1
|
Lin Y, Yang Q, Zeng R. Crosstalk between macrophages and adjacent cells in AKI to CKD transition. Ren Fail 2025; 47:2478482. [PMID: 40110623 PMCID: PMC11926904 DOI: 10.1080/0886022x.2025.2478482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
Acute kidney injury (AKI), triggered by ischemia, sepsis, toxicity, or obstruction, is marked by a rapid impairment of renal function and could lead to the initiation and advancement of chronic kidney disease (CKD). The concept of AKI to CKD transition has gained much interest. Despite a series of studies highlighting the diverse roles of renal macrophages in the immune response following AKI, the intricate mechanisms of macrophage-driven cell-cell communication in AKI to CKD transition remains incompletely understood. In this review, we introduce the dynamic phenotype change of macrophages under the different stages of kidney injury. Importantly, we present novel perspectives on the extensive interaction of renal macrophages with adjacent cells, including tubular epithelial cells, vascular endothelial cells, fibroblasts, and other immune cells via soluble factors, extracellular vesicles, and direct contact, to facilitate the transition from AKI to CKD. Additionally, we summarize the potential therapeutic strategies based on the adverse macrophage-neighboring cell crosstalk.
Collapse
Affiliation(s)
- Yanping Lin
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Cao H, Tao Y, Jin R, Li P, Zhou H, Cheng J. Proteomics reveals the key transcription-related factors mediating obstructive nephropathy in pediatric patients and mice. Ren Fail 2025; 47:2443032. [PMID: 39743726 DOI: 10.1080/0886022x.2024.2443032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Obstructive nephropathy is one of the leading causes of kidney injury in infants and children. Increasing evidence has shown that transcription-related factors (TRFs), including transcription factors and cofactors, are associated with kidney diseases. However, a global landscape of dysregulated TRFs in pediatric patients with obstructive nephropathy is lacking. METHODS We mined the data from our previous proteomic study for the TRF profile in pediatric patients with obstructive nephropathy and unilateral ureteral obstruction (UUO) mice. Gene ontology (GO) analysis was performed to determine pathways that were enriched in the dysregulated TRFs. We then took advantage of kidney samples from patients and UUO mice to verify the selected TRFs by immunoblots. RESULTS The proteomes identified a total of 140 human TRFs with 28 upregulated and 1 downregulated, and 160 murine TRFs with 88 upregulated and 1 downregulated (fold change >2 or <0.5). These dysregulated TRFs were enriched in the inflammatory signalings, such as janus kinase/signal transducer and activator of transcription (JAK-STAT) and tumor necrosis factor (TNF) pathways. Of note, the transforming growth factor (TGF)-β signaling pathway, which is the master regulator of organ fibrosis, was enriched in both patients and mice. Cross-species analysis showed 16 key TRFs that might mediate obstructive nephropathy in patients and UUO mice. Moreover, we verified a significant dysregulation of three previously unexplored TRFs; prohibitin (PHB), regulatory factor X 1 (RFX1), and activity-dependent neuroprotector homeobox protein (ADNP), in patients and mice. CONCLUSIONS Our study uncovered key TRFs in the obstructed kidneys and provided additional molecular insights into obstructive nephropathy.
Collapse
Affiliation(s)
- Hualin Cao
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuandong Tao
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Ruyue Jin
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Pin Li
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Huixia Zhou
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Jiwen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Hong T, Lian Z, Zhang C, Zhang W, Ye Z. Hypertension modifies the association between serum Klotho and chronic kidney disease in US adults with diabetes: a cross-sectional study of the NHANES 2007-2016. Ren Fail 2025; 47:2498089. [PMID: 40324899 PMCID: PMC12054556 DOI: 10.1080/0886022x.2025.2498089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025] Open
Abstract
CONTEXT The association between serum soluble Klotho (sKlotho) and chronic kidney disease (CKD) in individuals with diabetes mellitus (DM) remains controversial, and the influence of hypertension on this association is inconclusive. OBJECTIVE This study aims to investigate the joint association of sKlotho and hypertension with CKD prevalence in adults with DM. METHODS This cross-sectional study included 3,302 adults with DM from the National Health and Nutrition Examination Survey (2007-2016). Multivariate logistic regression analysis stratified by hypertension was used to assess the association between sKlotho and CKD prevalence. Moreover, the interaction between hypertension and sKlotho on CKD was evaluated. RESULTS Among individuals with DM, a significant association between sKlotho levels and CKD prevalence was observed only in those with hypertension. CKD prevalence was significantly lower in individuals with high sKlotho (≥ 806 pg/mL) than in those with low sKlotho (< 806 pg/mL) [adjusted OR = 0.54 (95% CI: 0.41-0.72); p < 0.001]. Moreover, a significant interaction between hypertension and sKlotho on CKD prevalence was observed among adults with DM [Multiplicative scale: OR = 0.65 (95% CI: 0.42-0.99); RERI = -0.80 (95% CI: -1.49 to -0.10); AP = -0.51 (95% CI: -0.90 to -0.12); SI = 0.44 (95% CI: 0.30-0.66)]. CONCLUSIONS Among DM adults, hypertension modified the association between sKlotho levels and CKD prevalence. Both additive and multiplicative interactions were observed between hypertension and sKlotho levels on CKD. The causalities between hypertension, Klotho, and CKD in diabetic patients need further exploration, and underlying mechanisms warrants elucidation.
Collapse
Affiliation(s)
- Tao Hong
- Department of Nephrology, Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zelong Lian
- Department of Nephrology, Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chaojun Zhang
- Department of Information Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weihuang Zhang
- Department of Nephrology, Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhennan Ye
- Department of Nephrology, Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
4
|
Shi J, Qin X, Sha H, Wang R, Shen H, Chen Y, Chen X. Identification of biomarkers for chronic renal fibrosis and their relationship with immune infiltration and cell death. Ren Fail 2025; 47:2449195. [PMID: 39780495 PMCID: PMC11721624 DOI: 10.1080/0886022x.2024.2449195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) represents a significant global public health challenge. This study aims to identify biomarkers of renal fibrosis and elucidate the relationship between unilateral ureteral obstruction (UUO), immune infiltration, and cell death. METHODS Gene expression matrices for UUO were retrieved from the gene expression omnibus (GSE36496, GSE79443, GSE217650, and GSE217654). Seven genes identified through Protein-Protein Interaction (PPI) network and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) analysis were validated using qRT-PCR in both in vivo and in vitro UUO experiments. WB assays were employed to investigate the role of Clec4n within NF-κB signaling pathway in renal fibrosis. The composition of immune cells in UUO was assessed using CIBERSORT, and gene set variant analysis (GSVA) was utilized to evaluate prevalent signaling pathways and cell death indices. RESULTS GO and KEGG enrichment analyses revealed numerous inflammation-related pathways significantly enriched in UUO conditions. Bcl2a1b, Clec4n, and Col1a1 were identified as potential diagnostic biomarkers for UUO. Analysis of immune cell infiltration indicated a correlation between UUO and enhanced mast cell activation. Silencing Clec4n expression appeared to mitigate the inflammatory response in renal fibrosis. GSVA results indicated elevated inflammatory pathway scores in UUO, with significant differences in disulfiram and cuproptosis scores compared to those in the normal murine kidney group. CONCLUSION Bcl2a1b, Clec4n, and Col1a1 may serve as biomarkers for diagnosing UUO. UUO development is closely linked to immune cell infiltration, activation of inflammatory pathways, disulfiram, and cuproptosis processes.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinyue Qin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Haonan Sha
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Rong Wang
- Department of Nephrology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Hao Shen
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yinhao Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Xiaolan Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
5
|
Xin L, Kanghao N, Jiacheng L, Xiaodong Y, Juhan Y, Xinyang Z, Xiangdong L. Sodium aescinate protects renal ischemia-reperfusion and pyroptosis through AKT/NLRP3 signaling pathway. Ren Fail 2025; 47:2488140. [PMID: 40260531 PMCID: PMC12016278 DOI: 10.1080/0886022x.2025.2488140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 04/23/2025] Open
Abstract
Renal ischemia-reperfusion injury (RIRI) is a common cause of acute renal injury. Studies have shown that sodium aescinate (SA) may serve as a potential therapeutic agent, although its exact mechanism remains unclear. This study first evaluated the efficacy of SA using a mouse renal ischemia-reperfusion model. Subsequently, its mechanism was elucidated through systematic bioinformatics, and finally validated through in vitro and in vivo experiments. The results demonstrated that SA has a protective effect on renal function in mice with RIRI. Bioinformatic analysis indicated that the pyroptosis pathway is significantly activated during renal ischemia-reperfusion injury, and immunohistochemistry showed that the level of renal pyroptosis is upregulated during ischemia-reperfusion injury. Administration of SA was able to reduce the expression of pyroptosis-related proteins (GSDMD, NLRP3, IL-1β) in RIRI. In vitro and in vivo experiments further confirmed that SA exerts an anti-pyroptotic effect by inhibiting the AKT/NLRP3 signaling pathway. Ultimately, SA mitigates kidney injury in IRI mice by suppressing renal failure through inhibition of the AKT/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Liu Xin
- The First Affiliated Hospital of Hebei North University, Hebei Province, China
| | - Ning Kanghao
- Graduate School of Hebei North University, Hebei Province, China
| | - Li Jiacheng
- The First Affiliated Hospital of Hebei North University, Hebei Province, China
| | - Yan Xiaodong
- The First Affiliated Hospital of Hebei North University, Hebei Province, China
| | - Yan Juhan
- Graduate School of Hebei North University, Hebei Province, China
| | - Zhao Xinyang
- The First Affiliated Hospital of Hebei North University, Hebei Province, China
| | - Li Xiangdong
- The First Affiliated Hospital of Hebei North University, Hebei Province, China
| |
Collapse
|
6
|
Huang X, Chen L, He J, Tang J, Mou Z. Long non-coding RNA in IgA nephropathy: a comprehensive review. Ren Fail 2025; 47:2495836. [PMID: 40329456 DOI: 10.1080/0886022x.2025.2495836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Immunoglobulin A nephropathy (IgAN) stands as the most prevalent primary glomerulonephritis globally, almost half of patients progress to end-stage kidney disease (ESKD). However, the precise pathogenesis of IgAN remains elusive. Long non-coding RNAs (lncRNAs), non-protein-coding transcripts that regulate gene expression, have been found to exhibit distinct expression patterns in various disease states. Comprehensive bioinformatic analyses from IgAN patients have uncovered differential expression of lncRNAs such as HOTAIR, H19, and MALAT1. Furthermore, a single nucleotide polymorphism in MIR31HG has been linked to IgAN susceptibility and correlated with clinical markers like urinary red blood cells and hemoglobin levels. Lnc-TSI and lnc-CHAF1B-3, specifically expressed in the kidneys of IgAN patients, exhibit associations with renal fibrosis indices and the degree of kidney function deterioration, influencing the progression of renal fibrosis through distinct signaling pathways. Additionally, renal intercellular adhesion molecule 1 (ICAM-1) related long noncoding RNA (ICR) levels positively correlate with IgAN severity and contribute to renal fibrosis, whereas serum H19 serves as an independent protective factor against IgAN. Notably, experiments have validated the involvement of PTTG3P, lnc-CHAF1B-3, and CRNDE in the pathogenesis of IgAN. Nevertheless, data on the roles of lncRNAs in IgAN pathogenesis and their potential as biomarkers remain limited, and effective therapeutic options for IgAN are similarly rare. Therefore, there is an urgent need to bridge this knowledge gap. This article presents a review of current literature on lncRNAs related to IgAN, aiming to consolidate existing findings and identify future research avenues.
