1
|
|
Abd El-hameed RH, Mohamed MS, Awad SM, Hassan BB, Khodair MAE, Mansour YE. Novel benzo chromene derivatives: design, synthesis, molecular docking, cell cycle arrest, and apoptosis induction in human acute myeloid leukemia HL-60 cells. J Enzyme Inhib Med Chem 2023;38:405-422. [DOI: 10.1080/14756366.2022.2151592] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/03/2022] Open
|
2
|
|
He L, Luo X, Bu Q, Jin J, Zhou S, He S, Zhang L, Lin Y, Hong X. PAX1 and SEPT9 methylation analyses in cervical exfoliated cells are highly efficient for detecting cervical (pre)cancer in hrHPV-positive women. J OBSTET GYNAECOL 2023;43:2179916. [PMID: 36799003 DOI: 10.1080/01443615.2023.2179916] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/18/2023]
Abstract
Studies have investigated PAX1 and SEPT methylation were closely associated with cervical cancer. For this study, we verified the expressions of PAX1 and SEPT9 methylation in 236 hrHPV women cervical exfoliated cells by using quantitative methylation-specific PCR and we further explored their diagnostic value in cervical (pre)cancer detection. Our results identified that the methylation rates and levels of PAX1 and SEPT9 increased with cervical lesion severity. For a diagnosis of cervical (pre)cancer, the area under the curve (AUC) of PAX1 methylation was 0.77 (95% CI 0.71-0.83) and the AUC of SEPT9 methylation was 0.86 (95% CI 0.81∼0.90). Analyses of the PAX1 and SEPT9 methylation statuses alone or combined with commonly used tests can efficiently identify cervical (pre)cancer. In particular, SEPT9 methylation might serve as an effective and powerful biomarker for the diagnosis of cervical (pre)cancer and as an alternative triage test in HPV-based cervical (pre)cancer screening programs.Impact StatementWhat is already known on this subject? This subject showed that PAX1 and SEPT9 methylation were closely associated with cervical cancer. The methylation rates and levels of PAX1 and SEPT9 increased with cervical lesion severity and reached a peak in cervical cancer exfoliated cells. We further assessed the diagnostic performances of PAX1 and SEPT9 methylation in cervical cancer screening. In detecting cervical (pre)cancer, the sensitivity values of PAX1 and SEPT9 methylation were up to 61.18% and 82.35%, respectively, and the specificity values of PAX1 and SEPT9 methylation were up to 95.36% and 86.75%, respectively. Moreover, the ROC curve analysis showed AUC values of 0.77 for PAX1 methylation and 0.86 for SEPT9 methylation tests, which were significantly superior to other commonly used tests. These findings suggest that PAX1 and SEPT9 methylation detection may have great clinical potential in cervical cancer screening.What the results of this study add? The rates and levels of PAX1 and SEPT9 methylation increased with the severity of the cervical lesions. For a diagnosis of cervical (pre)cancer, the area under the curve (AUC) of PAX1 methylation was 0.77 (95% CI 0.71-0.83), and the sensitivity and specificity values were 61.18% and 95.36%, respectively. The AUC value of the SEPT9 methylation was 0.86 (95% CI 0.81 ∼ 0.90), and the sensitivity and specificity values were 82.35% and 86.75%, respectively. Compared with the various tests we conducted, the PAX1 methylation showed the highest specificity (95.36%), and the SEPT9 methylation demonstrated the highest accuracy(86.00%).What the implications are of these findings for clinical practice and/or further research? The methylation levels of PAX1 and SEPT9 had a certain predictive effect on the severity of cervical lesions in hrHPV-positive women. In addition, SEPT9 methylation analysis performs better than PAX1 methylation analysis and commonly used tests in cervical exfoliated cells for detecting cervical (pre)cancer in hrHPV-positive women. SEPT9 methylation analysis merits consideration as an effective and objective, alternative triage test in HPV-based cervical (pre)cancer screening programs.
Collapse
|
3
|
|
Gu X, Sun C, Xu J, Lin Z, Zhang L, Zheng Y. Optimal timing and drug combination of selinexor in multiple myeloma: a systematic review and meta-analysis. Hematology 2023;28:2187972. [PMID: 36920065 DOI: 10.1080/16078454.2023.2187972] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/16/2023] Open
Abstract
OBJECTIVES Multiple myeloma (MM) remains an incurable disease despite advances in treatment options. Recently, selinexor has shown promising efficacy for relapsed/refractory multiple myeloma (RRMM), whereas its optimal timing and drug combination remain unclear. In order to assess the various regimens that incorporate selinexor, a systematic review and meta-analysis was conducted. METHODS Clinical trials and real-world studies involving MM patients treated with selinexor were included. Pooled risk ratio (RR) was calculated to compare the rates, along with a 95% confidence interval (CI) and concurrent p-value assessment. A random-effects model was employed to provide a more conservative evaluation. RESULTS A total of 16 studies enrolling 817 patients were reviewed. The usage of selinexor as the fifth-line or prior therapy achieved a higher objective response rate (ORR) (65.9% versus 23.4%, p < 0.01) and longer pooled progression-free survival (PFS) (median: 12.5 months versus 2.9 months, p < 0.01) than those after the fifth-line usage. In addition, early usage also resulted in a consistent trend of pooled overall survival (median: 22.7 months versus 8.9 months, p = 0.26), compared with post-fifth-line usage. Selinexor and dexamethasone (Xd) plus either protease inhibitors (PIs) or immunomodulatory drugs (IMiDs) achieved better ORRs than the Xd-only regimen for RRMM, with ORRs of 56.1%, 52.5% and 24.6%, respectively (p < 0.01). CONCLUSION In conclusion, using selinexor as the fifth-line or prior therapy had a beneficial impact on RRMM. The regimen of Xd plus PIs or IMiDs was recommended.
Collapse
|
4
|
|
Tao L, Zhou K, Zhao Y, Xia X, Guo Y, Gao Y, Peng G, Liu Y. Betulinic acid, a major therapeutic triterpene of Celastrus orbiculatus Thunb., acts as a chemosensitizer of gemcitabine by promoting Chk1 degradation. J Ethnopharmacol 2023;309:116295. [PMID: 36813244 DOI: 10.1016/j.jep.2023.116295] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Celastrus orbiculatus Thunb., also called as oriental bittersweet vine or climbing spindle berry, a traditional Chinese herbal medicine has been used to treat a spectrum of painful and inflammatory diseases for centuries. Explored for their unique medicinal properties, C.orbiculatus offers additional therapeutic effects on cancerous diseases. The effect of single-agent gemcitabine on survival has not long been encouraging, combination therapies provide patients multiple chances of benefit for improved clinical response. AIMS OF THIS STUDY This study aims at expounding the chemopotentiating effects and underlying mechanisms of betulinic acid, a primary therapeutic triterpene of C. orbiculatus in combination with gemcitabine chemotherapy. MATERIALS AND METHODS The preparation of betulinic acid was optimized using ultrasonic-assisted extraction method. Gemcitabine-resistant cell model was established by induction of the cytidine deaminase. MTT, colony formation, EdU incorporation and Annexin V/PI staining assays were used to evaluate cytotoxicity, cell proliferation and apoptosis in BxPC-3 pancreatic cancer cell line and H1299 non-small cell lung carcinoma cell line. Comet assay, metaphase chromosome spread and γH2AX immunostaining were applied for DNA damage assessment. Western blot and co-immunoprecipitation was used to detect the phosphorylation and ubiquitination of Chk1. Mode of action of gemcitabine in combination with betulinic acid was further captured in BxPC-3-derived mouse xenograft model. RESULTS We noticed that the extraction method had an impact on the thermal stability of C. orbiculatus. Ultrasound-assisted extraction at room temperature in shorter processing time could maximize the overall yields and biological activities of C. orbiculatus. The major constituent was identified as betulinic acid, and the pentacyclic triterpene represented the prominent anticancer activity of C. orbiculatus. Forced expression of cytidine deaminase conferred acquired resistance to gemcitabine, while betulinic acid displayed equivalent cytotoxicity toward gemcitabine-resistant and sensitive cells. A combination therapy of gemcitabine with betulinic acid produced synergistic pharmacologic interaction on cell viability, apoptosis and DNA double-strand breaks. Moreover, betulinic acid abrogated gemcitabine-triggered Chk1 activation by destabilizing Chk1 loading via proteasomal degradation. The combination of gemcitabine and betulinic acid significantly retarded BxPC-3 tumor growth in vivo compared to single-agent gemcitabine treatment alone, accompanied with reduced Chk1 expression. CONCLUSIONS These data provide evidence that betulinic acid is a potential candidate for chemosensitization as a naturally occurring Chk1 inhibitor and warrants further preclinical evaluation.
Collapse
|
5
|
|
Huang L, Li HJ, Wu YC. Processing technologies, phytochemistry, bioactivities and applications of black ginseng-a novel manufactured ginseng product: A comprehensive review. Food Chem 2023;407:134714. [PMID: 36495746 DOI: 10.1016/j.foodchem.2022.134714] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/29/2022]
Abstract
Black ginseng is a novel manufactured ginseng product, and the application of black ginseng products in market is increasing in recent years. Black ginseng is prepared by steaming and fermentation, but not as mature as processing red ginseng. Therefore, complete proposals for preparation techniques are firstly presented. Additionally, there are also abundant chemical components in black ginseng, including ginsenosides, polysaccharides, amino acids, polyphenols, flavonoids, etc. Among them, ginsenosides, polysaccharides and phenolic compounds are the main ingredients, making health benefits of black ginseng stronger than other ginseng products. Therefore, black ginseng as a functional food has come to the market in various forms, such as candies, tea, porridge, soup, etc. The improvement in nutrition, flavor, and safety has exhibited a broad prospect for black ginseng products in food industry. Accordingly, preparation technologies, phytochemistry, health benefits and application of black ginseng are comprehensively evaluated.
Collapse
|
6
|
|
Zhang X, Song S, Peng W. Cell cycle deregulation in neurodegenerative diseases. Int J Neurosci 2023;133:408-16. [PMID: 33945388 DOI: 10.1080/00207454.2021.1924705] [Cited by in Crossref: 3] [Cited by in RCA: 2] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/27/2022]
Abstract
Background: Cell cycle is critical for a wide range of cellular processes such as proliferation, differentiation and apoptosis in dividing cells. Neurons are postmitotic cells which have withdrawn from the cell division cycle. Recent data show us that inappropriate activation of cell cycle regulators including cyclins, cyclin dependent kinases (CDKs) and endogenous cyclin dependent kinase inhibitors (CDKIs) may take part in the aetiology of neurodegenerative diseases. However, the mechanisms for cell cycle reentry in neurodegenerative disease remain unclear.Methods: Electronic databases such as Pubmed, Science Direct, Directory of Open Access Journals, PLOS were searched for relevant articles.Conclusion: The present work reviews basic aspects of cell cycle mechanism, as well as the evidence showing the expression of cell cycle proteins in neurodegenerative disease. We provide a brief summary of these findings and hope to highlight the interaction between the cell cycle reentry and neurodegenerative diseases. Moreover, we outline the possible signaling pathways. However more understanding of the mechanism of cell cycle is of great importance. Because these represents an alternative target for therapeutic interventions, leading to novel treatments of neurodegenerative diseases.
