1
|
Li L, Ye H, Chen Q, Wei L. COL28 promotes proliferation, migration, and EMT of renal tubular epithelial cells. Ren Fail 2023; 45:2187236. [PMID: 36883360 PMCID: PMC10013395 DOI: 10.1080/0886022x.2023.2187236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Type XXVIII collagen (COL28) is involved in cancer and lung fibrosis. COL28 polymorphisms and mutations might be involved in kidney fibrosis, but the exact role of COL28 in renal fibrosis is unknown. This study explored the function of COL28 in renal tubular cells by examining the expression of COL28 mRNA and the effects of COL28 overexpression in human tubular cells. COL28 mRNA expression and localization were observed in normal and fibrotic kidney tissues from humans and mice using real-time PCR, western blot, immunofluorescence, and immunohistochemistry. The consequences of COL28 overexpression on cell proliferation, migration, cell polarity, and epithelial-to-mesenchymal transition (EMT) induced by TGF-β1 were examined in human tubular HK-2 cells. COL28 expression was low in human normal renal tissues, mainly observed in the renal tubular epithelial cells and especially in proximal renal tubules. COL28 protein expression in human and mouse obstructive kidney disease was higher than in normal tissues (p < 0.05) and more significant in the UUO2-Week than the UUO1-Week group. The overexpression of COL28 promoted HK-2 cell proliferation and enhanced their migration ability (all p < 0.05). TGF-β1 (10 ng/ml) induced COL28 mRNA expression in HK-2 cells, decreased E-cadherin and increased α-SMA in the COL28-overexpression group compared with controls (p < 0.05). ZO-1 expression decreased while COL6 increased in the COL28-overexpression group compared with controls (p < 0.05). In conclusion, COL28 overexpression promotes the migration and proliferation of renal tubular epithelial cells. The EMT could also be involved. COL28 could be a therapeutic target against renal- fibrotic diseases.
Collapse
Affiliation(s)
- Linlin Li
- Department of nephrology, Fujian Medical University, Union Hospital, Fuzhou, Fujian, China
| | - Hong Ye
- Department of nephrology, Fujian Medical University, Union Hospital, Fuzhou, Fujian, China
| | - Qiaoling Chen
- Department of nephrology, Fujian Medical University, Union Hospital, Fuzhou, Fujian, China
| | - Lixin Wei
- Department of nephrology, Fujian Medical University, Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Wu S, Yan M, Liu J, Li Y, Tian R, Li C, Huang L, Lu Z, Xu P, Mao W. Clerodendranthus spicatus inhibits epithelial-mesenchymal transition of renal tubular cells through the NF-κB/Snail signalling pathway in hyperuricaemia nephropathy. Pharm Biol 2023; 61:1274-1285. [PMID: 37599625 PMCID: PMC10443970 DOI: 10.1080/13880209.2023.2243086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/05/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
CONTEXT Clerodendranthus spicatus Thunb. (Labiatae) (CS), a perennial traditional Chinese medicinal herb that can reduce serum uric acid (sUA) levels and ameliorate renal function is widely used to treat hyperuricaemic nephropathy (HN). OBJECTIVE To investigate the molecular mechanism of action of CS in HN treatment using in vivo and in vitro experiments. MATERIALS AND METHODS Sprague-Dawley rats were randomly divided into control, HN, CS and positive control allopurinol groups. The HN group was intraperitoneally injected with 750 mg/kg oxonic acid potassium (OA), whereas the CS group was injected with OA along with a gavage of CS (low dose 3.125 g/kg, high dose 6.25 g/kg) for five weeks. For in vitro studies, uric acid-treated HK2 cells were used to verify the therapeutic mechanism of CS in HN. RESULTS HN rats exhibit pathological phenotypes of elevated sUA levels and renal injury. CS significantly improved these symptoms and sUA (p < 0.05) and blood urea nitrogen (p < 0.01) levels, and dramatically improved renal tubular injury in HN rats. The IC50 value of UA (uric acid) in HK2 cells was 826.32 ± 3.55 μg/mL; however, 120 ng/mL CS had no significant cytotoxicity on HK2 cells. In vivo and in vitro studies showed that CS inhibited NF-κB phosphorylation and inhibited α-smooth muscle actin (α-SMA) and vimentin expression while increasing E-cadherin expression, suggesting that CS inhibited the fibrotic process in renal cells, thus protecting renal function. DISCUSSION AND CONCLUSIONS These findings provide a fundamental understanding of the application of CS in HN treatment to better guide clinical interventions.