Collapse
Affiliation(s)
- Xiaoxuan Huang
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lan Chen
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jinxuan He
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianhui Tang
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhixiang Mou
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Zhu Q, Hao H, Gao Y, Li N, Liu Z, Shu L, Wang Q, Zhang L. Dapagliflozin ameliorates kidney injury following limb ischemia-reperfusion via the AMPK/SIRT1/NLRP3 pathway. Ren Fail 2025; 47:2495111. [PMID: 40264429 PMCID: PMC12020146 DOI: 10.1080/0886022x.2025.2495111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/20/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Limb ischemia-reperfusion (I/R) results in both localized tissue harm and injury to distant organs, particularly affecting the kidneys and leading to acute kidney injury. This study evaluates the renoprotective effect of dapagliflozin, a drug frequently prescribed for type 2 diabetes management, in relation to kidney injury caused by limb I/R. The extent of kidney injury was detected through serum marker testing in the rat model. Oxidative stress indicators and inflammatory factors were evaluated in rat and cellular models. Histological changes in the kidneys were examined using HE staining and electron microscopy. Cell pyroptosis was quantified using both TUNEL staining and flow cytometry. Cellular mitochondrial function was analyzed with JC-1 staining. AMPK/SIRT1/NLRP3 pathway-related proteins and their mRNAs were assessed via western blotting and RT-qPCR techniques. We showed that dapagliflozin reduced serum CRE, BUN, NGAL and KIM-1 levels and improved renal pathology in rat. Additionally, dapagliflozin significantly raised the concentrations of GSH-Px and SOD, concurrently reduced MDA and ROS levels in vivo and in vitro. It also lowered the levels of IL-6 and TNF-α and reduced cell pyroptosis. Furthermore, it was observed that dapagliflozin elevated AMPK and SIRT1 expressions, while decreasing NLRP3, ASC, GSDMD, IL-1β, and caspase-1 expressions. Notably, these effects of dapagliflozin were diminished in the presence of AMPK siRNA. Taken together, dapagliflozin exhibits a significant protective effect against kidney injury resulting from limb I/R. This protective effect operates through the inhibition of pyroptosis by activating the AMPK/SIRT1/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Qiuxiao Zhu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huiyao Hao
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ya Gao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zibo Liu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Linyi Shu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qian Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lihui Zhang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Yang AY, Kim JY, Gwon MG, Kim K, Kwon HH, Leem J, Kim SW. Protective effects and mechanisms of cynaroside on renal fibrosis in mice with unilateral ureteral obstruction. Redox Rep 2025; 30:2500271. [PMID: 40322965 PMCID: PMC12054570 DOI: 10.1080/13510002.2025.2500271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Renal fibrosis is a key factor in the progression of chronic kidney disease (CKD), and current treatments remain inadequate. In this study, we investigated the therapeutic effects of cynaroside (Cyn), a natural flavonoid, in a mouse model of renal fibrosis induced by unilateral ureteral obstruction. Cyn treatment significantly ameliorated tubular injury and interstitial fibrosis while improving renal function. Mechanistically, Cyn inhibited the expression of fibrosis-related proteins and suppressed Smad2/3 phosphorylation. Additionally, Cyn reduced myofibroblast accumulation by inhibiting epithelial-mesenchymal transition, as indicated by increased E-cadherin expression and decreased levels of mesenchymal markers. Cyn also reduced oxidative stress by downregulating the prooxidant enzyme NADPH oxidase 4 and restoring antioxidant enzymes. Furthermore, Cyn attenuated ferroptosis by regulating key proteins, including acyl-CoA synthetase long-chain family member 4, transferrin receptor 1, and glutathione peroxidase 4, while also restoring glutathione levels. Cyn alleviated endoplasmic reticulum stress, as evidenced by the downregulation of key markers such as glucose-regulated protein 78 and activating transcription factor 6, and reduced inflammation, as confirmed by decreased macrophage infiltration and lower cytokine production. Overall, Cyn demonstrated broad protective effects against renal fibrosis by modulating oxidative stress, ferroptosis, ER stress, and inflammation, positioning it as a potential therapeutic agent for CKD management.
Collapse
Affiliation(s)
- Ah Young Yang
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Jung-Yeon Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Mi-Gyeong Gwon
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Kiryeong Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Hyun Hee Kwon
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Sung-Woo Kim
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| |
Collapse
|
9
|
Lyu G, Liao H, Li R. Ferroptosis and renal fibrosis: mechanistic insights and emerging therapeutic targets. Ren Fail 2025; 47:2498629. [PMID: 40329437 DOI: 10.1080/0886022x.2025.2498629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 05/08/2025] Open
Abstract
Ferroptosis is a regulated, iron-dependent form of cell death driven by lipid peroxidation and distinct from apoptosis, necroptosis, and pyroptosis. Recent studies implicate ferroptosis as a central contributor to the pathogenesis of renal fibrosis, a hallmark of chronic kidney disease associated with high morbidity and progression to end-stage renal failure. This review synthesizes current evidence linking ferroptotic signaling to fibrotic remodeling in the kidney, focusing on iron metabolism dysregulation, glutathione peroxidase 4 (GPX4) inactivation, lipid peroxide accumulation, and ferroptosis-regulatory pathways such as FSP1-CoQ10-NAD(P)H and GCH1-BH4. We detail how ferroptosis in tubular epithelial cells modulates pro-fibrotic cytokine release, macrophage recruitment, and TGF-β1-driven extracellular matrix deposition. Moreover, we explore ferroptosis as a therapeutic vulnerability in renal fibrosis, highlighting promising agents including iron chelators, GPX4 activators, anti-lipid peroxidants, and exosome-based gene delivery systems. By consolidating emerging preclinical data, this review provides a comprehensive mechanistic framework and identifies translational opportunities for targeting ferroptosis in fibrotic kidney disease.
Collapse
Affiliation(s)
- Guangna Lyu
- The Nephrology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
- The Second People's Hospital of Shanxi Province, Taiyuan, China
| | - Hui Liao
- The Drug Clinical Trial Institution of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- The Nephrology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Xu Z, Zhang M, Zhang X, Han H, Ye W, Chen Z, Lv Z, Liu Y, Liu Z, Gong J, Zhu B, Zhou S, Zhu R, Tao C, Zhang G, Yan X. Dihydromyricetin protects against cisplatin-induced renal injury and mitochondria-mediated apoptosis via the EGFR/HSP27/STAT3 signaling pathway. Ren Fail 2025; 47:2490202. [PMID: 40230054 PMCID: PMC12001862 DOI: 10.1080/0886022x.2025.2490202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 03/06/2025] [Accepted: 03/22/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Cisplatin (CP) has been used as an effective chemotherapy drug for different types of cancers. Despite its therapeutic benefits, the clinical utility of CP is often hindered by adverse effects, notably acute kidney injury (AKI), which restricts its widespread application. Dihydromyricetin (DHM) is a flavonoid acquired from Ampelopsis grossedentata, exhibiting a range of pharmacological activities. The major objective of this research was to examine the possible molecular mechanism involved in CP-induced AKI and the protective function of DHM. METHODS In this study, the protective function of DHM against CP-induced AKI was assessed in both mice and HK-2 cells. Kidney dysfunction parameters and renal morphology were evaluated to ascertain the extent of protection. Additionally, proteomics techniques were employed to investigate the protective effect of DHM and elucidate the underlying molecular mechanisms involved in mitigating CP-induced AKI. In addition, protein levels of epidermal growth factor receptor (EGFR), p-EGFR, heat shock protein 27 (HSP27), p-HSP27, STAT3, and p-STAT3 in renal tissues were investigated. Furthermore, an EGFR-blocking agent (gefitinib) or si-RNA of HSP27 was used to study the effects of inhibiting EGFR or HSP27 on CP-induced renal injury. RESULTS DHM decreased blood urea nitrogen (BUN) and creatinine in serum, alleviated renal morphological injury and downregulated the expression of CP-induced kidney injury molecule-1 and neutrophil gelatinase-related lipocalin. Proteomic data revealed HSP27 as a potential therapeutic target for AKI. DHM treatment resulted in the downregulation of EGFR, HSP27, and STAT3 phosphorylation, ultimately mitigating CP-induced AKI. In addition, the inhibition of EGFR or HSP27 reduced mitochondria-mediated apoptosis and CP-induced cell damage in HK-2 cells. CONCLUSIONS DHM effectively inhibited CP-induced oxidative stress, inflammation, and mitochondria-mediated apoptosis through the EGFR/HSP27/STAT3 pathway.
Collapse
Affiliation(s)
- Zheming Xu
- Department of Urology, Pediatric Urolith Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Minjing Zhang
- Department of Urology, Pediatric Urolith Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Xue Zhang
- Department of Urology, Pediatric Urolith Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Huirong Han
- School of Anesthesiology, Shandong Second Medical University, Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, Weifang, China
| | - Weifeng Ye
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Zhenjie Chen
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Zhisu Lv
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Yang Liu
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Zhengye Liu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianguang Gong
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bin Zhu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Suhan Zhou
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Runzhi Zhu
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Chang Tao
- Department of Urology, Pediatric Urolith Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Gensheng Zhang
- Department of Urology, Pediatric Urolith Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Xiang Yan
- Department of Urology, Pediatric Urolith Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| |
Collapse
|
11
|
Wu LH, Zhao D, Niu JY, Fan QL, Peng A, Luo CG, Zhang XQ, Tang T, Yu C, Zhang YY. Development and validation of multi-center serum creatinine-based models for noninvasive prediction of kidney fibrosis in chronic kidney disease. Ren Fail 2025; 47:2489715. [PMID: 40230189 PMCID: PMC12001852 DOI: 10.1080/0886022x.2025.2489715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/21/2025] [Accepted: 03/23/2025] [Indexed: 04/16/2025] Open
Abstract
OBJECTIVE Kidney fibrosis is a key pathological feature in the progression of chronic kidney disease (CKD), traditionally diagnosed through invasive kidney biopsy. This study aimed to develop and validate a noninvasive, multi-center predictive model incorporating machine learning (ML) for assessing kidney fibrosis severity using biochemical markers. METHODS This multi-center retrospective study included 598 patients with kidney fibrosis from four hospitals. A training cohort of 360 patients from Shanghai Tongji Hospital was used to develop a predictive nomogram and ML model, with fibrosis severity classified as mild or moderate-to-severe based on Banff scores. Logistic regression identified key predictors, which were incorporated into a nomogram and ML model. An external validation cohort of 238 patients from three additional hospitals was used for model evaluation. RESULTS Serum creatinine (Scr), estimated glomerular filtration rate (eGFR), parathyroid hormone (PTH), brain natriuretic peptide (BNP), and sex were identified as independent predictors of kidney fibrosis severity. The nomogram demonstrated superior discriminative ability in the training cohort (AUC: 0.89, 95% CI: 0.85-0.92) compared to eGFR (AUC: 0.83, 95% CI: 0.78-0.87) and Scr (AUC: 0.87, 95% CI: 0.83-0.91). Among ML models, the Random Forest (RF) model achieved the highest AUC (0.98). In external validation, the nomogram and RF models maintained robust performance with AUCs of 0.86 and 0.79, respectively. CONCLUSION This study presents a validated, noninvasive, multi-center Scr-based machine learning model for assessing kidney fibrosis severity in CKD. The integration of a clinical nomogram and ML approach offers a novel, practical alternative to biopsy for dynamic fibrosis evaluation.
Collapse
Affiliation(s)
- Le-hao Wu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dan Zhao
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian-Ying Niu
- Department of Nephrology, Shanghai Fifth People’s Hospital of Fudan University, Shanghai, China
| | - Qiu-Ling Fan
- Department of Nephrology, Shanghai General Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Ai Peng
- Department of Nephrology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng-gong Luo
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-qin Zhang
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tian Tang
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Yu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying-ying Zhang
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Ren C, Xu Q, Luo Q, Qiao X, Ding T, Wang W, Zeng X, Chen C, Xiao Y, Hong X. Benzothiazole amide analogues as antagonists of TRPC 6 channels: A therapeutic approach for kidney fibrosis. Eur J Med Chem 2025; 291:117628. [PMID: 40267878 DOI: 10.1016/j.ejmech.2025.117628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
Transient receptor potential canonical 6 (TRPC6) channels, which function as receptor-operated, non-selective cation channels, are widely expressed in the kidney, lungs, and brain. Within these organs, they play crucial roles in regulating diverse physiological processes and contribute to the pathogenesis of various disorders. The resolution of the cryo-electron microscopy structure of TRPC6 has significantly advanced our understanding of its molecular mechanisms, thereby providing a robust platform for structure-based drug design. Building upon compound 1S as a lead, we developed and synthesized a series of benzothiazole derivatives, ultimately identifying compound X26 as a potent TRPC6 antagonist with an IC50 of 0.97 μM. In vitro administration of X26 significantly suppressed TGF-β1-induced myofibroblast differentiation in HK-2 cells, as evidenced by a reduced expression of α-SMA, collagen I, and fibronectin. Furthermore, in a unilateral ureteral obstruction (UUO)-induced kidney fibrosis mouse model, treatment with X26 resulted in a substantial reduction in serum urea nitrogen, serum creatinine, and urinary protein levels, as well as a decrease in renal collagen deposition. These findings establish X26 as a promising lead for the development of TRPC6 antagonists and therapeutic interventions for kidney fibrosis.
Collapse
Affiliation(s)
- Chunlin Ren
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Qiding Xu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Qiusi Luo
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Xue Qiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Taotao Ding
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Wumei Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaodong Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| | - Cheng Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| | - Xuechuan Hong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China; Shenzhen Institute of Wuhan University, Shenzhen, 518057, China.
| |
Collapse
|
13
|
Han X, Zhang C, Lei Q, Xu J, Zhou Y. Stiffness regulates extracellular matrix synthesis in fibroblasts by DDR1-TGF-β/STAT3 mechanotransduction axis. BIOMATERIALS ADVANCES 2025; 172:214240. [PMID: 40023083 DOI: 10.1016/j.bioadv.2025.214240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
For a long time, research on atherosclerosis (AS) has mainly focused on endothelial cells (ECs) and smooth muscle cells (SMCs) in blood vessels. Fibroblasts, however, being the major component in adventitia, little is known about their role. Fibroblasts are highly plastic cells, capable of undergoing phenotypic changes in response to various extracellular signals. Once activated, fibroblasts can promote fibrosis by altering the secretion of extracellular matrix (ECM). In this study, the effect of ECM stiffness on fibroblasts was investigated. Polyacrylamide (PA) gels with varying elastic moduli (1 kPa, 20 kPa and 100 kPa) were used as models for matrix stiffness. Human fibroblasts were cultured on these substrates, and their phenotypic and functional changes were examined. The data revealed that a collagen-binding receptor, Discoidin Domain Receptor 1 (DDR1), plays a central role in sensing mechanical stimuli from ECM. Matrix stiffness-induced phosphorylation of DDR1 suppresses the synthesis of ECM proteins in fibroblasts. The expression of ECM proteins on the 1 kPa substrate was significantly higher than that on the 20 kPa and 100 kPa substrates, while the phosphorylation level of DDR1 was notably reduced. After knocking out DDR1, the difference in ECM proteins expression among the three substrates with different stiffness levels disappeared. The signal transduction from DDR1 to ECM synthesis is mediated by the TGF-β/STAT3 signaling axis. Our study reveals how matrix stiffness regulates the synthesis of ECM in fibroblasts and paves the way for understanding the regulation of fibrotic process in the pathogenesis of AS.