Collapse
|
7
|
|
Kwanten B, Deconick T, Walker C, Wang F, Landesman Y, Daelemans D. E3 ubiquitin ligase ASB8 promotes selinexor-induced proteasomal degradation of XPO1. Biomed Pharmacother 2023;160:114305. [PMID: 36731340 DOI: 10.1016/j.biopha.2023.114305] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/04/2023] Open
Abstract
Selinexor (KPT-330), a small-molecule inhibitor of exportin-1 (XPO1, CRM1) with potent anticancer activity, has recently been granted FDA approval for treatment of relapsed/refractory multiple myeloma and diffuse large B-cell lymphoma (DLBCL), with a number of additional indications currently under clinical investigation. Since selinexor has often demonstrated synergy when used in combination with other drugs, notably bortezomib and dexamethasone, a more comprehensive approach to uncover new beneficial interactions would be of great value. Moreover, stratifying patients, personalizing therapeutics and improving clinical outcomes requires a better understanding of the genetic vulnerabilities and resistance mechanisms underlying drug response. Here, we used CRISPR-Cas9 loss-of-function chemogenetic screening to identify drug-gene interactions with selinexor in chronic myeloid leukemia, multiple myeloma and DLBCL cell lines. We identified the TGFβ-SMAD4 pathway as an important mediator of resistance to selinexor in multiple myeloma cells. Moreover, higher activity of this pathway correlated with prolonged progression-free survival in multiple myeloma patients treated with selinexor, indicating that the TGFβ-SMAD4 pathway is a potential biomarker predictive of therapeutic outcome. In addition, we identified ASB8 (ankyrin repeat and SOCS box containing 8) as a shared modulator of selinexor sensitivity across all tested cancer types, with both ASB8 knockout and overexpression resulting in selinexor hypersensitivity. Mechanistically, we showed that ASB8 promotes selinexor-induced proteasomal degradation of XPO1. This study provides insight into the genetic factors that influence response to selinexor treatment and could support both the development of predictive biomarkers as well as new drug combinations.
Collapse
|
8
|
|
Zabihi M, Lotfi R, Yousefi AM, Bashash D. Cyclins and cyclin-dependent kinases: from biology to tumorigenesis and therapeutic opportunities. J Cancer Res Clin Oncol 2023;149:1585-606. [PMID: 35781526 DOI: 10.1007/s00432-022-04135-6] [Cited by in Crossref: 3] [Cited by in RCA: 1] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/20/2022]
Abstract
The discussion on cell proliferation cannot be continued without taking a look at the cell cycle regulatory machinery. Cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors (CKIs) are valuable members of this system and their equilibrium guarantees the proper progression of the cell cycle. As expected, any dysregulation in the expression or function of these components can provide a platform for excessive cell proliferation leading to tumorigenesis. The high frequency of CDK abnormalities in human cancers, together with their druggable structure has raised the possibility that perhaps designing a series of inhibitors targeting CDKs might be advantageous for restricting the survival of tumor cells; however, their application has faced a serious concern, since these groups of serine-threonine kinases possess non-canonical functions as well. In the present review, we aimed to take a look at the biology of CDKs and then magnify their contribution to tumorigenesis. Then, by arguing the bright and dark aspects of CDK inhibition in the treatment of human cancers, we intend to reach a consensus on the application of these inhibitors in clinical settings.
Collapse
|
9
|
|
Lin C, Liu P, Shi C, Qiu L, Shang D, Lu Z, Tu Z, Liu H. Therapeutic targeting of DNA damage repair pathways guided by homologous recombination deficiency scoring in ovarian cancers. Fundam Clin Pharmacol 2023;37:194-214. [PMID: 36130021 DOI: 10.1111/fcp.12834] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/01/2022]
Abstract
The susceptibility of cells to DNA damage and their DNA repair ability are crucial for cancer therapy. Homologous recombination is one of the major repairing mechanisms for DNA double-strand breaks. Approximately half of ovarian cancer (OvCa) cells harbor homologous recombination deficiency (HRD). Considering that HRD is a major hallmark of OvCas, scholars proposed HRD scoring to evaluate the HRD degree and guide the choice of therapeutic strategies for OvCas. In the last decade, synthetic lethal strategy by targeting poly (ADP-ribose) polymerase (PARP) in HR-deficient OvCas has attracted considerable attention in view of its favorable clinical effort. We therefore suggested that the uses of other DNA damage/repair-targeted drugs in HR-deficient OvCas might also offer better clinical outcome. Here, we reviewed the current small molecule compounds that targeted DNA damage/repair pathways and discussed the HRD scoring system to guide their clinical uses.
Collapse
|
10
|
|
Chen CJ, Huang JY, Huang JQ, Deng JY, Shangguan XH, Chen AZ, Chen LT, Wu WH. Metformin attenuates multiple myeloma cell proliferation and encourages apoptosis by suppressing METTL3-mediated m6A methylation of THRAP3, RBM25, and USP4. Cell Cycle 2023;22:986-1004. [PMID: 36762777 DOI: 10.1080/15384101.2023.2170521] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/11/2023] Open
Abstract
Based on the results of epidemiological and preclinical studies, metformin can improve the prognosis of patients with malignant tumors. Studies have confirmed that metformin inhibits multiple myeloma (MM) cell proliferation and promotes apoptosis. Nevertheless, the specific mechanism remains to be elucidated. MM cells were intervened with different doses of metformin to detect cell proliferation and apoptosis. Western blotting and RT-qPCR were employed to assess the expression of METTL3, METTL14, WTAP, FTO, and ALKBH5 after metformin intervention. The microarray dataset GSE29023 was retrieved from the Gene Expression Omnibus (GEO) database and calculated using the R language (limma package) to authenticate differentially expressed genes (DEGs). The database for annotation, visualization, and integrated discovery (David) was applied for GO annotation analysis of DEGs. Subsequently, the string database and Cytoscape software were applied to construct protein-protein interaction (PPI) and DEM hub gene networks. Bioinformatics analysis and MeRIP were applied to predict and test METTL3-mediated m6A levels on mRNA of THRAP3, RBM25, and USP4 in METTL3 knocked-down cells. Then rescue experiments were performed to explore effects of METTL3 and THRAP3, RBM25, or USP4 on cell proliferation and apoptosis. The effect on MM cell xenograft tumor growth was observed by injection of metformin or/and overexpression of METTL3 in in vivo experiments. Metformin decreased cell proliferation and encouraged cell apoptosis in a dose-dependent manner. Global m6A modification was elevated in MM cells compared to normal cells, which was counteracted by metformin treatment. Furthermore, THRAP3, RBM25, and USP4 were identified as possible candidate genes for metformin treatment by GSE29023 data mining. METTL3 interference impaired m6A modification on mRNA of THRAP3, RBM25, and USP4 as well as expression levels. The mRNA stability and expression of THRAP3, RBM25, and USP4 was decreased after metformin treatment, which was reversed by METTL3 overexpression. THRAP3, RBM25 or USP4 knockdown reversed the assistance of METTL3 overexpression on the malignant behavior of MM cells. Finally, upregulation of METTL3 was shown to exert facilitative effects on xenograft tumor growth by blocking metformin injection. The present study demonstrates that metformin can repress the expression of THRAP3, RBM25, and USP4 by inhibiting METTL3-mediated m6A modification, which in turn hamper cell proliferation and promotes cell apoptosis.Abbreviations: multiple myeloma (MM), Gene Expression Omnibus (GEO), differentially expressed genes (DEGs), database for annotation, visualization and integrated discovery (David), protein-protein interaction (PPI), epithelial‑mesenchymal transition (EMT), methyltransferase like 3 (METTL3), methyltransferase like 14 (METTL14), wilms tumor 1-associated protein (WTAP), methyltransferase like 16 (METTL16), acute myeloid leukemia (AML), non-small lung cancer (NSCLC), glioma stem cells (GSCs), normal bone marrow-derived plasma cells (nPCs), false discovery rate (FDR), biological process (BP), optical density (OD), horseradish peroxidase (HRP), M6A RNA immunoprecipitation assay (MeRIP).
Collapse
|
11
|
|
Mi S, Liu X, Zhang L, Wang Y, Sun L, Yuan S, Cui M, Liu Y. Chinese medicine formula 'Baipuhuang Keli' inhibits triple-negative breast cancer by hindering DNA damage repair via MAPK/ERK pathway. J Ethnopharmacol 2023;304:116077. [PMID: 36572327 DOI: 10.1016/j.jep.2022.116077] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/25/2022]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baipuhuang Keli (BPH, constituted by Bai Tou Weng (Pulsatilla chinensis (Bunge) Regel), Pu Gong Ying (Taraxacum mongolicum Hand.-Mazz.), Huang Qin (Scutellaria baicalensis Georgi), Huang Bo (Phellodendron amurense Rupr.)) is a Chinese herbal formula with clearing heat and cooling blood, and removing toxin effects, which is suit for the case of breast cancer. AIM OF THE STUDY Here, we aim to explore the effects of BPH on triple-negative breast cancer (TNBC) and its potential mechanisms. MATERIALS AND METHODS In this study, cell viability assay, colony formation assay, soft agar assay, cell proliferation curve assay, and EdU assay were employed to determine the anti-proliferation effect induced by BPH. Cell cycle distribution was detected by flow cytometry. DNA damage in cells treated with BPH was indicated by comet assay, immunofluorescence, and Western Blot. Both the 4T1 orthotopic tumor model and the MDA-MB-231 subcutaneous tumor model were used to assess in vivo effect of BPH (312.5, and 625 mg/kg). The protein expression levels of the DNA damage response (DDR) pathway and the MAPK/ERK pathway were detected by Western Blot. RESULTS Our results indicated that TNBC cells were more sensitive to BPH than mammary epithelial cells. Cell proliferation of TNBC cells was significantly inhibited by BPH in a dose-dependent manner. Moreover, BPH induced DNA damage in TNBC cells in a concentration and time-dependent manner. DDR of TNBC cells was inhibited by BPH. MAPK/ERK pathway was inhibited in cells treated with BPH, and DNA damage can be reversed while EGF was added to activate MAPK/ERK pathway. The 4T1 orthotopic tumor model and the MDA-MB-231 subcutaneous tumor model further confirmed that BPH inhibited TNBC proliferation via inhibition of DDR and MAPK/ERK pathway in vivo. CONCLUSIONS Collectively, we proved that BPH is a potential anticancer Chinese herbal formula for TNBC in the manner of in vitro and in vivo experiments.