Collapse
Affiliation(s)
- Shouhai Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Meixia Yan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junyi Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yizhen Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruimin Tian
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| | - Chuang Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| | - Lihuang Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Zhisheng Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| |
Collapse
|
3
|
Hong D, Ren Q, Zhang J, Dong F, Chen S, Dong W, Chen X, Chen L, Yao Y, Lu Z, Zhao G. A new criteria for acute on preexisting kidney dysfunction in critically ill patients. Ren Fail 2023; 45:2173498. [PMID: 36728812 PMCID: PMC9897760 DOI: 10.1080/0886022x.2023.2173498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Critically ill patients with preexisting kidney dysfunction (PKD) are at high risk for acute kidney injury (AKI). Nevertheless, there is no criteria for screening and classifying AKI in patients with PKD. In this study, after assessing relationship between the change in SCr from baseline and in-hospital mortality, a new criteria, named APKD, for identifying AKI in PKD was proposed. APKD defined AKI in critically ill patients with PKD as an absolute increase of ≥ 0.2 mg/dL in SCr within 48 h or an increase in SCr ≥ 1.1 times over baseline within 7 d. APKD detected more AKI among PKD patients compared with the other criteria. Additionally, the AKI patients identified by APKD but missed by the other criteria had higher mortality than those without AKI. APKD shows higher sensitivities than KDIGO criteria in predicating in-hospital mortality. APKD, but not the KDIGO, is effective for staging the severity of AKI in patients with PKD. In conclusion, APKD is more effective in screening and classifying AKI in critically ill patients with PKD compared with the earlier criteria, and it may helpful in guiding clinical treatment and predicting prognosis.
Collapse
Affiliation(s)
- Dejiang Hong
- Department of Emergency, Emergency Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Qinghuan Ren
- Alberta College of Wenzhou Medical University, Wenzhou, PR China
| | - Jie Zhang
- Department of Emergency, Emergency Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Fubo Dong
- Department of Emergency, Emergency Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Shiqiang Chen
- Department of Emergency, Emergency Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Wei Dong
- Department of Emergency, Emergency Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Xiaoyan Chen
- Department of Emergency, Emergency Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Longwang Chen
- Department of Emergency, Emergency Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yongming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical of the Chinese PLA General Hospital, Beijing, PR China,Yongming Yao Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing100048, PR China
| | - Zhongqiu Lu
- Department of Emergency, Emergency Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China,Zhongqiu Lu Emergency Department, Emergency Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, PR China
| | - Guangju Zhao
- Department of Emergency, Emergency Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China,CONTACT Guangju Zhao
| |
Collapse
|
4
|
Al-Sroji RY, Al-Laham S, Almandili A. Protective effects of vitamin D 3 (cholecalciferol) on vancomycin-induced oxidative nephrotoxic damage in rats. Pharm Biol 2023; 61:755-766. [PMID: 37139624 PMCID: PMC10161947 DOI: 10.1080/13880209.2023.2204916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Vancomycin (VCM), an important antibiotic against refractory infections, has been used to treat secondary infections in severe COVID-19 patients. Regrettably, VCM treatment has been associated with nephrotoxicity. Vitamin D3 can prevent nephrotoxicity through its antioxidant effect. OBJECTIVE This study tests the antioxidant effect of vitamin D3 in the prevention of VCM-induced nephrotoxicity. MATERIALS AND METHODS Wistar Albino rats (21) were randomly divided into 3 groups: (A) control; (B) VCM 300 mg/kg daily for 1 week; and (C) VCM plus vitamin D3 500 IU/kg daily for 2 weeks. All the rats were sacrificed and serum was separated to determine kidney function parameters. Their kidneys were also dissected for histological examination and for oxidative stress markers. RESULTS Lipid peroxidation, creatinine, and urea levels decreased significantly (p < 0.0001) in the vitamin D3-treated group (14.46, 84.11, 36.17%, respectively) compared to the VCM group that was given VCM (MIC<2 μg/mL) only. A significant increase was observed in superoxide dismutase levels in the vitamin D3-treated group (p < 0.05) compared to rats without treatment. Furthermore, kidney histopathology of the rats treated with vitamin D3 showed that dilatation, vacuolization and necrosis tubules decreased significantly (p < 0.05) compared with those in the VCM group. Glomerular injury, hyaline dystrophy, and inflammation improved significantly in the vitamin D3 group (p < 0.001, p < 0.05, p < 0.05, respectively) compared with the VCM group. DISCUSSION AND CONCLUSIONS Vitamin D3 can prevent VCM nephrotoxicity. Therefore, the appropriate dose of this vitamin must be determined, especially for those infected with COVID-19 and receiving VCM, to manage their secondary infections.
