1
|
Sahib AS, Fawzi A, Zabibah RS, Koka NA, Khudair SA, Muhammad FA, Hamad DA. miRNA/epithelial-mesenchymal axis (EMT) axis as a key player in cancer progression and metastasis: A focus on gastric and bladder cancers. Cell Signal 2023:110881. [PMID: 37666286 DOI: 10.1016/j.cellsig.2023.110881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The metastasis a major hallmark of tumors that its significant is not only related to the basic research, but clinical investigations have revealed that majority of cancer deaths are due to the metastasis. The metastasis of tumor cells is significantly increased due to EMT mechanism and therefore, inhibition of EMT can reduce biological behaviors of tumor cells and improve the survival rate of patients. One of the gaps related to cancer metastasis is lack of specific focus on the EMT regulation in certain types of tumor cells. The gastric and bladder cancers are considered as two main reasons of death among patients in clinical level. Herein, the role of EMT in regulation of their progression is evaluated with a focus on the function of miRNAs. The inhibition/induction of EMT in these cancers and their ability in modulation of EMT-related factors including ZEB1/2 proteins, TGF-β, Snail and cadherin proteins are discussed. Moreover, lncRNAs and circRNAs in crosstalk of miRNA/EMT regulation in these tumors are discussed and final impact on cancer metastasis and response of tumor cells to the chemotherapy is evaluated. Moreover, the impact of miRNAs transferred by exosomes in regulation of EMT in these cancers are discussed.
Collapse
Affiliation(s)
- Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Amjid Fawzi
- Medical Technical College, Al-Farahidi University, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Nisar Ahmad Koka
- Department of English, Faculty of Languages and Translation, King Khalid University, Abha, Kingdom of Saudi Arabia.
| | | | | | - Doaa A Hamad
- Nursing Department, Hilla University College, Babylon, Iraq
| |
Collapse
|
2
|
Chen F, Wang L. Long noncoding RNA CASC11 suppresses sorafenib-triggered ferroptosis via stabilizing SLC7A11 mRNA in hepatocellular carcinoma cells. Discov Oncol 2023; 14:145. [PMID: 37552314 PMCID: PMC10409942 DOI: 10.1007/s12672-023-00761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
As a frontline treatment for patients with advanced hepatocellular carcinoma (HCC), sorafenib is an effective drug approved by the Food and Drug Administration (FDA). Ferroptosis, a newly defined programmed cell death process with the hallmark of the accumulation of iron-dependent lipid peroxides, can be induced by sorafenib treatment. Our previous study identified oncogenic roles of long noncoding RNA (lncRNA) Cancer susceptibility candidate 11 (CASC11) in HCC progression. However, the relationship between CASC11 and sorafenib-induced ferroptosis in HCC remains unclear. In the present study, we aim to investigate the role of CASC11 in sorafenib-induced ferroptosis in HCC cell lines and determine the involved molecular mechanisms. Here, we demonstrated that sorafenib decreased CASCL11 expression. Knockdown of CASC11 enhanced sorafenib-induced ferroptosis, while overexpression of CASC11 exerted the opposite effect in HCC cells. Moreover, CASC11 led to the accumulation of intracellular malondialdehyde (MDA), lipid reactive oxygen species (ROS) and Fe2+ while depleting glutathione (GSH), thereby suppressing sorafenib-induced ferroptosis and cell death. Ferrostatin-1 (Ferr-1), a ferroptosis inhibitor, reversed the enhanced anticancer effect of sorafenib caused by the silence of CASC11 in HCC cells. Mechanistically, CASC11 upregulated the expression of solute carrier family 7 member 11 (SLC7A11) which is critical for ferroptosis inhibition. CASC11 associated with and stabilized SLC7A11 mRNA. In summary, our data revealed, for the first time, that CASC11 inhibits the sorafenib-induced ferroptosis in HCC cells via regulating SLC7A11, providing a new basis for clinical therapeutic strategies for patients with HCC.
Collapse
Affiliation(s)
- Fei Chen
- Department of Ultrasound, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Liang Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China.
| |
Collapse
|
3
|
Liu N, Zhang C, Zhang L. WTAP-Involved the m6A Modification of lncRNA FAM83H-AS1 Accelerates the Development of Gastric Cancer. Mol Biotechnol 2023:10.1007/s12033-023-00810-2. [PMID: 37477820 DOI: 10.1007/s12033-023-00810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/28/2023] [Indexed: 07/22/2023]
Abstract
The long noncoding RNA FAM83H-antisense RNA 1 (FAM83H-AS1) is involved in gastric cancer (GC) development. This study determined whether FAM83H-AS1 was regulated by N6-methyladenosine (m6A) modifications in GC. Real-time quantitative polymerase chain reaction was performed to determine the expression levels of FAM83H-AS1 and Wilms' tumor 1 associated protein (WTAP). The protein content of WTAP was evaluated using western blotting. To assess the m6A alterations in FAM83H-AS1, methylated RNA immunoprecipitation was performed to identify interactions between WTAP and FAM83H-AS1. Functionally, the proliferation, migration, and invasion of GC cells were measured using a Cell Counting Kit-8 and transwell assays, respectively. High expression levels of FAM83H-AS1 and WTAP were detected in GC samples and there was a positive correlation between them. In addition, WTAP mediates FAM83H-AS1 expression in an m6A-dependent manner. Further investigations indicated that WTAP silencing reversed the cancer-promoting role of FAM83H-AS1 overexpression in GC cell migration, proliferation, and invasion. Our results suggest that WTAP-mediated FAM83H-AS1 promotes GC development via m6A modification. Our findings provide new biomarkers for GC diagnosis and targeted therapy. Wilms' tumor 1 associated protein (WTAP) promotes gastric cancer (GC) by accelerating cell proliferation, migration, and invasion of GC cells via the N6-methyladenosine(m6A) modification of long non coding RNA FAM83H-AS1.