Collapse
|
12
|
|
Sun Y, Cronin MF, Mendonça MCP, Guo J, O'Driscoll CM. Sialic Acid-Targeted Cyclodextrin-Based Nanoparticles Deliver CSF-1R siRNA and Reprogram Tumour-Associated Macrophages for Immunotherapy of Prostate Cancer. Eur J Pharm Sci 2023;:106427. [PMID: 36948408 DOI: 10.1016/j.ejps.2023.106427] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/24/2023]
Abstract
Prostate cancer remains a serious condition threatening the health of men. Due to the complicated nature of the tumour microenvironment (TME), conventional treatments face challenges including poor prognosis and tumour resistance, therefore new therapeutic strategies are urgently needed. Small interfering RNA (siRNA), a double-stranded non-coding RNA, regulates specific gene expression through RNA interference. Tumour-associated macrophages (TAMs) are a potential therapeutic target in cancer immunotherapy. Colony stimulating factor-1/colony stimulating factor-1 receptor (CSF-1/CSF-1R) signaling pathway plays a crucial role in the polarization of the immunosuppressive TAMs, M2 macrophages. Downregulation of CSF-1R is known to reprogram the immunosuppressive TAMs, M2 macrophages, to the immunostimulatory phenotype, M1 macrophages. Sialic acid is a ligand for Siglec-1 (CD169) which is overexpressed on M2 macrophages with little expression in other phenotypes. Therefore, a sialic acid-targeted cyclodextrin-based nanoparticle was developed to specifically deliver CSF-1R siRNA to M2 macrophages. The nanoparticles were studied in vitro using both human and mouse prostate cancer cell lines. Results show that the targeted nanoparticles achieved cell specific delivery to M2 macrophages via the sialic acid-CD169 axis. The expression of CSF-1R was significantly downregulated in M2 macrophages (29.64% for targeted vs 19.31% for non-targeted nanoparticles in THP-1-derived M2 macrophages and 38.94% for targeted vs 18.51% for non-targeted nanoparticles in RAW 264.7-derived M2 macrophages, n = 4, p < 0.01). The resulting reprograming of M2 macrophages to M1 enhanced the level of apoptosis in the prostate cancer cells in a Transwell model (49.17% for targeted vs 37.68% for non-targeted nanoparticles in PC-3 cells and 69.15% for targeted vs 44.73% for non-targeted nanoparticles in TRAMP C1 cells, n = 3, p < 0.01). Thus, this targeted cyclodextrin-based siRNA drug delivery system provides a potential strategy for prostate cancer immunotherapy.
Collapse
|
13
|
|
Zheng S, Lin L, Jin J, Liu F, Wei J, Feng Y, Zhang Y, Luo H, Qin J, Feng W. First reported case of splenic diffuse red pulp small B-cell lymphoma with novel mutations in CXCR4 and TRAF3 genes. Int J Hematol 2023. [PMID: 36935465 DOI: 10.1007/s12185-023-03581-3] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/20/2023]
Abstract
Splenic diffuse red pulp small B-cell lymphoma (SDRPL) is a rare B-cell tumor whose genetic characteristics are poorly understood. Here, we introduce the case of a 62-year-old patient with SDRPL who showed progressive elevation of lymphocytes and progressive spleen enlargement. Immunohistochemistry showed that CD20 and CD79a were positive, and the Ki-67 labelling index was approximately 5%, consistent with the pathological features of splenic B-cell lymphoma. Spleen tissue and peripheral blood samples from the patient were sequenced using a next-generation sequencing platform, and mutations possibly were detected in the CXCR4 and TRAF3 genes that may be related to the pathogenesis of the disease. This finding may provide insights into the molecular pathogenesis of SDRPL and assist in molecular diagnosis and targeted therapy for SDRPL.
Collapse
|
14
|
|
Zhang Z, Li X, Wang Y, Wei Y, Wei X. Involvement of inflammasomes in tumor microenvironment and tumor therapies. J Hematol Oncol 2023;16:24. [PMID: 36932407 DOI: 10.1186/s13045-023-01407-7] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/19/2023] Open
Abstract
Inflammasomes are macromolecular platforms formed in response to damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns, whose formation would cause maturation of interleukin-1 (IL-1) family members and gasdermin D (GSDMD), leading to IL-1 secretion and pyroptosis respectively. Several kinds of inflammasomes detecting different types of dangers have been found. The activation of inflammasomes is regulated at both transcription and posttranscription levels, which is crucial in protecting the host from infections and sterile insults. Present findings have illustrated that inflammasomes are involved in not only infection but also the pathology of tumors implying an important link between inflammation and tumor development. Generally, inflammasomes participate in tumorigenesis, cell death, metastasis, immune evasion, chemotherapy, target therapy, and radiotherapy. Inflammasome components are upregulated in some tumors, and inflammasomes can be activated in cancer cells and other stromal cells by DAMPs, chemotherapy agents, and radiation. In some cases, inflammasomes inhibit tumor progression by initiating GSDMD-mediated pyroptosis in cancer cells and stimulating IL-1 signal-mediated anti-tumor immunity. However, IL-1 signal recruits immunosuppressive cell subsets in other cases. We discuss the conflicting results and propose some possible explanations. Additionally, we also summarize interventions targeting inflammasome pathways in both preclinical and clinical stages. Interventions targeting inflammasomes are promising for immunotherapy and combination therapy.
Collapse
|
15
|
|
Cui Y, Wang F, Fang B. Mitochondrial dysfunction and drug targets in multiple myeloma. J Cancer Res Clin Oncol 2023. [PMID: 36928159 DOI: 10.1007/s00432-023-04672-8] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/18/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological cancer that has no cure. Although currently there are several novel drugs, most MM patients experience drug resistance and disease relapse. The results of previous studies suggest that aberrant mitochondrial function may contribute to tumor progression and drug resistance. Mitochondrial DNA mutations and metabolic reprogramming have been reported in MM patients. Several preclinical and clinical studies have shown encouraging results of mitochondria-targeting therapy in MM patients. In this review, we have summarized our current understanding of mitochondrial biology in MM. More importantly, we have reviewed mitochondrial targeting strategies in MM treatment.
Collapse
|
16
|
|
Li R, Yang Y, Wang H, Zhang T, Duan F, Wu K, Yang S, Xu K, Jiang X, Sun X. Lactate and Lactylation in the Brain: Current Progress and Perspectives. Cell Mol Neurobiol 2023. [PMID: 36928470 DOI: 10.1007/s10571-023-01335-7] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Indexed: 03/18/2023]
Abstract
As the final product of glycolysis, lactate features not only as an energy substrate, a metabolite, and a signaling molecule in a variety of diseases-such as cancer, inflammation, and sepsis-but also as a regulator of protein lactylation; this is a newly proposed epigenetic modification that is considered to be crucial for energy metabolism and signaling in brain tissues under both physiological and pathological conditions. In this review, evidence on lactylation from studies on lactate metabolism and disease has been summarized, revealing the function of lactate and its receptors in the regulation of brain function and summarizing the levels of lactylation expression in various brain diseases. Finally, the function of lactate and lactylation in the brain and the potential mechanisms of intervention in brain diseases are presented and discussed, providing optimal perspectives for future research on the role of lactylation in the brain.
Collapse
|
17
|
|
Ali AA, Cairns LV, Clarke KM, Blayney JK, Lappin KM, Mills KI. Combination Therapies Targeting Apoptosis in Paediatric AML: Understanding the Molecular Mechanisms of AML Treatments Using Phosphoproteomics. Int J Mol Sci 2023;24:5717. [DOI: 10.3390/ijms24065717] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/19/2023] Open
Abstract
Paediatric acute myeloid leukaemia (AML) continues to present treatment challenges, as no “standard approach” exists to treat those young patients reliably and safely. Combination therapies could become a viable treatment option for treating young patients with AML, allowing multiple pathways to be targeted. Our in silico analysis of AML patients highlighted “cell death and survival” as an aberrant, potentially targetable pathway in paediatric AML patients. Therefore, we aimed to identify novel combination therapies to target apoptosis. Our apoptotic drug screening resulted in the identification of one potential “novel” drug pairing, comprising the Bcl-2 inhibitor ABT-737 combined with the CDK inhibitor Purvalanol-A, as well as one triple combination of ABT-737 + AKT inhibitor + SU9516, which showed significant synergism in a series of paediatric AML cell lines. Using a phosphoproteomic approach to understand the apoptotic mechanism involved, proteins related to apoptotic cell death and cell survival were represented, in agreement with further results showing differentially expressed apoptotic proteins and their phosphorylated forms among combination treatments compared to single-agent treated cells such upregulation of BAX and its phosphorylated form (Thr167), dephosphorylation of BAD (Ser 112), and downregulation of MCL-1 and its phosphorylated form (Ser159/Thr 163). Total levels of Bcl-2 were decreased but correlated with increased levels of phosphorylated Bcl-2, which was consistent with our phosphoproteomic analysis predictions. Bcl-2 phosphorylation was regulated by extracellular-signal-regulated kinase (ERK) but not PP2A phosphatase. Although the mechanism linking to Bcl-2 phosphorylation remains to be determined, our findings provide first-hand insights on potential novel combination treatments for AML.
Collapse
|
18
|
|
Yu S, Fan C, Li Y, Pei H, Tian Y, Zuo Z, Wang Z, Liu C, Zhao X, Wang Z. Network pharmacology and experimental verification to explore the anti-migraine mechanism of Yufeng Ningxin Tablet. J Ethnopharmacol 2023;310:116384. [PMID: 36924863 DOI: 10.1016/j.jep.2023.116384] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yufeng Ningxin Tablet (YNT) is a traditional Chinese medicine formula, that has been used clinically to treat migraine for many years. It is composed of one herb Pueraria lobata var. lobata (Willd.) Ohwi (Relevant Chinese name: Gegen). Previously, it has been recorded by traditional Chinese doctor that Gegen could be used as medicine to treat migraine. However, the underlying mechanism of action remains to be investigated. AIM OF THE STUDY It was to explore the effect and mechanism of YNT on migraine based on network pharmacology and experimental verification. MATERIALS AND METHODS First, with the network pharmacology, the effective chemical components and target genes of YNT were filtrated, the YNT-compound-migraine-targets network was constructed. The protein-protein interaction network (PPI) and literature reports were combined to identify potential targets of YNT in the treatment of migraine. Then, the representative compounds of YNT were characterized by LC-MS/MS and the major effect components were identified. Finally, the prediction results of network pharmacology were verified by animal and cell experiments. RESULTS 7 bioactive components of YNT could act on 97 migraine potential targets. The 5 bioactive components could be characterized comprehensively of YNT. The key therapeutic targets and pathways were collected including 5-HT, CGRP, inflammation and nociceptive factors, and NF-κB signaling pathway. Animal experiments showed that YNT could increase the expression level of 5-HT and reduce the expression of CGRP, NF-κB, c-fos and IL-1β. YNT could inhibit LPS-induced neuroinflammation by NF-κB in BV2 cells in vitro. Western blotting analysis results showed YNT inhibited the NF-κB and phospho-NF-κB levels. CONCLUSIONS It is the first time to verify the consistency between the metabolic components of YNT by LC-MS/MS and the active components predicted by network pharmacology. Meanwhile, the potential mechanism of YNT in the treatment of migraine was studied by combining network pharmacology and in vitro and in vivo experiments.
