen HC, Cao JX, Zhou SW, Ma YZ, Jing YH. Oxytocin-Mediate Modulation of Splenic Immunosuppression in Chronic Social Stress Through Neuroendocrine Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500849. [PMID: 40285614 DOI: 10.1002/advs.202500849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Chronic social stress (CSS) is a significant public health challenge that negatively impacts behavior and immune function through brain-spleen interactions. Oxytocin (OT), a neuropeptide critical for social behavior and immune regulation, is upregulated during CSS, though its underlying mechanisms remain unclear. This study investigates the role of OT in splenic immune modulation using a murine model of CSS. Behavioral evaluations, serum oxytocin quantification, and splenic immunophenotypic analysis were performed. Splenic denervation confirmed OT's neuromodulatory role, whereas OTR antagonism revealed its endocrine function. CSS-induced OT elevation was associated with immunosuppression, characterized by increased Foxp3⁺ regulatory T cells and reduced CD4⁺ T and CD19⁺ B cells. OT also modulated macrophage polarization, inhibiting M1-like (pro-inflammatory) and enhancing M2-like (anti-inflammatory) phenotypes. Denervation or pharmacological blockade of OT signaling partly reversed CSS-induced splenic immunosuppression but adversely affected survival in CSS-exposed mice. Additionally, denervation or OTR antagonism reduced the mice's response to social defeat, as shown by decreased social avoidance behavior. These findings suggest that OT-mediated immunosuppression likely represents a compensatory mechanism in response to chronic social stress. Targeting the OT-immune axis could offer innovative therapeutic approaches for stress-associated disorders by restoring immune homeostasis while maintaining behavioral integrity.
Collapse
Affiliation(s)
- Yi-Shu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 212696, P. R. China
| | - Hai-Chao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 212696, P. R. China
| | - Jia-Xin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 212696, P. R. China
| | - Si-Wei Zhou
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 212696, P. R. China
| | - Yue-Zhang Ma
- Department of Immunization Program, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, P. R. China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 212696, P. R. China
- Key Laboratory of Preclinical Study for New Drugs of Gansu province, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
24
|
Zhang WY, Liu SM, Wang HB, Deng CY. Exosomal miR-137-3p targets UBE3C to activate STAT3, promoting migration and differentiation into endometrial epithelial cell of human umbilical cord mesenchymal stem cells under hypoxia. World J Stem Cells 2025; 17:100359. [PMID: 40308888 PMCID: PMC12038465 DOI: 10.4252/wjsc.v17.i4.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/29/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Thin endometrium, leading cause of recurrent implantation failure and infertility, has been found to respond to exosomes. AIM To investigate the efficacy of exosomes in addressing the issue of thin endometrium. METHODS RNA sequencing and reverse transcription-quantitative polymerase chain reaction were employed to identify differentially expressed microRNAs (miRNAs) in human umbilical cord mesenchymal stem cell (hucMSC) treated with exosomes enriched with endometrial cell-derived components. Additionally, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to highlight significant enrichment in specific biological pathways, molecular functions, and cellular components. Transwell and wound healing assays were performed to assess migratory potential, and western blotting was detected protein level. RESULTS A total of 53 differentially expressed miRNAs were identified in hucMSC treated with exosomes enriched with endometrial cell-derived components, comprising 27 upregulated and 26 downregulated miRNAs, which includes miR-137-3p. Enhanced migratory potential was observed in the Transwell and wound healing assays, and western blotting confirmed the epithelial differentiation of hucMSC and the increased p-signal transducer and activator of transcription 3. These effects were attributed to the upregulation of miR-137-3p. CONCLUSION miR-137-3p in exosomes from hypoxia-affected endometrial epithelial cell stimulates the signal transducer and activator of transcription 3 signaling pathway, enhancing the migration and differentiation of hucMSC into endometrial epithelial cell.
Collapse
Affiliation(s)
- Wan-Yu Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Si-Miao Liu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Han-Bi Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Cheng-Yan Deng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
25
|
Chan CK, Lim KS, Chan CY, Kumar TS, Audrey C, Narayanan V, Fong SL, Ng CC. A review of epilepsy syndromes and epileptogenic mechanism affiliated with brain tumor related genes. Gene 2025:149531. [PMID: 40294709 DOI: 10.1016/j.gene.2025.149531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is one of the comorbidities often manifested by patients with brain tumors. While there are reviews commenting on the epileptogenicity of brain-tumor-related genes, the reviews are commonly restricted to BRAF, IDH and PIK3CA. According to World Health Organization (WHO), at least 50 genes have been proposed as brain-tumor-related genes. Hence, we aimed to provide a more comprehensive review of the epileptogenicity of the brain-tumor-related genes. We performed an extensive literature search on PubMed, classified the studies, and provided an overview of the associated epilepsy phenotype and epileptogenic mechanism of the brain-tumor-related genes advocated by WHO. Through our analysis, we found a minor overlap between brain-tumor-related genes and epilepsy-associated genes, as some brain-tumor-related genes have been classified as epilepsy-associated genes in earlier studies. Besides reviewing the well-studied genes like TSC1 and TSC2, we identified several under-discovered brain-tumor-related genes, including TP53, CIC, IDH1 and NOTCH1, that warrant future exploration due to the existence of clinical or in vivo evidence substantiating their pathogenic role in epileptogenesis. We also propounded some methodologies that can be applied in future research to enhance the study of the epileptogenic mechanism of brain-tumor-related genes. To date, this article covers the greatest number of brain-tumor-related genes.
Collapse
Affiliation(s)
- Chung-Kin Chan
- Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kheng-Seang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chet-Ying Chan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Thinisha Sathis Kumar
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Christine Audrey
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vairavan Narayanan
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Si-Lei Fong
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ching-Ching Ng
- Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
26
|
Ren Q, Cui C, Peng Y, Zhou Y, Zhang H, Chen L, Liu Z. Causal relationship between gut microbiota and metabolic syndrome: A bidirectional Mendelian randomization study. Medicine (Baltimore) 2025; 104:e42179. [PMID: 40295236 PMCID: PMC12040044 DOI: 10.1097/md.0000000000042179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Metabolic syndromes (MetS) are complex metabolic disorders, the pathogenesis of which has not been fully elucidated. In recent years, the association between the gut microbiota and MetS has attracted widespread attention, but the causal relationship remains unclear. We performed a 2-sample Mendelian randomization analysis (MR) to examine whether the gut microbiota is causally related to MetS and its components to find a basis for potential diagnostic or intervention approaches for MetS. We utilized summary statistics from whole-genome association analyses of gut microbiota from the MiBioGen consortium and obtained MetS-related data from the UK Biobank, IEU Open GWAS project, and The Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC). MR analyses were performed using inverse variance weighted, MR-Egger, and weighted median. Sensitivity analyses were conducted to verify the robustness of the results. Among the 211 gut microbiota, we identified 8 that were significantly associated with the risk of MetS. Specifically, Lachnospiraceae (family), Veillonellaceae (family), Victivallaceae (family), Odoribacter (genus), and Olsenella (genus) may increase the risk of MetS, while Bifidobacteriaceae (family), Ruminococcaceae UCG-010 (genus), Actinobacteria (phylum) may decrease the risk of MetS. Additionally, we discovered that multiple microbiota are associated with various components of MetS, such as BMI, hypertension, and blood lipid levels. This study is the first to use MR methods to reveal the potential causal relationship between specific gut microbiota and MetS, providing a new perspective for understanding the pathogenesis of MetS, and offering important evidence for the development of gut microbiota-based prevention and treatment strategies for MetS.