Collapse
Affiliation(s)
- Nian Liu
- Department of Gastrointestinal Surgery, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Hongkong Rd. No. 168, Jianghan District, Wuhan, 430015, Hubei, China
| | - Chao Zhang
- Department of Gastrointestinal Surgery, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Hongkong Rd. No. 168, Jianghan District, Wuhan, 430015, Hubei, China
| | - Liang Zhang
- Department of Gastrointestinal Surgery, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Hongkong Rd. No. 168, Jianghan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
4
|
Nowak P, Bil-Lula I, Śliwińska-Mossoń M. A Cross-Talk about Radioresistance in Lung Cancer-How to Improve Radiosensitivity According to Chinese Medicine and Medicaments That Commonly Occur in Pharmacies. Int J Mol Sci 2023; 24:11206. [PMID: 37446385 DOI: 10.3390/ijms241311206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is one of the most common cancers in the population and is characterized by non-specific symptoms that delay the diagnosis and reduce the effectiveness of oncological treatment. Due to the difficult placement of the tumor, one of the main methods of lung cancer treatment is radiotherapy, which damages the DNA of cancer cells, inducing their apoptosis. However, resistance to ionizing radiation may develop during radiotherapy cycles, leading to an increase in the number of DNA points of control that protect cells from apoptosis. Cancer stem cells are essential for radioresistance, and due to their ability to undergo epithelial-mesenchymal transition, they modify the phenotype, bypassing the genotoxic effect of radiotherapy. It is therefore necessary to search for new methods that could improve the cytotoxic effect of cells through new mechanisms of action. Chinese medicine, with several thousand years of tradition, offers a wide range of possibilities in the search for compounds that could be used in conventional medicine. This review introduces the potential candidates that may present a radiosensitizing effect on lung cancer cells, breaking their radioresistance. Additionally, it includes candidates taken from conventional medicine-drugs commonly available in pharmacies, which may also be significant candidates.
Collapse
Affiliation(s)
- Paulina Nowak
- Scientific Club of Specialized Biological Analyzes, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Hematology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Mariola Śliwińska-Mossoń
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Hematology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
5
|
Deng H, Gao J, Cao B, Qiu Z, Li T, Zhao R, Li H, Wei B. LncRNA CCAT2 promotes malignant progression of metastatic gastric cancer through regulating CD44 alternative splicing. Cell Oncol (Dordr) 2023:10.1007/s13402-023-00835-4. [PMID: 37354353 DOI: 10.1007/s13402-023-00835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 06/26/2023] Open
Abstract
OBJECTIVE Gastric cancer (GC) is one of the most malignant tumors worldwide. Thus, it is necessary to explore the underlying mechanisms of GC progression and develop novel therapeutic regimens. Long non-coding RNAs (lncRNAs) have been demonstrated to be abnormally expressed and regulate the malignant behaviors of cancer cells. Our previous research demonstrated that lncRNA colon cancer-associated transcript 2 (CCAT2) has potential value for GC diagnosis and discrimination. However, the functional mechanisms of lncRNA CCAT2 in GC development remain to be explored. METHODS GC and normal adjacent tissues were collected to detect the expression of lncRNA CCAT2, ESRP1 and CD44 in clinical specimens and their clinical significance for GC patients. Cell counting kit-8, wound healing and transwell assays were conducted to investigate the malignant behaviors in vitro. The generation of nude mouse xenografts by subcutaneous, intraperitoneal and tail vein injection was performed to examine GC growth and metastasis in vivo. Co-immunoprecipitation, RNA-binding protein pull-down assay and fluorescence in situ hybridization were performed to reveal the binding relationships between ESRP1 and CD44. RESULTS In the present study, lncRNA CCAT2 was overexpressed in GC tissues compared to adjacent normal tissues and correlated with short survival time of patients. lncRNA CCAT2 promoted the proliferation, migration and invasion of GC cells. Its overexpression modulates alternative splicing of Cluster of differentiation 44 (CD44) variants and facilitates the conversion from the standard form to variable CD44 isoform 6 (CD44v6). Mechanistically, lncRNA CCAT2 upregulated CD44v6 expression by binding to epithelial splicing regulatory protein 1 (ESRP1), which subsequently mediates CD44 alternative splicing. The oncogenic role of the lncRNA CCAT2/ESRP1/CD44 axis in the promotion of malignant behaviors was verified by both in vivo and in vitro experiments. CONCLUSIONS Our findings identified a novel mechanism by which lncRNA CCAT2, as a type of protein-binding RNA, regulates alternative splicing of CD44 and promotes GC progression. This axis may become an effective target for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Huan Deng
- Department of Gastrointestinal Surgery, Peking University First Hospital, Beijing, 100034, China
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jingwang Gao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Ziyu Qiu
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Beijing, 100091, China
| | - Tian Li
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710021, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
6
|
Ghafouri-Fard S, Harsij A, Hussen BM, Taheri M, Sharifi G. A review on the role of CASC11 in cancers. Front Cell Dev Biol 2023; 11:1131199. [PMID: 37427385 PMCID: PMC10326515 DOI: 10.3389/fcell.2023.1131199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Abstract
The long non-coding RNA (lncRNA) cancer susceptibility 11 (CASC11) is a newly identified lncRNA located on chromosome 8q24.21. The expression of lncRNA CASC11 has been found to be elevated in different cancer types and the prognosis of the tumor is inversely correlated with the high CASC11 expression. Moreover, lncRNA CASC11 has an oncogenic function in cancers. The biological characteristics of the tumors, such as proliferation, migration, invasion, autophagy, and apoptosis can be controlled by this lncRNA. In addition to interacting with miRNAs, proteins, transcription factors, and other molecules, the lncRNA CASC11 modulates signaling pathways including Wnt/β-catenin and epithelial-mesenchymal transition. In this review, we have summarized studies on the role of lncRNA CASC11 in the carcinogenesis from cell lines, in vivo, and clinical perspectives.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Harsij
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Vijayakumar S, DiGuiseppi JA, Dabestani J, Ryan WG, Vielman Quevedo R, Li Y, Diers J, Tu S, Fleegel J, Nguyen C, Rhoda LM, Imami AS, Hamoud AAR, Lovas S, McCullumsmith R, Zallocchi M, Zuo J. In Silico Transcriptome-based Screens Identify Epidermal Growth Factor Receptor Inhibitors as Therapeutics for Noise-induced Hearing Loss. bioRxiv 2023:2023.06.07.544128. [PMID: 37333346 PMCID: PMC10274759 DOI: 10.1101/2023.06.07.544128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Noise-Induced Hearing Loss (NIHL) represents a widespread disease for which no therapeutics have been approved by the Food and Drug Administration (FDA). Addressing the conspicuous void of efficacious in vitro or animal models for high throughput pharmacological screening, we utilized an in silico transcriptome-oriented drug screening strategy, unveiling 22 biological pathways and 64 promising small molecule candidates for NIHL protection. Afatinib and zorifertinib, both inhibitors of the Epidermal Growth Factor Receptor (EGFR), were validated for their protective efficacy against NIHL in experimental zebrafish and murine models. This protective effect was further confirmed with EGFR conditional knockout mice and EGF knockdown zebrafish, both demonstrating protection against NIHL. Molecular analysis using Western blot and kinome signaling arrays on adult mouse cochlear lysates unveiled the intricate involvement of several signaling pathways, with particular emphasis on EGFR and its downstream pathways being modulated by noise exposure and Zorifertinib treatment. Administered orally, Zorifertinib was successfully detected in the perilymph fluid of the inner ear in mice with favorable pharmacokinetic attributes. Zorifertinib, in conjunction with AZD5438 - a potent inhibitor of cyclin dependent kinase 2 - produced synergistic protection against NIHL in the zebrafish model. Collectively, our findings underscore the potential application of in silico transcriptome-based drug screening for diseases bereft of efficient screening models and posit EGFR inhibitors as promising therapeutic agents warranting clinical exploration for combatting NIHL. Highlights In silico transcriptome-based drug screens identify pathways and drugs against NIHL.EGFR signaling is activated by noise but reduced by zorifertinib in mouse cochleae.Afatinib, zorifertinib and EGFR knockout protect against NIHL in mice and zebrafish.Orally delivered zorifertinib has inner ear PK and synergizes with a CDK2 inhibitor.