Collapse
|
19
|
|
Li X, Liu J, Qiu N. Cyclodextrin-Based Polymeric Drug Delivery Systems for Cancer Therapy. Polymers (Basel) 2023;15:1400. [DOI: 10.3390/polym15061400] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/18/2023] Open
Abstract
Cyclodextrins (CDs) are one of the most extensively studied cyclic-oligosaccharides due to their low toxicity, good biodegradability and biocompatibility, facile chemical modification, and unique inclusion capacity. However, problems such as poor pharmacokinetics, plasma membrane disruption, hemolytic effects and a lack of target specificity still exist for their applications as drug carriers. Recently, polymers have been introduced into CDs to combine the advantages of both biomaterials for the superior delivery of anticancer agents in cancer treatment. In this review, we summarize four types of CD-based polymeric carriers for the delivery of chemotherapeutics or gene agents for cancer therapy. These CD-based polymers were classified based on their structural properties. Most of the CD-based polymers were amphiphilic with the introduction of hydrophobic/hydrophilic segments and were able to form nanoassemblies. Anticancer drugs could be included in the cavity of CDs, encapsulated in the nanoparticles or conjugated on the CD-based polymers. In addition, the unique structures of CDs enable the functionalization of targeting agents and stimuli-responsive materials to realize the targeting and precise release of anticancer agents. In summary, CD-based polymers are attractive carriers for anticancer agents.
Collapse
|
20
|
|
Wang JD, Xu JQ, Long ZJ, Weng JY. Disruption of mitochondrial oxidative phosphorylation by chidamide eradicates leukemic cells in AML. Clin Transl Oncol 2023. [PMID: 36899123 DOI: 10.1007/s12094-023-03079-8] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/12/2023]
Abstract
PURPOSE Nowadays, the oxidative phosphorylation (OXPHOS) correlated with leukemogenesis and treatment response is extensive. Thus, exploration of novel approaches in disrupting OXPHOS in AML is urgently needed. MATERIALS AND METHODS Bioinformatical analysis of TCGA AML dataset was performed to identify the molecular signaling of OXPHOS. The OXPHOS level was measured through a Seahorse XFe96 cell metabolic analyzer. Flow cytometry was applied to measure mitochondrial status. Real-time qPCR and western blot were used to analyze the expression of mitochondrial or inflammatory factors. MLL-AF9-induced leukemic mice were conducted to measure the anti-leukemia effect of chidamide. RESULTS Here, we reported that AML patients with high OXPHOS level were in a poor prognosis, which was associated with high expression of HDAC1/3 (TCGA). Inhibition of HDAC1/3 by chidamide inhibited cell proliferation and induced apoptotic cell death in AML cells. Intriguingly, chidamide could disrupt mitochondrial OXPHOS as assessed by inducing mitochondrial superoxide and reducing oxygen consumption rate, as well as decreasing mitochondrial ATP production. We also observed that chidamide augmented HK1 expression, while glycolysis inhibitor 2-DG could reduce the elevation of HK1 and improve the sensitivity of AML cells exposed to chidamide. Furthermore, HDAC3 was correlated with hyperinflammatory status, while chidamide could downregulate the inflammatory signaling in AML. Notably, chidamide eradicated leukemic cells in vivo and prolonged the survival time of MLL-AF9-induced AML mice. CONCLUSION Chidamide disrupted mitochondrial OXPHOS, promoted cell apoptosis and reduced inflammation in AML cells. These findings exhibited a novel mechanism that targeting OXPHOS would be a novel strategy for AML treatment.
Collapse
|
21
|
|
Li X, Wang S, Xie Y, Jiang H, Guo J, Wang Y, Peng Z, Hu M, Wang M, Wang J, Li Q, Wang Y, Liu Z. Deacetylation induced nuclear condensation of HP1γ promotes multiple myeloma drug resistance. Nat Commun 2023;14:1290. [PMID: 36894562 DOI: 10.1038/s41467-023-37013-x] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Indexed: 03/11/2023] Open
Abstract
Acquired chemoresistance to proteasome inhibitors is a major obstacle in managing multiple myeloma but key regulators and underlying mechanisms still remain to be explored. We find that high level of HP1γ is associated with low acetylation modification in the bortezomib-resistant myeloma cells using SILAC-based acetyl-proteomics assay, and higher HP1γ level is positively correlated with poorer outcomes in the clinic. Mechanistically, elevated HDAC1 in the bortezomib-resistant myeloma cells deacetylates HP1γ at lysine 5 and consequently alleviates the ubiquitin-mediated protein degradation, as well as the aberrant DNA repair capacity. HP1γ interacts with the MDC1 to induce DNA repair, and simultaneously the deacetylation modification and the interaction with MDC1 enhance the nuclear condensation of HP1γ protein and the chromatin accessibility of its target genes governing sensitivity to proteasome inhibitors, such as CD40, FOS and JUN. Thus, targeting HP1γ stability by using HDAC1 inhibitor re-sensitizes bortezomib-resistant myeloma cells to proteasome inhibitors treatment in vitro and in vivo. Our findings elucidate a previously unrecognized role of HP1γ in inducing drug resistance to proteasome inhibitors of myeloma cells and suggest that targeting HP1γ may be efficacious for overcoming drug resistance in refractory or relapsed multiple myeloma patients.
Collapse
|
22
|
|
Chu CY, Lin CY, Lin CC, Li CF, Wu SY, Tsai JS, Yang SC, Chen CW, Lin CY, Chang CC, Yen YT, Tseng YL, Su PL, Su WC. Effect of BIM expression on the prognostic value of PD-L1 in advanced non-small cell lung cancer patients treated with EGFR-TKIs. Sci Rep 2023;13:3943. [PMID: 36894581 DOI: 10.1038/s41598-023-30565-4] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/11/2023] Open
Abstract
The role of Programmed Cell Death Ligand 1 (PD-L1) expression in predicting epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKIs) efficacy remains controversial. Recent studies have highlighted that tumor-intrinsic PD-L1 signaling can be modulated by STAT3, AKT, MET oncogenic pathway, epithelial-mesenchymal transition, or BIM expression. This study aimed to investigate whether these underlying mechanisms affect the prognostic role of PD-L1. We retrospectively enrolled patients with EGFR mutant advanced stage NSCLC who received first-line EGFR-TKI between January 2017 and June 2019, the treatment efficacy of EGFR-TKI was assessed. Kaplan-Meier analysis of progression-free survival (PFS) revealed that patients with high BIM expression had shorter PFS, regardless of PD-L1 expression. This result was also supported by the COX proportional hazard regression analysis. In vitro, we further proved that the knockdown of BIM, instead of PDL1, induced more cell apoptosis following gefitinib treatment. Our data suggest that among the pathways affecting tumor-intrinsic PD-L1 signaling, BIM is potentially the underlying mechanism that affects the role of PD-L1 expression in predicting response to EGFR TKI and mediates cell apoptosis under treatment with gefitinib in EGFR-mutant NSCLC. Further prospective studies are required to validate these results.
Collapse
|
23
|
|
Chen Y, Liu S, Wu L, Liu Y, Du J, Luo Z, Xu J, Guo L, Liu Y. Epigenetic regulation of chemokine (CC-motif) ligand 2 in inflammatory diseases. Cell Prolif 2023;:e13428. [PMID: 36872292 DOI: 10.1111/cpr.13428] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/07/2023] Open
Abstract
Appropriate responses to inflammation are conducive to pathogen elimination and tissue repair, while uncontrolled inflammatory reactions are likely to result in the damage of tissues. Chemokine (CC-motif) Ligand 2 (CCL2) is the main chemokine and activator of monocytes, macrophages, and neutrophils. CCL2 played a key role in amplifying and accelerating the inflammatory cascade and is closely related to chronic non-controllable inflammation (cirrhosis, neuropathic pain, insulin resistance, atherosclerosis, deforming arthritis, ischemic injury, cancer, etc.). The crucial regulatory roles of CCL2 may provide potential targets for the treatment of inflammatory diseases. Therefore, we presented a review of the regulatory mechanisms of CCL2. Gene expression is largely affected by the state of chromatin. Different epigenetic modifications, including DNA methylation, post-translational modification of histones, histone variants, ATP-dependent chromatin remodelling, and non-coding RNA, could affect the 'open' or 'closed' state of DNA, and then significantly affect the expression of target genes. Since most epigenetic modifications are proven to be reversible, targeting the epigenetic mechanisms of CCL2 is expected to be a promising therapeutic strategy for inflammatory diseases. This review focuses on the epigenetic regulation of CCL2 in inflammatory diseases.
Collapse
|
24
|
|
He S, Li Y, Shi X, Wang L, Cai D, Zhou J, Yu L. DNA methylation landscape reveals LIN7A as a decitabine-responsive marker in patients with t(8;21) acute myeloid leukemia. Clin Epigenetics 2023;15:37. [PMID: 36864492 DOI: 10.1186/s13148-023-01458-0] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Despite its inconsistent response rate, decitabine, a demethylating agent, is often used as a non-intensive alternative therapeutic agent for acute myeloid leukemia (AML). It has been reported that relapsed/refractory AML patients with t(8;21) translocation achieved better clinical outcomes with a decitabine-based combination regimen than other AML subtypes; however, the mechanisms underlying this phenomenon remain unknown. Herein, the DNA methylation landscape of de novo patients with the t(8;21) translocation was compared with that of patients without the translocation. Moreover, the methylation changes induced by decitabine-based combination regimens in de novo/complete remission paired samples were investigated to elucidate the mechanisms underlying the better responses observed in t(8;21) AML patients treated with decitabine. METHODS Thirty-three bone marrow samples from 28 non-M3 AML patients were subjected to DNA methylation sequencing to identify the differentially methylated regions and genes of interest. TCGA-AML Genome Atlas-AML transcriptome dataset was used to identify decitabine-sensitive genes that were downregulated following exposure to a decitabine-based regimen. In addition, the effect of decitabine-sensitive gene on cell apoptosis was examined in vitro using Kasumi-1 and SKNO-1 cells. RESULTS A total of 1377 differentially methylated regions that specifically responsive to decitabine in t(8;21) AML were identified, of which 210 showed hypomethylation patterns following decitabine treatment aligned with the promoter regions of 72 genes. And the methylation-silencing genes, LIN7A, CEBPA, BASP1, and EMB were identified as critical decitabine-sensitive genes in t(8;21) AML. Moreover, AML patients with hypermethylated LIN7A and reduced LIN7A expression had poor clinical outcomes. Meanwhile, the downregulation of LIN7A inhibited decitabine/cytarabine combination treatment-induced apoptosis in t(8;21) AML cells in vitro. CONCLUSION The findings of this study suggest that LIN7A is a decitabine-sensitive gene in t(8;21) AML patients that may serve as a prognostic biomarker for decitabine-based therapy.