Collapse
Affiliation(s)
- Qiqi Ren
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Congshong Cui
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - You Peng
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yingling Zhou
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Hang Zhang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Lin Chen
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Zhenjie Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Vara-Pérez M, Movahedi K. Border-associated macrophages as gatekeepers of brain homeostasis and immunity. Immunity 2025:S1074-7613(25)00168-2. [PMID: 40324381 DOI: 10.1016/j.immuni.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
The brain's border tissues serve as essential hubs for neuroimmune regulation and the trafficking of biomaterials to and from the brain. These complex tissues-including the meninges, perivascular spaces, choroid plexus, and circumventricular organs-balance the brain's need for immune privilege with immune surveillance and blood-brain communication. Macrophages are integral components of these tissues, taking up key strategic positions within the brain's circulatory system. These border-associated macrophages, or "BAMs," are therefore emerging as pivotal for brain homeostasis and disease. BAMs perform trophic functions that help to support border homeostasis but also act as immune sentinels essential for border defense. In this review, we integrate recent findings on BAM origins, cell states, and functions, aiming to provide global insights and perspectives on the complex relationship between these macrophages and their border niche.
Collapse
Affiliation(s)
- Mónica Vara-Pérez
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kiavash Movahedi
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
28
|
Menarchek BJ, Bridi MCD. Latent mechanisms of plasticity are upregulated during sleep. Curr Opin Neurobiol 2025; 93:103029. [PMID: 40267630 DOI: 10.1016/j.conb.2025.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/25/2025]
Abstract
Sleep is thought to serve an important role in learning and memory, but the mechanisms by which sleep promotes plasticity remain unclear. Even in the absence of plastic changes in neuronal function, many molecular, cellular, and physiological processes linked to plasticity are upregulated during sleep. Therefore, sleep may be a state in which latent plasticity mechanisms are poised to respond following novel experiences during prior wake. Many of these plasticity-related processes can promote both synaptic strengthening and weakening. Signaling pathways activated during sleep may interact with complements of proteins, determined by the content of prior waking experience, to establish the polarity of plasticity. Furthermore, precise reactivation of neuronal spiking patterns during sleep may interact with ongoing neuromodulatory, dendritic, and network activity to strengthen and weaken synapses. In this review, we will discuss the idea that sleep elevates latent plasticity mechanisms, which drive bidirectional plasticity depending on prior waking experience.
Collapse
Affiliation(s)
- Benjamin J Menarchek
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Michelle C D Bridi
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA.
| |
Collapse
|
29
|
Scarpetta V, Ho KH, Trapp M, Patrizi A. Choroid plexus: Insights from distinct epithelial cellular components. Curr Opin Neurobiol 2025; 93:103028. [PMID: 40267629 DOI: 10.1016/j.conb.2025.103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/25/2025]
Abstract
The choroid plexus (ChP) serves as a vital interface between blood and cerebrospinal fluid (CSF), playing a pivotal role in central nervous system (CNS) development and communication with the body. This review mainly summarizes how the ChP epithelial cells respond to physiological and pathological stimuli, emphasizing the role of distinct organelles and key molecular signaling pathways. Additionally, we discuss the roles of ChP cilia, an evolutionary conserved organelle whose function is still under investigation. Understanding these processes is essential for elucidating how ChP function modulates intrinsic and extrinsic stimuli, which are crucial for maintaining CNS and body homeostasis.
Collapse
Affiliation(s)
- Valentina Scarpetta
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin 10126, Italy
| | - Kim Hoa Ho
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
| | - Marleen Trapp
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Interdisciplinary Center for Neuroscience, Heidelberg University, Heidelberg 69120, Germany.
| |
Collapse
|
30
|
Barelle PY, Sicardi A, Schaller F, Buron J, Becquet D, Omnes F, Watrin F, Alifrangis MS, Santos C, Menuet C, François-Bellan AM, Caron E, Klucznik J, Prevot V, Bouret SG, Muscatelli F. Investigation of a mouse model of Prader-Willi Syndrome with combined disruption of Necdin and Magel2. JCI Insight 2025; 10:e185159. [PMID: 40048253 PMCID: PMC12016932 DOI: 10.1172/jci.insight.185159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
Prader-Willi syndrome (PWS) is a multigenic disorder caused by the loss of 7 contiguous paternally expressed genes. Mouse models with inactivation of all PWS genes are lethal. KO mouse models for each candidate gene have been generated, but they lack the functional interactions between PWS genes. Here, we revealed an interplay between Necdin and Magel2 PWS genes and generated a mouse model (named Del Ndn-Magel2 mice) with a deletion including both genes. A subset of Del Ndn-Magel2 mice showed neonatal lethality. Behaviorally, surviving mutant mice exhibited sensory delays during infancy and alterations in social exploration at adulthood. Del Ndn-Magel2 mice had a lower body weight before weaning, persisting after weaning in males only, with reduced fat mass and improved glucose tolerance as well as altered puberty. Adult mutant mice displayed increased ventilation and a persistent increase in apneas following a hypercapnic challenge. Transcriptomics analyses revealed a dysregulation of key circadian genes and alterations of genes associated with axonal function similar to patients with PWS. At neuroanatomical levels, Del Ndn-Magel2 mice had an impaired maturation of oxytocin neurons and a disrupted development of melanocortin circuits. Together, these data indicate that the Del Ndn-Magel2 mouse is a pertinent and genetically relevant model of PWS.