Collapse
|
8
|
Zhang H, Feng H, Yu T, Zhang M, Liu Z, Ma L, Liu H. Construction of an oxidative stress-related lncRNAs signature to predict prognosis and the immune response in gastric cancer. Sci Rep 2023; 13:8822. [PMID: 37258567 DOI: 10.1038/s41598-023-35167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/13/2023] [Indexed: 06/02/2023] Open
Abstract
Oxidative stress, as a characteristic of cellular aerobic metabolism, plays a crucial regulatory role in the development and metastasis of gastric cancer (GC). Long noncoding RNAs (lncRNAs) are important regulators in GC development. However, research on the prognostic patterns of oxidative stress-related lncRNAs (OSRLs) and their functions in the immune microenvironment is currently insufficient. We identified the OSRLs signature (DIP2A-IT1, DUXAP8, TP53TG1, SNHG5, AC091057.1, AL355001.1, ARRDC1-AS1, and COLCA1) from 185 oxidative stress-related genes in The Cancer Genome Atlas (TCGA) cohort via random survival forest and Cox analyses, and the results were subsequently validated in the Gene Expression Omnibus (GEO) dataset. The patients were divided into high- and low-risk groups by the risk score of the OSRLs signature. Longer overall survival was detected in the low-risk group than in the high-risk group in both the TCGA cohort (P < 0. 001, HR = 0.43, 95% CI 0.31-0.62) and the GEO cohort (P = 0.014, HR = 0.67, 95% CI 0.48-0.93). Next, multivariate Cox analysis identified that the risk model was an independent prognostic characteristic (HR > 1, P = 0.005), and time-dependent receiver operating characteristic (ROC) curve analysis and nomogram analysis were utilized to evaluate the predictive ability of the risk model. Next, gene set enrichment analysis revealed that the immune-related pathway, Wnt/[Formula: see text]-catenin signature, mammalian target of rapamycin complex 1 signature, and cytokine‒cytokine receptor interaction was enriched. High-risk patients were more responsive to CD200, TNFSF4, TNFSF9, and BTNL2 immune checkpoint blockade. The results of qRT‒PCR further proved the accuracy of our bioinformatic analysis. Overall, our study identified a novel OSRLs signature that can serve as a promising biomarker and prognostic indicator, which provides a personalized predictive approach for patient prognosis evaluation and treatment.
Collapse
Affiliation(s)
- Hui Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Huawei Feng
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning Province, Shenyang, 110036, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, 110036, China
- Key Laboratory for Simulating Computation and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, 110036, China
| | - Tiansong Yu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Man Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Zhikui Liu
- Liaoning Huikang Testing and Evaluation Technology Co, Shenyang, 110036, China
| | - Lidan Ma
- Dandong Customs Integrated Technical Service Center, Dandong, 118000, China
| | - Hongsheng Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China.
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning Province, Shenyang, 110036, China.
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, 110036, China.
- Key Laboratory for Simulating Computation and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, 110036, China.
| |
Collapse
|
9
|
Hosseini SA, Haddadi MH, Fathizadeh H, Nemati F, Aznaveh HM, Taraj F, Aghabozorgizadeh A, Gandomkar G, Bazazzadeh E. Long non-coding RNAs and gastric cancer: An update of potential biomarkers and therapeutic applications. Biomed Pharmacother 2023; 163:114407. [PMID: 37100014 DOI: 10.1016/j.biopha.2023.114407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/28/2023] Open
Abstract
The frequent metastasis of gastric cancer (GC) complicates the cure and therefore the development of effective diagnostic and therapeutic approaches is urgently necessary. In recent years, lncRNA has emerged as a drug target in the treatment of GC, particularly in the areas of cancer immunity, cancer metabolism, and cancer metastasis. This has led to the demonstration of the importance of these RNAs as prognostic, diagnostic and therapeutic agents. In this review, we provide an overview of the biological activities of lncRNAs in GC development and update the latest pathological activities, prognostic and diagnostic strategies, and therapeutic options for GC-related lncRNAs.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; USERN office, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Foroogh Nemati
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hooman Mahmoudi Aznaveh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Farima Taraj
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - AmirArsalan Aghabozorgizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Golmaryam Gandomkar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elaheh Bazazzadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
10
|
Fadaei M, Kohansal M, Akbarpour O, Sami M, Ghanbariasad A. Network and functional analyses of differentially expressed genes in gastric cancer provide new biomarkers associated with disease pathogenesis. J Egypt Natl Canc Inst 2023; 35:8. [PMID: 37032412 DOI: 10.1186/s43046-023-00164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 02/13/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Gastric cancer is a dominant source of cancer-related death around the globe and a serious threat to human health. However, there are very few practical diagnostic approaches and biomarkers for the treatment of this complex disease. METHODS This study aimed to evaluate the association between differentially expressed genes (DEGs), which may function as potential biomarkers, and the diagnosis and treatment of gastric cancer (GC). We constructed a protein-protein interaction network from DEGs followed by network clustering. Members of the two most extensive modules went under the enrichment analysis. We introduced a number of hub genes and gene families playing essential roles in oncogenic pathways and the pathogenesis of gastric cancer. Enriched terms for Biological Process were obtained from the "GO" repository. RESULTS A total of 307 DEGs were identified between GC and their corresponding normal adjacent tissue samples in GSE63089 datasets, including 261 upregulated and 261 downregulated genes. The top five hub genes in the PPI network were CDK1, CCNB1, CCNA2, CDC20, and PBK. They are involved in focal adhesion formation, extracellular matrix remodeling, cell migration, survival signals, and cell proliferation. No significant survival result was found for these hub genes. CONCLUSIONS Using comprehensive analysis and bioinformatics methods, important key pathways and pivotal genes related to GC progression were identified, potentially informing further studies and new therapeutic targets for GC treatment.