Collapse
Affiliation(s)
- Rouba Yasser Al-Sroji
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Shaza Al-Laham
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Ahmad Almandili
- Department of Histopathology, Faculty of Dentistry, Damascus University, Damascus, Syria
| |
Collapse
|
5
|
Li Y, Chen S, Tan J, Zhou Y, Ren M, Zhang Q, Zhao M, Yuan G, Zhang W, Yang F. Combination therapy with DHA and BMSCs suppressed podocyte injury and attenuated renal fibrosis by modulating the TGF- β1/Smad pathway in MN mice. Ren Fail 2023; 45:2120821. [PMID: 36648018 PMCID: PMC9848254 DOI: 10.1080/0886022x.2022.2120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Artemisinin has immunomodulatory, anti-inflammatory, and antifibrotic effects. Some studies have demonstrated that artemisinins have a protective effect on the kidney. DHA is a derivative of artemisinin and has effects similar to those of artemisinin. Human bone marrow-derived mesenchymal stem cells (BMSCs) accelerate renal repair following acute injury. In the study, we investigated the effects of combination therapy with DHA and BMSCs on membranous nephropathy (MN) mice. The 24-h urinary protein, serum total cholesterol (TC) and triglyceride (TG) levels, and renal histopathology, were measured to evaluate kidney damage. Anti-PLA2R, IgG, and complement 3 (C3) were detected by ELISA. The expression levels of the podocyte injury-related proteins were analyzed by immunohistochemistry. The protein expression levels of α-SMA, ED-1, TGF-β1, p-Smad2, and p-Smad3 were detected by western blot to analyze renal fibrosis and its regulatory mechanism. Results showed that combination therapy with DHA and BMSCs significantly ameliorated kidney damage in MN model mice by decreasing the levels of 24 h urinary protein, TC and TG. This combination therapy also improved renal histology and reduced the expression of IgG and C3 in the glomerulus. In addition, this combination therapy decreased the expression of podocin and nephrin and relieved renal fibrosis by downregulating α-SMA and ED-1. Furthermore, this combination therapy suppressed TGF-β1 expression and Smad2/3 phosphorylation. This result (i.e., this combination therapy inhibited the TGF-β1/Smad pathway) was also supported in vitro. Taken together, combination therapy with DHA and BMSCs ameliorated podocyte injury and renal fibrosis in MN mice by downregulating the TGFβ1/Smad pathway.