Collapse
Affiliation(s)
- Xiaomei Han
- Department of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, PR China
| | - Chao Zhang
- Department of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, PR China
| | - Qian Lei
- Department of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, PR China
| | - Jin Xu
- Department of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, PR China
| | - Yue Zhou
- Department of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, PR China.
| |
Collapse
|
14
|
Martinez B, Peplow PV. MicroRNAs as potential biomarkers for diagnosis of post-traumatic stress disorder. Neural Regen Res 2025; 20:1957-1970. [PMID: 39101663 PMCID: PMC11691471 DOI: 10.4103/nrr.nrr-d-24-00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Post-traumatic stress disorder is a mental disorder caused by exposure to severe traumatic life events. Currently, there are no validated biomarkers or laboratory tests that can distinguish between trauma survivors with and without post-traumatic stress disorder. In addition, the heterogeneity of clinical presentations of post-traumatic stress disorder and the overlap of symptoms with other conditions can lead to misdiagnosis and inappropriate treatment. Evidence suggests that this condition is a multisystem disorder that affects many biological systems, raising the possibility that peripheral markers of disease may be used to diagnose post-traumatic stress disorder. We performed a PubMed search for microRNAs (miRNAs) in post-traumatic stress disorder (PTSD) that could serve as diagnostic biomarkers and found 18 original research articles on studies performed with human patients and published January 2012 to December 2023. These included four studies with whole blood, seven with peripheral blood mononuclear cells, four with plasma extracellular vesicles/exosomes, and one with serum exosomes. One of these studies had also used whole plasma. Two studies were excluded as they did not involve microRNA biomarkers. Most of the studies had collected samples from adult male Veterans who had returned from deployment and been exposed to combat, and only two were from recently traumatized adult subjects. In measuring miRNA expression levels, many of the studies had used microarray miRNA analysis, miRNA Seq analysis, or NanoString panels. Only six studies had used real time polymerase chain reaction assay to determine/validate miRNA expression in PTSD subjects compared to controls. The miRNAs that were found/validated in these studies may be considered as potential candidate biomarkers for PTSD and include miR-3130-5p in whole blood; miR-193a-5p, -7113-5p, -125a, -181c, and -671-5p in peripheral blood mononuclear cells; miR-10b-5p, -203a-3p, -4488, -502-3p, -874-3p, -5100, and -7641 in plasma extracellular vesicles/exosomes; and miR-18a-3p and -7-1-5p in blood plasma. Several important limitations identified in the studies need to be taken into account in future studies. Further studies are warranted with war veterans and recently traumatized children, adolescents, and adults having PTSD and use of animal models subjected to various stressors and the effects of suppressing or overexpressing specific microRNAs.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Pharmacology, University of Nevada-Reno, Reno, NV, USA
- Department of Medicine, University of Nevada-Reno, Reno, NV, USA
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Zhang X, Shao W, Gao Y, Wang X. Macrophage polarization-mediated PKM2/mTORC1/YME1L signaling pathway activation in fibrosis associated with Cardiorenal syndrome. Cell Signal 2025; 131:111664. [PMID: 39961408 DOI: 10.1016/j.cellsig.2025.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 02/14/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Cardiorenal syndrome (CRS) is a complex condition characterized by the interplay between cardiac and renal dysfunction, often culminating in renal fibrosis. The role of macrophage polarization and its downstream effects in CRS-induced renal fibrosis remains an area of active investigation. METHODS Single-cell RNA sequencing (scRNA-seq) and immune infiltration analyses were employed to identify key immune cells and genes involved in renal fibrosis in CRS. Meta-analysis and pseudo-time analysis were conducted to validate the functional relevance of these genes. Functional studies utilizing CRISPR/Cas9 gene editing and lentiviral vectors assessed macrophage polarization and epithelial-to-mesenchymal transition (EMT). In vivo, a CRS mouse model was established, and fibrosis progression was tracked using histological and imaging methods. RESULTS The PKM2/mTORC1/YME1L signaling axis was identified as a critical pathway driving renal fibrosis, mediated by HIF-1α-induced M1 macrophage polarization. Inhibition of HIF-1α significantly alleviated renal fibrosis by restricting M1 polarization and suppressing the PKM2/mTORC1/YME1L axis. Co-culture models further demonstrated the involvement of EMT and metabolic reprogramming in affected cells. CONCLUSION Targeting the HIF-1α signaling pathway offers a promising therapeutic strategy for renal fibrosis by modulating macrophage polarization and the PKM2/mTORC1/YME1L axis.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China.
| | - Wen Shao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Yun Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xiaojun Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
16
|
Najdek C, Walle P, Flaig A, Ayral AM, Demiautte F, Coulon A, Buiche V, Lambert E, Amouyel P, Gelle C, Siedlecki-Wullich D, Dumont J, Kilinc D, Eysert F, Lambert JC, Chapuis J. Calpain and caspase regulate Aβ peptide production via cleavage of KINDLIN2 encoded by the AD-associated gene FERMT2. Neurobiol Aging 2025; 151:117-125. [PMID: 40273529 DOI: 10.1016/j.neurobiolaging.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 04/14/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
The adapter protein KINDLIN2, encoded by the Alzheimer's disease (AD) genetic risk factor FERMT2, was identified as a modulator of APP processing. KINDLIN2 directly interacts with APP to modulate its metabolism, and KINDLIN2 underexpression impairs long-term potentiation in an APP-dependent manner. Altogether, these data suggest that loss of KINDLIN2 could have a detrimental effect on synaptic function and promote AD pathophysiological process. In this study, we identified KINDLIN2 as a novel substrate of caspases and calpain I, two well-characterized cysteine proteases involved in the regulation of synaptic plasticity. These cleavages resulted in the dissociation of the F0 and F1 domains of KINDLIN2 that are necessary for it to function as an adapter protein. Furthermore, we demonstrate that these cleavages lead to a decrease in KINDLIN2's ability to control APP processing. Overall, these KINDLIN2 cleavages appear as potential new mechanisms in the regulation of KINDLIN2 functions at the synapse and could be of interest for the pathophysiology of AD.
Collapse
Affiliation(s)
- Chloé Najdek
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Pauline Walle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Amandine Flaig
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Anne-Marie Ayral
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Florie Demiautte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Audrey Coulon
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Valérie Buiche
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Erwan Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Carla Gelle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Dolores Siedlecki-Wullich
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Julie Dumont
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Devrim Kilinc
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Fanny Eysert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France
| | - Julien Chapuis
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille 59019, France.
| |
Collapse
|
17
|
Hong P, Yang DX, Xu YH, He MJ, Chen X, Li F, Xu SY, Zhang HF. Lipocalin 2 mediates kidney function abnormalities induced by ischemic stroke in mice: Involvement of neural pathways. Exp Neurol 2025; 389:115267. [PMID: 40250700 DOI: 10.1016/j.expneurol.2025.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Kidney function abnormalities is a common complication following ischemic stroke. Lipocalin 2 (LCN2) is currently a well-recognized specific biomarker of tubular injury. However, the role of LCN2 in kidney function abnormalities following stroke remains elusive. The sympathetic nervous system plays a crucial role in linking the brain and kidney. However, whether the kidney sympathetic nervous system regulates the expression of LCN2 following ischemic stroke has not been identified. METHODS In this study, we established a middle cerebral artery occlusion (MCAO) model to induce ischemic stroke in mice. Renal function was assessed 24 h after cerebral ischemia-reperfusion injury. Transcriptomic sequencing of kidney tissue was performed to identify potential pathological mechanisms. The role of LCN2 in post-stroke renal injury was investigated using renal tubule-specific LCN2 knockout mice and a combination of qPCR, western blotting, immunofluorescence, and transmission electron microscopy. In addition, renal denervation (RDN) was used to explore the relationship between sympathetic nerves and the expression of renal LCN2. RESULTS Ischemic stroke significantly exhibits renal functional impairment 24 h after reperfusion. Notably, RNA sequencing and Western blotting revealed a markedly increased expression of renal LCN2 following ischemic stroke. Renal tubular Lcn2-specific knockout significantly ameliorated the occurrence of kidney function abnormalities after stroke. Subsequently, we observed that the activation of renal sympathetic nerves upregulates LCN2 and induces kidney function abnormalities after stroke. CONCLUSIONS These findings reveal a neural pathway in which the sympathetic nervous system upregulates LCN2, providing potential therapeutic strategies for renal protection following ischemic stroke.
Collapse
Affiliation(s)
- Pu Hong
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Institute of Perioperative Medicine and Organ Protection, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dong-Xiao Yang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ye-Hao Xu
- The Department of Cardiology, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng-Jiao He
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xi Chen
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Institute of Perioperative Medicine and Organ Protection, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shi-Yuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Institute of Perioperative Medicine and Organ Protection, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Institute of Perioperative Medicine and Organ Protection, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Tsoneva Y, Velikova T, Nikolaev G. Circadian clock regulation of myofibroblast fate. Cell Signal 2025; 131:111774. [PMID: 40169063 DOI: 10.1016/j.cellsig.2025.111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Fibrosis-related disorders represent an increasing medical and economic burden on a worldwide scale, accounting for one-third of all disease-related deaths with limited therapeutic options. As central mediators in fibrosis development, myofibroblasts have been gaining increasing attention in the last 20 years as potential targets for fibrosis attenuation and reversal. While various aspects of myofibroblast physiology have been proposed as treatment targets, many of these approaches have shown limited long-term efficacy so far. However, ongoing research is uncovering new potential strategies for targeting myofibroblast activity, offering hope for more effective treatments in the future. The circadian molecular clock is a feature of almost every cell in the human body that dictates the rhythmic nature of various aspects of human physiology and behavior in response to changes in the surrounding environment. The dysregulation of these rhythms with aging is considered to be one of the underlying reasons behind the development of multiple aging-related chronic disorders, with fibrotic tissue scarring being a common pathological complication among the majority of them. Myofibroblast dysregulation due to skewed circadian clockwork might significantly contribute to fibrotic scar persistence. In the current review, we highlight the role of the circadian clock in the context of myofibroblast activation and deactivation and examine its dysregulation as a driver of fibrogenesis.
Collapse
Affiliation(s)
- Yoanna Tsoneva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", Bulgaria.
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak str, 1407 Sofia, Bulgaria.
| | - Georgi Nikolaev
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", Bulgaria.
| |
Collapse
|
19
|
Zhou J, Shou Y, Shi Q, Ye J, Li X, Zhu Z, Wang X. Fibroblast growth factor 18 attenuates renal fibrosis via AMPK/NOX4 pathway in mice. Biochem Biophys Res Commun 2025; 766:151913. [PMID: 40311293 DOI: 10.1016/j.bbrc.2025.151913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Renal fibrosis, particularly tubulointerstitial fibrosis, is a prevalent pathological process contributing to the progression of chronic kidney disease (CKD). A growing body of evidence indicates that fibroblast growth factors (FGFs) play critical roles in kidney pathophysiology. However, the role of FGF18 in the pathogenesis of kidney fibrosis and the underlying mechanisms remain unclear. In this study, we discovered a significant upregulation of FGF18 in a folic acid (FA)-induced renal fibrosis model, as well as in transforming growth factor β (TGF-β) stimulated human proximal tubular cells (HK-2 cells). Furthermore, overexpression of FGF18 in the kidney significantly alleviated FA-induced fibrosis and diminished oxidative stress. Mechanistically, FGF18 upregulated AMP-activated protein kinase (AMPK) phosphorylation via its receptor FGFR3, leading to decreased NOX4-ROS levels, reduced oxidative stress, and ultimately inhibited the expression of fibrosis-related proteins. In conclusion, our findings suggest that FGF18 attenuates FA-induced renal fibrosis, at least in partly via AMPK/NOX4 pathway.
Collapse
Affiliation(s)
- Jie Zhou
- School of Pharmaceutical Science, Wenzhou Medical University, 325035, Wenzhou, China
| | - Yanni Shou
- School of Pharmaceutical Science, Wenzhou Medical University, 325035, Wenzhou, China
| | - Qiaoyan Shi
- School of Pharmaceutical Science, Wenzhou Medical University, 325035, Wenzhou, China
| | - Junbo Ye
- School of Pharmaceutical Science, Wenzhou Medical University, 325035, Wenzhou, China
| | - Xianzhe Li
- Life Science of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, 325035, Wenzhou, China.