Collapse
Affiliation(s)
- Pierre-Yves Barelle
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Alicia Sicardi
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Fabienne Schaller
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | - Julie Buron
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | - Denis Becquet
- University of Aix-Marseille, Inst Neurophysiopathol, Marseille, France
| | - Felix Omnes
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | - Françoise Watrin
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | - Marie-Sophie Alifrangis
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | | | - Clément Menuet
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | | | - Emilie Caron
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Jessica Klucznik
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Vincent Prevot
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Sebastien G. Bouret
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Françoise Muscatelli
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| |
Collapse
|
31
|
Othman MZ, Mohd Nasir MH, Wan Ahmad WAN, Abdullah JM, Che Has AT. Differential regulation of K +-Cl - cotransporter 2 (KCC2) and Na +-K +-Cl - cotransporter 1 (NKCC1) expression by zolpidem in CA1 and CA3 hippocampal subregions of the lithium-pilocarpine status epilepticus rat model. Exp Anim 2025; 74:286-299. [PMID: 39779249 PMCID: PMC12044352 DOI: 10.1538/expanim.24-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
Status epilepticus is linked to cognitive decline due to damage to the hippocampus, a key structure involved in cognition. The hippocampus's high vulnerability to epilepsy-related damage is the main reason for this impairment. Convulsive seizures, such as those observed in status epilepticus, can cause various hippocampal pathologies, including inflammation, abnormal neurogenesis, and neuronal death. Interestingly, substantial evidence points to the therapeutic potential of the sedative/hypnotic agent zolpidem for neurorehabilitation in brain injury patients, following the unexpected discovery of its paradoxical awakening effect. In this study, we successfully established an ideal lithium-pilocarpine rat model of status epilepticus, which displayed significant deficits in hippocampal-dependent learning and memory. The Morris water maze test was used to assess zolpidem's potential to improve learning and memory, as well as its impact on anxiety-like behavior and motor function. Immunohistochemical staining and fluorescence analysis were used to examine the effect of zolpidem on K+-Cl- cotransporter 2 (KCC2) and Na+-K+-Cl- cotransporter 1 (NKCC1) protein expression in the hippocampal CA1 and CA3. Our findings showed that zolpidem did not improve learning and memory in status epilepticus rats. Additionally, its sedative/hypnotic effects were not apparent in the status epilepticus condition. However, immunohistochemical results revealed that zolpidem significantly restored altered NKCC1 levels in the CA1 and CA3 to levels similar to those seen in normal rats. These findings suggest that zolpidem may contribute to molecular restoration, particularly through its impact on NKCC1 protein expression in the hippocampus, which is crucial for proper inhibitory neurotransmission in the brain.
Collapse
Affiliation(s)
- Muhammad Zulfadhli Othman
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Wan Amir Nizam Wan Ahmad
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
32
|
Bolla M, Colombo G, Falappa M, Pace M, Baravalle R, Martinez N, Montani F, Tucci V, Cancedda L. NKCC1 inhibition improves sleep quality and EEG information content in a Down syndrome mouse model. iScience 2025; 28:112220. [PMID: 40224007 PMCID: PMC11986984 DOI: 10.1016/j.isci.2025.112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/10/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
In several brain disorders, the hyperpolarizing/inhibitory effects of GABA signaling through Cl-permeable GABAA receptors are compromised, leading to an imbalance between neuronal excitation and inhibition. For example, the Ts65Dn mouse model of Down syndrome (DS) exhibits increased expression of the Cl- importer NKCC1, leading to depolarizing gamma aminobutyric acid (GABA) signaling in the mature hippocampus and cortex. Inhibiting NKCC1 with the Food and Drug Administration (FDA)-approved diuretic bumetanide rescues inhibitory GABAergic transmission, synaptic plasticity, and cognitive functions in adult Ts65Dn mice. Given that DS individuals and Ts65Dn mice show sleep disturbances, and considering the key role of GABAergic transmission in sleep, we investigated whether NKCC1 upregulation contributes to sleep abnormalities in adult Ts65Dn mice. Chronic oral administration of bumetanide ameliorated the spectral profile of sleep, sleep architecture, and electroencephalogram (EEG) entropy/complexity, accompanied by a lower hyperactivity in trisomic mice. These results offer a potential avenue for addressing common sleep disturbances in DS.
Collapse
Affiliation(s)
- Maria Bolla
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
- Università Degli Studi di Genova, Via Balbi, 5, 16126 Genoa, Italy
| | - Giulia Colombo
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
| | - Matteo Falappa
- Università Degli Studi di Genova, Via Balbi, 5, 16126 Genoa, Italy
- Genetics and Epigenetics of Behavior Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Marta Pace
- Genetics and Epigenetics of Behavior Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Roman Baravalle
- Instituto de Física de La Plata (IFLP), CONICET-UNLP, La Plata, Buenos Aires, Argentina
- State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Nataniel Martinez
- IFIMAR (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata, B7602AYL, Mar Del Plata, Argentina
| | - Fernando Montani
- Instituto de Física de La Plata (IFLP), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Valter Tucci
- Genetics and Epigenetics of Behavior Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
- Dulbecco Telethon Institute, Rome, Italy
| |
Collapse
|
33
|
Cui S, Guo Y, Fu Y, Zhang T, Zhang J, Gan Y, Zhou Y, Gu Y, Gentleman E, Liu Y, Wang X. Inflammation-related collagen fibril destruction contributes to temporomandibular joint disc displacement via NF-κB activation. Int J Oral Sci 2025; 17:35. [PMID: 40246831 PMCID: PMC12006360 DOI: 10.1038/s41368-025-00352-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 04/19/2025] Open
Abstract
Temporomandibular joint (TMJ) disc displacement is one of the most significant subtypes of temporomandibular joint disorders, but its etiology and mechanism are poorly understood. In this study, we elucidated the mechanisms by which destruction of inflamed collagen fibrils induces alterations in the mechanical properties and positioning of the TMJ disc. By constructing a rat model of TMJ arthritis, we observed anteriorly dislocated TMJ discs with aggravated deformity in vivo from five weeks to six months after a local injection of Freund's complete adjuvant. By mimicking inflammatory conditions with interleukin-1 beta in vitro, we observed enhanced expression of collagen-synthesis markers in primary TMJ disc cells cultured in a conventional two-dimensional environment. In contrast, three-dimensional (3D)-cultivated disc cell sheets demonstrated the disordered assembly of inflamed collagen fibrils, inappropriate arrangement, and decreased Young's modulus. Mechanistically, inflammation-related activation of the nuclear factor kappa-B (NF-κB) pathway occurs during the progression of TMJ arthritis. NF-κB inhibition reduced the collagen fibril destruction in the inflamed disc cell sheets in vitro, and early NF-κB blockade alleviated collagen degeneration and dislocation of the TMJ discs in vivo. Therefore, the NF-κB pathway participates in the collagen remodeling in inflamed TMJ discs, offering a potential therapeutic target for disc displacement.
