1
|
|
Liu R, Zhong L, Wang C, Sun Y, Ru W, Dai W, Yang S, Zhong A, Xie X, Chen X, Li S. MiR-3646 accelerates inflammatory response of Ang II-induced hVSMCs via CYP2J2/EETs axis in hypertension model. Clin Exp Hypertens 2023; 45:2166948. [PMID: 36751048 DOI: 10.1080/10641963.2023.2166948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Inflammatory response of human vascular smooth muscle cells (hVSMCs) is a driving factor in hypertension progression. It has been reported that miR-3646 was significantly up-regulated in serum samples from patients with coronary artery disease and acute myocardial infarction mice. However, its role and underlying molecular mechanism related to inflammatory response of angiotensin II (Ang II)-induced hVSMCs remain unclear. OBJECTIVE We aimed to explore the potential molecular mechanisms related to inflammatory response of angiotensin II (Ang II)-induced hVSMCs. METHODS Ang II-induced hypertension model was established after hVSMCs treated with 1 μM Ang II at 24 h. The interaction between microRNA 3646 (miR-3646) and cytochrome P450 2J2 (CYP2J2) was assessed by dual-luciferase reporter gene assay. MTS assay, Lipid Peroxidation MDA Assay Kit, ELISA, Western blot, and qRT-PCR were performed to examine viability, malondialdehyde (MDA) level, inflammatory cytokine levels, and the level of genes and proteins. RESULTS Our findings illustrated that miR-3646 was up-regulated but CYP2J2 was down-regulated in Ang II-induced hVSMCs. Mechanically, miR-3646 negatively targeted to CYP2J2 in Ang II-induced hVSMCs. These findings indicated that miR-3646 regulated inflammatory response of Ang II-induced hVSMCs via targeting CYP2J2. Moreover, functional researches showed that CYP2J2 overexpression alleviated inflammatory response of Ang II-induced hVSMCs via epoxyeicosatrienoic acids/peroxisome proliferator-activated receptor-γ (EETs/PPARγ) axis, and miR-3646 aggravated inflammatory response of Ang II-induced hVSMCs via mediating CYP2J2/EETs axis. CONCLUSION MiR-3646 accelerated inflammatory response of Ang II-induced hVSMCs via CYP2J2/EETs axis. Our findings illustrated the specific molecular mechanism of miR-3646 regulating hypertension.
Collapse
Affiliation(s)
- Runzhi Liu
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Liying Zhong
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Cong Wang
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Yehai Sun
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Wunjuan Ru
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Wei Dai
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Shengnan Yang
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Aimin Zhong
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - XiuMei Xie
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - XiaoBin Chen
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Shundong Li
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| |
Collapse
|
2
|
|
Liang Y, Zhong Q, Ma R, Ni Z, Thakur K, Zhang J, Wei Z. Apigenin, a natural flavonoid, promotes autophagy and ferroptosis in human endometrial carcinoma Ishikawa cells in vitro and in vivo. Food Science and Human Wellness 2023; 12:2242-2251. [DOI: 10.1016/j.fshw.2023.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
3
|
|
Nepal A, Tran HDN, Nguyen NT, Ta HT. Advances in haemostatic sponges: Characteristics and the underlying mechanisms for rapid haemostasis. Bioact Mater 2023; 27:231-56. [PMID: 37122895 DOI: 10.1016/j.bioactmat.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
In traumatized patients, the primary cause of mortality is uncontrollable continuous bleeding and unexpected intraoperative bleeding which is likely to increase the risk of complications and surgical failure. High expansion sponges are effective clinical practice for the treatment of wound bleeding (irregular/deep/narrow) that are caused by capillaries, veins and even arterioles as they possess a high liquid absorption ratio so can absorb blood platelets easily in comparison with traditional haemostasis treatments, which involve compression, ligation, or electrical coagulation etc. When in contact with blood, haemostatic sponges can cause platelet adhesion, aggregation, and thrombosis, preventing blood from flowing out from wounds, triggering the release of coagulation factors, causing the blood to form a stable polymerized fibre protein, forming blood clots, and achieving the goal of wound bleeding control. Haemostatic sponges are found in a variety of shapes and sizes. The aim of this review is to facilitate an overview of recent research around haemostatic sponge materials, products, and technology. This paper reviews the synthesis, properties, and characteristics of haemostatic sponges, together with the haemostasis mechanisms of haemostatic sponges (composite materials), such as chitosan, cellulose, gelatin, starch, graphene oxide, hyaluronic acid, alginate, polyethylene glycol, silk fibroin, synthetic polymers silver nanoparticles, zinc oxide nanoparticles, mesoporous silica nanoparticles, and silica nanoparticles. Also, this paper reviews commercial sponges and their properties. In addition to this, we discuss various in-vitro/in-vivo approaches for the evaluation of the effect of sponges on haemostasis.