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, 325035, Wenzhou, China.
| |
Collapse
|
20
|
Zhang X, Sha Y, Wu Y, Guan H, Yang X, Wang W, Zhang W, Liu Y, Zhu L, Li Q. Targeting endothelial cells: A novel strategy for pulmonary fibrosis treatment. Eur J Pharmacol 2025; 997:177472. [PMID: 40054716 DOI: 10.1016/j.ejphar.2025.177472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/10/2025] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
Endothelial cells (ECs) are a monolayer of flat cells lining the inner surfaces of blood and lymphatic vessels. They play a key role in many physiological and pathological processes. Specifically, they maintain vascular permeability and structural stability and participate in immune responses, inflammation, coagulation, and other vital functions. ECs play a decisive role in various age-related diseases; however, their involvement in pulmonary fibrosis (PF) remains poorly understood. PF refers to a group of chronic interstitial lung diseases characterised by progressive scarring of the pulmonary parenchyma, primarily caused by aberrant tissue repair mechanisms. These changes lead to irreversible loss of lung function. Although the exact pathophysiological mechanism underlying PF has not yet been elucidated, recent studies have indicated that ECs may play a pivotal role in PF. This review outlines the involvement of pulmonary vascular ECs in PF, focusing on the regulation of vascular remodelling and endothelial barrier integrity and on the maintenance of angiogenesis through EC-specific markers, such as vascular endothelial growth factor. This review also explores processes such as endothelial-to-mesenchymal transition, immune cell interactions, anti-EC antibody reactions, metabolic dysregulation, and cellular senescence. By elucidating recent advancements in understanding the role of ECs in PF and examining drugs targeting ECs for the treatment of PF, this study provides novel insights into the pathological mechanisms of PF and the development of endothelium-based therapeutic agents.
Collapse
Affiliation(s)
- Xin Zhang
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, 232001, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yuxia Sha
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yu Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Haiyang Guan
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xu Yang
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Wenjin Wang
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Wenlong Zhang
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yunyun Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lili Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qing Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
21
|
Long L, Li M, Wang M, Liang B, Huang M, Yuan X, Wu X, Guo X, Li S, Liu Z, Liu W, Chen W, Wang W, Lyu Q, Li C. Activation of mannose receptor C type 1 in macrophages improves renal fibrosis through mediating fibronectin endocytosis. Life Sci 2025; 371:123593. [PMID: 40164332 DOI: 10.1016/j.lfs.2025.123593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
AIMS Excess extracellular matrix (ECM) deposition is the characteristic of renal fibrosis, owing to the imbalance between synthesis and degradation. Fibronectin could regulate the deposition of other ECM, thus plays a crucial role in the progression of renal fibrosis. Mannose receptor C type 1 (MRC1), largely expressed on macrophages, owns an extracellular fibronectin type II domain that binds to and internalizes collagen and thus involves in fibrosis modulation. The purpose of the present study was to investigate whether MRC1 participates in the internalization of fibronectin and whether alginate oligosaccharides (AOSC), a degradation product of alginate, has beneficial effects in the resolution of renal fibrosis via MRC1. MATERIALS AND METHODS Renal fibrosis models were constructed by unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI) in MRC1-WT and MRC1-KO mice. RAW264.7 cells were treated with TGF-β1 to induce pro-fibrotic responses. Expression of fibrotic markers and fibronectin endocytosis were examined. KEY FINDINGS MRC1 gene knockout aggravated renal fibrosis in UUO and UIRI models. Inhibition of MRC1 exacerbated TGF-β1-induced pro-fibrotic responses in RAW264.7 cells. MRC1 regulated integrin β1-mediated fibronectin endocytosis through Arp2/3-Kindlin-2 signaling pathway. AOSC improved renal fibrosis by increasing MRC1 expression and endocytosis of fibronectin. SIGNIFICANCE Our findings highlight the importance of MRC1 and fibronectin endocytosis in the development of renal fibrosis, suggesting that activation of MRC1 by AOSC is probably a therapeutic option to delay the progress of kidney fibrosis.
Collapse
Affiliation(s)
- Luosha Long
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathology and Pathophysiology, Pu Ai Medical School, Shaoyang University, Shaoyang, China
| | - Meng Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minghui Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Baien Liang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Meiying Huang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xi Yuan
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinyan Wu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Suchun Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Zhende Liu
- Haitang (Jiangsu) Biotechnology Co, Ltd., Nantong, Jiangsu, China
| | - Weizhi Liu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qianqian Lyu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
22
|
Church KA, Zhou X, Kalluri R. Suppression of BRCA1 facilitates kidney regeneration. J Exp Med 2025; 222:e20241814. [PMID: 40152785 PMCID: PMC11952069 DOI: 10.1084/jem.20241814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Maladaptive repair following kidney injury leads to the development of kidney disease. In this issue of JEM, Ajay et al. (https://doi.org/10.1084/jem.20231107) uncover the role of breast cancer susceptibility gene 1 (BRCA1) in cell cycle arrest, DNA damage, and cell senescence, preventing maladaptive repair.
Collapse
Affiliation(s)
- Kaira A. Church
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xunian Zhou
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
23
|
Zhang J, Guo H, Gong C, Shen J, Jiang G, Liu J, Liang T, Guo L. Therapeutic targets in the Wnt signaling pathway: Treating cancer with specificity. Biochem Pharmacol 2025; 236:116848. [PMID: 40049295 DOI: 10.1016/j.bcp.2025.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 04/20/2025]
Abstract
The Wnt signaling pathway is a critical regulatory mechanism that governs cell cycle progression, apoptosis, epithelial-mesenchymal transition (EMT), angiogenesis, stemness, and the tumor immune microenvironment, while also maintaining tissue homeostasis. Dysregulated activation of this pathway is implicated in various cancers, closely linked to tumor initiation, progression, and metastasis. The Wnt/β-catenin axis plays a central role in the pathogenesis of common cancers, including colorectal cancer (CRC), breast cancer (BC), liver cancer, and lung cancer. Unlike traditional chemotherapy, targeted therapy offers a more precise approach to cancer treatment. As a key regulator of oncogenesis, the Wnt pathway represents a promising target for clinical interventions. This review provides a comprehensive analysis of the Wnt signaling pathway, exploring its roles in tumor biology and its implications in human malignancies. It further examines the molecular mechanisms and modes of action across different cancers, detailing how the Wnt pathway contributes to tumor progression through mechanisms such as metastasis promotion, immune modulation, drug resistance, and enhanced cellular proliferation. Finally, therapeutic strategies targeting Wnt pathway components are discussed, including inhibitors targeting extracellular members, as well as those within the cell membrane, cytoplasm, and nucleus. The potential of these targets in the development of novel therapeutic agents underscores the critical importance of intervening in the Wnt signaling pathway for effective cancer treatment.
Collapse
Affiliation(s)
- Jiaxi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Haochuan Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Chengxuan Gong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jie Shen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Guijie Jiang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiarui Liu
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China.
| | - Li Guo
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
24
|
Lu Z, Tan K, Xiang S, Zhang Y, Luo F, Liu X, Zhao X, Ouyang L. Peptide loaded self-healing hydrogel promotes diabetic skin wound healing through macrophage orchestration and inflammation inhibition. Mater Today Bio 2025; 32:101690. [PMID: 40225136 PMCID: PMC11986612 DOI: 10.1016/j.mtbio.2025.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
Chronic wound is one of the complications of diabetes, and its difficult cure results in increased disability rate and mortality rate, which brings serious psychological and economic burden to patients. Excessive inflammation is one of the key reasons for poor tissue healing in chronic diabetic wounds. Herewith, the development of wound dressings with anti-inflammation and promoting tissue repair is of great significance for the treatment of chronic diabetic wounds. In this work, the Ac2-26 (Ac) peptide was loaded into the hyaluronic acid (HA) complex hydrogel for diabetic wound therapy. The hydrogel containing Ac had good mechanical properties, self-healing properties, and adhesion. It could down-regulate the M1/M2 phenotype of macrophages effectively, thereby promoting collagen type Ⅲ (COL-Ⅲ) secretion and migration of L929 and angiogenesis of HUVECs. Furthermore, the hydrogel containing Ac could restore the oxidative phosphorylation process and down-regulated toll-like receptor signaling pathway and inflammatory gene expression in the pathological environment of diabetes, showing a superior anti-inflammatory effect to ultimately promote the collagen deposition and angiogenesis in tissues for wounds repair. The HA complex hydrogel containing Ac demonstrated a good potential for clinical application in diabetic wound repair.
Collapse
Affiliation(s)
- Ziyi Lu
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Kaijia Tan
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Shuwen Xiang
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yuchen Zhang
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Fangliang Luo
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xingdan Liu
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiaoli Zhao
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liping Ouyang
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| |
Collapse
|
25
|
Zhou J, Yang F, Zhang X, Wang C, Wu Z, Gao J. Jiangniaosuan formula inhibits hyperuricemia-induced apoptosis of renal tubular epithelial cells via ROS/HIF-1α/EZH2 pathway: A network pharmacology analysis and experimental validation. Bioorg Chem 2025; 159:108363. [PMID: 40088688 DOI: 10.1016/j.bioorg.2025.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
OBJECTIVE This study aimed to explore the main chemical components of Jiangniaosuan Formula (JNSF), the therapeutic effect of JNSF on hyperuricemia (HUA) mice, and the underlying mechanism by which JNSF inhibits renal tubular epithelial cell apoptosis. METHODS Ultra Performance Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (UPLC-Q-TOF-MS) was used to analyze the chemical composition of JNSF and its serum metabolites. Network pharmacology was performed to predict the potential target genes and pathways. In vitro and in vivo models were established to verify the lower serum uric acid (SUA) and renal protective effects. RESULTS UPLC-Q-TOF-MS identified 61 chemical compounds in JNSF and 56 metabolites in serum after oral administration. Network pharmacology suggested that Hypoxia-Inducible Factor 1-Alpha (HIF-1α), Cysteine-dependent Aspartate-specific Protease-3 (Caspase-3) and B-cell Lymphoma 2 (Bcl-2) might be the therapeutic targets of JNSF for the HUA treatment and JNSF may exert the therapeutic effect on uric acid nephropathy (UAN) through regulating HIF-1α signaling pathway and apoptosis pathway. In vivo experiments showed that JNSF could reduce SUA, protect renal function and tubular function, alleviate renal interstitial edema and fibrosis, reduce the expression of Reactive Oxygen Species (ROS), HIF-1α and Enhancer of Zeste Homolog 2 (EZH2), and inhibit cell apoptosis in HUA mice. In vitro experiments demonstrated that JNSF reversed apoptosis induced by EZH2 overexpression plasmid. Furthermore, we found that UA could promote the binding of HIF-1α to EZH2 protein and its promoter, enhancing EZH2 transcription, suggesting that JNSF could alleviate the progression of HUA-induced kidney injury by inhibiting the activation of ROS/HIF-1α/EZH2 pathway. CONCLUSION JNSF may attenuate HUA-induced renal injury by inhibiting apoptosis through the downregulation of ROS/HIF-1α/EZH2 pathway.
Collapse
Affiliation(s)
- Jiabao Zhou
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Feng Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Xuming Zhang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Chuanxu Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Zhiyuan Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Jiandong Gao
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China.
| |
Collapse
|
26
|
Zhu L, Ding M, Liu L, Yuan P, Shao T, Liu C, Xi C, Han J, Zhou Y, Zhang D, Wang G. Burdock Fructooligosaccharide Protects Against Diabetic Nephropathy in Mice by Regulating Nrf2 Signaling. Pharmacol Res Perspect 2025; 13:e70094. [PMID: 40264355 PMCID: PMC12015130 DOI: 10.1002/prp2.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 04/24/2025] Open
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes mellitus, with oxidative stress playing a critical role in its development. Burdock fructooligosaccharide (BFO), a major compound in Burdock, exhibits antioxidative effects. However, its mechanisms of action and effects on diabetic nephropathy are not clear enough. This study aims to explore the mechanisms of BFO and its impact on streptozotocin-induced diabetic nephropathy in mice. Male C57BL/6J mice were randomly divided into normal control, DN, and BFO groups. Relevant serum biochemical parameters were detected using kits. Renal injury was evaluated through fluorescence microscopy, histopathology, and transmission electron microscopy. Nrf2/HO-1 signaling was analyzed via quantitative real-time PCR, western blotting, and immunohistochemistry. In DN mice, BFO significantly reduced fasting blood glucose, kidney index, urine protein, serum creatinine, blood urea nitrogen, total cholesterol, triglyceride, and low-density lipoprotein cholesterol, while significantly increasing high-density lipoprotein, SOD, and CAT levels. Additionally, BFO protected against streptozotocin-induced renal injury, restored podocyte function, increased both mRNA and protein expression of Nrf2, HO-1, and Bcl-2, and decreased those of Bax. In conclusion, BFO can be used to treat streptozotocin-induced renal injury in mice and is a promising candidate for diabetic nephropathy treatment.