Collapse
Affiliation(s)
- Mousa Fadaei
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Kohansal
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
- Department of Biology, Payame Noor University, Tehran, Iran
| | | | - Mahsa Sami
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Ghanbariasad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
11
|
Shi X, Li M, Huang Q, Xie L, Huang Z. Monacolin K Induces Apoptosis of Human Glioma U251 Cells by Triggering ROS-Mediated Oxidative Damage and Regulating MAPKs and NF-κB Pathways. ACS Chem Neurosci 2023; 14:1331-1341. [PMID: 36917811 DOI: 10.1021/acschemneuro.3c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Monacolin K (MK), a polyketo secondary metabolic compound of the mold genus Monascus, can promote the apoptosis of malignant cancer cells, possessing potential antitumor properties. However, its mechanism of action on gliomas remains unclear. Here, we explored and investigated the potential of the monacolin K's antitumor effect on human glioma U251 cells and its possible molecular mechanism. Results showed that the application of 10 μM monacolin K inhibited the proliferation of U251 cells, with an inhibitory rate of up to 53.4%. Additionally, monacolin K induced the generation of reactive oxygen species and activated mitochondria-mediated pathways, including decreased MMP, activation of caspase3/caspase9, decreased Na+/K+-ATPase and Ca2+-ATPase activities, and disruption of the antioxidant system, resulting in the disruption of intracellular reduction-oxidation homeostasis. Monacolin K also activated MAPK and NF-κB pathways, upregulating P38 activity and downregulating JNK/ERK/P65/IκBα expression, ultimately leading to apoptosis of U251 cells. Importantly, monacolin K was not cytotoxic to normal human cells, hUC-MSCs. We concluded that monacolin K can induce apoptosis in U251 cells by triggering ROS-mediated oxidative damage and regulating MAPKs and NF-κB pathways.
Collapse
Affiliation(s)
- Xiaoyi Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Meng Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Qiming Huang
- College of Life Sciences, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.,Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
12
|
Vo D, Ghosh P, Sahoo D. Artificial intelligence-guided discovery of gastric cancer continuum. Gastric Cancer 2023; 26:286-97. [PMID: 36692601 DOI: 10.1007/s10120-022-01360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Detailed understanding of pre-, early and late neoplastic states in gastric cancer helps develop better models of risk of progression to gastric cancers (GCs) and medical treatment to intercept such progression. METHODS We built a Boolean implication network of gastric cancer and deployed machine learning algorithms to develop predictive models of known pre-neoplastic states, e.g., atrophic gastritis, intestinal metaplasia (IM) and low- to high-grade intestinal neoplasia (L/HGIN), and GC. Our approach exploits the presence of asymmetric Boolean implication relationships that are likely to be invariant across almost all gastric cancer datasets. Invariant asymmetric Boolean implication relationships can decipher fundamental time-series underlying the biological data. Pursuing this method, we developed a healthy mucosa → GC continuum model based on this approach. RESULTS Our model performed better against publicly available models for distinguishing healthy versus GC samples. Although not trained on IM and L/HGIN datasets, the model could identify the risk of progression to GC via the metaplasia → dysplasia → neoplasia cascade in patient samples. The model could rank all publicly available mouse models for their ability to best recapitulate the gene expression patterns during human GC initiation and progression. CONCLUSIONS A Boolean implication network enabled the identification of hitherto undefined continuum states during GC initiation. The developed model could now serve as a starting point for rationalizing candidate therapeutic targets to intercept GC progression.
Collapse
|
13
|
Liu Q, Gu L, Qiu J, Qian J. Elevated NDC1 expression predicts poor prognosis and correlates with immunity in hepatocellular carcinoma. J Gastrointest Oncol 2023; 14:245-264. [PMID: 36915467 PMCID: PMC10007937 DOI: 10.21037/jgo-22-1166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/02/2023] [Indexed: 03/02/2023] Open
Abstract
Background NDC1 was identified to be a tumor-promoting factor in non-small cell lung cancer and cervical cancer. However, no report had clarified the relationship between NDC1 and hepatocellular carcinoma (HCC). In this paper, we explored the expression and potential functions of NDC1 in HCC for the first time through the rational application of bioinformatics and relevant basic experiments. Methods NDC1-related expression profiles and clinical data of HCC patients were collected from The Cancer Genome Atlas (TCGA) database, which were verified via quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Univariate and multivariate Cox regression analyses were used to identify NDC1 as an independent factor for HCC prognosis, and NDC1-related signaling pathways were determined by gene set enrichment analysis (GSEA). Furthermore, we deeply probed the potential links of NDC1 to immunity and immune response. Finally, the bioeffects and underlying mechanisms of ectopic NDC1 overexpression and depletion were determined in HepG2 cells by immunoblotting, flow cytometry, Cell-Counting-Kit-8 (CCK-8), and EDU (5-Ethynyl-2'-deoxyuridine). Results Up-regulated expression of NDC1 was detected by means of the TCGA database, which was consistent with the results obtained from further qRT-PCR, immunohistochemistry and the CPTAC database. Kaplan-Meier (K-M) survival analysis revealed a worse prognosis in HCC patients with high NDC1 expression. Besides, NDC1 was certified to be closely linked to tumor histologic grade, clinical stage and T stage. Moreover, univariate and multivariate Cox regression analyses defined NDC1 as an independent element for HCC prognosis. NDC1-related signaling pathways, utilizing GSEA analysis, were subsequently found out. What's more, NDC1 expression was detected to be enormously associated with microsatellite instability (MSI), immune cell infiltration, immune checkpoint molecules and immune cell pathways. As for immunotherapy, we discovered that different risk groups tended to have different immune checkpoint inhibitor responses, which indicated crucial implication value of NDC1 for HCC immunotherapy. More interestingly, we observed that the overexpression of NDC1 could promote the migration and invasion of HCC cells. Conclusions Our article demonstrated that NDC1 might serve as a valuable predictor in the prognosis and immunotherapy of HCC. NDC1 played an oncogenic role in HCC.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| | - Liugen Gu
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| | - Jianwei Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| | - Junbo Qian
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| |
Collapse
|
14
|
Javed A, Yarmohammadi M, Korkmaz KS, Rubio-Tomás T. The Regulation of Cyclins and Cyclin-Dependent Kinases in the Development of Gastric Cancer. Int J Mol Sci 2023; 24:ijms24032848. [PMID: 36769170 PMCID: PMC9917736 DOI: 10.3390/ijms24032848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer predominantly occurs in adenocarcinoma form and is characterized by uncontrolled growth and metastases of gastric epithelial cells. The growth of gastric cells is regulated by the action of several major cell cycle regulators including Cyclins and Cyclin-dependent kinases (CDKs), which act sequentially to modulate the life cycle of a living cell. It has been reported that inadequate or over-activity of these molecules leads to disturbances in cell cycle dynamics, which consequently results in gastric cancer development. Manny studies have reported the key roles of Cyclins and CDKs in the development and progression of the disease in either in vitro cell culture studies or in vivo models. We aimed to compile the evidence of molecules acting as regulators of both Cyclins and CDKs, i.e., upstream regulators either activating or inhibiting Cyclins and CDKs. The review entails an introduction to gastric cancer, along with an overview of the involvement of cell cycle regulation and focused on the regulation of various Cyclins and CDKs in gastric cancer. It can act as an extensive resource for developing new hypotheses for future studies.