Collapse
Affiliation(s)
- Shengjie Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
- Department of General Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yanning Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yu Fu
- Fourth Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Jieni Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yehua Gan
- Center for Temporomandibular Disorders and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yan Gu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Yan Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Xuedong Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
34
|
Lage SL, Bricker-Holt K, Rocco JM, Rupert A, Donovan FX, Abramzon YA, Chandrasekharappa SC, McNinch C, Cook L, Amaral EP, Rosenfeld G, Dalhuisen T, Eun A, Hoh R, Fehrman E, Martin JN, Deeks SG, Henrich TJ, Peluso MJ, Sereti I. Persistent immune dysregulation and metabolic alterations following SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.16.25325949. [PMID: 40321289 PMCID: PMC12047922 DOI: 10.1101/2025.04.16.25325949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
SARS-CoV-2 can cause a variety of post-acute sequelae including Long COVID19 (LC), a complex, multisystem disease characterized by a broad range of symptoms including fatigue, cognitive impairment, and post-exertional malaise. The pathogenesis of LC is incompletely understood. In this study, we performed comprehensive cellular and transcriptional immunometabolic profiling within a cohort that included SARS-CoV-2-naïve controls (NC, N=30) and individuals with prior COVID-19 (~4-months) who fully recovered (RC, N=38) or went on to experience Long COVID symptoms (N=58). Compared to the naïve controls, those with prior COVID-19 demonstrated profound metabolic and immune alterations at the proteomic, cellular, and epigenetic level. Specifically, there was an enrichment in immature monocytes with sustained inflammasome activation and oxidative stress, elevated arachidonic acid levels, decreased tryptophan, and variation in the frequency and phenotype of peripheral T-cells. Those with LC had increased CD8 T-cell senescence and a distinct transcriptional profile within CD4 and CD8 T-cells and monocytes by single cell RNA sequencing. Our findings support a profound and persistent immunometabolic dysfunction that follows SARS-CoV-2 which may form the pathophysiologic substrate for LC. Our findings suggest that trials of therapeutics that help restore immune and metabolic homeostasis may be warranted to prevent, reduce, or resolve LC symptoms.
Collapse
Affiliation(s)
- Silvia Lucena Lage
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Katherine Bricker-Holt
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Joseph M. Rocco
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Adam Rupert
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research; Frederick, USA
| | - Frank X. Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute; Bethesda, USA
| | - Yevgeniya A. Abramzon
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute; Bethesda, USA
| | | | - Colton McNinch
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Logan Cook
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Eduardo Pinheiro Amaral
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Gabriel Rosenfeld
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Thomas Dalhuisen
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Avery Eun
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Emily Fehrman
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco; San Francisco, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Timothy J. Henrich
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Michael J. Peluso
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Irini Sereti
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| |
Collapse
|
35
|
Liberty IA, Hanifah L, Rachmat HF, Putri AA, Pratiwi D, Pramono AP, Idris F, Tjekyan S. Implication of taxonomic abundance of gut microbiota in prediabetes: a systematic review. Front Nutr 2025; 12:1577528. [PMID: 40308637 PMCID: PMC12042084 DOI: 10.3389/fnut.2025.1577528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Background Prediabetes is defined by blood glucose levels that are higher than normal but below the diagnostic threshold for diabetes. Environmental factors associated with diabetes may contribute to its development through alterations in the gut microbiota. Recent studies suggest that changes in the composition and function of the gut microbiota play a role in the pathogenesis of diabetes mellitus and other metabolic disorders. Objective This study aims to systematically examine taxonomic abundance and its implications in the gut microbiota of individuals with prediabetes, identify key dysbiotic patterns, and explore their potential role in inflammation, insulin resistance, and progression to type 2 diabetes. Methods We conducted a systematic literature review following PRISMA guidelines. The review included sources from PubMed, ClinicalKey, ScienceDirect, Springer, and Scopus. We retrieved original research articles published in English that focused on prediabetes and gut microbiota from 2015 to the date of our search. Out of 827 full-text articles screened, 6 were selected based on defined inclusion and exclusion criteria. Results Dysbiosis of the gut microbiota in prediabetes is characterized by a reduction in butyrate-producing bacteria such as Faecalibacterium prausnitzii and Roseburia, along with an increase in potentially harmful taxa such as Escherichia/Shigella and Prevotella species. This imbalance is associated with systemic inflammation and insulin resistance, evidenced by elevated levels of C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and lipopolysaccharide-binding protein (LBP). Increased intestinal permeability facilitates the translocation of bacterial components such as lipopolysaccharides (LPS), further linking gut microbiota changes to the development of insulin resistance and type 2 diabetes. Conclusion This review highlights the need for further research to explore the potential therapeutic role of gut microbiota in prediabetes. Systematic Review Registration Prospero; Identifier CRD42025637369.
Collapse
Affiliation(s)
- Iche Andriyani Liberty
- Department of Public Health and Community Medicine, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
- Department of Public Health Sciences, Faculty of Public Health, Universitas Sriwijaya, Palembang, Indonesia
| | - Laily Hanifah
- Faculty of Health Science, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | | | - Aidi Alifia Putri
- Department of Public Health and Community Medicine, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Dessy Pratiwi
- Indonesia Health Development Center, Jakarta, Indonesia
| | - Andri Pramesyanti Pramono
- Research Center for Molecular Biology Eijkman, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Fachmi Idris
- Department of Public Health and Community Medicine, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Suryadi Tjekyan
- Department of Public Health and Community Medicine, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| |
Collapse
|
36
|
Wu X, Li S, Liang T, Yu Q, Zhang Y, Liu J, Li K, Liu Z, Cui M, Zhao Y, Han X, Jin R, Tan M, Chen XH, Zhao Y, Zheng M, Sun Y, Zhou L, Lu X. Proteome-Wide Data Guides the Discovery of Lysine-Targeting Covalent Inhibitors Using DNA-Encoded Chemical Libraries. Angew Chem Int Ed Engl 2025:e202505581. [PMID: 40223230 DOI: 10.1002/anie.202505581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
Broadening the application of covalent inhibitors requires the exploration of nucleophilic residues beyond cysteine. The covalent DNA-encoded chemical library (CoDEL) represents an advanced technology for covalent drug discovery. However, its application in lysine-targeting inhibitors remains uncharted territory. Here, we report the utilization of CoDEL selection guided by proteome-wide data to identify lysine-targeting covalent inhibitors. A comprehensive assessment of activity-based protein profiling (ABPP) data on lysine distribution and ligandability reveals potential targets for selective covalent inhibition, including phosphoglycerate mutase 1 (PGAM1), bromodomain (BRD) family proteins, and ubiquitin-conjugating enzyme E2 N (UBE2N). The 10.7-million-member CoDELs, featuring diverse lysine-reactive warheads, enable the discovery of a series of covalent inhibitors, covering photo-covalent, reversible covalent, and irreversible covalent reaction mechanisms. In-depth characterization of binding sites and modes of action provides structural and functional insights. Notably, irreversible covalent inhibitors unveil a novel mechanism for regulating UBE2N-mediated ubiquitination by modulating the conformation of the protein complex. Our work adopts the ABPP-CoDEL strategy, offering an efficient and versatile selection method for the development of covalent inhibitors targeting functional lysines.