Collapse
Affiliation(s)
- Akriti Nepal
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Huong D.N. Tran
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Nam-Trung Nguyen
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hang Thu Ta
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Corresponding author. Bioscience Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia..
| |
Collapse
|
4
|
|
Liao J, Li X, Fan Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioact Mater 2023; 26:387-412. [PMID: 36969107 DOI: 10.1016/j.bioactmat.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Postoperative adhesion (POA) widely occurs in soft tissues and usually leads to chronic pain, dysfunction of adjacent organs and some acute complications, seriously reducing patients' quality of life and even being life-threatening. Except for adhesiolysis, there are few effective methods to release existing adhesion. However, it requires a second operation and inpatient care and usually triggers recurrent adhesion in a great incidence. Hence, preventing POA formation has been regarded as the most effective clinical strategy. Biomaterials have attracted great attention in preventing POA because they can act as both barriers and drug carriers. Nevertheless, even though much reported research has been demonstrated their efficacy on POA inhibition to a certain extent, thoroughly preventing POA formation is still challenging. Meanwhile, most biomaterials for POA prevention were designed based on limited experiences, not a solid theoretical basis, showing blindness. Hence, we aimed to provide guidance for designing anti-adhesion materials applied in different soft tissues based on the mechanisms of POA occurrence and development. We first classified the postoperative adhesions into four categories according to the different components of diverse adhesion tissues, and named them as "membranous adhesion", "vascular adhesion", "adhesive adhesion" and "scarred adhesion", respectively. Then, the process of the occurrence and development of POA were analyzed, and the main influencing factors in different stages were clarified. Further, we proposed seven strategies for POA prevention by using biomaterials according to these influencing factors. Meanwhile, the relevant practices were summarized according to the corresponding strategies and the future perspectives were analyzed.
Collapse
|
5
|
|
Zhou S, Sun H, Dong J, Lu P, Deng L, Liu Y, Yang M, Huo D, Hou C. Highly sensitive and facile microRNA detection based on target triggered exponential rolling-circle amplification coupling with CRISPR/Cas12a. Anal Chim Acta 2023; 1265:341278. [PMID: 37230569 DOI: 10.1016/j.aca.2023.341278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
MicroRNAs (miRNAs) play a crucial role in the regulation of gene expression and have been implicated in many diseases. Herein, we develop a target triggered exponential rolling-circle amplification coupling with CRISPR/Cas12a (T-ERCA/Cas12a) system, which can achieve the ultrasensitive detection with simple operation and no annealing procedure. In this assay, T-ERCA combines the exponential amplification with rolling-circle amplification by introducing a dumb-bell probe with two enzyme recognition sites. miRNA-155 targets are activators that trigger exponential rolling circle amplification to produce large amounts of ssDNA, which is then recognized by CRISPR/Cas12a for further amplification. Compared with single EXPAR or RCA combined with CRISPR/Cas12a, this assay shows higher amplification efficiency. Therefore, benefiting from the excellent amplification effect of T-ERCA and the high recognition specificity of CRISPR/Cas12a, the proposed strategy shows a wide detection range from 1 fM to 5 nM with a LOD (limit of detection) down to 0.31 fM. Moreover, it shows good application ability for assessing miRNA levels in different cells, indicating that the T-ERCA/Cas12a may provide a new guidance for molecular diagnosis and clinical practical application.
Collapse
Affiliation(s)
- Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
| | - Human Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Peng Lu
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China
| | - Liyuan Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yin Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
6
|
|
Hu Y, Liu T, Zheng G, Zhou L, Ma K, Xiong X, Zheng C, Li J, Zhu Y, Bian W, Zheng X, Xiong Q, Lin J. Mechanism exploration of 6-Gingerol in the treatment of atherosclerosis based on network pharmacology, molecular docking and experimental validation. Phytomedicine 2023; 115:154835. [PMID: 37121058 DOI: 10.1016/j.phymed.2023.154835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND The 6-Gingerol has significant anti-inflammatory, anti-oxidative and hypolipidemic activities and is widely used for treating cardiac-cerebral vascular diseases. However, the multi-target mechanism of 6-Gingerol in the treatment of atherosclerosis remains to be elucidated. METHODS Firstly, the therapeutic actions of 6-Gingerol anti-atherosclerosis were researched based on an atherosclerotic ApoE-deficient mice model induced by high-fat feed. Then, network pharmacology and molecular docking were employed to reveal the anti-atherogenic mechanism of 6-Gingerol. Finally, the target for these predictions was validated by target protein expression assay in vitro and in vivo experiments and further correlation analysis. RESULTS Firstly, 6-Gingerol possessed obvious anti-atherogenic activity, which was manifested by a significant reduction in the plaque area, decrease in the atherosclerosis index and vulnerability index. Secondly, based on network pharmacology, 14 predicted intersection target genes between the targets of 6-Gingerol and atherogenic-related targets were identified. The key core targets of 6-Gingerol anti-atherosclerosis were found to be TP53, RELA, BAX, BCL2, and CASP3. Lipid and atherosclerosis pathways might play a critical role in 6-Gingerol anti-atherosclerosis. Molecular docking results also further revealed that the 6-Gingerol bound well and stable to key core targets from network pharmacological predictions. Then, the experimental results in vivo and in vitro verified that the up-regulation of TP53, RELA, BAX, CASP3, and down-regulation of BCL2 from atherosclerotic ApoE-deficient mice model can be improved by 6-Gingerol intervention. Meanwhile, the correlation analysis further confirmed that 6-Gingerol anti-atherosclerosis was closely related to these targets. CONCLUSION The 6-Gingerol can markedly improve atherosclerosis by modulating key multi-targets TP53, RELA, BAX, CASP3, and BCL2 in lipid and atherosclerosis pathways. These novel findings shed light on the anti-atherosclerosis mechanism of 6-Gingerol from the perspective of multiple targets and pathways.