Collapse
Affiliation(s)
- Aadil Javed
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Izmir 35040, Turkey
- Correspondence: (A.J.); (T.R.-T.)
| | - Mahdieh Yarmohammadi
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran 33817-74895, Iran
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Izmir 35040, Turkey
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
- Correspondence: (A.J.); (T.R.-T.)
| |
Collapse
|
15
|
Qu X, Liu B, Wang L, Liu L, Zhao W, Liu C, Ding J, Zhao S, Xu B, Yu H, Zhang X, Chai J. Loss of cancer-associated fibroblast-derived exosomal DACT3-AS1 promotes malignant transformation and ferroptosis-mediated oxaliplatin resistance in gastric cancer. Drug Resist Updat 2023; 68:100936. [PMID: 36764075 DOI: 10.1016/j.drup.2023.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023]
Abstract
AIMS Long non-coding RNAs (lncRNAs), as one of the components of exosomes derived from cancer-associated fibroblasts (CAFs), exhibit a crucial role in the pathogenesis and chemoresistance of gastric cancer (GC). Herein, we investigated the role and mechanism of a novel lncRNA disheveled binding antagonist of beta catenin3 antisense1 (DACT3-AS1) and its involvement in GC. METHODS DACT3-AS1 was identified by RNA-sequencing and verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The functional role of DACT3-AS1 in GC was evaluated using in vitro and in vivo experiments including Transwell assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay, immunoblotting, and xenograft tumor mouse model. Dual-luciferase reporter assay was performed to assess the association between genes. RESULTS DACT3-AS1 was downregulated and involved in poor prognosis of patients with GC. The results from both in vitro and in vivo experiments showed that DACT3-AS1 suppressed cell proliferation, migration, and invasion through targeting miR-181a-5p/sirtuin 1 (SIRT1) axis. Additionally, DACT3-AS1 was transmitted from CAFs to GC cells mainly via exosomes. Exosomal DACT3-AS1 alleviated xenograft tumor growth. DACT3-AS1 conferred sensitivity of cancer cells to oxaliplatin through SIRT1-mediated ferroptosis both in vitro and in vivo. CONCLUSIONS CAFs-derived exosomal DACT3-AS1 is a suppressive regulator in malignant transformation and oxaliplatin resistance. DACT3-AS1 could be used for diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Xianlin Qu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Bing Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Longgang Wang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Luguang Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Weizhu Zhao
- Department of Radiology, Shandong University, Shandong Cancer Hospital and Institute, Jinan, Shandong, China; Department of Oncology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, China
| | - Changlei Liu
- Department of scientific research project, Shandong Excalibur Medical Research. LTD, Jinan, Shandong, China
| | - Jishuang Ding
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Siwei Zhao
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Botao Xu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Hang Yu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiang Zhang
- Department of scientific research project, Shandong Excalibur Medical Research. LTD, Jinan, Shandong, China
| | - Jie Chai
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China.
| |
Collapse
|
16
|
Zhai Y, Liu X, Huang Z, Zhang J, Stalin A, Tan Y, Zhang F, Chen M, Shi R, Huang J, Wu C, Wu Z, Lu S, You L, Wu J. Data mining combines bioinformatics discover immunoinfiltration-related gene SERPINE1 as a biomarker for diagnosis and prognosis of stomach adenocarcinoma. Sci Rep 2023; 13:1373. [PMID: 36697459 DOI: 10.1038/s41598-023-28234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Stomach adenocarcinoma (STAD) is a type of cancer which often at itsadvanced stage apon diagnosis and mortality in clinical practice. Several factors influencethe prognosis of STAD, including the expression and regulation of immune cells in the tumor microenvironment. We here investigated the biomarkers related to the diagnosis and prognosis of gastric cancer, hoping to provide insights for the diagnosis and treatment of gastric cancer in the future. STAD and normal patient RNA sequencing data sets were accessed from the cancer genome atlas (TCGA database). Differential genes were determined and obtained by using the R package DESeq2. The stromal, immune, and ESTIMATE scores are calculated by the ESTIMATE algorithm, followed by the modular genes screening using the R package WGCNA. Subsequently, the intersection between the modular gene and the differential gene was taken and the STRING database was used for PPI network module analysis. The R packages clusterProfiler, enrichplot, and ggplot2 were used for GO and KEGG enrichment analysis. Cox regression analysis was used to screen survival-related genes, and finally, the R package Venn Diagram was used to take the intersection and obtain 7 hub genes. The time-dependent ROC curve and Kaplan-Meier survival curve were used to find the SERPINE1 gene, which plays a critical role in prognosis. Finally, the expression pattern, clinical characteristics, and regulatory mechanism of SERPINE1 were analyzed in STAD. We revealed that the expression of SERPINE1 was significantly increased in the samples from STAD compared with normal samples. Cox regression, time-dependent ROC, and Kaplan-Meier survival analyses demonstrated that SERPINE1 was significantly related to the adverse prognosis of STAD patients. The expression of SERPINE1 increased with the progression of T, N, and M classification of the tumor. In addition, the results of immune infiltration analysis indicated that the immune cells' expression were higher in high SERPINE1 expression group than that in low SERPINE1 expression group, including CD4+ T cells, B cells, CD8+ T cells, macrophages, neutrophils and other immune cells. SERPINE1 was closely related to immune cells in the STAD immune microenvironment and had a synergistic effect with the immune checkpoints PD1 and PD-L1. In conclusion, we proved that SERPINE1 is a promising prognostic and diagnostic biomarker for STAD and a potential target for immunotherapy.