Collapse
Affiliation(s)
- Yongzhang Li
- Department of Urology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Suzhi Chen
- Department of Nephrology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Jinchuan Tan
- Department of Nephrology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Yan Zhou
- Department of Urology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Meifang Ren
- Department of Nephrology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Qian Zhang
- Department of Nephrology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Meijiao Zhao
- Department of Nephrology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Guodong Yuan
- Department of Nephrology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Wenxi Zhang
- Department of Pharmacy, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Fengwen Yang
- Department of Nephrology, Hebei Province of Chinese Medicine, Shijiazhuang City, Hebei Province, China,CONTACT Fengwen Yang Department of Nephrology, Hebei Hospital of Traditional Chinese Medicine, No. 368 Zhongshan East Road, Shijiazhuang City, Hebei Province050011, China
| |
Collapse
|
6
|
Dharmarajan S, Carrillo C, Qi Z, Wilson JM, Baucum AJ, Sorenson CM, Sheibani N, Belecky-Adams TL. Retinal inflammation in murine models of type 1 and type 2 diabetes with diabetic retinopathy. Diabetologia 2023; 66:2170-2185. [PMID: 37670018 DOI: 10.1007/s00125-023-05995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/28/2023] [Indexed: 09/07/2023]
Abstract
AIMS/HYPOTHESIS The loss of pericytes surrounding the retinal vasculature in early diabetic retinopathy underlies changes to the neurovascular unit that lead to more destructive forms of the disease. However, it is unclear which changes lead to loss of retinal pericytes. This study investigated the hypothesis that chronic increases in one or more inflammatory factors mitigate the signalling pathways needed for pericyte survival. METHODS Loss of pericytes and levels of inflammatory markers at the mRNA and protein levels were investigated in two genetic models of diabetes, Ins2Akita/+ (a model of type 1 diabetes) and Leprdb/db (a model of type 2 diabetes), at early stages of diabetic retinopathy. In addition, changes that accompany gliosis and the retinal vasculature were determined. Finally, changes in retinal pericytes chronically incubated with vehicle or increasing amounts of IFNγ were investigated to determine the effects on pericyte survival. The numbers of pericytes, microglia, astrocytes and endothelial cells in retinal flatmounts were determined by immunofluorescence. Protein and mRNA levels of inflammatory factors were determined using multiplex ELISAs and quantitative reverse transcription PCR (qRT-PCR). The effects of IFNγ on the murine retinal pericyte survival-related platelet-derived growth factor receptor β (PDGFRβ) signalling pathway were investigated by western blot analysis. Finally, the levels of cell death-associated protein kinase C isoform delta (PKCδ) and cleaved caspase 3 (CC3) in pericytes were determined by western blot analysis and immunocytochemistry. RESULTS The essential findings of this study were that both type 1 and 2 diabetes were accompanied by a similar progression of retinal pericyte loss, as well as gliosis. However, inflammatory factor expression was dissimilar in the two models of diabetes, with peak expression occurring at different ages for each model. Retinal vascular changes were more severe in the type 2 diabetes model. Chronic incubation of murine retinal pericytes with IFNγ decreased PDGFRβ signalling and increased the levels of active PKCδ and CC3. CONCLUSIONS/INTERPRETATION We conclude that retinal inflammation is involved in and sustains pericyte loss as diabetic retinopathy progresses. Moreover, IFNγ plays a critical role in reducing pericyte survival in the retina by reducing activation of the PDGFRβ signalling pathway and increasing PKCδ levels and pericyte apoptosis.