Collapse
Affiliation(s)
- Youdong Hu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tingting Liu
- Department of Gynecology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, China
| | - Guangzhen Zheng
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Li Zhou
- Department of Intensive Care Unit, Dazhou Central Hospital, Dazhou, 635000, Sichuan, China
| | - Ke Ma
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Xiaolian Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Cheng Zheng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jin Li
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yong Zhu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Wenhui Bian
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Xiangde Zheng
- Department of Intensive Care Unit, Dazhou Central Hospital, Dazhou, 635000, Sichuan, China.
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China.
| | - Jiafeng Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
7
|
|
Wu B, Gan A, Wang R, Lin F, Yan T, Jia Y. Alpinia oxyphylla Miq. volatile oil ameliorates depressive behaviors and inhibits neuroinflammation in CUMS-exposed mice by inhibiting the TLR4-medicated MyD88/NF-κB signaling pathway. J Chem Neuroanat 2023; 130:102270. [PMID: 37001682 DOI: 10.1016/j.jchemneu.2023.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
This study aimed to explore the antidepressant effect and underlying mechanism of the Alpinia oxyphylla Miq. volatile oil (AOVO) in mice exposed to chronic unpredictable mild stress (CUMS). C57BL/6 mice were grouped and administered with different dosages of AOVO (0.25, 0.50, 1.00, or 2.00 mL/kg body weight, i.g.), TAK242 (a TLR4 inhibitor, 0.75 mg/kg body weight, i.p.), or TAK242 (0.75 mg/kg body weight, i.p.) + AOVO (0.50 mL/kg body weight, i.g.) for 21 days. Depression-like symptoms in the mice were then evaluated through their body weight gain (BW), the open field test (OFT), the sucrose preference test (SPT), the novelty-suppressed feeding test (NSFT), and forced swimming test (FST). The concentrations of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and 5-hydroxytyrptamine (5-HT) in the mice were determined using ELISA kits. Hematoxylin and eosin (HE) dying were performed for histopathological examination. The expression of inflammatory proteins was assessed through western blotting (WB) and immunofluorescence staining. AOVO was found to improve the behavioral indexes of CUMS-exposed mice behavioral and synergize TAK242 to mitigate both their depressive symptoms and neuroinflammation. Moreover, AOVO was found to inhibit the hippocampal damage, decrease inflammatory cytokines (Reduced IL-1β, IL-6, and TNF-α by 19.97 %, 22.87 %, and 24.13 %, respectively), and downregulate the expression of TLR4/MyD88/NF-κB signaling pathway-related proteins in the hippocampus of CUMS-exposed mice (Reduced TLR4, MyD88, and NF-κB by 46.14 %, 42.48 %, and 38.08 %, respectively). These findings demonstrate that AOVO can ameliorate depressive behaviors and mitigate neuroinflammation in the CUMS-exposed mice via suppressing the TLR4-medicated MyD88/NF-κB signaling pathway.
Collapse
|
8
|
|
Liu J, Hu Z, Ma Q, Wang S, Liu D. Ferritin-dependent cellular autophagy pathway promotes ferroptosis in beef during cold storage. Food Chem 2023; 412:135550. [PMID: 36706507 DOI: 10.1016/j.foodchem.2023.135550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ferroptosis plays a pivotal role in regulating various physiological processes and quality of post-mortem muscle. However, the molecular mechanisms underlying ferroptosis remain unclear. The study investigated how ferroptosis was induced in beef during cold storage. Results showed that the expression of autophagy-related genes, LC3, ATG5, ATG7, and NCOA4 in beef during cold storage promoted the degradation of ferritin heavy chains. Ferritin evoked ferroptosis by releasing free iron, inducing reactive oxygen species (ROS) accumulation and inhibiting the glutathione (GSH)-glutathione peroxidase 4 (GPX4) pathway. Furthermore, treatment of myoblasts with GSK 2656157 (autophagy inhibitor) showed that ferritin degradation was lower in the GSK 2656157-treated myoblasts than in the control, while GSH content and GPX4 activity were higher than the control (P < 0.05), and the contents of free iron, ROS and malondialdehyde, and apoptosis were lower than the control (P < 0.05). These results suggest that ferroptosis is induced by degradation of ferritin via the autophagic pathway.