Collapse
Affiliation(s)
- Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Shunyao Li
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ting Liang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Qing Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yiwei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jiaxiang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kaige Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Zijian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Mengqing Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Xiao-Hua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Lu Zhou
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
37
|
Kataike VM, Desmond PM, Steward C, Campbell BCV, Mitchell PJ, Ng F, Venkatraman V. Oxygen extraction fraction changes in ischemic tissue from 24-72 hours to 12 months after successful reperfusion. J Cereb Blood Flow Metab 2025:271678X251333940. [PMID: 40219845 PMCID: PMC11993554 DOI: 10.1177/0271678x251333940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Oxygen Extraction Fraction (OEF) is a critical measure of a tissue's metabolic state post-ischemic stroke. This study investigated OEF changes in stroke-affected tissue compared to healthy tissue, post-reperfusion. OEF maps generated from gradient echo MRI images of 87 ischemic stroke patients at three time points after successful Endovascular Thrombectomy (EVT) were analysed in a prospective longitudinal multicentre study. Regions of interest (ROIs) delineating the infarct areas and corresponding mirror regions were drawn. The MR-derived OEF index values were obtained from the ROIs and compared using Wilcoxon signed rank tests. The cross-sectional comparison of OEF index values revealed lower values in the infarct areas than the corresponding contralateral areas at all three time points after successful EVT, presented as median (interquartile range) [24-72 hours: 20.84 (17.56-26.82)% vs 27.56 (23.22-31.87)%; 3 months: 27.37 (23.28-30.35)% vs 32.55 (28.00-35.81)%; 12 months: 24.38 (22.35-29.77)% vs 29.39 (25.86-34.04)%, p < 0.001 for all three time points]. Longitudinally, relative OEF index values increased gradually over time [24-72 hours: 0.81 (0.67-0.87); 3 months: 0.86 (0.79-0.95); 12 months: 0.88 (0.75-0.95)]. The findings revealed that following successful EVT, OEF in infarct tissue improves over time, indicating potential tissue recovery.Trial registration name and URL: Post-Reperfusion Pathophysiology in Acute Ischemic Stroke https://trialsearch.who.int/Trial2.aspx?TrialID=ACTRN12624000629538.
Collapse
Affiliation(s)
| | - Patricia M Desmond
- Department of Radiology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Christopher Steward
- Department of Radiology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Bruce CV Campbell
- Department of Medicine at The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Peter J Mitchell
- Department of Radiology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Felix Ng
- Department of Medicine at The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | - Vijay Venkatraman
- Department of Radiology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
38
|
Mazhari F, Regberg AB, Castro CL, LaMontagne MG. Resolution of MALDI-TOF compared to whole genome sequencing for identification of Bacillus species isolated from cleanrooms at NASA Johnson Space Center. Front Microbiol 2025; 16:1499516. [PMID: 40270816 PMCID: PMC12017291 DOI: 10.3389/fmicb.2025.1499516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Bacteria are frequently isolated from surfaces in cleanrooms, where astromaterials are curated, at NASA's Lyndon B. Johnson Space Center (JSC). Bacillus species are of particular interest because endospores can endure extreme conditions. Current monitoring programs at JSC rely on culturing microbes from swabs of surfaces followed by identification by 16S rRNA sequencing and the VITEK 2 Compact bacterial identification system. These methods have limited power to resolve Bacillus species. Whole genome sequencing (WGS) is the current standard for bacterial identification but is expensive and time-consuming. Matrix-assisted laser desorption - time of flight mass spectrometry (MALDI-TOF MS), provides a rapid, low-cost, method of identifying bacterial isolates and has a higher resolution than 16S rRNA sequencing, particularly for Bacillus species; however, few studies have compared this method to WGS for identification of Bacillus species isolated from cleanrooms. Methods To address this, we selected 15 isolates for analysis with WGS and MALDI-TOF MS. Hybrid next-generation (Illumina) and 3rd-generation (nanopore) sequencing were used to draft genomes. Mass spectra, generated with MALDI-TOF MS, were processed with custom scripts to identify clusters of closely related isolates. Results MALDI-TOF MS and WGS identified 13/15 and 9/14 at the species level, respectively, and clusters of species generated from MALDI-TOF MS showed good agreement, in terms of congruence of partitioning, with phylotypes generated with WGS. Pairs of strains that were > 94% similar to each other, in terms of average amino acid identity (AAI) predicted by WGS, consistently showed cosine similarities of mass spectra >0.8. The only discordance was for a pair of isolates that were classified as Paenibacillus species. This pair showed relatively high similarity (0.85) in terms of MALDI-TOF MS but only 85% similarity in terms of AAI. In addition, some strains isolated from cleanrooms at the JSC appeared closely related to strains isolated from spacecraft assembly cleanrooms. Discussion Since MALDI-TOF MS costs less than whole genome sequencing and offers a throughput of hundreds of isolates per hour, this approach appears to offer a cost-efficient option for identifying Bacillus species, and related microbes, isolated during routine monitoring of cleanrooms and similar built environments.
Collapse
Affiliation(s)
- Farnaz Mazhari
- Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX, United States
- Jacobs, JETS II Contract, NASA Johnson Space Center, Houston, TX, United States
| | - Aaron B. Regberg
- Astromaterials Research and Exploration Science (ARES) Division, NASA Johnson Space Center, Houston, TX, United States
| | | | - Michael G. LaMontagne
- Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX, United States
| |
Collapse
|
39
|
Hu W, Sun H, Qi H, Jiang L, Zhang K, Jia X, Wang Y, Xiang Y, Liang Q. Elevated interstitial flow in the cerebrospinal fluid microenvironment accelerates glioblastoma cell migration on a microfluidic chip. LAB ON A CHIP 2025; 25:2085-2097. [PMID: 40109161 DOI: 10.1039/d5lc00015g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Glioblastoma is one of the most malignant tumors in the world, but the development of its therapies remains limited. Herein, a microfluidic chip that mimics the cerebrospinal fluid (CSF) circulation microenvironment is proposed to study the migration characteristics of glioblastoma U87-MG cells and U251 cells in complex environments where glioblastoma coexists with diseases that elevate CSF levels. In the presence of interstitial flow (IF), changing both cell densities and the cellular environment results in increased cell motility, including an increase in the number of migrating cells, the mean displacement of the top 30% fastest-moving cells, and the overall mean displacement. Then, through dynamic migration characterization analysis, it was found that IF enhances cell velocity and speed. Importantly, cells exposed to IF tend to migrate in directions with smaller angles of deviation from the opposite direction of IF. Finally, cytoskeleton inhibitors and decreased expressions of focal adhesion proteins, such as cytochalasin D, FAK inhibitors (VS-6063 and PF-573228), and FAK siRNA, were both proved to decrease the cells' response to IF. This work not only demonstrates the effect of IF on glioblastoma cell migration, but also indicates the reliability of microfluidic chips for modeling complex physiological environments, which is expected to be further developed for drug screening.