Collapse
|
17
|
Petrosyan V, Dobrolecki LE, Thistlethwaite L, Lewis AN, Sallas C, Srinivasan RR, Lei JT, Kovacevic V, Obradovic P, Ellis MJ, Osborne CK, Rimawi MF, Pavlick A, Shafaee MN, Dowst H, Jain A, Saltzman AB, Malovannaya A, Marangoni E, Welm AL, Welm BE, Li S, Wulf GM, Sonzogni O, Huang C, Vasaikar S, Hilsenbeck SG, Zhang B, Milosavljevic A, Lewis MT. Identifying biomarkers of differential chemotherapy response in TNBC patient-derived xenografts with a CTD/WGCNA approach. iScience 2023; 26:105799. [PMID: 36619972 DOI: 10.1016/j.isci.2022.105799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/20/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Although systemic chemotherapy remains the standard of care for TNBC, even combination chemotherapy is often ineffective. The identification of biomarkers for differential chemotherapy response would allow for the selection of responsive patients, thus maximizing efficacy and minimizing toxicities. Here, we leverage TNBC PDXs to identify biomarkers of response. To demonstrate their ability to function as a preclinical cohort, PDXs were characterized using DNA sequencing, transcriptomics, and proteomics to show consistency with clinical samples. We then developed a network-based approach (CTD/WGCNA) to identify biomarkers of response to carboplatin (MSI1, TMSB15A, ARHGDIB, GGT1, SV2A, SEC14L2, SERPINI1, ADAMTS20, DGKQ) and docetaxel (c, MAGED4, CERS1, ST8SIA2, KIF24, PARPBP). CTD/WGCNA multigene biomarkers are predictive in PDX datasets (RNAseq and Affymetrix) for both taxane- (docetaxel or paclitaxel) and platinum-based (carboplatin or cisplatin) response, thereby demonstrating cross-expression platform and cross-drug class robustness. These biomarkers were also predictive in clinical datasets, thus demonstrating translational potential.
Collapse
|
18
|
Yang M, Wang P, Liu T, Zou X, Xia Y, Li C, Wang X. High throughput sequencing revealed enhanced cell cycle signaling in SLE patients. Sci Rep 2023; 13:159. [PMID: 36599883 DOI: 10.1038/s41598-022-27310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
The multi-system involvement and high heterogeneity of systemic lupus erythematosus (SLE) pose great challenges to its diagnosis and treatment. The purpose of the current study is to identify genes and pathways involved in the pathogenesis of SLE. High throughput sequencing was performed on the PBMCs from SLE patients. We conducted differential gene analysis, gene ontology (GO) analysis, kyoto encyclopedia of genes and genomes (KEGG) analysis, and quantitative real-time PCR (qRT-PCR) verification. Protein-protein interaction (PPI) analysis, alternative splicing analysis, and disease correlation analysis were conducted on some key pathogenic genes as well. Furthermore, si-CDC6 was used for transfection and cell proliferation was monitored using a cell counting kit-8 (CCK-8) assay. We identified 2495 differential genes (1494 upregulated and 1001 downregulated) in SLE patients compared with healthy controls. The significantly upregulated genes were enriched in the biological process-related GO terms of the cell cycle, response to stress, and chromosome organization. KEGG enrichment analysis revealed 7 significantly upregulated pathways including SLE, alcoholism, viral carcinogenesis, cell cycle, proteasome, malaria, and transcriptional misregulation in cancer. We successfully verified some differential genes on the SLE pathway and the cell cycle pathway. CDC6, a key gene in the cell cycle pathway, had remarkably higher MXE alternative splicing events in SLE patients than that in controls, which may explain its significant upregulation in SLE patients. We found that CDC6 participates in the pathogenesis of many proliferation-related diseases and its levels are positively correlated with the severity of SLE. Knockdown of CDC6 suppressed the proliferation of Hela cells and PBMCs from SLE patients in vitro. We identified SLE-related genes and their alternative splicing events. The cell cycle pathway and the cell cycle-related biological processes are over-activated in SLE patients. We revealed a higher incidence of MXE events of CDC6, which may lead to its high expression in SLE patients. Upregulated cell cycle signaling and CDC6 may be related to the hyperproliferation and pathogenesis of SLE.
Collapse
|
19
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. Molecules 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
20
|
Huang J, Chen M, Pei W, Xu Z, Ning J, Chen C. Distinct tumor microenvironment landscapes in gastric cancer classified by cuproptosis-related lncRNAs. J Cancer 2022; 13:3687-3700. [PMID: 36606199 PMCID: PMC9809317 DOI: 10.7150/jca.79640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cuproptosis is a newly discovered non-apoptotic form of cell death that may be related to the development of tumors. Nonetheless, the potential role of cuproptosis-related lncRNAs in tumor microenvironment (TME) formation and patient-tailored treatment optimization of gastric cancer (GC) is still unclear. In this study, the six-lncRNA signature was constructed to quantify the molecular patterns of GC using LASSO-Cox regression model. Receiver operating characteristic (ROC) curves, C-index curves, independent prognostic analysis and principal component analysis (PCA) were conducted to verify and evaluate the model. The results showed that this risk model was accurate and reliable in predicting GC patient survival. In addition, two distinct subgroups were identified based on the risk model, which showed significant difference in biological functions of the associated genes, TME scores, characteristics of infiltrating immune cells and immunotherapy responses. We found that the high-risk subgroup was associated with immune activation and tumor-related pathways. Furthermore, compared with the low-risk subgroup, the high-risk subgroup had higher TME scores, richer immune cell infiltration and a better immunotherapy response. To accurately identify immune cold tumors and hot tumors, all samples of GC were divided into four distinct clusters by consensus clustering. Among them, Cluster 3 was identified as an immune hot tumor and was more sensitive to immunotherapy. Overall, this study demonstrates that cuproptosis-related lncRNAs could accurately predict the prognosis of patients with GC, help make a distinction between immune cold tumors and hot tumors and provide a basis for the precision medicine of GC.