Collapse
Affiliation(s)
- Jun Liu
- School of Agriculture, Ningxia University, 750021 Yinchuan, China
| | - Ziying Hu
- School of Food & Wine, Ningxia University, 750021 Yinchuan, China
| | - Qin Ma
- School of Food & Wine, Ningxia University, 750021 Yinchuan, China
| | - Shuzhe Wang
- School of Agriculture, Ningxia University, 750021 Yinchuan, China; Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, 750021 Yinchuan, China
| | - Dunhua Liu
- School of Agriculture, Ningxia University, 750021 Yinchuan, China; School of Food & Wine, Ningxia University, 750021 Yinchuan, China.
| |
Collapse
|
9
|
|
Bayat H, Pourgholami MH, Rahmani S, Pournajaf S, Mowla SJ. Synthetic miR-21 decoy circularized by tRNA splicing mechanism inhibited tumorigenesis in glioblastoma in vitro and in vivo models. Mol Ther Nucleic Acids 2023; 32:432-44. [PMID: 37181451 DOI: 10.1016/j.omtn.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is the deadliest primary central nervous system tumor. miRNAs (miRs), a class of non-coding RNAs, are considered pivotal post-transcriptional regulators of cell signaling pathways. miR-21 is a reliable oncogene that promotes tumorigenesis of cancer cells. We first performed an in silico analysis on 10 microarray datasets retrieved from TCGA and GEO databases to elucidate top differentially expressed miRs. Furthermore, we generated a circular miR-21 decoy, CM21D, using the tRNA-splicing mechanism in GBM cell models, U87 and C6. The inhibitory efficacy of CM21D with that of a linear form, LM21D, was compared under in vitro conditions and an intracranial C6 rat glioblastoma model. miR-21 significantly overexpressed in GBM samples and confirmed in GBM cell models using qRT-PCR. CM21D was more efficient than LM21D at inducing apoptosis, inhibiting cell proliferation and migration, and interrupting the cell cycle by restoring the expression of miR-21 target genes at RNA and protein levels. Moreover, CM21D suppressed tumor growth more effectively than LM21D in the C6-rat GBM model (p < 0.001). Our findings validate miR-21 as a promising therapeutic target for GBM. The introduced CM21D by sponging miR-21 reduced tumorigenesis of GBM and can be considered a potential RNA-base therapy to inhibit cancers.
Collapse
Affiliation(s)
- Hadi Bayat
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | | | - Saeid Rahmani
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
| | - Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
- Corresponding author: Seyed Javad Mowla, Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-111, Iran.
| |
Collapse
|
10
|
|
Bhatnagar P, Bajpai P, Shrinet J, Kaja MK, Chandele A, Sitaraman R. Prediction of human protein interactome of dengue virus non-structural protein 5 (NS5) and its downstream immunological implications. 3 Biotech 2023; 13:180. [PMID: 37193327 DOI: 10.1007/s13205-023-03569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/19/2023] [Indexed: 05/18/2023] Open
Abstract
The non-structural protein 5 (NS5) is the most conserved protein among flaviviruses, a family that includes the dengue virus. It functions both as an RNA-dependent RNA polymerase and an RNA-methyltransferase and is therefore essential for the replication of viral RNA. The discovery that dengue virus NS5 protein (DENV-NS5) can also localize to the nucleus has resulted in renewed interest in its potential roles at the host-virus interface. In this study, we have used two complementary computational approaches in parallel - one based on linear motifs (ELM) and another based on tertiary structure of the protein (DALI) - to predict the host proteins that DENV-NS5 might interact with. Of the 42 human proteins predicted by both these methods, 34 are novel. Pathway analysis of these 42 human proteins shows that they are involved in key host cellular processes related to cell cycle regulation, proliferation, protein degradation, apoptosis, and immune responses. A focused analysis of transcription factors that directly interact with the predicted DENV-NS5 interacting proteins was performed, followed by the identification of downstream genes that are differentially expressed after dengue infection using previously published RNA-seq data. Our study provides unique insights into the DENV-NS5 interaction network and delineates mechanisms whereby DENV-NS5 could impact the host-virus interface. The novel interactors identified in this study could be potentially targeted by NS5 to modulate the host cellular environment in general, and the immune response in particular, thereby extending the role of DENV-NS5 beyond its known enzymatic functions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03569-0.