Collapse
Affiliation(s)
- Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Hua Sun
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Huibo Qi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Linkai Jiang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Kaining Zhang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P.R. China
| | - Xiaomeng Jia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Yu Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P.R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| |
Collapse
|
40
|
Granados-Rojas L, Hernández-López L, Bahena-Alvarez EL, Juárez-Zepeda TE, Custodio V, Martínez-Galindo JG, Jerónimo-Cruz K, Tapia-Rodríguez M, Vanoye-Carlo A, Duran P, Rubio C. Effects of the ketogenic diet on dentate gyrus and CA3 KCC2 expression in male rats with electrical amygdala kindling-induced seizures. Front Neurosci 2025; 19:1489407. [PMID: 40264914 PMCID: PMC12011780 DOI: 10.3389/fnins.2025.1489407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/18/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Ketogenic diet (KD), a high-fat, low-carbohydrate, and adequate protein diet, is a non-pharmacological treatment for refractory epilepsy. However, their mechanism of action is not fully understood. The cation-chloride cotransporter, KCC2, transports chloride out of neurons, thus contributing to the intraneuronal concentration of chloride. Modifications in KCC2 expression by KD feeding could explain the beneficial effect of this diet on epilepsy. This study aimed to determine the impact of KD on KCC2 expression in dentate gyrus layers and Cornu Ammonis 3 (CA3) strata of rats with seizures induced by amygdaloid kindling. Materials and methods Male Sprague Dawley rats were fed a normal diet (ND) or KD from postnatal day 24 until the end of the experiment. At 6 weeks after the start of the diets, rats were subjected to an amygdala kindling epilepsy model, sham or remain intact. Glucose and β-hydroxybutyrate concentrations were quantified. The after-discharge duration (ADD), latency, and duration of stages of kindling were evaluated. In addition, KCC2 expression was evaluated using optical density. A Pearson bivariate correlation was used to determine the relationship between KCC2 expression and ADD. Results At the end of the experiment, the KD-fed groups showed a reduction in glucose and an increase in β-hydroxybutyrate. KD reduced ADD and increased latency and duration of generalized seizures. In ND-fed animals, kindling reduced KCC2 expression in all three layers of the dentate gyrus; however, in KD-fed animals, no changes were observed. KD treatment increased KCC2 expression in the kindling group. In CA3, the pyramidal and lucidum strata showed an increase of KCC2 in KD-fed groups. Besides, the kindling had lower levels of KCC2 than the sham and intact groups. In all layers of the dentate gyrus and pyramidal and lucidum CA3 strata, the correlation indicated that the higher the KCC2 expression, the shorter the ADD during generalized seizures. Conclusion KD reduces ADD in generalized seizures. In addition, KD has a putative neuroprotective effect by preventing the kindling-induced reduction of KCC2 expression in the molecular, granule, and hilar dentate gyrus layers and pyramidal and lucidum CA3 strata. Increased KCC2 expression levels are related to a shorter duration of generalized seizures.
Collapse
Affiliation(s)
- Leticia Granados-Rojas
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Leonardo Hernández-López
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | | | | | - Verónica Custodio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | | | - Karina Jerónimo-Cruz
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Miguel Tapia-Rodríguez
- Unidad de Microscopía, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - America Vanoye-Carlo
- Laboratorio de Oncología Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Pilar Duran
- Laboratorio de Biología Animal Experimental, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| |
Collapse
|
41
|
Falet JPR, Nobile S, Szpindel A, Barile B, Kumar A, Durso-Finley J, Arbel T, Arnold DL. The role of AI for MRI-analysis in multiple sclerosis-A brief overview. Front Artif Intell 2025; 8:1478068. [PMID: 40265105 PMCID: PMC12011719 DOI: 10.3389/frai.2025.1478068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Magnetic resonance imaging (MRI) has played a crucial role in the diagnosis, monitoring and treatment optimization of multiple sclerosis (MS). It is an essential component of current diagnostic criteria for its ability to non-invasively visualize both lesional and non-lesional pathology. Nevertheless, modern day usage of MRI in the clinic is limited by lengthy protocols, error-prone procedures for identifying disease markers (e.g., lesions), and the limited predictive value of existing imaging biomarkers for key disability outcomes. Recent advances in artificial intelligence (AI) have underscored the potential for AI to not only improve, but also transform how MRI is being used in MS. In this short review, we explore the role of AI in MS applications that span the entire life-cycle of an MRI image, from data collection, to lesion segmentation, detection, and volumetry, and finally to downstream clinical and scientific tasks. We conclude with a discussion on promising future directions.
Collapse
Affiliation(s)
- Jean-Pierre R. Falet
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Steven Nobile
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Aliya Szpindel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Berardino Barile
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Amar Kumar
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Joshua Durso-Finley
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Tal Arbel
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Douglas L. Arnold
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
42
|
Ghorbian M, Ghobaei-Arani M, Ghorbian S. Transforming breast cancer diagnosis and treatment with large language Models: A comprehensive survey. Methods 2025; 239:S1046-2023(25)00088-X. [PMID: 40199412 DOI: 10.1016/j.ymeth.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
Breast cancer (BrCa), being one of the most prevalent forms of cancer in women, poses many challenges in the field of treatment and diagnosis due to its complex biological mechanisms. Early and accurate diagnosis plays a fundamental role in improving survival rates, but the limitations of existing imaging methods and clinical data interpretation often prevent optimal results. Large Language Models (LLMs), which are developed based on advanced architectures such as transformers, have brought about a significant revolution in data processing and medical decision-making. By analyzing a large volume of medical and clinical data, these models enable early diagnosis by identifying patterns in images and medical records and provide personalized treatment strategies by integrating genetic markers and clinical guidelines. Despite the transformative potential of these models, their use in BrCa management faces challenges such as data sensitivity, algorithm transparency, ethical considerations, and model compatibility with the details of medical applications that need to be addressed to achieve reliable results. This review systematically reviews the impact of LLMs on BrCa treatment and diagnosis. This study's objectives include analyzing the role of LLM technology in diagnosing and treating this disease. The findings indicate that the application of LLMs has resulted in significant improvements in various aspects of BrCa management, such as a 35% increase in the Efficiency of Diagnosis and BrCa Treatment (EDBC), a 30% enhancement in the System's Clinical Trust and Reliability (SCTR), and a 20% improvement in the quality of patient education and information (IPEI). Ultimately, this study demonstrates the importance of LLMs in advancing precision medicine for BrCa and paves the way for effective patient-centered care solutions.