Collapse
|
25
|
|
Cai J, Yang Y, Han J, Gao Y, Li X, Ge X. KDM4A, involved in the inflammatory and oxidative stress caused by traumatic brain injury-hemorrhagic shock, partly through the regulation of the microglia M1 polarization. BMC Neurosci 2023;24:17. [PMID: 36869312 DOI: 10.1186/s12868-023-00784-6] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Microglial polarization and the subsequent neuroinflammatory response and oxidative stress are contributing factors for traumatic brain injury (TBI) plus hemorrhagic shock (HS) induced brain injury. In the present work, we have explored whether Lysine (K)-specific demethylase 4 A (KDM4A) modulates microglia M1 polarization in the TBI and HS mice. RESULTS Male C57BL/6J mice were used to investigate the microglia polarization in the TBI + HS model in vivo. Lipopolysaccharide (LPS)-induced BV2 cells were used to examine the mechanism of KDM4A in regulating microglia polarization in vitro. We found that TBI + HS resulted in neuronal loss and microglia M1 polarization in vivo, reflected by the increased level of Iba1, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, malondialdehyde (MDA) and the decreased level of reduced glutathione (GSH). Additionally, KDM4A was upregulated in response to TBI + HS and microglia were among the cell types showing the increased level of KDM4A. Similar to the results in vivo, KDM4A also highly expressed in LPS-induced BV2 cells. LPS-induced BV2 cells exhibited enhanced microglia M1 polarization, and enhanced level of pro-inflammatory cytokines, oxidative stress and reactive oxygen species (ROS), while this enhancement was abolished by the suppression of KDM4A. CONCLUSION Accordingly, our findings indicated that KDM4A was upregulated in response to TBI + HS and microglia were among the cell types showing the increased level of KDM4A. The important role of KDM4A in TBI + HS-induced inflammatory response and oxidative stress was at least partially realized through regulating microglia M1 polarization.
Collapse
|
26
|
|
Wang C, Shen D, Hu Y, Chen J, Liu J, Huang Y, Yu X, Chu H, Zhang C, Yin L, Liu Y, Ma H. Selective Targeting of Class I HDAC Reduces Microglial Inflammation in the Entorhinal Cortex of Young APP/PS1 Mice. Int J Mol Sci 2023;24. [PMID: 36902234 DOI: 10.3390/ijms24054805] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/06/2023] Open
Abstract
BG45 is a class Ⅰ histone deacetylase inhibitor (HDACI) with selectivity for HDAC3. Our previous study demonstrated that BG45 can upregulate the expression of synaptic proteins and reduce the loss of neurons in the hippocampus of APPswe/PS1dE9 (APP/PS1) transgenic mice (Tg). The entorhinal cortex is a pivotal region that, along with the hippocampus, plays a critical role in memory in the Alzheimer's disease (AD) pathology process. In this study, we focused on the inflammatory changes in the entorhinal cortex of APP/PS1 mice and further explored the therapeutic effects of BG45 on the pathologies. The APP/PS1 mice were randomly divided into the transgenic group without BG45 (Tg group) and the BG45-treated groups. The BG45-treated groups were treated with BG45 at 2 months (2 m group), at 6 months (6 m group), or twice at 2 and 6 months (2 and 6 m group). The wild-type mice group (Wt group) served as the control. All mice were killed within 24 h after the last injection at 6 months. The results showed that amyloid-β (Aβ) deposition and IBA1-positive microglia and GFAP-positive astrocytes in the entorhinal cortex of the APP/PS1 mice progressively increased over time from 3 to 8 months of age. When the APP/PS1 mice were treated with BG45, the level of H3K9K14/H3 acetylation was improved and the expression of histonedeacetylase1, histonedeacetylase2, and histonedeacetylase3 was inhibited, especially in the 2 and 6 m group. BG45 alleviated Aβ deposition and reduced the phosphorylation level of tau protein. The number of IBA1-positive microglia and GFAP-positive astrocytes decreased with BG45 treatment, and the effect was more significant in the 2 and 6 m group. Meanwhile, the expression of synaptic proteins synaptophysin, postsynaptic density protein 95, and spinophilin was upregulated and the degeneration of neurons was alleviated. Moreover, BG45 reduced the gene expression of inflammatory cytokines interleukin-1β and tumor necrosis factor-α. Closely related to the CREB/BDNF/NF-kB pathway, the expression of p-CREB/CREB, BDNF, and TrkB was increased in all BG45 administered groups compared with the Tg group. However, the levels of p-NF-kB/NF-kB in the BG45 treatment groups were reduced. Therefore, we deduced that BG45 is a potential drug for AD by alleviating inflammation and regulating the CREB/BDNF/NF-kB pathway, and the early, repeated administration of BG45 can play a more effective role.
Collapse
|
27
|
|
Zhang Y, Zhao X, Guo C, Zhang Y, Zeng F, Yin Q, Li Z, Shao L, Zhou D, Liu L. The Circadian System Is Essential for the Crosstalk of VEGF-Notch-mediated Endothelial Angiogenesis in Ischemic Stroke. Neurosci Bull 2023. [PMID: 36862341 DOI: 10.1007/s12264-023-01042-9] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/03/2023] Open
Abstract
Ischemic stroke is a major public health problem worldwide. Although the circadian clock is involved in the process of ischemic stroke, the exact mechanism of the circadian clock in regulating angiogenesis after cerebral infarction remains unclear. In the present study, we determined that environmental circadian disruption (ECD) increased the stroke severity and impaired angiogenesis in the rat middle cerebral artery occlusion model, by measuring the infarct volume, neurological tests, and angiogenesis-related protein. We further report that Bmal1 plays an irreplaceable role in angiogenesis. Overexpression of Bmal1 promoted tube-forming, migration, and wound healing, and upregulated the vascular endothelial growth factor (VEGF) and Notch pathway protein levels. This promoting effect was reversed by the Notch pathway inhibitor DAPT, according to the results of angiogenesis capacity and VEGF pathway protein level. In conclusion, our study reveals the intervention of ECD in angiogenesis in ischemic stroke and further identifies the exact mechanism by which Bmal1 regulates angiogenesis through the VEGF-Notch1 pathway.
Collapse
|
28
|
|
Su S, Ding X, Hou Y, Liu B, Du Z, Liu J. Structure elucidation, immunomodulatory activity, antitumor activity and its molecular mechanism of a novel polysaccharide from Boletus reticulatus Schaeff. FOOD SCI HUM WELL 2023;12:647-661. [DOI: 10.1016/j.fshw.2022.07.067] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/28/2022] Open
|
29
|
|
Shafer D, Kagan AB, Rudek MA, Kmieciak M, Tombes MB, Shrader E, Bandyopadhyay D, Hudson D, Sankala H, Weir C, Lancet JE, Grant S. Phase 1 study of belinostat and adavosertib in patients with relapsed or refractory myeloid malignancies. Cancer Chemother Pharmacol 2023;91:281-90. [PMID: 36864346 DOI: 10.1007/s00280-023-04511-0] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/04/2023]
Abstract
PURPOSE Belinostat is an intravenous histone deacetylase inhibitor with approval for T-cell lymphomas. Adavosertib is a first in class oral Wee1 inhibitor. Preclinical studies of the combination demonstrated synergy in various human acute myeloid leukemia (AML) lines as well as AML xenograft mouse models. EXPERIMENTAL DESIGN This was a phase 1 dose-escalation study of belinostat and adavosertib in patients with relapsed/refractory AML and myelodysplastic syndrome (MDS). Patients received both drugs on days 1-5 and 8-12 of a 21-day cycle. Safety and toxicity were monitored throughout the study. Plasma levels of both drugs were measured for pharmacokinetic analysis. Response was determined by standard criteria including bone marrow biopsy. RESULTS Twenty patients were enrolled and treated at 4 dose levels. A grade 4 cytokine release syndrome at dose level 4 (adavosertib 225 mg/day; belinostat 1000 mg/m2) qualified as a dose-limiting toxicity event. The most common non-hematologic treatment-related adverse events were nausea, vomiting, diarrhea, dysgeusia, and fatigue. No responses were seen. The study was terminated prior to maximum tolerated dose/recommended phase 2 dose determination. CONCLUSIONS The combination of belinostat and adavosertib at the tested dose levels was feasible but without efficacy signals in the relapsed/refractory MDS/AML population.
Collapse
|
30
|
|
Kaur J, Mojumdar A. A mechanistic overview of spinal cord injury, oxidative DNA damage repair and neuroprotective therapies. Int J Neurosci 2023;133:307-21. [PMID: 33789065 DOI: 10.1080/00207454.2021.1912040] [Cited by in Crossref: 3] [Cited by in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/26/2023]
Abstract
Despite substantial development in medical treatment strategies scientists are struggling to find a cure against spinal cord injury (SCI) which causes long term disability and paralysis. The prime rationale behind it is the enlargement of primary lesion due to an initial trauma to the spinal cord which spreads to the neighbouring spinal tissues It begins from the time of traumatic event happened and extends to hours and even days. It further causes series of biological and functional alterations such as inflammation, excitotoxicity and ischemia, and promotes secondary lesion to the cord which worsens the life of individuals affected by SCI. Oxidative DNA damage is a stern consequence of oxidative stress linked with secondary injury causes oxidative base alterations and strand breaks, which provokes cell death in neurons. It is implausible to stop primary damage however it is credible to halt the secondary lesion and improve the quality of the patient's life to some extent. Therefore it is crucial to understand the hidden perspectives of cell and molecular biology affecting the pathophysiology of SCI. Thus the focus of the review is to connect the missing links and shed light on the oxidative DNA damages and the functional repair mechanisms, as a consequence of the injury in neurons. The review will also probe the significance of neuroprotective strategies in the present scenario. HIGHLIGHTSSpinal cord injury, a pernicious condition, causes excitotoxicity and ischemia, ultimately leading to cell death.Oxidative DNA damage is a consequence of oxidative stress linked with secondary injury, provoking cell death in neurons.Base excision repair (BER) is one of the major repair pathways that plays a crucial role in repairing oxidative DNA damages.Neuroprotective therapies curbing SCI and boosting BER include the usage of pharmacological drugs and other approaches.