Collapse
Affiliation(s)
- Priya Bhatnagar
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Jatin Shrinet
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Murali Krishna Kaja
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- Department of Pediatrics and Emory Vaccine Centre, Emory University School of Medicine, Atlanta, GA USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | |
Collapse
|
11
|
|
Liu J, Wu Y, Cai Y, Tan Z, Deng N. Long-term consumption of different doses of Grifola frondosa affects immunity and metabolism: correlation with intestinal mucosal microbiota and blood lipids. 3 Biotech 2023; 13:189. [PMID: 37193332 DOI: 10.1007/s13205-023-03617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
Grifola frondosa (GF) is an edible mushroom with hypoglycemic and hypolipidemic effects. In this study, the specific pathogen-free male mice were randomized into the normal (NM), low-dose GF (LGF), medium-dose GF (MGF), and high-dose GF (HGF) groups. The LGF, MGF, and HGF groups were fed with 1.425 g/(kg d), 2.85 g/(kg d), and 5.735 g/(kg d) of GF solution for 8 weeks. After feeding with GF solution, compared with the NM group, the thymus index was significantly increased in the LGF group, and TC, TG, and LDL of mice were significantly increased in the HGF group, while HDL was significantly decreased. Compared with the NM group, the uncultured Bacteroidales bacterium, Ligilactobacillus increased in the LGF group, and Candidatus Arthromitus increased in the MGF group. The characteristic bacteria of the HGF group included Christensenellaceae R7, unclassified Clostridia UCG 014, unclassified Eubacteria coprostanoligenes, and Prevotellaceae Ga6A1. Among them, Ligilactobacillus showed a negative correlation with HDL. Unclassified Eubacterium coprostanoligenes group and Ligilactobacillus showed a positive correlation with TG. In summary, our experiments evidenced that GF improves lipid metabolism disorders by regulating the intestinal microbiota, providing a new pathway for hypolipidemic using GF dietary.
Collapse
Affiliation(s)
- Jing Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Yi Wu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Ying Cai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| |
Collapse
|
12
|
|
He X, Chen X, Yang Y, Liu Y, Xie Y. Acorus calamus var. angustatus Besser: Insight into current research on ethnopharmacological use, phytochemistry, pharmacology, toxicology, and pharmacokinetics. Phytochemistry 2023; 210:113626. [PMID: 36871902 DOI: 10.1016/j.phytochem.2023.113626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A. calamus var. angustatus Besser is an important traditional medicinal herb commonly used in China and other Asian countries. This study is the first systematic review of the literature to thoroughly analyze the ethnopharmacological application, phytochemistry, pharmacology, toxicology and pharmacokinetic properties of A. calamus var. angustatus Besser and provides a rationale for future research and prospects for application in clinical treatment. Information on relevant studies investigating A. calamus var. angustatus Besser was collected from SciFinder, the Web of Science, PubMed, CNKI, Elsevier, ResearchGate, ACS, Flora of China, and Baidu Scholar, etc. up to December 2022. In addition, information was also obtained from Pharmacopeias, books on Chinese herbal classics, local books, as well as PhD and MS dissertations. A. calamus var. angustatus Besser has played an important role in the herbal treatment of coma, convulsion, amnesia, and dementia for thousands of years. Studies investigating the chemical constituents of A. calamus var. angustatus Besser have isolated and identified 234 small-molecule compounds and a few polysaccharides. Among them, simple phenylpropanoids represented by asarone analogues and lignans are the two main active ingredients, which can be considered characteristic chemotaxonomic markers of this herb. In vitro and in vivo pharmacological studies indicated that crude extracts and active compounds from A. calamus var. angustatus Besser display a wide range of pharmacological activities, especially as treatment for Alzheimer's disease (AD), and anticonvulsant, antidepressant-like, anxiolytic-like, anti-fatigue, anti-Parkinson, neuroprotection, and brain protection properties, providing more evidence to explain the traditional medicinal uses and ethnopharmacology. The clinical therapeutic dose of A. calamus var. angustatus Besser does not present any toxic effects, but its main active ingredients α-asarone and β-asarone at excessive dose may lead to toxicity, and in particular, their respective epoxide metabolites may exert potential toxicity to the liver. This review provides a reference and further information for the future development and clinical application of A. calamus var. angustatus Besser.
Collapse
Affiliation(s)
- Xirui He
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China.
| | - Xufei Chen
- Department of Anesthesiology, The General Hospital of the Western Theater Command, Chengdu, China
| | - Yan Yang
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yujie Liu
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yulu Xie
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
13
|
|
Ahmad F, Saha P, Singh V, Wahid M, Mandal RK, Nath Mishra B, Fagoonee S, Haque S. Diet as a modifiable factor in tumorigenesis: Focus on microbiome-derived bile acid metabolites and short-chain fatty acids. Food Chem 2023; 410:135320. [PMID: 36610090 DOI: 10.1016/j.foodchem.2022.135320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several lines of evidences have implicated the resident microbiome as a key factor in the modulation of host physiology and pathophysiology; including the resistance to cancers. Gut microbiome heavily influences host lipid homeostasis by their modulatory effects on the metabolism of bile acids (BAs). Microbiota-derived BA metabolites such as deoxycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) are implicated in the pathogeneses of various cancer types. The pathogenic mechanisms are multimodal in nature, with widespread influences on the host immunes system, cell survival and growth signalling and DNA damage. On the other hand, short-chain fatty acids (SCFAs) produced by the resident microbial activity on indigestible dietary fibres as well as during intermittent fasting regimens (such as the Ramazan fasting) elicit upregulation of the beneficial anti-inflammatory and anticancer pathways in the host. The present review first provides a brief overview of the molecular mechanisms of microbiota-derived lipid metabolites in promotion of tumour development. The authors then discuss the potential of diet as a therapeutic route for beneficial alteration of microbiota and the consequent changes in the production of SCFAs, particularly butyrate, in relation to the cancer prevention and treatment.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India.