Collapse
Affiliation(s)
- Lei Zhu
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
| | - Mengru Ding
- School of PharmacyWannan Medical CollegeWuhuChina
- Department of PharmacyFuyang Tumor HospitalFuyangChina
| | - Lina Liu
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital, Yijishan Hospital of Wannan Medical CollegeWuhuChina
| | - Pingchuan Yuan
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
| | - Taili Shao
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
| | - Chunyan Liu
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
| | - Chuanhu Xi
- School of PharmacyWannan Medical CollegeWuhuChina
| | - Jun Han
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHMWannan Medical CollegeWuhuChina
| | - Yuyan Zhou
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHMWannan Medical CollegeWuhuChina
| | - Donglin Zhang
- School of StomatologyWannan Medical CollegeWuhuChina
| | - Guodong Wang
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
| |
Collapse
|
27
|
Liu W, Hu C, Qian X, He C, Gu R, Meng Z, Li D, Zhang Q. TaoHeChengQi Decotion alleviate chronic renal failure via regulation of PHD2/UCP1 and RIPK3/AKT/TGF-β pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156548. [PMID: 40112631 DOI: 10.1016/j.phymed.2025.156548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic renal failure (CRF) is a late stage in the development of chronic kidney disease (CKD). Currently, there are no specific clinical drugs available. Traditional Chinese medicine (TCM), as a holistic therapeutic approach, may provide new strategies to improve the clinical management of CRF. AIM OF THE STUDY This study aimed to investigate the ameliorative effect of TaoHeChengQi Decoction (THCQD) on CRF and to elucidate its potential mechanism. MATERIALS AND METHODS Animal experiments were performed using 5/6 nephrectomy to establish a model of renal failure in rats, and serum, urine, and kidney samples were collected for study after low, medium, and high doses of (2, 4, and 8 g/kg) of THCQD were given by gavage for 8 consecutive weeks. Cellular experiments were performed using Ang II or TGF-β to stimulate HK-2 cells to produce symptoms similar to those of renal failure in vivo to evaluate the ameliorative effect and mechanism of THCQD. After clarifying the chemical composition of THCQD Tang, this study explored the pathogenesis of the disease by mass spectrometry-based proteomics technology, and used affinity ultrafiltration mass spectrometry, surface plasmon resonance, DARTS, and CETSA to investigate the pharmacological material basis of the compound, which was verified by immunoblotting and and immunofluorescence staining experiments. RESULTS THCQD attenuated renal injury, renal fibrosis and oxidative stress indices in serum (urine or kidney tissue) of CRF rats. Cellular experiments confirmed that THCQD also protected HK-2 cells from Ang II or TGF-β-induced injury. The mechanism of action was found to be related to the PHD2/UCP1 and RIPK3/AKT/TGF-β pathways by proteomic studies and verified by immunoblotting experiments. In addition, the pharmacodynamic material bases of PHD2/UCP1 and RIPK3/AKT/TGF-β pathways were confirmed to be amygdalin (Amy) and rhein (Rhe), respectively, by AUF-MS, SPR, CETSA and DARTS. CONCLUSION THCQD synergistically ameliorates 5/6 nephrectomy-induced CRF by activating PHD2/UCP2-mediated autophagy and targeting RIPK3 and its downstream TGF-β pathway. The basis of the synergistic effects of the above signaling pathways are Amy and Rhe, respectively.
Collapse
Affiliation(s)
- Wei Liu
- Department of Urology Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China
| | - Cheng Hu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Xiaojing Qian
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Chunfeng He
- Department of Urology Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China
| | - Renze Gu
- Department of Urology Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China
| | - Zhenglei Meng
- Department of Urology Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China
| | - Dongmei Li
- Department of Pediatrics, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, PR China.
| | - Qingchuan Zhang
- Department of Urology Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China.
| |
Collapse
|
28
|
Liu X, Feng J, Guo M, Chen C, Zhao T, Sun X, Zhang Y. Resetting the aging clock through epigenetic reprogramming: Insights from natural products. Pharmacol Ther 2025; 270:108850. [PMID: 40221101 DOI: 10.1016/j.pharmthera.2025.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/04/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Epigenetic modifications play a critical role in regulating gene expression under various physiological and pathological conditions. Epigenetic modifications reprogramming is a recognized hallmark of aging and a key component of the aging clock used to differentiate between chronological and biological age. The potential for prospective diagnosis and regulatory capabilities position epigenetic modifications as an emerging drug target to extend longevity and alleviate age-related organ dysfunctions. In the past few decades, numerous preclinical studies have demonstrated the therapeutic potential of natural products in various human diseases, including aging, with some advancing to clinical trials and clinical application. This review highlights the discovery and recent advancements in the aging clock, as well as the potential use of natural products as anti-aging therapeutics by correcting disordered epigenetic reprogramming. Specifically, the focus is on the imbalance of histone modifications, alterations in DNA methylation patterns, disrupted ATP-dependent chromatin remodeling, and changes in RNA modifications. By exploring these areas, new insights can be gained into aging prediction and anti-aging interventions.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Jing Feng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Madi Guo
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Chen Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Tong Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Xiuxiu Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| |
Collapse
|
29
|
Zhao C, Wang H, Xu C, Fang F, Gao L, Zhai N, Zhong Y, Wang X. The critical role of the Hippo signaling pathway in renal fibrosis. Cell Signal 2025; 130:111661. [PMID: 39988289 DOI: 10.1016/j.cellsig.2025.111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
Renal fibrosis is a fundamental pathological change in the progression of various chronic kidney diseases to the end stage of renal disease. The Hippo signaling pathway is an evolutionary highly conserved signaling pathway that is involved in the regulation of organ size, tissue regeneration, and human reproduction and development. Currently, many studies have shown that it is closely associated with renal diseases, such as, renal fibrosis, diabetic nephropathy, and renal cancer. Here, we review the current researches on the effect of Hippo signaling pathway on renal fibrosis, which provides new ideas and theoretical basis for clinical therapeutics of renal fibrosis.
Collapse
Affiliation(s)
- Chenchen Zhao
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Hongshuang Wang
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Chang Xu
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Fang Fang
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Lanjun Gao
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Nan Zhai
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Yan Zhong
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China.
| | - Xiangting Wang
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China.
| |
Collapse
|
30
|
Ma L, Wang W, Gu L, Wang L. cPLA 2α on the influence of Th17 and its role in the formation of liver fibrosis. Cytotechnology 2025; 77:87. [PMID: 40206205 PMCID: PMC11977053 DOI: 10.1007/s10616-025-00750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025] Open
Abstract
This study primarily investigated the mechanism and pathways of the cPLA2α signaling pathway on Th17-mediated HSC activation and liver fibrosis, providing insights for clinical strategies to target HSC activation and delay the rapid progression of liver fibrosis. In vitro and in vivo model were established, and different concentrations of the cPLA2α inhibitor AACOCF3 were administered respectively for intervention. The expression of IL- 17 was detected by ELISA, and the expression of cPLA2α protein and HSC activation protein α-SMA index were detected by Western blot and immunofluorescence. In addition, observe the changes in the degree of liver fibrosis in mice through the pathological staining of mouse livers. In an in vitro system, Th17 could induce HSC activation. And after intervention, the results showed that the inhibitor could inhibit Th17 activation of HSC. Next, in an in vivo model, Th17 could also induce HSC activation. And after intervention, the results showed that the inhibitor could also inhibit HSC activation by Th17. Observation under liver pathological staining showed that the inflammation and staining were significantly reduced in the intervention group, suggesting a therapeutic effect of AACOCF3. Using in vitro and in vivo approaches, these data suggest that Th17 cells can promote the activation and proliferation of HSCs, which further exerts a role in promoting liver fibrosis. These data also suggest that the cPLA2α pathway may be involved in the activation of HSCs by Th17 cells and induce liver fibrosis mechanisms.
Collapse
Affiliation(s)
- Lina Ma
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 Shandong China
- Shandong First Medical University, Jinan, 250117 Shandong China
| | - Wei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 Shandong China
- Shandong First Medical University, Jinan, 250117 Shandong China
| | - Limin Gu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 Shandong China
- Shandong First Medical University, Jinan, 250117 Shandong China
| | - Liyun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 Shandong China
| |
Collapse
|
31
|
Gorter RP, Arreguin AJ, Oost W, de Jonge JC, Kampinga HH, Amor S, Colognato H, Baron W. Unexpected Remyelination in the Absence of Matrix Metalloproteinase 7. Glia 2025; 73:1288-1306. [PMID: 40059514 PMCID: PMC12012326 DOI: 10.1002/glia.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 04/23/2025]
Abstract
In multiple sclerosis (MS), an influx of immune cells into the central nervous system leads to focal demyelinating lesions in the brain, optic nerve, and spinal cord. As MS progresses, remyelination increasingly fails, leaving neuronal axons vulnerable to degeneration and resulting in permanent neurological disability. In chronic MS lesions, the aberrant accumulation of extracellular matrix (ECM) molecules, including fibronectin and hyaluronan, impairs oligodendrocyte progenitor cell differentiation, contributing to remyelination failure. Removing inhibitory ECM is therefore a therapeutic target to stimulate remyelination in MS. Intriguingly, the expression of the fibronectin-degrading enzyme matrix metalloproteinase 7 (MMP7) is decreased in chronic MS lesions compared to control white matter. Therefore, we examined the role of MMP7 upon cuprizone-induced demyelination, hypothesizing that the lack of MMP7 would lead to impaired breakdown of its ECM substrates, including fibronectin, and diminished remyelination. Unexpectedly, remyelination proceeded efficiently in the absence of MMP7. In the remyelination phase, the lack of MMP7 did not lead to the accumulation of fibronectin or of laminin, another MMP7 substrate. Moreover, in the setting of chronic demyelination, levels of fibronectin were actually lower in MMP7-/- mice, while levels of hyaluronan, which is not a known MMP7 substrate, were also lower. Overall, these results indicate that MMP7 is not essential for remyelination in the cuprizone model and point to an unexpected complexity in how MMP7 deficiency influences fibronectin and hyaluronan levels in chronic demyelination.
Collapse
Affiliation(s)
- Rianne P. Gorter
- Department of Biomedical SciencesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
- Queen Mary University of LondonMS Center Noord NederlandGroningenthe Netherlands
| | - Andrea J. Arreguin
- Department of Pharmacological SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Wendy Oost
- Department of Biomedical SciencesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
- Queen Mary University of LondonMS Center Noord NederlandGroningenthe Netherlands
| | - Jenny C. de Jonge
- Department of Biomedical SciencesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
- Queen Mary University of LondonMS Center Noord NederlandGroningenthe Netherlands
| | - Harm H. Kampinga
- Department of Biomedical SciencesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Sandra Amor
- Department of PathologyAmsterdam UMC‐Location VUmcAmsterdamthe Netherlands
- Blizard Institute, Barts and the London School of Medicine and DentistryDepartment of Neuroscience and TraumaQueen Mary University of LondonLondonUK
- Institute of AnatomyRostock University Medical CenterRostockGermany
| | - Holly Colognato
- Department of Pharmacological SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Wia Baron
- Department of Biomedical SciencesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
- Queen Mary University of LondonMS Center Noord NederlandGroningenthe Netherlands
| |
Collapse
|
32
|
Liang W, Wu H, Long Q, Lin H, Lv X, Ma W, Wu T, Li A, Zheng Q, Guo J, Chen X, Guo J, Sun D. LKB1 activated by NaB inhibits the IL-4/STAT6 axis and ameliorates renal fibrosis through the suppression of M2 macrophage polarization. Life Sci 2025; 370:123564. [PMID: 40097066 DOI: 10.1016/j.lfs.2025.123564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Renal fibrosis is a critical pathological characteristic of chronic kidney disease, and current antifibrotic therapies has limited efficacy. Sodium butyrate (NaB) has been shown to be highly effective in mitigating bleomycin-induced pulmonary fibrosis; however, its specific impact on renal fibrosis and the underlying mechanisms remain unclear. This study aims to elucidate the role and mechanism of NaB in renal fibrosis by using a mouse model of renal fibrosis induced through Unilateral Ureteral Obstruction (UUO) and folic acid (FA) administration. RESULTS NaB significantly decreased the distribution of collagen fibers in renal tissues and mitigated fibrosis in a dose-dependent manner. Further analysis indicated that NaB inhibited M2 macrophage polarization in the renal tissues of UUO model mice by blocking the phosphorylation of STAT6, hence reducing renal fibrosis. Additionally, in vitro experiments demonstrated that NaB inhibited fibroblast activation induced by M2 macrophages. Mechanistic studies revealed that NaB attenuates fibroblast activation and M2 macrophage polarization by upregulating LKB1 and inhibiting the activation of the STAT6 signaling pathway. CONCLUSION NaB may exert its effects by inhibiting the activation of the IL-4/STAT6 signaling pathway through the upregulation of LKB1, which suppress the polarization of M2 macrophages and consequently reduce renal fibrosis. These findings establish a theoretical foundation for NaB as a novel drug candidate for renal fibrosis and indicate its potential applicability in clinical treatments for this condition.