Collapse
Affiliation(s)
- Jianfeng Huang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei 230022, Anhui, China
| | - Meixiang Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Wenguang Pei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhijue Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,✉ Corresponding authors: Zhijue Xu, Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. E-mail: ; Jie Ning, Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei 230022, Anhui, China. E-mail: ; Changyu Chen, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei 230022, Anhui, China. E-mail:
| | - Jie Ning
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei 230022, Anhui, China.,✉ Corresponding authors: Zhijue Xu, Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. E-mail: ; Jie Ning, Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei 230022, Anhui, China. E-mail: ; Changyu Chen, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei 230022, Anhui, China. E-mail:
| | - Changyu Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei 230022, Anhui, China.,✉ Corresponding authors: Zhijue Xu, Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. E-mail: ; Jie Ning, Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei 230022, Anhui, China. E-mail: ; Changyu Chen, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei 230022, Anhui, China. E-mail:
| |
Collapse
|
21
|
Badie A, Gaiddon C, Mellitzer G. Histone Deacetylase Functions in Gastric Cancer: Therapeutic Target? Cancers (Basel) 2022; 14:5472. [PMID: 36358890 PMCID: PMC9659209 DOI: 10.3390/cancers14215472] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 09/05/2023] Open
Abstract
Gastric cancer (GC) is one of the most aggressive cancers. Therapeutic treatments are based on surgery combined with chemotherapy using a combination of platinum-based agents. However, at metastatic stages of the disease, survival is extremely low due to late diagnosis and resistance mechanisms to chemotherapies. The development of new classifications has not yet identified new prognostic markers for clinical use. The studies of epigenetic processes highlighted the implication of histone acetylation status, regulated by histone acetyltransferases (HATs) and by histone deacetylases (HDACs), in cancer development. In this way, inhibitors of HDACs (HDACis) have been developed and some of them have already been clinically approved to treat T-cell lymphoma and multiple myeloma. In this review, we summarize the regulations and functions of eighteen HDACs in GC, describing their known targets, involved cellular processes, associated clinicopathological features, and impact on survival of patients. Additionally, we resume the in vitro, pre-clinical, and clinical trials of four HDACis approved by Food and Drug Administration (FDA) in cancers in the context of GC.
Collapse
Affiliation(s)
| | | | - Georg Mellitzer
- Laboratoire Streinth, Université de Strasbourg, Inserm UMR_S 1113 IRFAC, 67200 Strasbourg, France
| |
Collapse
|
22
|
Yin X, Yang J, Wang H, Luo Y, Qin Z, Deng L, Ma X. Non-coding genome in small cell lung cancer between theoretical view and clinical applications. Semin Cancer Biol 2022; 86:237-50. [PMID: 35367369 DOI: 10.1016/j.semcancer.2022.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive cancer of the neuroendocrine system, characterized by poor differentiation, rapid growth, and poor overall survival (OS) of patients. Despite the recent advances in the treatment of SCLC recently, the 2-year survival rate of patients with the cancer is only 14-15%, occasioned by the acquired resistance to drugs and serious off-target effects. In humans, the coding region is only 2% of the total genome, and 20% of that is associated with human diseases. Beyond the coding genome are RNAs, promoters, enhancers, and other intricate elements. The non-coding regulatory regions, mainly the non-coding RNAs (ncRNAs), regulate numerous biological activities including cell proliferation, metastasis, and drug resistance. As such, they are potential diagnostic or prognostic biomarkers, and also potential therapeutic targets for SCLC. Therefore, understanding how non-coding elements regulate SCLC development and progression holds significant clinical implications. Herein, we summarized the recent discoveries on the relationship between the non-coding elements including long non-coding RNAs (lncRNA), microRNAs (miRNAs), circular RNA (circRNA), enhancers as well as promotors, and the pathogenesis of SCLC and their potential clinical applications.
Collapse
|
23
|
Bai Y, Qu D, Lu D, Li Y, Zhao N, Cui G, Li X, Sun X, Sun H, Zhao L, Li Q, Zhang Q, Han T, Wang S, Yang Y. Pan-cancer landscape of abnormal ctDNA methylation across human tumors. Cancer Genet 2022; 268-269:37-45. [PMID: 36152512 DOI: 10.1016/j.cancergen.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The aim of this paper is to explore the correlation between circulating tumor DNA (ctDNA) methylation and mutations and its value in clinical early cancer screening. METHODS We performed target region methylation sequencing and genome sequencing on plasma samples. Methylation models to distinguish cancer from healthy individuals have been developed using hypermethylated genes in tumors and validated in training set and prediction set. RESULTS We found that patients with cancer had higher levels of ctDNA methylation compared to healthy individuals. The level of ctDNA methylation in cell cycle, p53, Notch pathway in pan-cancer was significantly correlated with the number of mutations, and mutation frequency. Methylation burden in some tumors was significantly correlated with tumor mutational burden (TMB), microsatellite instability (MSI) and PD-L1. The ctDNA methylation differences in cancer patients were mainly concentrated in the Herpes simplex virus 1 infection pathway. The area under curve (AUC) of the training and prediction sets of the methylation model distinguishing cancer from healthy individuals were 0.93 and 0.92, respectively. CONCLUSION Our study provides a landscape of methylation levels of important pathways in pan-cancer. ctDNA methylation significantly correlates with mutation type, frequency and number, providing a reference for clinical application of ctDNA methylation in early cancer screening.