Collapse
|
31
|
|
Li YN, Shi X, Sun D, Han S, Zou Y, Wang L, Yang L, Li Y, Shi Y, Guo J, O'Driscoll CM. Delivery of melarsoprol using folate-targeted PEGylated cyclodextrin-based nanoparticles for hepatocellular carcinoma. Int J Pharm 2023;636:122791. [PMID: 36863541 DOI: 10.1016/j.ijpharm.2023.122791] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, and has become one of the most lethal malignancies in the world. Although chemotherapy remains a cornerstone of cancer therapy, the number of chemotherapeutic drugs approved for HCC is low, and emerging therapeutics are needed. Melarsoprol (MEL) is an arsenic-containing drug, and has been applied in the treatment of human African trypanosomiasis at the late stage. In this study, the potential of MEL for HCC therapy was investigated for the first time using in vitro and in vivo experimental approaches. A folate-targeted polyethylene glycol-modified amphiphilic cyclodextrin nanoparticle was developed for safe, efficient and specific delivery of MEL. Consequently, the targeted nanoformulation achieved cell-specific uptake, cytotoxicity, apoptosis and migration inhibition in HCC cells. Furthermore, the targeted nanoformulation significantly prolonged the survival of mice with orthotopic tumor, without causing toxic signs. This study indicates the potential of the targeted nanoformulation as an emerging chemotherapy option for treating HCC.
Collapse
|
32
|
|
Coşkunpınar M, Erdoğdu B, Goker H. Asymptomatic unilateral phrenic nerve palsy after bortezomib treatment in a newly diagnosed multiple myeloma patient. J Oncol Pharm Pract 2023;29:502-5. [PMID: 35786085 DOI: 10.1177/10781552221112151] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Bortezomib is the first chemotherapeutic agent of proteosome inhibitor class that can be used in newly diagnosed and relapsed/refractory multiple myeloma. It is well known that bortezomib has side effects such as peripheral sensory, motor, or autonomic neuropathy. In this paper, we will present our patient who developed unilateral phrenic nerve palsy as an autonomic neuropathy after six cycles of subcutaneous bortezomib treatment. This case differs from other cases in that our patient was asymptomatic. CASE REPORT A 57-year-old male patient was admitted with back pain and gait disturbances. In the thorax computed tomography, a soft tissue mass causing compression on the spinal canal was observed in the T12 vertebra. Bone biopsy pathology report resulted in diffuse plasma cell infiltration. The patient was diagnosed with stage ISS-3, IgG kappa type multiple myeloma. MANAGEMENT AND OUTCOME Subcutaneous bortezomib 1 × 2.2 mg (Days 1-4-8-11) + intravenous cyclophosphamide 1000 mg (Day 1) + intravenous dexamethasone 40 mg (Days 1-2-3-4) (VCD chemotherapy protocol) was started. Totally six cycles of VCD were administered. While the patient did not have any respiratory symptoms, an elevation consistent with phrenic nerve palsy was observed in the left hemidiaphragm in the thorax computed tomography that was taken during the preparation for autologous hematopoietic stem cell transplantation. DISCUSSION Bortezomib is a frequently used chemotherapeutic agent in patients with multiple myeloma and care should be taken in terms of the risk of developing phrenic nerve palsy in patients. There are cases of autonomic neuropathy developing after bortezomib treatment.
Collapse
|
33
|
|
Kim U, Lee DS. Epigenetic Regulations in Mammalian Cells: Roles and Profiling Techniques. Mol Cells 2023;46:86-98. [PMID: 36859473 DOI: 10.14348/molcells.2023.0013] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 03/03/2023] Open
Abstract
The genome is almost identical in all the cells of the body. However, the functions and morphologies of each cell are different, and the factors that determine them are the genes and proteins expressed in the cells. Over the past decades, studies on epigenetic information, such as DNA methylation, histone modifications, chromatin accessibility, and chromatin conformation have shown that these properties play a fundamental role in gene regulation. Furthermore, various diseases such as cancer have been found to be associated with epigenetic mechanisms. In this study, we summarized the biological properties of epigenetics and single-cell epigenomic profiling techniques, and discussed future challenges in the field of epigenetics.
Collapse
|
34
|
|
Wen T, Geng M, Bai E, Wang X, Miao H, Chen Z, Zhou H, Wang J, Shi J, Zhang Y, Lei M, Zhu Y. KPT-330 and Y219 exert a synergistic antitumor effect in triple-negative breast cancer through inhibiting NF-κB signaling. FEBS Open Bio 2023. [PMID: 36847599 DOI: 10.1002/2211-5463.13588] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype, which has poor prognosis due to the lack of effective targeted drugs. KPT-330, an inhibitor of the nuclear export protein CRM-1, has been widely used in clinical medicine. Y219, a novel proteasome inhibitor designed by our group, shows superior efficacy, reduced toxicity, and reduced off-target effects as compared to the proteasome inhibitor bortezomib. In this study, we investigated the synergistic effect of KPT-330 and Y219 against TNBC cells, as well as the underlying mechanisms. We report that combination treatment with KPT-330 and Y219 synergistically inhibited the viability of TNBC cells in vitro and in vivo. Further analysis revealed that the combined use of KPT-330 and Y219 induced G2-M phase arrest and apoptosis in TNBC cells, and attenuated nuclear factor kappa B (NF-κB) signaling by facilitating nuclear localization of IκB-α. Collectively, these results suggest that the combined use of KPT-330 and Y219 may be an effective therapeutic strategy for the treatment of TNBC.
Collapse
|
35
|
|
Mlejnek P. What Is the Significance of Lysosomal-Mediated Resistance to Imatinib? Cells 2023;12. [PMID: 36899844 DOI: 10.3390/cells12050709] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/25/2023] Open
Abstract
The lysosomal sequestration of hydrophobic weak-base anticancer drugs is one proposed mechanism for the reduced availability of these drugs at target sites, resulting in a marked decrease in cytotoxicity and consequent resistance. While this subject is receiving increasing emphasis, it is so far only in laboratory experiments. Imatinib is a targeted anticancer drug used to treat chronic myeloid leukaemia (CML), gastrointestinal stromal tumours (GISTs), and a number of other malignancies. Its physicochemical properties make it a typical hydrophobic weak-base drug that accumulates in the lysosomes of tumour cells. Further laboratory studies suggest that this might significantly reduce its antitumor efficacy. However, a detailed analysis of published laboratory studies shows that lysosomal accumulation cannot be considered a clearly proven mechanism of resistance to imatinib. Second, more than 20 years of clinical experience with imatinib has revealed a number of resistance mechanisms, none of which is related to its accumulation in lysosomes. This review focuses on the analysis of salient evidence and raises a fundamental question about the significance of lysosomal sequestration of weak-base drugs in general as a possible resistance mechanism both in clinical and laboratory settings.
Collapse
|
36
|
|
Zhang Y, Wang RR, Liu R, Xie SY, Jiao F, Li YJ, Xin J, Zhang H, Wang Z, Yan YF. Delivery of miR-3529-3p using MnO(2) -SiO(2) -APTES nanoparticles combined with phototherapy suppresses lung adenocarcinoma progression by targeting HIGD1A. Thorac Cancer 2023. [PMID: 36808485 DOI: 10.1111/1759-7714.14823] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND The present study aimed to investigate the function of miR-3529-3p in lung adenocarcinoma and MnO2 -SiO2 -APTES (MSA) as a promising multifunctional delivery agent for lung adenocarcinoma therapy. METHODS Expression levels of miR-3529-3p were evaluated in lung carcinoma cells and tissues by qRT-PCR. The effects of miR-3529-3p on apoptosis, proliferation, metastasis and neovascularization were assessed by CCK-8, FACS, transwell and wound healing assays, tube formation and xenografts experiments. Luciferase reporter assays, western blot, qRT-PCR and mitochondrial complex assay were used to determine the targeting relationship between miR-3529-3p and hypoxia-inducible gene domain family member 1A (HIGD1A). MSA was fabricated using MnO2 nanoflowers, and its heating curves, temperature curves, IC50, and delivery efficiency were examined. The hypoxia and reactive oxygen species (ROS) production was investigated by nitro reductase probing, DCFH-DA staining and FACS. RESULTS MiR-3529-3p expression was reduced in lung carcinoma tissues and cells. Transfection of miR-3529-3p could promote apoptosis and suppress cell proliferation, migration and angiogenesis. As a target of miR-3529-3p, HIGD1A expression was downregulated, through which miR-3529-3p could disrupt the activities of complexes III and IV of the respiratory chain. The multifunctional nanoparticle MSA could not only efficiently deliver miR-3529-3p into cells, but also enhance the antitumor function of miR-3529-3p. The underlying mechanism may be that MSA alleviates hypoxia and has synergistic effects in cellular ROS promotion with miR-3529-3p. CONCLUSIONS Our results establish the antioncogenic role of miR-3529-3p, and demonstrate that miR-3529-3p delivered by MSA has enhanced tumor suppressive effects, probably through elevating ROS production and thermogenesis.
Collapse
|
37
|
|
Quiñonero F, Mesas C, Peña M, Cabeza L, Perazzoli G, Melguizo C, Ortiz R, Prados J. Vegetal-Derived Bioactive Compounds as Multidrug Resistance Modulators in Colorectal Cancer. Appl Sci (Basel) 2023;13:2667. [DOI: 10.3390/app13042667] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/22/2023] Open
Abstract
Colorectal cancer is one of the leading causes of morbidity and mortality today. Knowledge of its pathogenesis has made it possible to advance the development of different therapeutic strategies. However, the appearance of drug resistance constitutes one of the main causes of treatment failure. Bioactive compounds of vegetable origin are being studied as a new strategy to improve antitumor treatment, due to their ability to regulate the pathways involved in the development of carcinogenesis or processes that are decisive in its evolution, including multidrug resistance. In vitro and in vivo studies of these substances in combination with cytotoxic drugs have shown that they reduce resistance and increase therapeutic efficacy. The objective of this review is to summarize the knowledge that is described in the scientific literature on the antitumor and chemo-sensitizing capacity of vegetable-derived biomolecules such as polyphenols, flavonoids, and terpenes. These compounds may hold a promising future in improving the treatment of colorectal cancer.