| | - Priyanka Saha
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021 (Uttar Pradesh), India
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021 (Uttar Pradesh), India
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
14
|
|
Zhao Q, Dong A, Cui C, Ou Q, Ruan G, Zhou J, Tian L, Liu L, Ma H, Li H. MRI-Based Metastatic Nodal Number and Associated Nomogram Improve Stratification of Nasopharyngeal Carcinoma Patients: Potential Indications for Individual Induction Chemotherapy. J Magn Reson Imaging 2023; 57:1790-802. [PMID: 36169976 DOI: 10.1002/jmri.28435] [Citation(s) in RCA: 0] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/08/2022] Open
Abstract
BACKGROUND Metastatic lymph nodal number (LNN) is associated with the survival of nasopharyngeal carcinoma (NPC); however, counting multiple nodes is cumbersome. PURPOSE To explore LNN threshold and evaluate its use in risk stratification and induction chemotherapy (IC) indication. STUDY TYPE Retrospective. POPULATION A total of 792 radiotherapy-treated NPC patients (N classification: N0 182, N1 438, N2 113, N3 59; training group: 396, validation group: 396; receiving IC: 390). FIELD STRENGTH/SEQUENCE T1-, T2- and postcontrast T1-weighted fast spin echo MRI at 1.5 or 3.0 T. ASSESSMENT Nomogram with (model B) or without (model A) LNN was constructed to evaluate the 5-year overall (OS), distant metastasis-free (DMFS), and progression-free survival (PFS) for the group as a whole and N1 stage subgroup. High- and low-risk groups were divided (above vs below LNN- or model B-threshold); their response to IC was evaluated among advanced patients in stage III/IV. STATISTICAL TESTS Maximally selected rank, univariate and multivariable Cox analysis identified the optimal LNN threshold and other variables. Harrell's concordance index (C-index) and 2-fold cross-validation evaluated discriminative ability of models. Matched-pair analysis compared survival outcomes of adding IC or not. A P value < 0.05 was considered statistically significant. RESULTS Median follow-up duration was 62.1 months. LNN ≥ 4 was independently associated with decreased 5-year DMFS, OS, and PFS in entire patients or N1 subgroup. Compared to model A, model B (adding LNN, LNN ≥ 4 vs <4) presented superior C-indexes in the training (0.755 vs 0.727) and validation groups (0.676 vs 0.642) for discriminating DMFS. High-risk patients benefited from IC with improved post-IC response and OS, but low-risk patients did not (P = 0.785 and 0.690, respectively). CONCLUSIONS LNN ≥ 4 is an independent risk stratification factor of worse survival in entire or N1 staging NPC patients. LNN ≥ 4 or the associated nomogram has potential to identify high-risk patients requiring IC. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: 4.
Collapse
Affiliation(s)
- Qin Zhao
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China
| | - Annan Dong
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China
| | - Chunyan Cui
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China
| | - Qiaowen Ou
- Department of Clinical Nutrition, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, People's Republic of China
| | - Guangying Ruan
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China
| | - Jian Zhou
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China
| | - Li Tian
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China
| | - Lizhi Liu
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China
- Department of Radiology, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong, People's Republic of China
| | - Huali Ma
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China
| | - Haojiang Li
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
15
|
|
Wang W, Zheng Z, Chen J, Duan T, He H, Tang S. Characterization of metabolite landscape distinguishes wild from cultivated Polygonati Rhizomes by UHPLC-Q-TOF-MS untargeted metabolomics. FOOD BIOSCI 2023; 53:102574. [DOI: 10.1016/j.fbio.2023.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
16
|
|
Cantù G. Nasopharyngeal carcinoma. A "different" head and neck tumour. Part B: treatment, prognostic factors, and outcomes. Acta Otorhinolaryngol Ital 2023; 43:155-69. [PMID: 37204840 DOI: 10.14639/0392-100X-N2223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/08/2023] [Indexed: 05/20/2023]
Affiliation(s)
- Giulio Cantù
- Former Director of Otorhinolaryngology and Cranio-Maxillo-Facial Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
17
|
|
Yu X, Wu S, Zhang J, Hu Y, Luo M, Zhao H, Song X, Chen Y, Wang X. Developing TCM clinical practice guidelines: A comparison between traditional Chinese medicine and western medicine. Integr Med Res 2023; 12:100952. [PMID: 37187680 DOI: 10.1016/j.imr.2023.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Clinical practice guidelines in Traditional Chinese Medicine (CPG-TCM) is the recommendation that aims to provide the best service to users by identifying and summarizing the rules of prevention, diagnosis, treatment, rehabilitation, and regression of diseases based on systematic reviews of evidence and balancing the advantages and disadvantages of different interventions for clinical questions of Traditional Chinese Medicine. Over the past 30 years, the concept and methods of evidence-based medicine have had a significant impact on the development of clinical practice guidelines in Western Medicine (CPG-WM), and their standardized guideline development methods are being adapted and used in the development of CPG-TCM. However, the quality of CPG-TCM is far from CPG-WM, and the methodological system for developing CPG-TCM is not yet fully established. Therefore, this study aims to explore the methodological differences between CPG-TCM and CPG-WM and to inform the development of high-quality CPGTCM.