Collapse
Affiliation(s)
- Weifei Liang
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China; Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510180 Guangzhou, Guangdong, China
| | - Haoyu Wu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; South Zhejiang Institute of Radiation Medicine and Nuclear Technology Application, Wenzhou 325809, China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Qishan Long
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Hong Lin
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, Guangdong, China
| | - Xiaoyu Lv
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Wen Ma
- Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Tao Wu
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Ai Li
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510000, China
| | - Qingyou Zheng
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Xiangqiu Chen
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China.
| | - Jing Guo
- Center of Oncology, Heyou Hospital, Shunde District, Foshan City 528306, Address:No. 1 of Heren Road, Junlan Community, Beijiao Town, Shunde District, Foshan City, Guangdong Province, China.
| | - Donglin Sun
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China.
| |
Collapse
|
33
|
Cao Y, Hu L, Chen R, Chen Y, Liu H, Wei J. Unfolded protein response-activated NLRP3 inflammasome contributes to pyroptotic and apoptotic podocyte injury in diabetic kidney disease via the CHOP-TXNIP axis. Cell Signal 2025; 130:111702. [PMID: 40020889 DOI: 10.1016/j.cellsig.2025.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end-stage renal disease worldwide. Podocyte injury and death is a key event in DKD progression. Emerging evidence has indicated that crosstalk between unfolded protein response (UPR) and NLR family pyrin domain containing 3 (NLRP3) inflammasome plays an essential role in DKD progression. However, the involvement of these pathways in podocyte injury and death during DKD remains unclear. RESULTS Here, we found that inositol-requiring enzyme 1 (IRE1) and protein kinase RNA-like ER kinase (PERK) branches of the UPR, NLRP3 inflammasome, and apoptosis were activated in podocytes under DKD and high glucose (HG) conditions. In vitro, inducing ER stress by thapsigargin, and IRE1 or PERK overexpression upon HG treatment stimulated NLRP3 inflammasome-mediated pyroptosis and apoptosis, whereas inhibiting IRE1 or PERK suppressed them. Importantly, we discovered that the newly identified NLRP3-binding partner, thioredoxin-interacting protein (TXNIP), upon activation by the transcription factor (TF) PERK/CCAAT-enhancer-binding protein homologous protein (CHOP), served as a link between IRE1 or PERK branches with NLRP3 inflammasome-mediated pyroptosis and apoptosis. TXNIP expression was promoted in podocytes from DKD patients and db/db mice, as well as in HG-exposed conditionally immortalized human podocyte (HPC). In HG-exposed HPC, IRE1 or PERK overexpression upregulated TXNIP expression, while IRE1 or PERK inhibition downregulated it. TXNIP or CHOP silencing both inhibited HG-upregulated TXNIP, further blocking NLRP3 inflammasome-mediated pyroptosis and apoptosis. Furthermore, NLRP3 overexpression aggravated HG-induced pyroptosis and apoptosis, whereas additional TXNIP silencing reversed them without affecting IRE1 or PERK branches. CONCLUSION In conclusion, our results suggested that UPR/NLRP3 inflammasome-mediated pyroptosis/apoptosis pathway was involved in diabetic podocyte injury, and that targeting the CHOP-TXNIP axis may serve as a promising therapeutic target for DKD.
Collapse
Affiliation(s)
- Yun Cao
- Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, Hainan, China; Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Langtao Hu
- Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, Hainan, China
| | - Ruike Chen
- Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, Hainan, China
| | - Yao Chen
- Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, Hainan, China
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiali Wei
- Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, Hainan, China.
| |
Collapse
|
34
|
Tinsley H, Tryfonos Z, Aziz M, Lagzouli N, Longhurst C, Frick A, Ashton S, Cartwright JE, Whitley GS. Interleukin-1β Stimulates Matrix Metalloproteinase 10 Secretion: A Possible Mechanism in Trophoblast-Dependent Spiral Artery Remodeling. FASEB J 2025; 39:e70597. [PMID: 40326797 PMCID: PMC12054339 DOI: 10.1096/fj.202402329rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Maternal uterine spiral arteries (SpA) undergo significant structural changes in early pregnancy, resulting in increased blood flow to the developing fetus. Endothelial cells (EC) and vascular smooth muscle cells (VSMC) are lost from the SpA wall and are replaced by trophoblasts. We have previously shown that matrix metalloproteinase 10 (MMP-10) and Heparin binding-EGF like growth factor (HB-EGF) gene expression is increased in a 3D EC/VSMC co-culture system in response to trophoblast secreted factors. This study investigated trophoblast mediated MMP-10 and HB-EGF expression and determined if there was a relationship between the secretion of MMP-10 and the release of soluble HB-EGF (sHB-EGF) from EC. MMP-10 was widely expressed in first trimester decidual tissue including trophoblast, and EC, but not VSMC. MMP-10 expression was significantly lower in decidual tissue from pregnancies at increased risk of developing pre-eclampsia compared to low-risk pregnancies. In vitro, SGHEC-7 cells, a human EC line, but not SGHVMC-9, a human VSMC cell line, secreted MMP-10 in response to trophoblast conditioned medium (TCM). TCM contains several growth factors and cytokines, but only interleukin-1β (IL1β) significantly stimulated MMP-10 secretion by SGHEC-7 cells. Interleukin-1 receptor antagonist (IL-1Ra) significantly inhibited TCM-induced MMP-10 secretion. Interrogation of intracellular pathways established the involvement of MEK and JNK in TCM and IL-1β stimulated MMP-10 secretion. Although IL-1β also significantly increased sHB-EGF, inhibition of MMP-10 activity using a broad spectrum MMP inhibitor had no effect on sHB-EGF. Western blot analysis indicated that MMP-10 secreted by EC in response to IL-1β stimulation was the enzymatically inactive pro form.
Collapse
Affiliation(s)
- Holly Tinsley
- Centre for Vascular Biology, Cardiovascular and Genomics Research InstituteSt George's, University of LondonLondonUK
| | - Zoe Tryfonos
- Centre for Vascular Biology, Cardiovascular and Genomics Research InstituteSt George's, University of LondonLondonUK
| | - Miriam Aziz
- Centre for Vascular Biology, Cardiovascular and Genomics Research InstituteSt George's, University of LondonLondonUK
| | - Nora Lagzouli
- Centre for Vascular Biology, Cardiovascular and Genomics Research InstituteSt George's, University of LondonLondonUK
| | - Charlotte Longhurst
- Centre for Vascular Biology, Cardiovascular and Genomics Research InstituteSt George's, University of LondonLondonUK
- Royal Devon University TrustExeterUK
| | - Alexander Frick
- Fetal Medicine UnitSt George's University Hospitals NHS Foundation TrustLondonUK
| | - Sandra Ashton
- Centre for Vascular Biology, Cardiovascular and Genomics Research InstituteSt George's, University of LondonLondonUK
| | - Judith E. Cartwright
- Centre for Vascular Biology, Cardiovascular and Genomics Research InstituteSt George's, University of LondonLondonUK
| | - Guy S. Whitley
- Centre for Vascular Biology, Cardiovascular and Genomics Research InstituteSt George's, University of LondonLondonUK
| |
Collapse
|
35
|
Uzun O, Heybeli C, Kutlu FSA, Celebioglu Pekiner M, Yıldırım F, Cavdar C, Sarioglu S. Relationship between complement and macrophage markers with kidney survival in patients with diabetic nephropathy. Acta Diabetol 2025:10.1007/s00592-025-02521-3. [PMID: 40338344 DOI: 10.1007/s00592-025-02521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/21/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease (ESKD) worldwide. Macrophages and the complement system have interrelated roles in DN. We aimed to determine associations between macrophage and complement markers with the progression of DN. METHODS This retrospective cohort study included patients diagnosed with sole DN by kidney biopsy. Using immunohistochemistry, CD68+ and CD163+ cells and complement markers were counted in glomerular and tubulointerstitial areas. The primary outcome was evolution to ESKD and/or doubling serum creatinine (SCr). RESULTS Forty-six patients were included. The median SCr at baseline was 2.7 (1.41-3.1) mg/dL. During the median follow-up of 32 months (range 6-54), 50% of patients reached the primary outcome. Most of the clinical and histological findings were comparable between progressors and non-progressors, while progressors had a higher median number of glomerular CD68+ cells and a higher percentage of glomerulosclerosis. After adjustments for age, sex, and SCr, the median glomerular CD68+ cell number was the sole independent predictor of progression. Glomerular C4d was associated with nephrotic-range proteinuria but not with the progression of kidney failure. CONCLUSIONS Glomerular CD68+ cell count may serve as a promising predictor of kidney disease progression among patients with DN. Glomerular C4d was associated with nephrotic-range proteinuria but not with the progression of kidney failure.
Collapse
Affiliation(s)
- Ozcan Uzun
- Yalova Research and Training Hospital, Yalova, Turkey
| | - Cihan Heybeli
- Division of Nephrology, Dokuz Eylül University School of Medicine, Izmir, Turkey.
| | | | | | | | - Caner Cavdar
- Division of Nephrology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Sulen Sarioglu
- Department of Pathology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| |
Collapse
|
36
|
Bi R, Wei Y, Li P, Peng H, Alizadeh M, Hu B, Li Y. Associations of Cerebral Small Vessel Disease and Chronic Kidney Disease in Patients With Acute Ischemic Stroke. J Am Heart Assoc 2025; 14:e038711. [PMID: 40265579 DOI: 10.1161/jaha.124.038711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/15/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND The relationship between chronic kidney disease (CKD) and cerebral small vessel disease has been inconsistently reported. In particular, there is a lack of research focusing on patients with acute ischemic stroke, a key area that could provide important insights into the brain-kidney connection. METHODS AND RESULTS We established a large-sample size, multicenter prospective cohort study (SMART [Cerebral Small Vascular Disease Registry Multicenter Clinical Trial]) across 13 subcenters in central China. All participants underwent long-term, continuous renal function monitoring. CKD was assessed using the Kidney Disease Improving Global Outcomes criteria, defined as abnormal kidney function lasting for at least 3 consecutive months. Magnetic resonance imaging, including T2-weighted and susceptibility-weighted imaging, was used to detect markers of cerebral small vessel disease such as white matter hyperintensities, cerebral microbleeds, lacunar infarctions, and enlarged perivascular spaces. Multinomial, binomial, and ordinal logistic regression models were employed, adjusting for demographic, vascular, and stroke-related factors. Among the 3909 patients with acute ischemic stroke (mean age 62 years, 35.3% female), 307 (7.9%) were diagnosed with CKD. Higher CKD risk grades were correlated with an increased burden of cerebral small vessel disease. After adjusting confounding factors, white matter hyperintensities (odds ratio [OR], 1.841 [95% CI, 1.413-2.400], P<0.001), lacunar infarctions (OR, 3.455 [95% CI, 2.314-5.158], P<0.001), and cerebral microbleeds (OR, 2.514 [95% CI, 1.976-3.199], P=0.005) were significantly more frequent in patients with CKD. Additionally, patients with CKD exhibited higher rates of cardiac embolism (OR, 1.405 [95% CI, 1.067-1.851], P=0.016) compared with other stroke causes. CONCLUSIONS Stroke clinicians should recognize CKD as a potentially independent and modifiable risk factor for cerebral small vessel disease.
Collapse
Affiliation(s)
- Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yanhao Wei
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Pengcheng Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Haokun Peng
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Mohammad Alizadeh
- Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yanan Li
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
37
|
Hodgin JB, Maity S, Kretzler M, Sharma K. Pathology of Chronic Kidney Disease and Spatial Metabolomics. Semin Nephrol 2025:151579. [PMID: 40335369 DOI: 10.1016/j.semnephrol.2025.151579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Chronic kidney disease (CKD) has diverse etiologies but exhibits common features in presentation and progression. These include glomerular sclerosis, tubular atrophy, and interstitial fibrosis, often with inflammation and vascular rarefaction. Although these pathologic features have been described in CKD for decades, the molecular drivers of the disease process remain poorly understood. In the era of multiomics and spatial biology, the spatial metabolomics platform could well be a critical technology to guide characterization of the shared cellular programs, capturing the important protective and destructive pathways that ultimately culminate in each of these pathologic features. In this review, we discuss the specific approaches and challenges to developing spatial metabolomics signatures for pathologic features in CKD.