Collapse
Affiliation(s)
- Subramanian Dharmarajan
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Casandra Carrillo
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Zhonghua Qi
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jonathan M Wilson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Anthony J Baucum
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Teri L Belecky-Adams
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Li N, Han L, Wang X, Qiao O, Zhang L, Gong Y. Biotherapy of experimental acute kidney injury: emerging novel therapeutic strategies. Transl Res 2023; 261:69-85. [PMID: 37329950 DOI: 10.1016/j.trsl.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Acute kidney injury (AKI) is a complex and heterogeneous disease with high incidence and mortality, posing a serious threat to human life and health. Usually, in clinical practice, AKI is caused by crush injury, nephrotoxin exposure, ischemia-reperfusion injury, or sepsis. Therefore, most AKI models for pharmacological experimentation are based on this. The current research promises to develop new biological therapies, including antibody therapy, non-antibody protein therapy, cell therapy, and RNA therapy, that could help mitigate the development of AKI. These approaches can promote renal repair and improve systemic hemodynamics after renal injury by reducing oxidative stress, inflammatory response, organelles damage, and cell death, or activating cytoprotective mechanisms. However, no candidate drugs for AKI prevention or treatment have been successfully translated from bench to bedside. This article summarizes the latest progress in AKI biotherapy, focusing on potential clinical targets and novel treatment strategies that merit further investigation in future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Lu Han
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Ou Qiao
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Li Zhang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| |
Collapse
|
8
|
Eckersley A, Yamamura T, Lennon R. Matrikines in kidney ageing and age-related disease. Curr Opin Nephrol Hypertens 2023; 32:551-558. [PMID: 37584348 DOI: 10.1097/mnh.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
PURPOSE OF REVIEW Matrikines are cell-signalling extracellular matrix fragments and they have attracted recent attention from basic and translational scientists, due to their diverse roles in age-related disease and their potential as therapeutic agents. In kidney, the matrix undergoes remodelling by proteolytic fragmentation, so matrikines are likely to play a substantial, yet understudied, role in ageing and pathogenesis of age-related diseases. RECENT FINDINGS This review presents an up-to-date description of known matrikines with either a confirmed or highly anticipated role in kidney ageing and disease, including their point of origin, mechanism of cleavage, a summary of known biological actions and the current knowledge which links them to kidney health. We also highlight areas of interest, such as the prospect of matrikine cross-tissue communication, and gaps in knowledge, such as the unexplored signalling potential of many kidney disease-specific matrix fragments. SUMMARY We anticipate that knowledge of specific matrikines, and their roles in controlling processes of kidney pathology, could be leveraged for the development of exciting new future therapies through inhibition or even with their supplementation.
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Science
| | - Tomohiko Yamamura
- Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| |
Collapse
|
9
|
Song Y, Ma Y, Zhang K, Zhang W, Xiong G, Qi T, Shi J, Qiu H, Zhang J, Han F, Kan C, Sun X. Secreted frizzled-related protein 5: A promising therapeutic target for metabolic diseases via regulation of Wnt signaling. Biochem Biophys Res Commun 2023; 677:70-76. [PMID: 37549604 DOI: 10.1016/j.bbrc.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Metabolic diseases pose a significant global health challenge, characterized by an imbalance in metabolism and resulting in various complications. Secreted frizzled-related protein 5 (SFRP5), an adipokine known for its anti-inflammatory properties, has gained attention as a promising therapeutic target for metabolic diseases. SFRP5 acts as a key regulator in the Wnt signaling pathway, exerting its influence on critical cellular functions including proliferation, differentiation, and migration. Its significance extends to the realm of adipose tissue biology, where it plays a central role in regulating inflammation, insulin resistance, adipogenesis, lipid metabolism, glucose homeostasis, and energy balance. By inhibiting Wnt signaling, SFRP5 facilitates adipocyte growth, promotes lipid accumulation, and contributes to a decrease in oxidative metabolism. Lifestyle interventions and pharmacological treatments have shown promise in increasing SFRP5 levels and protecting against metabolic abnormalities. SFRP5 is a pivotal player in metabolic diseases and presents itself as a promising therapeutic target. An overview of SFRP5 and its involvement in metabolic disorders and metabolism is provided in this comprehensive review. By elucidating these aspects, valuable insights can be gained to foster the development of effective strategies in combating metabolic diseases.