Collapse
Affiliation(s)
- Mohsen Ghorbian
- Department of Computer Engineering, Qo.C., Islamic Azad University, Qom, Iran.
| | | | - Saied Ghorbian
- Department of Molecular Genetics, An.C., Islamic Azad University, Ahar, Iran
| |
Collapse
|
43
|
Inglese M, Conti A, Toschi N. Radiomics across modalities: a comprehensive review of neurodegenerative diseases. Clin Radiol 2025; 85:106921. [PMID: 40305877 DOI: 10.1016/j.crad.2025.106921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025]
Abstract
Radiomics allows extraction from medical images of quantitative features that are able to reveal tissue patterns that are generally invisible to human observers. Despite the challenges in visually interpreting radiomic features and the computational resources required to generate them, they hold significant value in downstream automated processing. For instance, in statistical or machine learning frameworks, radiomic features enhance sensitivity and specificity, making them indispensable for tasks such as diagnosis, prognosis, prediction, monitoring, image-guided interventions, and evaluating therapeutic responses. This review explores the application of radiomics in neurodegenerative diseases, with a focus on Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. While radiomics literature often focuses on magnetic resonance imaging (MRI) and computed tomography (CT), this review also covers its broader application in nuclear medicine, with use cases of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiomics. Additionally, we review integrated radiomics, where features from multiple imaging modalities are fused to improve model performance. This review also highlights the growing integration of radiomics with artificial intelligence and the need for feature standardisation and reproducibility to facilitate its translation into clinical practice.
Collapse
Affiliation(s)
- M Inglese
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy; Department of Surgery and Cancer, Imperial College London, UK.
| | - A Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - N Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy; Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Chen Y, Zhou Y, Bai Y, Jia K, Zhang H, Chen Q, Song M, Dai Y, Shi J, Chen Z, Yan X, Shen Y. Macrophage-derived CTSS drives the age-dependent disruption of the blood-CSF barrier. Neuron 2025; 113:1082-1097.e8. [PMID: 40015275 DOI: 10.1016/j.neuron.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/09/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
The choroid plexus (CP) serves as the primary source of cerebrospinal fluid (CSF). The blood-CSF barrier, composed of tight junctions among the epithelial cells in the CP, safeguards CSF from unrestricted exposure to bloodborne factors. This barrier is thus indispensable to brain homeostasis and is associated with age-related neural disorders. Nevertheless, its aging is poorly understood. Here, we report that cathepsin S (CTSS), a protease secreted from the CP macrophages, is upregulated in aged CP due to increased cell senescence. CTSS cleaves the essential tight junction component, claudin 1 (CLDN1), and, in turn, impairs the blood-CSF barrier. Notably, inhibiting CTSS or upregulating CLDN1 in aged CP rejuvenates the blood-CSF barrier and brain functions. Our findings uncover a vital interplay between immune and barrier cells that accelerates CP and brain aging, identify CTSS as a potential target to improve brain homeostasis in aged animals, and underscore the critical role of circulating proteinases in aging.
Collapse
Affiliation(s)
- Yifan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yaqing Bai
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiwen Jia
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qingxia Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Mengjiao Song
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumin Dai
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiantao Shi
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengjun Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiumin Yan
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Yidong Shen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
45
|
Brawura-Biskupski-Samaha R, Rebizant B, Kosińska-Kaczyńska K, Prasad S, Siergiej M, Kądziołka B, Koleśnik A, Szymecka-Samaha N, Rzucidło-Szymańska I, Khalil A. Prenatal intervention in vein of Galen aneurysmal malformation via transuterine ultrasound-guided fetal embolization: call for a global registry. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2025; 65:407-413. [PMID: 38764185 DOI: 10.1002/uog.27704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Affiliation(s)
- R Brawura-Biskupski-Samaha
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, Warsaw, Poland
- Maternal Fetal Medicine Foundation, Warsaw, Poland
| | - B Rebizant
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - K Kosińska-Kaczyńska
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - S Prasad
- Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, University of London, London, UK
| | - M Siergiej
- Faculty of Medicine, Lazarski University, Warsaw, Poland
| | - B Kądziołka
- Neurosurgery Clinic, The Children's Memorial Health Institute, Warsaw, Poland
| | - A Koleśnik
- Cardiovascular Interventions Laboratory, The Children's Memorial Health Institute, Warsaw, Poland
- Ultrasound Clinic Agatowa Warsaw, Warsaw, Poland
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland
| | - N Szymecka-Samaha
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - I Rzucidło-Szymańska
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - A Khalil
- Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, University of London, London, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
- Liverpool Women's Hospital, University of Liverpool, Liverpool, UK
| |
Collapse
|
46
|
Antico O, Thompson PW, Hertz NT, Muqit MMK, Parton LE. Targeting mitophagy in neurodegenerative diseases. Nat Rev Drug Discov 2025; 24:276-299. [PMID: 39809929 DOI: 10.1038/s41573-024-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Mitochondrial dysfunction is a hallmark of idiopathic neurodegenerative diseases, including Parkinson disease, amyotrophic lateral sclerosis, Alzheimer disease and Huntington disease. Familial forms of Parkinson disease and amyotrophic lateral sclerosis are often characterized by mutations in genes associated with mitophagy deficits. Therefore, enhancing the mitophagy pathway may represent a novel therapeutic approach to targeting an underlying pathogenic cause of neurodegenerative diseases, with the potential to deliver neuroprotection and disease modification, which is an important unmet need. Accumulating genetic, molecular and preclinical model-based evidence now supports targeting mitophagy in neurodegenerative diseases. Despite clinical development challenges, small-molecule-based approaches for selective mitophagy enhancement - namely, USP30 inhibitors and PINK1 activators - are entering phase I clinical trials for the first time.