Collapse
Affiliation(s)
- Jeffrey B Hodgin
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Soumya Maity
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX; Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX.
| | - Matthias Kretzler
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI; Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Kumar Sharma
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX; Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX.
| |
Collapse
|
38
|
Wei X, Fan X, Chai W, Xiao J, Zhao J, He A, Tang X, Li F, Guo S. Dietary limonin ameliorates heart failure with preserved ejection fraction by targeting ferroptosis via modulation of the Nrf2/SLC7A11/GPX4 axis: an integrated transcriptomics and metabolomics analysis. Food Funct 2025; 16:3553-3574. [PMID: 40230319 DOI: 10.1039/d5fo00475f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome characterized by hypertension, metabolic disorders, and impaired diastolic function, with limited therapeutic options. Recent studies have highlighted the role of ferroptosis in the pathogenesis of HFpEF, and the inhibition of ferroptosis occurrence can significantly improve cardiac function. Limonin, a bioactive ingredient derived from citrus fruits, has been confirmed to exert potential anti-inflammatory and antioxidant effects in some cardiovascular diseases. This study aims to investigate the therapeutic effects of limonin on HFpEF and the underlying mechanisms of inhibiting ferroptosis. HFpEF mice were established by a combination of Nω-nitro-L-arginine methyl ester and a high-fat diet for 6 weeks. Subsequently, the HFpEF mice were treated with empagliflozin or limonin via oral gavage for an additional 6 weeks. Limonin curbed body weight gain and improved metabolic disorders and hypertension. Limonin also ameliorated concentric cardiac hypertrophy and diastolic dysfunction. Transcriptomics and metabolomics analyses revealed that limonin regulated ferroptosis-related pathways and lipid peroxidation. In vivo, limonin improved mitochondrial morphology, reduced cardiac Fe2+ levels and ferroptosis markers such as ROS, 4-HNE and MDA, and increased GSH levels, thereby enhancing antioxidant capacity. Mechanistically, limonin regulated the P53/SLC7A11/GPX4 signaling pathway, promoted the nuclear translocation of Nrf2 (its upstream signaling molecule), and subsequently activated its downstream antioxidant elements, ultimately inhibiting ferroptosis. Furthermore, limonin decreased the expressions of ACSL4, COX2, and ALOXs, which reduced the accumulation of lipid peroxides. These results demonstrate that limonin ameliorates HFpEF by targeting ferroptosis via modulation of the Nrf2/SLC7A11/GPX4 axis, providing a novel strategy for HFpEF treatment.
Collapse
Affiliation(s)
- Xiaoqi Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xinyi Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Wangjing Chai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jinling Xiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jiong Zhao
- Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang), Shenzhen 518116, China.
| | - Aolong He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xianwen Tang
- Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang), Shenzhen 518116, China.
| | - Fanghe Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
39
|
Huang Y, Qiu Z, Jiang C, Fang Q, Wang J, Han M, Liu Y, Li Z. ANXA2 regulates mitochondrial function and cellular senescence of PDLCs via AKT/eNOS signaling pathway under high glucose conditions. Sci Rep 2025; 15:15843. [PMID: 40328825 DOI: 10.1038/s41598-025-00950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 05/02/2025] [Indexed: 05/08/2025] Open
Abstract
Diabetes mellitus is one of the risk factors for periodontitis. Patients with diabetes mellitus possess higher prevalence of periodontitis, more severe periodontal destruction, yet the underlying mechanisms of action are not yet clear. Annexin A2 (ANXA2) is a calcium-dependent phospholipid-binding protein widely involved in membrane repair, cytokinesis, and endocytosis. In this study, we explore whether ANXA2 is one of the associative links between diabetes and periodontitis and find out its underlying mechanisms. Cellular senescence and mitochondrial functions (ROS, mitochondrial morphology, mitochondrial autophagy) were observed. We observed that ANXA2 expression was down-regulated in Periodontal ligament cells (PDLCs) under high glucose conditions. Furthermore, overexpression of ANXA2 delayed high glucose-induced cellular senescence and mitochondrial dysfunction. β-galactosidase activity and the mRNA levels of the senescence-relative genes(p21,p16) were decreased, mitochondrial fracture and ROS release were reduced, and the expression of mitochondrial autophagy-related proteins (LC3,p62,Parkin) was enhanced. expression was enhanced. Mechanistically, we demonstrated that it can regulate the AKT/eNOS signaling pathway by knockdown and overexpression of ANXA2 which was measured using Western blotting (WB) assay to measure the expression of eNOS, p-eNOS Ser1177, Akt and p-Akt Ser473 proteins in PDLCs. After that, we used AKT and eNOS inhibitors to demonstrate the protective effect of ANXA2 on PDLCs under high glucose conditions. The above results suggest that ANXA2 has an anti-aging protective effect, attenuates high glucose-induced cellular senescence in PDLCs, and maintains mitochondrial homeostasis. Therefore, it would be valuable to further explore its role in the link between diabetes and periodontitis in future experiments.
Collapse
Affiliation(s)
- Yanlin Huang
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Department of stomatology, The People's Hospital of Sanshui District, Foshan, Guangdong, China
| | - Zejing Qiu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Chunhui Jiang
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qian Fang
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jiaye Wang
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mingfang Han
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yizhao Liu
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zehui Li
- Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
40
|
Froom ZSCS, Callaghan NI, Davenport Huyer L. Cellular crosstalk in fibrosis: insights into macrophage and fibroblast dynamics. J Biol Chem 2025:110203. [PMID: 40334985 DOI: 10.1016/j.jbc.2025.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
Pathological fibrosis, the excessive deposition of extracellular matrix and tissue stiffening that causes progressive organ dysfunction, underlies diverse chronic diseases. The fibrotic microenvironment is driven by the dynamic microenvironmental interaction between various cell types; macrophages and fibroblasts play central roles in fibrotic disease initiation, maintenance, and progression. Macrophage functional plasticity to microenvironmental stimuli modulates fibroblast functionality by releasing pro-inflammatory cytokines, growth factors, and matrix remodeling enzymes that promote fibroblast proliferation, activation, and differentiation into myofibroblasts. Activated fibroblasts and myofibroblasts serve as the fibrotic effector cells, secreting extracellular matrix components and initiating microenvironmental contracture. Fibroblasts also modulate macrophage function through the release of their own pro-inflammatory cytokines and growth factors, creating bidirectional crosstalk that reinforces the chronic fibrotic cycle. The intricate interplay between macrophages and fibroblasts, including their secretomes and signaling interactions, leads to tissue damage and pathological loss of tissue function. In this review, we examine macrophage-fibroblast reciprocal dynamic interactions in pathological fibrotic conditions. We discuss the specific lineages and functionality of macrophages and fibroblasts implicated in fibrotic progression, with focus on their signal transduction pathways and secretory signalling that enables their pro-fibrotic behaviour. We then finish with a set of recommendations for future experimentation with the goal of developing a set of potential targets for anti-fibrotic therapeutic candidates. Understanding the cellular interactions between macrophages and fibroblasts provides valuable insights into potential therapeutic strategies to mitigate fibrotic disease progression.
Collapse
Affiliation(s)
- Zachary S C S Froom
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Neal I Callaghan
- Department of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Locke Davenport Huyer
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada; Nova Scotia Health, Halifax, NS B3S 0H6, Canada.
| |
Collapse
|
41
|
Bhadange R, Dagar N, Gaikwad AB. Levosimendan mitigates renal fibrosis via TGF-β1/Smad axis modulation in UUO rats. Biomed Pharmacother 2025; 187:118124. [PMID: 40319657 DOI: 10.1016/j.biopha.2025.118124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025] Open
Abstract
Chronic kidney disease (CKD) is characterized by kidney fibrosis involving epithelial-mesenchymal transition (EMT), and extracellular matrix (ECM) accumulation, and often leads to end-stage kidney disease (ESKD). Currently, available therapies are not uniformly effective and lead to serious adverse effects. Levosimendan (LVS), a calcium sensitizer and an inodilator, manages cardiac failure. We aimed to evaluate the renoprotective effect of LVS on unilateral ureteral obstruction (UUO)-induced CKD in male Sprague-Dawley (SD) rats and exogenous transforming growth factor-β1 (TGF-β1)-induced fibrosis in NRK-52E cells. Rats were randomly grouped as normal control (NC), sham, UUO and UUO + LVS (3 mg/kg, p.o., o.d.) for 21 days. All animals were sacrificed post-treatment, and plasma, urine and kidney specimens were utilized for biochemistry, histology, immunohistochemistry and immunoblotting. Moreover, exogenous TGF-β1 was used to stimulate kidney fibrosis in NRK-52E cells and treated with LVS (10 µM) for 48 h. The in-vitro samples were collected for cell morphology, viability, immunofluorescence and immunoblotting. LVS treatment significantly improved the kidney mass, plasma and urine creatinine, BUN, urine urea nitrogen and plasma proteins levels of TGF-β1 and fibronectin. Histology revealed a significant decrease in tubular necrosis, glomerulosclerosis and tubulointerstitial fibrosis in LVS-treated rats. Moreover, LVS treatment remarkably downregulated the levels of α-SMA, vimentin, p-Smad 2/3 and upregulated E-cadherin in UUO rats, decreased Smad 4, collagen I, β-catenin, and MMP-7-mediated ECM and increased Smurf 2 and Smad 7 in NRK-52E cells. LVS inhibits EMT and ECM turnover via TGF-β1/Smad axis modulation, highlighting the potential clinical use of LVS for CKD.
Collapse
Affiliation(s)
- Rohan Bhadange
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India.
| |
Collapse
|
42
|
Kang Y, Jin Q, Zhou M, Zheng H, Li D, Zhou J, Lv J, Wang Y. Association between serum α-klotho levels and the incidence of diabetic kidney disease and mortality in type 2 diabetes: evidence from a Chinese cohort and the NHANES database. Diabetol Metab Syndr 2025; 17:148. [PMID: 40312464 PMCID: PMC12046805 DOI: 10.1186/s13098-025-01711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/22/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND The α-klotho is crucial in diabetes and its related complications. This study seeks to explore the link between α-klotho levels and the risk of diabetic kidney disease (DKD) as well as all-cause and cardiovascular mortality among individuals with type 2 diabetes mellitus (T2DM). METHODS The investigation involved 126 Chinese T2DM patients and 4,451 individuals from the National Health and Nutrition Examination Survey (NHANES) database. To evaluate the relationship between α-klotho levels and DKD risk, multivariate logistic regression was utilized. Additionally, restricted cubic spline (RCS) regression analysis was conducted to examine the nonlinear relationship between α-klotho levels and DKD incidence. RCS analysis was employed to explore the correlation between α-klotho and both all-cause and cardiovascular mortality. RESULTS In the Chinese cohort, α-klotho levels were notably elevated in T2DM group compared to DKD group. The NHANES data revealed a significant inverse relationship between α-klotho levels and DKD risk. Nonlinear analysis further illustrated a substantial nonlinear connection between α-klotho levels and DKD risk. Serum α-klotho levels below 880.78 pg/mL were linked to increased DKD risk in T2DM patients. When compared to the T2DM group, the DKD group had markedly higher all-cause and cardiovascular mortality rates, with the α-klotho low group (e.g., Q1) exhibiting lower survival compared to other groups. Cox regression findings indicated that elevated α-klotho levels could mitigate all-cause mortality in T2DM patients. The relationship between α-klotho levels and all-cause mortality was also nonlinear, with the minimal risk found at α-klotho levels between 776.95 pg/mL and 812.69 pg/mL, varying by gender. CONCLUSION There exists a notable association between α-klotho levels and DKD risk, along with mortality in T2DM patients, with varying effects based on gender. These results highlight the potential importance of α-klotho as both a biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Yi Kang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution, Beijing University of Chinese Medicine, Beijing, China
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| | - Qian Jin
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| | - Mengqi Zhou
- Department of Traditional Chinese Medicine, Beijing Puren Hospital, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution, Beijing University of Chinese Medicine, Beijing, China
| | - Danwen Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution, Beijing University of Chinese Medicine, Beijing, China
- Graduate School of Beijing, University of Chinese Medicine, Beijing, China
| | - Jingwei Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Lv
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Renal Research Institution, Beijing University of Chinese Medicine, Beijing, China.
| | - Yaoxian Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Renal Research Institution, Beijing University of Chinese Medicine, Beijing, China.
- Henan University of Traditional Chinese Medicine, Henan, China.
| |
Collapse
|
43
|
Zhang J, Zhang M, Tatar M, Gong R. Keap1-independent Nrf2 regulation: A novel therapeutic target for treating kidney disease. Redox Biol 2025; 82:103593. [PMID: 40107017 PMCID: PMC11968292 DOI: 10.1016/j.redox.2025.103593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
The transcription factor NF-E2-related factor 2 (Nrf2) is a master regulator of antioxidant responses in mammals, where it plays a critical role in detoxification, maintaining cellular homeostasis, combating inflammation and fibrosis, and slowing disease progression. Kelch-like ECH-associated protein 1 (Keap1), an adaptor subunit of Cullin 3-based E3 ubiquitin ligase, serves as a critical sensor of oxidative and electrophilic stress, regulating Nrf2 activity by sequestering it in the cytoplasm, leading to its proteasomal degradation and transcriptional repression. However, the clinical potential of targeting the Keap1-dependent Nrf2 regulatory pathway has been limited. This is evidenced by early postnatal lethality in Keap1 knockout mice, as well as significant adverse events after pharmacological blockade of Keap1 in human patients with Alport syndrome as well as in those with type 2 diabetes mellitus and chronic kidney disease. The exact underlying mechanisms remain elusive, but may involve non-specific and systemic activation of the Nrf2 antioxidant response in both injured and normal tissues. Beyond Keap1-dependent regulation, Nrf2 activity is modulated by Keap1-independent mechanisms, including transcriptional, epigenetic, and post-translational modifications. In particular, GSK3β has emerged as a critical convergence point for these diverse signaling pathways. Unlike Keap1-dependent regulation, GSK3β-mediated Keap1-independent Nrf2 regulation does not affect basal Nrf2 activity but modulates its response at a delayed/late phase of cellular stress. This allows fine-tuning of the inducibility, magnitude, and duration of the Nrf2 response specifically in stressed or injured tissues. As one of the most metabolically active organs, the kidney is a major source of production of reactive oxygen and nitrogen species and also a vulnerable organ to oxidative damage. Targeting the GSK3β-mediated Nrf2 regulatory pathway represents a promising new approach for the treatment of kidney disease.