Collapse
Affiliation(s)
- Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Yujie Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Guoji Xiong
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
10
|
Zhao Y, Hou Y, Ren J, Gao X, Meng L, Liu Y, Xing C, Shen W. Phenotypic characteristics of taurodontism and a novel WNT10A variant in non-syndromic oligodontia family. Arch Oral Biol 2023; 154:105759. [PMID: 37422997 DOI: 10.1016/j.archoralbio.2023.105759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVE Variants in wingless-type MMTV integration site family member 10A (WNT10A) have been proposed to be the most common cause of non-syndromic oligodontia (NSO). The goal of the present study was to identify the novel WNT10A variants in Chinese families with NSO. DESIGN Clinical data were collected from 39 families with oligodontia admitted to the Hospital of Stomatology Hebei Medical University (China) from 2016 to 2022. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify WNT10A variants in three families with non-syndromic oligodontia. Amino acid conservation analysis and protein conformational analysis were conducted for the WNT10A variant. Genotype-phenotype analysis was performed on the previously reported WNT10A variants related to NSO. RESULTS We found a novel heterozygous WNT10A variant c.1127 G>A (p.Cys376Tyr) and two reported heterozygous variants c.460 C>A (p.Leu154Met) and c.511 C>T (p.Arg171Cys). Structural modeling showed that the novel WNT10A variant was located in a highly conserved domain, which led to structural damage of WNT10A protein. In addition, we found that the phenotype of the WNT10A variants affected the maxillary second premolars, followed by the mandibular second premolars, and rarely affected the maxillary central incisor. Herein, it is the first time to report that NSO patients with WNT10A monoallele mutation carry taurodontism phenotype and 6.1% prevalence of taurodontism in WNT10A-related NSO patients. CONCLUSIONS Our results demonstrated that the novel variant c.1127 G>A (p.Cys376Tyr) of WNT10A causes NSO. The present study expanded the known variation spectrum of WNT10A and provided valuable information for genetic counseling of families.
Collapse
Affiliation(s)
- Ya Zhao
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yifei Hou
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jiabao Ren
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xuemei Gao
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Lingqiang Meng
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ying Liu
- Department of Oral Prevention, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Congcong Xing
- Department of Pediatric Stomatology, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wenjing Shen
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
11
|
Wang ZS, Shu B, Han Q, Li GH, Guo YL. Effects of grape seed-derived proanthocyanidin B2 pretreatment on oxidative stress, endoplasmic reticulum stress and apoptosis of renal tubular epithelial cells in renal ischemia-reperfusion injury model of mice. Int Urol Nephrol 2023; 55:2599-2610. [PMID: 36935438 PMCID: PMC10499685 DOI: 10.1007/s11255-023-03494-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/27/2023] [Indexed: 03/21/2023]
Abstract
PURPOSE To investigate the effect of grape seed-derived proanthocyanidin B2 (GSPB2) pretreatment on acute renal ischemia-reperfusion injury model of mice. METHODS 50 mice were divided into 5 groups: Sham group: mice were treated with right nephrectomy. GSPB2 group: GSPB2 was injected intraperitoneally 45 min before right nephrectomy. IRI group: right kidney was resected and the left renal arteriovenous vessel was blocked for 45 min. GSPB2 + IRI group: GSPB2 was intraperitoneally injected 45 min before IRI established. GSPB2 + BRU + IRI group: GSPB2 and brusatol (BRU) were injected intraperitoneally 45 min before IRI established. Creatinine and urea nitrogen of mice were detected, and the kidney morphology and pathological changes of each group were detected by HE staining, PAS staining and transmission electron microscopy. Expressions of Nrf2, HO-1, GRP78, CHOP, and cleaved-caspase3 were detected by immunofluorescence staining and western blotting. RESULTS Morphology and mitochondrial damages of kidney in GSPB2 + IRI group were significantly alleviated than those in IRI group. Expression levels of Nrf2 and HO-1 were significantly higher in GSPB2 + IRI group than those in IRI group. Expression levels of GRP78, CHOP and cleaved-caspase3 were significantly lower in GSPB2 + IRI group than those in IRI group. However, compared to GSPB2 + IRI group, protective effects of GSPB2 pretreatment were weakened in GSPB2 + BRU + IRI group. CONCLUSIONS GSPB2 pretreatment could alleviate oxidative stress damage and reduce apoptosis of renal tubular epithelial cells, which might be related to activating the antioxidant system, up-regulating the expression of Nrf2 and HO-1, inhibiting the expressions of GRP78, CHOP and cleaved-caspase3. However, the protective effect could be reversed by brusatol.
Collapse
|