Collapse
Affiliation(s)
- Xuan Yu
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, China
| | - Shouyuan Wu
- School of Public Health, Lanzhou University, China
| | | | - Yue Hu
- School of Public Health, Lanzhou University, China
| | - Meng Luo
- School of Public Health, Lanzhou University, China
| | - Hongmei Zhao
- School of Public Health, Lanzhou University, China
| | - Xuping Song
- School of Public Health, Lanzhou University, China
| | - Yaolong Chen
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, China
- School of Public Health, Lanzhou University, China
- Research Unit of Evidence-Based Evaluation and Guidelines, Chinese Academy of Medical Sciences (2021RU017), School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- WHO Collaborating Center for Guideline Implementation and Knowledge Translation, Lanzhou, China
- Corresponding authors at: Evidence based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China (Y. Chen); School of Public Health, Lanzhou University, Lanzhou 730000, China (X. Wang).
| | - Xiaohui Wang
- School of Public Health, Lanzhou University, China
- Corresponding authors at: Evidence based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China (Y. Chen); School of Public Health, Lanzhou University, Lanzhou 730000, China (X. Wang).
| |
Collapse
|
18
|
|
Liu X, Huang R, Wan J. Puerarin: a potential natural neuroprotective agent for neurological disorders. Biomed Pharmacother 2023; 162:114581. [PMID: 36966665 DOI: 10.1016/j.biopha.2023.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Puerarin is an isoflavone compound derived from Pueraria lobata in traditional Chinese medicine. Accumulating evidence has indicated that puerarin demonstrates multiple pharmacological effects and exhibits treatment potential for various neurological disorders. Based on the latest research progress on puerarin as a neuroprotective agent, its pharmacological activity, molecular mechanism, and therapeutic application were systematically reviewed with emphasis on pre-clinical studies. The related information was extracted and compiled from major scientific databases, including PubMed, ScienceDirect, SpringerLink, and Chinese National Knowledge Infrastructure, using 'Puerarin', 'Neuroprotection', 'Apoptosis', 'Autophagy', 'Antioxidant', 'Mitochondria', 'Anti-inflammation' as keywords. This review complied with The Preferred Reporting Items for Systematic Reviews criteria. Forty-three articles met established inclusion and exclusion criteria. Puerarin has shown neuroprotective effects against a variety of neurological disorders, including ischemic cerebrovascular disease, subarachnoid hemorrhage, epilepsy, cognitive disorders, traumatic brain injury, Parkinson's disease, Alzheimer's disease, anxiety, depression, diabetic neuropathy, and neuroblastoma/glioblastoma. Puerarin demonstrates anti-apoptosis, proinflammatory mediator inhibitory, autophagy regulatory, anti-oxidative stress, mitochondria protection, Ca2+ influx inhibitory, and anti-neurodegenerative activities. Puerarin exerts noticeable neuroprotective effects on various models of neurological disorders in vivo (animal). This review will contribute to the development of puerarin as a novel clinical drug candidate for the treatment of neurological disorders. However, well-designed, high-quality, large-scale, multicenter randomized clinical studies are needed to determine the safety and clinical utility of puerarin in patients with neurological disorders.
Collapse
Affiliation(s)
- Xue Liu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiye Wan
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
19
|
|
Toppo P, Kagatay LL, Gurung A, Singla P, Chakraborty R, Roy S, Mathur P. Endophytic fungi mediates production of bioactive secondary metabolites via modulation of genes involved in key metabolic pathways and their contribution in different biotechnological sector. 3 Biotech 2023; 13:191. [PMID: 37197561 DOI: 10.1007/s13205-023-03605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Endophytic fungi stimulate the production of an enormous number of bioactive metabolites in medicinal plants and affect the different steps of biosynthetic pathways of these secondary metabolites. Endophytic fungi possess a number of biosynthetic gene clusters that possess genes for various enzymes, transcription factors, etc., in their genome responsible for the production of secondary metabolites. Additionally, endophytic fungi also modulate the expression of various genes responsible for the synthesis of key enzymes involved in metabolic pathways of such as HMGR, DXR, etc. involved in the production of a large number of phenolic compounds as well as regulate the expression of genes involved in the production of alkaloids and terpenoids in different plants. This review aims to provide a comprehensive overview of gene expression related to endophytes and their impact on metabolic pathways. Additionally, this review will emphasize the studies done to isolate these secondary metabolites from endophytic fungi in large quantities and assess their bioactivity. Due to ease in synthesis of secondary metabolites and their huge application in the medical industry, these bioactive metabolites are now being extracted from strains of these endophytic fungi commercially. Apart from their application in the pharmaceutical industry, most of these metabolites extracted from endophytic fungi also possess plant growth-promoting ability, bioremediation potential, novel bio control agents, sources of anti-oxidants, etc. The review will comprehensively shed a light on the biotechnological application of these fungal metabolites at the industrial level.