Collapse
|
38
|
|
Zhu Y, Wang Z, Li Y, Peng H, Liu J, Zhang J, Xiao X. The Role of CREBBP/EP300 and Its Therapeutic Implications in Hematological Malignancies. Cancers (Basel) 2023;15. [PMID: 36831561 DOI: 10.3390/cancers15041219] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/17/2023] Open
Abstract
Disordered histone acetylation has emerged as a key mechanism in promoting hematological malignancies. CREB-binding protein (CREBBP) and E1A-binding protein P300 (EP300) are two key acetyltransferases and transcriptional cofactors that regulate gene expression by regulating the acetylation levels of histone proteins and non-histone proteins. CREBBP/EP300 dysregulation and CREBBP/EP300-containing complexes are critical for the initiation, progression, and chemoresistance of hematological malignancies. CREBBP/EP300 also participate in tumor immune responses by regulating the differentiation and function of multiple immune cells. Currently, CREBBP/EP300 are attractive targets for drug development and are increasingly used as favorable tools in preclinical studies of hematological malignancies. In this review, we summarize the role of CREBBP/EP300 in normal hematopoiesis and highlight the pathogenic mechanisms of CREBBP/EP300 in hematological malignancies. Moreover, the research basis and potential future therapeutic implications of related inhibitors were also discussed from several aspects. This review represents an in-depth insight into the physiological and pathological significance of CREBBP/EP300 in hematology.
Collapse
|
39
|
|
Su B, Lim D, Qi C, Zhang Z, Wang J, Zhang F, Dong C, Feng Z. VPA mediates bidirectional regulation of cell cycle progression through the PPP2R2A-Chk1 signaling axis in response to HU. Cell Death Dis 2023;14:114. [PMID: 36781846 DOI: 10.1038/s41419-023-05649-8] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/15/2023]
Abstract
Cell cycle checkpoint kinases play a pivotal role in protecting against replicative stress. In this study, valproic acid (VPA), a histone deacetylase inhibitor (HDACi), was found to promote breast cancer MCF-7 cells to traverse into G2/M phase for catastrophic injury by promoting PPP2R2A (the B-regulatory subunit of Phosphatase PP2A) to facilitate the dephosphorylation of Chk1 at Ser317 and Ser345. By contrast, VPA protected normal 16HBE cells from HU toxicity through decreasing PPP2R2A expression and increasing Chk1 phosphorylation. The effect of VPA on PPP2R2A was at the post-transcription level through HDAC1/2. The in vitro results were affirmed in vivo. Patients with lower PPP2R2A expression and higher pChk1 expression showed significantly worse survival. PPP2R2A D197 and N181 are essential for PPP2R2A-Chk1 signaling and VPA-mediated bidirectional effect on augmenting HU-induced tumor cell death and protecting normal cells.
Collapse
|
40
|
|
Cui J, Zhang S, Cheng S, Shen H. Current and future outlook of loaded components in hydrogel composites for the treatment of chronic diabetic ulcers. Front Bioeng Biotechnol 2023;11:1077490. [PMID: 36860881 DOI: 10.3389/fbioe.2023.1077490] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/16/2023] Open
Abstract
Due to recalcitrant microangiopathy and chronic infection, traditional treatments do not easily produce satisfactory results for chronic diabetic ulcers. In recent years, due to the advantages of high biocompatibility and modifiability, an increasing number of hydrogel materials have been applied to the treatment of chronic wounds in diabetic patients. Research on composite hydrogels has received increasing attention since loading different components can greatly increase the ability of composite hydrogels to treat chronic diabetic wounds. This review summarizes and details a variety of newly loaded components currently used in hydrogel composites for the treatment of chronic diabetic ulcers, such as polymer/polysaccharides/organic chemicals, stem cells/exosomes/progenitor cells, chelating agents/metal ions, plant extracts, proteins (cytokines/peptides/enzymes) and nucleoside products, and medicines/drugs, to help researchers understand the characteristics of these components in the treatment of diabetic chronic wounds. This review also discusses a number of components that have not yet been applied but have the potential to be loaded into hydrogels, all of which play roles in the biomedical field and may become important loading components in the future. This review provides a "loading component shelf" for researchers of composite hydrogels and a theoretical basis for the future construction of "all-in-one" hydrogels.
Collapse
|
41
|
|
Abe K, Ikeda S, Nara M, Kitadate A, Tagawa H, Takahashi N. Hypoxia-induced oxidative stress promotes therapy resistance via upregulation of heme oxygenase-1 in multiple myeloma. Cancer Med 2023. [PMID: 36775962 DOI: 10.1002/cam4.5679] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematopoietic malignancy for which proteasome inhibitors have become available in recent years. However, many patients develop resistance to these drugs during treatment. Therefore, it is important to elucidate the mechanisms underlying resistance acquisition by proteasome inhibitors. Side population (SP) cells, which have a high drug efflux capacity and hypoxic responses in the microenvironment have both provided important insights into drug resistance in MM; however, little is known about the characteristics of SP cells in hypoxic microenvironments. METHODS We performed cDNA microarray analysis for SP and non-SP obtained from RPMI-8226 and KMS-11 cell lines cultured for 48 h in normoxic and hypoxic conditions (1% O2 ). Genes specifically upregulated in hypoxic SP were examined. RESULTS Our comprehensive gene expression analysis identified HMOX1, BACH2, and DUX4 as protein-coding genes that are specifically highly expressed in SP cells under hypoxic conditions. We have shown that HMOX1/heme oxygenase-1 (HMOX1/HO-1) is induced by hypoxia-inducible reactive oxygen species (ROS) and reduces ROS levels. Furthermore, we found that HMOX1 contributes to hypoxia-induced resistance to proteasome inhibitors in vitro and in vivo. Excessive ROS levels synergistically enhance bortezomib sensitivity. In clinical datasets, HMOX1 had a strong and significantly positive correlation with MAFB but not MAF. Interestingly, hypoxic stimulation increased MAFB/MafB expression in myeloma cells; in addition, the knockdown of MAFB under hypoxic conditions suppressed HMOX1 expression. CONCLUSION These results suggest that the hypoxia-ROS-HMOX1 axis and hypoxia-induced MafB may be important mechanisms of proteasome inhibitor resistance in hypoxic microenvironments.
Collapse
|
42
|
|
Castro-Muñoz LJ, Ulloa EV, Sahlgren C, Lizano M, De La Cruz-Hernández E, Contreras-Paredes A. Modulating epigenetic modifications for cancer therapy (Review). Oncol Rep 2023;49:59. [PMID: 36799181 DOI: 10.3892/or.2023.8496] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/12/2023] Open
Abstract
Cancer is a global public health concern. Alterations in epigenetic processes are among the earliest genomic aberrations occurring during cancer development and are closely related to progression. Unlike genetic mutations, aberrations in epigenetic processes are reversible, which opens the possibility for novel pharmacological treatments. Non‑coding RNAs (ncRNAs) represent an essential epigenetic mechanism, and emerging evidence links ncRNAs to carcinogenesis. Epigenetic drugs (epidrugs) are a group of promising target therapies for cancer treatment acting as coadjuvants to reverse drug resistance in cancer. The present review describes central epigenetic aberrations during malignant transformation and explains how epidrugs target DNA methylation, histone modifications and ncRNAs. Furthermore, clinical trials focused on evaluating the effect of these epidrugs alone or in combination with other anticancer therapies and other ncRNA‑based therapies are discussed. The use of epidrugs promises to be an effective tool for reversing drug resistance in some patients with cancer.
Collapse
|
43
|
|
Paul-Traversaz M, Umehara K, Watanabe K, Rachidi W, Sève M, Souard F. Kampo herbal ointments for skin wound healing. Front Pharmacol 2023;14:1116260. [PMID: 36860294 DOI: 10.3389/fphar.2023.1116260] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/12/2023] Open
Abstract
The management of skin wound healing problems is a public health issue in which traditional herbal medicines could play a determining role. Kampo medicine, with three traditionally used ointments, provides interesting solutions for these dermatological issues. These ointments named Shiunkō, Chuōkō, and Shinsen taitsukō all have in common a lipophilic base of sesame oil and beeswax from which herbal crude drugs are extracted according to several possible manufacturing protocols. This review article brings together existing data on metabolites involved in the complex wound healing process. Among them are representatives of the botanical genera Angelica, Lithospermum, Curcuma, Phellodendron, Paeonia, Rheum, Rehmannia, Scrophularia, or Cinnamomum. Kampo provides numerous metabolites of interest, whose content in crude drugs is very sensitive to different biotic and abiotic factors and to the different extraction protocols used for these ointments. If Kampo medicine is known for its singular standardization, ointments are not well known, and research on these lipophilic formulas has not been developed due to the analytical difficulties encountered in biological and metabolomic analysis. Further research considering the complexities of these unique herbal ointments could contribute to a rationalization of Kampo's therapeutic uses for wound healing.
Collapse
|
44
|
|
Zhang J, Shi F, Liu X, Wu X, Hu C, Guo J, Yang Q, Xia J, He Y, An G, Qiu L, Feng X, Zhou W. Proline promotes proliferation and drug resistance of multiple myeloma by downregulation of proline dehydrogenase. Br J Haematol 2023. [PMID: 36755409 DOI: 10.1111/bjh.18684] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/10/2023]
Abstract
Amino acids in the bone marrow microenvironment (BMME) are a critical factor for multiple myeloma (MM) progression. Here, we have determined that proline is elevated in BMME of MM patients and links to poor prognosis in MM. Moreover, exogenous proline regulates MM cell proliferation and drug resistance. Elevated proline in BMME is due to bone collagen degradation and abnormal expression of the key enzyme of proline catabolism, proline dehydrogenase (PRODH). PRODH is downregulated in MM patients, mainly as a result of promoter hypermethylation with high expression of DNMT3b. Thus, overexpression of PRODH suppresses cell proliferation and drug resistance of MM and exhibits therapeutic potential for treatment of MM. Altogether, we identify proline as a key metabolic regulator of MM, unveil PRODH governing MM progression and provide a promising therapeutic strategy for MM treatment.