Collapse
Affiliation(s)
- Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Paul W Thompson
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | | | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura E Parton
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
47
|
Ranganathan R, Sari F, Wang SX, Thiery A, Buzzi AL, Guerra R, Moody SA, Streit A. Targets of the transcription factor Six1 identify previously unreported candidate deafness genes. Development 2025; 152:dev204533. [PMID: 40213817 PMCID: PMC12045605 DOI: 10.1242/dev.204533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/12/2025] [Indexed: 05/03/2025]
Abstract
Branchio-otic (BOS) and branchio-oto-renal (BOR) syndromes are autosomal dominant disorders featuring multiple birth defects including ear, renal and branchial malformations. Mutations in the homeodomain transcription factor SIX1 and its co-factor EYA1 have been identified in about 50% of individuals with BOS or BOR, while causative mutations are unknown in the other half. We hypothesise that SIX1 target genes represent new BOS and BOR candidates. Using published transcriptomic and epigenomic data from chick ear progenitors, we first identify putative Six1 targets. Next, we provide evidence that Six1 directly regulates some of these candidates: Six1 binds to their enhancers, and functional experiments in Xenopus and chick confirm that Six1 controls their expression. Finally, we show that most putative chick Six1 targets are also expressed in the human developing ear and are associated with known deafness loci. Together, our results not only characterise the molecular mechanisms that mediate Six1 function in the developing ear, but also provide new candidates for human congenital deafness.
Collapse
Affiliation(s)
- Ramya Ranganathan
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Fereshteh Sari
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Scarlet Xiaoyan Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Alexandre Thiery
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Ailin Leticia Buzzi
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Rosalinda Guerra
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Sally A. Moody
- Department of Anatomy & Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
48
|
Zhou Y, Rashad S, Niizuma K. Transcriptome-wide alternative mRNA splicing analysis reveals post-transcriptional regulation of neuronal differentiation. FEBS J 2025; 292:2051-2070. [PMID: 39853922 PMCID: PMC12001157 DOI: 10.1111/febs.17408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/14/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Alternative splicing (AS) plays an important role in neuronal development, function, and disease. Efforts to analyze the transcriptome of AS in neurons on a wide scale are currently limited. We characterized the transcriptome-wide AS changes in SH-SY5Y neuronal differentiation model, which is widely used to study neuronal function and disorders. Our analysis revealed global changes in five AS programs that drive neuronal differentiation. Motif analysis revealed the contribution of RNA-binding proteins (RBPs) to the regulation of AS during neuronal development. We concentrated on the primary alternative splicing program that occurs during differentiation, specifically on events involving exon skipping (SE). Motif analysis revealed motifs for polypyrimidine tract-binding protein 1 (PTB) and ELAV-like RNA binding protein 1 (HuR/ELAVL1) to be the top enriched in SE events, and their protein levels were downregulated after differentiation. shRNA knockdown of either PTB and HuR was associated with enhanced neuronal differentiation and transcriptome-wide exon skipping events that drive the process of differentiation. At the level of gene expression, we observed only modest changes, indicating predominant post-transcriptional effects of PTB and HuR. We also observed that both RBPs altered cellular responses to oxidative stress, in line with the differentiated phenotype observed after either gene knockdown. Our work characterizes the AS changes in a widely used and important model of neuronal development and neuroscience research and reveals intricate post-transcriptional regulation of neuronal differentiation.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
- Department of NeurosurgeryTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
49
|
Van Hove H, De Feo D, Greter M, Becher B. Central Nervous System Macrophages in Health and Disease. Annu Rev Immunol 2025; 43:589-613. [PMID: 40036702 DOI: 10.1146/annurev-immunol-082423-041334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The central nervous system (CNS) has a unique set of macrophages that seed the tissue early during embryonic development. Microglia reside in the parenchyma, and border-associated macrophages are present in border regions, including the meninges, perivascular spaces, and choroid plexus. CNS-resident macrophages support brain homeostasis during development and steady state. In the diseased brain, however, the immune landscape is altered, with phenotypic and transcriptional changes in resident macrophages and the invasion of blood-borne monocytes, which differentiate into monocyte-derived macrophages upon entering the CNS. In this review, we focus on the fate and function of the macrophage compartment in health, neurodegenerative conditions such as amyloidosis, and neuroinflammation as observed in multiple sclerosis and infection. We discuss our current understanding that monocyte-derived macrophages contribute to neuropathology whereas native macrophages play a neuroprotective role in disease.
Collapse
Affiliation(s)
- Hannah Van Hove
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| |
Collapse
|
50
|
Hejazi S, Masinaei M, Emadzadeh M, Baniassad S, amini S, Attaran S, Najafzadeh MJ, Attaran D, Baniasad A. Assessment of the Relationship Between the Six-Minute Walk Test (6MWT) With Serum Chloride Level and Mean Pulmonary Arterial Pressure in Patients With Pulmonary Arterial Hypertension. Pulm Circ 2025; 15:e70066. [PMID: 40196703 PMCID: PMC11973496 DOI: 10.1002/pul2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
Pulmonary artery hypertension (PAH) is a fatal disease associated with high mortality, especially in countries with limited health resources in terms of lack of access to diagnostic and therapeutic evaluations. Therefore, it is necessary to discover inexpensive and available serum biomarkers for examining patients. This study investigates the relationship between PAH patients' six-minute walk (6MWT) distance, serum chloride levels, and mean pulmonary arterial pressure (mPAP). In this cross-sectional study, patients with PAH referring to the pulmonary hypertension clinic of our tertiary hospital were included. Then, the patient's demographic information and clinical findings were recorded, and the serum level of chloride and the 6MWT were examined in the patients. In the present study, 70 PAH patients were evaluated. All patients were female, and the mean age of the patients was 39.44 ± 8.33 years old. Hypochloremia was considered as serum chloride < 97 mmol/L in our study. The mPAP of patients with hypochloremia was significantly higher than non-hypochloremia patients (p < 0.001). The serum chloride levels had a significant positive correlation with the 6MWT distance (r = 0.634, p < 0.001). According to the linear regression analysis results, serum chloride level was a significant predictor of 6MWT distance even after adjustment for age and creatinine (β = 0.48; p = 0.002). Serum chloride level can be used as an inexpensive method for the evaluation of disease severity in PAH patients, especially in patients with higher time since the diagnosis of PAH.
Collapse
Affiliation(s)
- Sepideh Hejazi
- Lung Disease Research CenterMashhad University of Medical SciencesMashhadIran
| | - Maryam Masinaei
- Lung Disease Research CenterMashhad University of Medical SciencesMashhadIran
| | - Maryam Emadzadeh
- Clinical Research Development Unit, Ghaem HospitalMashhad University of Medical SciencesMashhadIran
| | - Shima Baniassad
- Department of Anesthesiology, Sina HospitalMedical Sciences University of TehranTehranIran
| | - Sara amini
- Department of Cardiology, Faculty of MedicineMashhad University of Medical ScienceMashhadIran
| | - Soroush Attaran
- Lung Disease Research CenterMashhad University of Medical SciencesMashhadIran
| | | | - Davood Attaran
- Lung Disease Research CenterMashhad University of Medical SciencesMashhadIran
| | - Amir Baniasad
- Lung Disease Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|