Collapse
Affiliation(s)
- Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Lahasang Lamu Kagatay
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Ankita Gurung
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Priyanka Singla
- Department of Botany, Mount Carmel College, Bengaluru, Karnataka India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Dist. Darjeeling, Siliguri, West Bengal India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| |
Collapse
|
20
|
|
Yang X, Hua C, Lin L, Ganting Z. Antimicrobial peptides as potential therapy for gastrointestinal cancers. Naunyn Schmiedebergs Arch Pharmacol 2023. [PMID: 37249612 DOI: 10.1007/s00210-023-02536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Since conventional therapy faces limitations in the field of different cancers as well as gastrointestinal cancers, that decrease the survival rate of patients, there is an urgent need to find new effective therapeutic approaches without the adverse effects of the traditional agents. Antimicrobial peptides (AMPs) attract much attention and are well known for their role in innate immunity. These peptides, in addition to their antimicrobial activity, exhibit strong anticancer potential against various types of malignancy. AMPs specifically target tumor cells and have selective toxicity for these cells without affecting normal cells. Here we aim to comprehensively overview the current knowledge in the field of using AMPs as novel therapeutic agents for gastrointestinal cancer.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Heping Hospital Attached to Changzhi Medical College, Changzhi, 046000, China
| | - Cui Hua
- Tangshan Fengnan District Traditional Chinese Medicine Hospital, Tangshan, 063000, China.
| | - Lin Lin
- Tangshan Hongci Hospital, Tangshan, 063000, China
| | - Zhao Ganting
- Heping Hospital Attached to Changzhi Medical College, Changzhi, 046000, China
| |
Collapse
|
21
|
|
Gao Y, Cai L, Li D, Li L, Wu Y, Ren W, Song Y, Zhu L, Wu Y, Xu H, Luo C, Wang T, Lei Z, Tao L. Extended characterization of IL-33/ST2 as a predictor for wound age determination in skin wound tissue samples of humans and mice. Int J Legal Med 2023. [PMID: 37246991 DOI: 10.1007/s00414-023-03025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
Interleukin (IL)-33, an important inflammatory cytokine, is highly expressed in skin wound tissue and serum of humans and mice, and plays an essential role in the process of skin wound healing (SWH) dependent on the IL-33/suppression of tumorigenicity 2 (ST2) pathway. However, whether IL-33 and ST2 themselves, as well as their interaction, can be applied for skin wound age determination in forensic practice remains incompletely characterized. Human skin samples with injured intervals of a few minutes to 24 hours (hs) and mouse skin samples with injured intervals of 1 h to 14 days (ds) were collected. Herein, the results demonstrated that IL-33 and ST2 are increased in the human skin wounds, and that in mice skin wounds, there is an increase over time, with IL-33 expression peaking at 24 hs and 10 ds, and ST2 expression peaking at 12 hs and 7 ds. Notably, the relative quantity of IL-33 and ST2 proteins < 0.35 suggested a wound age of 3 hs; their relative quantity > 1.0 suggested a wound age of 24 hs post-mouse skin wounds. In addition, immunofluorescent staining results showed that IL-33 and ST2 were consistently expressed in the cytoplasm of F4/80-positive macrophages and CD31-positive vascular endothelial cells with or without skin wounds, whereas nuclear localization of IL-33 was absent in α-SMA-positive myofibroblasts with skin wounds. Interestingly, IL-33 administration facilitated the wound area closure by increasing the proliferation of cytokeratin (K) 14 -positive keratinocytes and vimentin-positive fibroblasts. In contrast, treating with its antagonist (i.e., anti-IL-33) or receptor antagonist (e.g., anti-ST2) exacerbated the aforementioned pathological changes. Moreover, treatment with IL-33 combined with anti-IL-33 or anti-ST2 reversed the effect of IL-33 on facilitating skin wound closure, suggesting that IL-33 administration facilitated skin wound closure through the IL-33/ST2 signaling pathway. Collectively, these findings indicate that the detection of IL-33/ST2 might be a reliable biomarker for the determination of skin wound age in forensic practice.
Collapse
|