Collapse
|
45
|
|
Urwanisch L, Unger MS, Sieberer H, Dang HH, Neuper T, Regl C, Vetter J, Schaller S, Winkler SM, Kerschbamer E, Weichenberger CX, Krenn PW, Luciano M, Pleyer L, Greil R, Huber CG, Aberger F, Horejs-Hoeck J. The Class IIA Histone Deacetylase (HDAC) Inhibitor TMP269 Downregulates Ribosomal Proteins and Has Anti-Proliferative and Pro-Apoptotic Effects on AML Cells. Cancers (Basel) 2023;15. [PMID: 36831382 DOI: 10.3390/cancers15041039] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/10/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by altered myeloid progenitor cell proliferation and differentiation. As in many other cancers, epigenetic transcriptional repressors such as histone deacetylases (HDACs) are dysregulated in AML. Here, we investigated (1) HDAC gene expression in AML patients and in different AML cell lines and (2) the effect of treating AML cells with the specific class IIA HDAC inhibitor TMP269, by applying proteomic and comparative bioinformatic analyses. We also analyzed cell proliferation, apoptosis, and the cell-killing capacities of TMP269 in combination with venetoclax compared to azacitidine plus venetoclax, by flow cytometry. Our results demonstrate significantly overexpressed class I and class II HDAC genes in AML patients, a phenotype which is conserved in AML cell lines. In AML MOLM-13 cells, TMP269 treatment downregulated a set of ribosomal proteins which are overexpressed in AML patients at the transcriptional level. TMP269 showed anti-proliferative effects and induced additive apoptotic effects in combination with venetoclax. We conclude that TMP269 exerts anti-leukemic activity when combined with venetoclax and has potential as a therapeutic drug in AML.
Collapse
|
46
|
|
Muselli F, Mourgues L, Rochet N, Nebout M, Guerci A, Verhoeyen E, Krug A, Legros L, Peyron JF, Mary D. Repurposing the Bis-Biguanide Alexidine in Combination with Tyrosine Kinase Inhibitors to Eliminate Leukemic Stem/Progenitor Cells in Chronic Myeloid Leukemia. Cancers (Basel) 2023;15. [PMID: 36765952 DOI: 10.3390/cancers15030995] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND & AIMS In CML, Leukemic Stem Cells (LSCs) that are insensitive to Tyrosine Kinase Inhibitors are responsible for leukemia maintenance and relapses upon TKI treatment arrest. We previously showed that downregulation of the BMI1 polycomb protein that is crucial for stem/progenitor cells self-renewal induced a CCNG2/dependent proliferation arrest leading to elimination of Chronic Myeloid Leukemia (CML) cells. Unfortunately, as of today, pharmacological inhibition of BMI1 has not made its way to the clinic. METHODS We used the Connectivity Map bioinformatic database to identify pharmacological molecules that could mimick BMI1 silencing, to induce CML cell death. We selected the bis-biguanide Alexidin (ALX) that produced a transcriptomic profile positively correlating with the one obtained after BMI silencing in K562 CML cells. We then evaluated the efficiency of ALX in combination with TKI on CML cells. RESULTS Here we report that cell growth and clonogenic activity of K562 and LAMA-84 CML cell lines were strongly inhibited by ALX. ALX didn't modify BCR::ABL1 phosphorylation and didn't affect BMI1 expression but was able to increase CCNG2 expression leading to autophagic processes that preceed cell death. Besides, ALX could enhance the apoptotic response induced by any Tyrosine Kinase Inhibitors (TKI) of the three generations. We also noted a strong synergism between ALX and TKIs to increase expression of caspase-9 and caspase-3 and induce PARP cleavage, Bad expression and significantly decreased Bcl-xL family member expression. We also observed that the blockage of the mitochondrial respiratory chain by ALX can be associated with inhibition of glycolysis by 2-DG to achieve an enhanced inhibition of K562 proliferation and clonogenicity. ALX specifically affected the differentiation of BCR::ABL1-transduced healthy CD34+ cells but not of mock-infected healthy CD34+ control cells. Importantly, ALX strongly synergized with TKIs to inhibit clonogenicity of primary CML CD34+ cells from diagnosed patients. Long Term Culture of Initiating Cell (LTC-IC) and dilution of the fluorescent marker CFSE allowed us to observe that ALX and Imatinib (IM) partially reduced the number of LSCs by themselves but that the ALX/IM combination drastically reduced this cell compartment. Using an in vivo model of NSG mice intravenously injected with K562-Luciferase transduced CML cells, we showed that ALX combined with IM improved mice survival. CONCLUSIONS Collectively, our results validate the use of ALX bis-biguanide to potentiate the action of conventional TKI treatment as a potential new therapeutic solution to eradicate CML LSCs.
Collapse
|
47
|
|
Hu X, Li L, Nkwocha J, Sharma K, Zhou L, Grant S. Synergistic Interactions between the Hypomethylating Agent Thio-Deoxycytidine and Venetoclax in Myelodysplastic Syndrome Cells. Hematol Rep 2023;15:91-100. [PMID: 36810553 DOI: 10.3390/hematolrep15010010] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/05/2023] Open
Abstract
Interactions between the novel hypomethylating agent (HMA) thio-deoxycytidine (T-dCyd) and the BCL-2 antagonist ABT-199 (venetoclax) have been examined in human myelodysplastic syndrome (MDS) cells. The cells were exposed to agents alone or in combination, after which apoptosis was assessed, and a Western blot analysis was performed. Co-administration of T-dCyd and ABT-199 was associated with the down-regulation of DNA methyltransferase 1 (DNMT1) and synergistic interactions documented by a Median Dose Effect analysis in multiple MDS-derived lines (e.g., MOLM-13, SKM-1, and F-36P). Inducible BCL-2 knock-down significantly increased T-dCyd's lethality in MOLM-13 cells. Similar interactions were observed in the primary MDS cells, but not in the normal cord blood CD34+ cells. Enhanced killing by the T-dCyd/ABT-199 regimen was associated with increased reactive oxygen species (ROS) generation and the down-regulation of the anti-oxidant proteins Nrf2 and HO-1, as well as BCL-2. Moreover, ROS scavengers (e.g., NAC) reduced lethality. Collectively, these data suggest that combining T-dCyd with ABT-199 kills MDS cells through an ROS-dependent mechanism, and we argue that this strategy warrants consideration in MDS therapy.
Collapse
|
48
|
|
Deng M, Wang P, Long X, Xu G, Wang C, Li J, Zhou Y, Liu T. Design, Synthesis, and Biological Evaluation of 2-Aminothiazole Derivatives as Novel Checkpoint Kinase 1 (CHK1) Inhibitors. ChemMedChem 2023;:e202200664. [PMID: 36732891 DOI: 10.1002/cmdc.202200664] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/04/2023]
Abstract
A series of 2-aminothiazole derivatives were designed, synthesized on the basis of bioisosterism strategy and evaluated for their CHK1 inhibitory activity. Most of them exhibited potent CHK1 inhibition, and excellent antiproliferative activity against MV-4-11 and Z-138 cell lines. Systematic structure-activity relationship (SAR) efforts led to the discovery of a promising compound 8 n, which showed potent CHK1 inhibitory activity with IC50 value of 4.25±0.10 nM, excellent antiproliferative activity against MV-4-11 and Z-138 cells with IC50 value of 42.10±5.77 nM and 24.16±6.67 nM, respectively, as well as moderate oral exposure (AUC(0-t) =1076.25 h ⋅ ng/mL) in mice. Additionally, treatment of MV-4-11 cells with compound 8 n for 2 h led to robust inhibition of CHK1 autophosphorylation on serine 296. Furthermore, kinase selectivity assay revealed that 8 n displayed acceptable selectivity toward 15 kinases. These results demonstrated that compound 8 n may be a promising potential anticancer agent for further development.
Collapse
|
49
|
|
Cappelli LV, Fiore D, Phillip JM, Yoffe L, Di Giacomo F, Chiu W, Hu Y, Kayembe C, Ginsberg M, Consolino L, Barcia Duran JG, Zamponi N, Melnick AM, Boccalatte F, Tam W, Elemento O, Chiaretti S, Guarini A, Foà R, Cerchietti L, Rafii S, Inghirami G. Endothelial cell-leukemia interactions remodel drug responses, uncovering T-ALL vulnerabilities. Blood 2023;141:503-18. [PMID: 35981563 DOI: 10.1182/blood.2022015414] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and often incurable disease. To uncover therapeutic vulnerabilities, we first developed T-ALL patient-derived tumor xenografts (PDXs) and exposed PDX cells to a library of 433 clinical-stage compounds in vitro. We identified 39 broadly active drugs with antileukemia activity. Because endothelial cells (ECs) can alter drug responses in T-ALL, we developed an EC/T-ALL coculture system. We found that ECs provide protumorigenic signals and mitigate drug responses in T-ALL PDXs. Whereas ECs broadly rescued several compounds in most models, for some drugs the rescue was restricted to individual PDXs, suggesting unique crosstalk interactions and/or intrinsic tumor features. Mechanistically, cocultured T-ALL cells and ECs underwent bidirectional transcriptomic changes at the single-cell level, highlighting distinct "education signatures." These changes were linked to bidirectional regulation of multiple pathways in T-ALL cells as well as in ECs. Remarkably, in vitro EC-educated T-ALL cells transcriptionally mirrored ex vivo splenic T-ALL at single-cell resolution. Last, 5 effective drugs from the 2 drug screenings were tested in vivo and shown to effectively delay tumor growth and dissemination thus prolonging overall survival. In sum, we developed a T-ALL/EC platform that elucidated leukemia-microenvironment interactions and identified effective compounds and therapeutic vulnerabilities.
Collapse
|
50
|
|
Kang C, Ju S, Kim J, Jung Y. Chloroquine prevents hypoxic accumulation of HIF-1α by inhibiting ATR kinase: implication in chloroquine-mediated chemosensitization of colon carcinoma cells under hypoxia. Pharmacol Rep 2023;75:211-21. [PMID: 36508076 DOI: 10.1007/s43440-022-00441-5] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chloroquine (CQ) is an effective and safe antimalarial drug that is also used as a disease-modifying antirheumatic drug. Recent studies have shown that CQ can sensitize cancer cells to anti-cancer therapies. METHODS In this study, we investigated the molecular mechanisms underlying CQ-mediated chemosensitization in human colon carcinoma cells. RESULTS CQ prevented hypoxia-inducible factor (HIF)-1α protein induction in human colon carcinoma cells. CQ also suppressed HIF-1 activity, as represented by CQ inhibition of HIF-1-dependent luciferase activity and reduced induction of vascular endothelial growth factor. Under hypoxia, CQ restricted HIF-1α synthesis but did not affect HIF-1α transcription and protein stability. The hypoxic state activated ataxia telangiectasia and Rad3-related (ATR) kinase and increased the level of phosphorylated checkpoint kinase 1, a substrate of ATR kinase; however, this was prevented by CQ. An ATR kinase inhibitor suppressed the hypoxic induction of HIF-1α protein and was as effective as CQ. The cytotoxicity of 5-fluorouracil (5-FU), the first choice for the treatment of colorectal cancer, was attenuated under hypoxia. CQ enhanced the cytotoxicity of 5-FU treatment, which was mimicked by the transient transfection with HIF-1α siRNA. CONCLUSIONS Under hypoxia, CQ-mediated sensitization of colon carcinoma HCT116 cells to 5-FU involves HIF-1 inhibition via ATR kinase suppression.
Collapse
|