Collapse
Affiliation(s)
- Jiahui Zhang
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | - Mingzhuo Zhang
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | - Marc Tatar
- Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Rujun Gong
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA.
| |
Collapse
|
44
|
Meng Y, Zhang J, Liu Y, Zhu Y, Lv H, Xia F, Guo Q, Shi Q, Qiu C, Wang J. The biomedical application of inorganic metal nanoparticles in aging and aging-associated diseases. J Adv Res 2025; 71:551-570. [PMID: 38821357 DOI: 10.1016/j.jare.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Aging and aging-associated diseases (AAD), including neurodegenerative disease, cancer, cardiovascular diseases, and diabetes, are inevitable process. With the gradual improvement of life style, life expectancy is gradually extended. However, the extended lifespan has not reduced the incidence of disease, and most elderly people are in ill-health state in their later years. Hence, understanding aging and AAD are significant for reducing the burden of the elderly. Inorganic metal nanoparticles (IMNPs) predominantly include gold, silver, iron, zinc, titanium, thallium, platinum, cerium, copper NPs, which has been widely used to prevent and treat aging and AAD due to their superior properties (essential metal ions for human body, easily synthesis and modification, magnetism). Therefore, a systematic review of common morphological alternations of senescent cells, altered genes and signal pathways in aging and AAD, and biomedical applications of IMNPs in aging and AAD is crucial for the further research and development of IMNPs in aging and AAD. This review focus on the existing research on cellular senescence, aging and AAD, as well as the applications of IMNPs in aging and AAD in the past decade. This review aims to provide cutting-edge knowledge involved with aging and AAD, the application of IMNPs in aging and AAD to promote the biomedical application of IMNPs in aging and AAD.
Collapse
Affiliation(s)
- Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haining Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qianli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jigang Wang
- Department of Urology, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
45
|
Kawabata S, Iijima H, Kanemura N, Murata K. Genome-Wide Network Analysis of DRG-Sciatic Nerve Network-Inferred Cellular Senescence and Senescence Phenotype in Peripheral Sensory Neurons. Mol Neurobiol 2025; 62:6112-6127. [PMID: 39714525 DOI: 10.1007/s12035-024-04666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Accumulation of senescent neurons in the dorsal root ganglion (DRG) is an important tissue phenotype that causes age-related degeneration of peripheral sensory nerves. Senescent neurons are neurons with arrested cell cycle that have undergone cellular senescence but remain in the tissue and play various biological roles. To understand the accumulation of senescent neurons in the DRG during aging, we aimed to elucidate the mechanism that induces cellular senescence in DRG neurons and the role of senescent DRG neurons. We integrated multiple public transcriptome datasets for DRGs, which include cell bodies in neurons, and the sciatic nerve, which includes axons in neurons, using network medicine-based bioinformatics analysis. We thus inferred the molecular mechanisms involved in cellular senescence of DRG neurons, from molecular responses to senescence, in the DRG-sciatic nerve network. Network medicine-based bioinformatics analysis revealed that age-related Mapk3 decline leads to impaired cholesterol metabolism and biosynthetic function in axons, resulting in compensatory upregulation of Srebf1, a transcription factor involved in lipid and cholesterol metabolism. This in turn leads to CDKN2A-mediated cellular senescence. Furthermore, our analysis revealed that senescent DRG neurons develop a senescence phenotype characterized by activation of antigen-presenting cells via upregulation of Ctss as a hub gene. B cells were inferred as antigen-presenting cells activated by Ctss, and CD8-positive T cells were inferred as cells that receive antigen presentation from B cells.
Collapse
Affiliation(s)
- Sora Kawabata
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hirotaka Iijima
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Naohiko Kanemura
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, 820 San-Nomiya, Koshigaya-Shi, Saitama, 343-8540, Japan
| | - Kenji Murata
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, 820 San-Nomiya, Koshigaya-Shi, Saitama, 343-8540, Japan.
| |
Collapse
|
46
|
Tong M, Liu M, Chen L, Lin YH, Zheng Q. Osthole Induces Hepatic Stellate Cell Ferroptosis to Alleviate Liver Fibrosis by Inhibiting the Y-Box Binding Protein 1-Wnt/β-Catenin Axis Through Downregulating Myocyte Enhancer Factor 2A. Chem Biol Drug Des 2025; 105:e70113. [PMID: 40317895 DOI: 10.1111/cbdd.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
Liver fibrosis is pathologically associated with ferroptosis. Osthole (OST) has good therapeutic effects on liver fibrosis. Our study sought to investigate the pharmacological effects of OST on ferroptosis in hepatic stellate cells (HSCs) during the development of liver fibrosis and define the mechanisms involved. The in vivo model of liver fibrosis was established by CCl4 treatment. MTT and EDU assays were used to assess cell viability and proliferation, respectively. The interaction between myocyte enhancer factor 2A (MEF2A) and Y-box binding protein 1 (YBX1) was analyzed by dual luciferase reporter and chromatin immunoprecipitation (ChIP) assays. OST treatment alleviated CCl4-induced liver fibrosis in mice by activating ferroptosis. OST induced ferroptosis in HSCs and inhibited the activation of HSCs in vitro, while these effects of OST were reversed by MEF2A overexpression or YBX1 overexpression. Mechanistically, MEF2A activated the Wnt/β-catenin signaling by transcriptionally facilitating YBX1 expression. As expected, the inactivation of Wnt/β-catenin signaling or YBX1 knockdown could reverse the regulatory effect of MEF2A upregulation on the activation of HSCs and ferroptosis in OST-treated HSCs. OST mitigated liver fibrosis by inducing ferroptosis in HSCs and repressing the activation of HSCs through inhibiting the MEF2A/YBX1/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Ming Tong
- Department of Infectious Diseases, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Meng Liu
- Department of Infectious Diseases, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Liang Chen
- Department of Infectious Diseases, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Yi-He Lin
- Department of Infectious Diseases, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Qing Zheng
- Department of Geriatrics, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| |
Collapse
|
47
|
Long L, Yu J, Jin J, Zhang J. Metabolomics Based Exploration of the Mechanism of Action of Tripterygium Glycosides in Diabetic Kidney Disease. Biomed Chromatogr 2025; 39:e70071. [PMID: 40159946 DOI: 10.1002/bmc.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
Tripterygium glycosides (TGs), the primary active components of Tripterygium wilfordii, have demonstrated therapeutic efficacy in treating diabetic kidney disease (DKD). However, the precise mechanisms underlying their action remain elusive, limiting the full realization of their medicinal potential. This study employed serum metabolomics based on liquid chromatography-mass spectrometry (LC-MS) analysis to elucidate the mechanisms by which TGs combat DKD. We evaluated the protective effects of TGs on DKD following treatment. Serum samples were collected before and after treatment, and their metabolic profiles were analyzed using LC-MS. Our metabolomics analysis revealed that TGs significantly modulated the hedgehog signaling pathway, a key metabolic pathway implicated in DKD pathogenesis. This study represents the first comprehensive investigation of the metabolic pathways regulated by TGs in the context of DKD using a metabolomics approach. Our findings provide a robust theoretical foundation for the more effective utilization and potential combination therapies involving TGs in the management of DKD. These insights pave the way for further research and development of targeted therapeutic strategies for this challenging condition.
Collapse
Affiliation(s)
- Li Long
- Hubei University of Chinese Medicine, Wuhan, China
| | - Jianfeng Yu
- The Third People's Hospital of Hubei Province Affiliated to Jianghan University, Wuhan, China
| | - Jingsong Jin
- Hubei University of Chinese Medicine, Wuhan, China
| | - Jibo Zhang
- The Third People's Hospital of Hubei Province Affiliated to Jianghan University, Wuhan, China
| |
Collapse
|
48
|
Zhang D, Zhang YH, Liu B, Yang HX, Li GT, Zhou HL, Wang YS. Role of peroxisomes in the pathogenesis and therapy of renal fibrosis. Metabolism 2025; 166:156173. [PMID: 39993498 DOI: 10.1016/j.metabol.2025.156173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Renal fibrosis is a pathological consequence of end-stage chronic kidney disease, driven by factors such as oxidative stress, dysregulated fatty acid metabolism, extracellular matrix (ECM) imbalance, and epithelial-to-mesenchymal transition. Peroxisomes play a critical role in fatty acid β-oxidation and the scavenging of reactive oxygen species, interacting closely with mitochondrial functions. Nonetheless, current research often prioritizes the mitochondrial influence on renal fibrosis, often overlooking the contribution of peroxisomes. This comprehensive review systematically elucidates the fundamental biological functions of peroxisomes and delineates the molecular mechanisms underlying peroxisomal dysfunction in renal fibrosis pathogenesis. Here, we discuss the impact of peroxisome dysfunction and pexophagy on oxidative stress, ECM deposition, and renal fibrosis in various cell types including mesangial cells, endothelial cells, podocytes, epithelial cells, and macrophages. Furthermore, this review highlights the recent advancements in peroxisome-targeted therapeutic strategies to alleviate renal fibrosis.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Yang-He Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Hong-Xia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Guang-Tao Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Hong-Lan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China.
| |
Collapse
|
49
|
Abbad L, Esteve E, Chatziantoniou C. Advances and challenges in kidney fibrosis therapeutics. Nat Rev Nephrol 2025; 21:314-329. [PMID: 39934355 DOI: 10.1038/s41581-025-00934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Chronic kidney disease (CKD) is a major global health burden that affects more than 10% of the adult population. Current treatments, including dialysis and transplantation, are costly and not curative. Kidney fibrosis, defined as an abnormal accumulation of extracellular matrix in the kidney parenchyma, is a common outcome in CKD, regardless of disease aetiology, and is a major cause of loss of kidney function and kidney failure. For this reason, research efforts have focused on identifying mediators of kidney fibrosis to inform the development of effective anti-fibrotic treatments. Given the prominent role of the transforming growth factor-β (TGFβ) family in fibrosis, efforts have focused on inhibiting TGFβ signalling. Despite hopes raised by the efficacy of this approach in preclinical models, translation into clinical practice has not met expectations. Antihypertensive and antidiabetic drugs slow the decline in kidney function and could slow fibrosis but, owing to the lack of technologies for in vivo renal imaging, their anti-fibrotic effect cannot be truly assessed at present. The emergence of new drugs targeting pro-fibrotic signalling, or enabling cell repair and cell metabolic reprogramming, combined with better stratification of people with CKD and the arrival of nanotechnologies for kidney-specific drug delivery, open up new perspectives for the treatment of this major public health challenge.
Collapse
Affiliation(s)
- Lilia Abbad
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France
| | - Emmanuel Esteve
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France
| | - Christos Chatziantoniou
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France.
| |
Collapse
|
50
|
Wang M, Zhou JY, Zhang XX, Ma JY, Wu YX, Zhao YL, Gao HY. Discovered cassane diterpenoids from Caesalpinia mimosoides lam. Exhibited anti-renal fibrosis activity via regulating TGF-β1/Smads signaling pathway. Bioorg Chem 2025; 158:108333. [PMID: 40080973 DOI: 10.1016/j.bioorg.2025.108333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 02/15/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025]
Abstract
Renal fibrosis is marker and common pathway of progressive chronic kidney disease (CKD), eventually leading to renal dysfunction. So far, there is still a lack of secure drugs and effective therapeutic strategies. Caesalpinia mimosoides is an edible Dai folk medicinal plant and exhibits good effect on inducing diuresis to alleviate edema, hinting that C. mimosoides might possess the potential to treat kidney disease. Thus, this study aimed to search potential active ingredients for the treatment of kidney disease. Based on the biological activity-guided separation strategy, ten undescribed cassane diterpenoids (1-10) including six furan lactone-types (1-6), two furan-types (7-8), and two nocassane-types (9-10), together with five known cassane derivatives (11-15) were discovered from C. mimosoides, among of them, compounds 1, 2 and 3, 11 to be two pairs of epimers at asymmetric center C-14. The structures including absolute configuration were unambiguously elucidated by detailed spectroscopic methods complemented with X-ray diffractions and ECD calculations. The anti-renal fibrosis activity of isolated diterpenoids were evaluated in TGF-β1-induced NRK-52E cells. Compound 14 exerted excellent renal fibrosis inhibitory activity by regulating the expression of EMT markers (E-cadherin, α-SMA) and ECM components (collagen I, fibronectin). The underlying mechanistic study revealed that 14 suppressed renal fibrosis via inhibiting TGF-β1/Smads signaling pathway. This work reported the potential of C. mimosoides in the treatment of kidney disease, and the systematically disclosed the anti-renal fibrosis activity of cassane diterpenoids, implying the cassane diterpenoids to be the promising new type anti-renal fibrosis drug precursors in future. Additionally, our work also substantiated the potential of C. mimosoides as a prospective natural source of bioactive compounds in functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Miao Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jia-Yu Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xin-Xin Zhang
- Department of Pharmacology, Changzhi Medical College, Changzhi 046000, PR China
| | - Jun-Yi Ma
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yu-Xin Wu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yue-Lin Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hui-Yuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|