Collapse
Affiliation(s)
- Yun Bai
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Di Qu
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Dan Lu
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yiwen Li
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Ning Zhao
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Guanghua Cui
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xue Li
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xiaoke Sun
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Huaibo Sun
- Genecast Biotechnology Co., Ltd, Wuxi 214104, China
| | - Lihua Zhao
- Genecast Biotechnology Co., Ltd, Wuxi 214104, China
| | - Qingyuan Li
- Genecast Biotechnology Co., Ltd, Wuxi 214104, China
| | - Qi Zhang
- Genecast Biotechnology Co., Ltd, Wuxi 214104, China
| | | | - Song Wang
- Department of Medical Oncology, Mudanjiang Cancer Hospital, Mudanjiang 157009, China.
| | - Yu Yang
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
24
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Dong P, Gassler N, Taheri M, Baniahmad A, Dilmaghani NA. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int 2022; 22:325. [PMID: 36266723 PMCID: PMC9583502 DOI: 10.1186/s12935-022-02747-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
The Cyclin-dependent kinase (CDK) class of serine/threonine kinases has crucial roles in the regulation of cell cycle transition and is mainly involved in the pathogenesis of cancers. The expression of CDKs is controlled by a complex regulatory network comprised of genetic and epigenetic mechanisms, which are dysregulated during the progression of cancer. The abnormal activation of CDKs results in uncontrolled cancer cell proliferation and the induction of cancer stem cell characteristics. The levels of CDKs can be utilized to predict the prognosis and treatment response of cancer patients, and further understanding of the function and underlying mechanisms of CDKs in human tumors would pave the way for future cancer therapies that effectively target CDKs. Defects in the regulation of cell cycle and mutations in the genes coding cell-cycle regulatory proteins lead to unrestrained proliferation of cells leading to formation of tumors. A number of treatment modalities have been designed to combat dysregulation of cell cycle through affecting expression or activity of CDKs. However, effective application of these methods in the clinical settings requires recognition of the role of CDKs in the progression of each type of cancer, their partners, their interactions with signaling pathways and the effects of suppression of these kinases on malignant features. Thus, we designed this literature search to summarize these findings at cellular level, as well as in vivo and clinical levels.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nikolaus Gassler
- Section of Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Zafar J, Huang J, Xu X, Jin F. Analysis of Long Non-Coding RNA-Mediated Regulatory Networks of Plutella xylostella in Response to Metarhizium anisopliae Infection. Insects 2022; 13:916. [PMID: 36292864 PMCID: PMC9604237 DOI: 10.3390/insects13100916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) represent a diverse class of RNAs that are structurally similar to messenger RNAs (mRNAs) but do not encode proteins. Growing evidence suggests that in response to biotic and abiotic stresses, the lncRNAs play crucial regulatory roles in plants and animals. However, the potential role of lncRNAs during fungal infection has yet to be characterized in Plutella xylostella, a devastating pest of cruciferous crops. In the current study, we performed a strand-specific RNA sequencing of Metarhizium anisopliae-infected (Px36hT, Px72hT) and uninfected (Px36hCK, Px72hCK) P. xylostella fat body tissues. Comprehensive bioinformatic analysis revealed a total of 5665 and 4941 lncRNAs at 36 and 72-h post-infection (hpi), including 563 (Px36hT), 532 (Px72hT) known and 5102 (Px36hT), 4409 (Px72hT) novel lncRNA transcripts. These lncRNAs shared structural similarities with their counterparts in other species, including shorter exon and intron length, fewer exon numbers, and a lower expression profile than mRNAs. LncRNAs regulate the expression of neighboring protein-coding genes by acting in a cis and trans manner. Functional annotation and pathway analysis of cis-acting lncRNAs revealed their role in several immune-related genes, including Toll, serpin, transferrin, βGRP etc. Furthermore, we identified multiple lncRNAs acting as microRNA (miRNA) precursors. These miRNAs can potentially regulate the expression of mRNAs involved in immunity and development, suggesting a crucial lncRNA-miRNA-mRNA complex. Our findings will provide a genetic resource for future functional studies of lncRNAs involved in P. xylostella immune responses to M. anisopliae infection and shed light on understanding insect host-pathogen interactions.
Collapse
Affiliation(s)
| | | | - Xiaoxia Xu
- Correspondence: (X.X.); (F.J.); Tel.: +86-135-6047-8369 (F.J.)
| | - Fengliang Jin
- Correspondence: (X.X.); (F.J.); Tel.: +86-135-6047-8369 (F.J.)
| |
Collapse
|
26
|
Liang L, Cen H, Huang J, Qin A, Xu W, Wang S, Chen Z, Tan L, Zhang Q, Yu X, Yang X, Zhang L. The reversion of DNA methylation-induced miRNA silence via biomimetic nanoparticles-mediated gene delivery for efficient lung adenocarcinoma therapy. Mol Cancer 2022; 21:186. [PMID: 36171576 PMCID: PMC9516831 DOI: 10.1186/s12943-022-01651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Background Lung cancer is one of the fatal cancers worldwide, and over 60% of patients are lung adenocarcinoma (LUAD). Our clinical data demonstrated that DNA methylation of the promoter region of miR-126-3p was upregulated, which led to the decreased expression of miR-126-3p in 67 cases of lung cancer tissues, implying that miR-126-3p acted as a tumor suppressor. Transduction of miR-126-3p is a potential therapeutic strategy for treating LUAD, yet the physiological environment and properties of miRNA challenge current transduction approaches. Methods We evaluated the expression of miR-126-3p in 67 pairs of lung cancer tissues and the corresponding adjacent non-tumorous tissues by Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The relationship between the overall survival of lung cancer patients and miR-126-3p was analyzed by the Cancer Genome Atlas cohort database (Oncolnc, http://www.oncolnc.org). We analyzed DNA methylation Methylation-specific PCR (MSP) analysis. To determine whether ADAM9 is the direct target of miR-126-3p, we performed the 3′-UTR luciferase reporter assay. The protein levels in the cells or tissues were evaluated with western blotting (WB) analysis. The biodistribution of nanoparticles were monitored by in vivo tracking system. Results We describe the development of novel stealth and matrix metalloproteinase 2 (MMP2)-activated biomimetic nanoparticles, which are constructed using MMP2-responsive peptides to bind the miR-126-3p (known as MAIN), and further camouflaged with red blood cell (RBC) membranes (hence named REMAIN). REMAIN was able to effectively transduce miRNA into lung cancer cells and release them via MMP2 responsiveness. Additionally, REMAIN possessed the advantages of the natural RBC membrane, including extended circulation time, lower toxicity, better biocompatibility, and immune escape. Moreover, in vitro and in vivo results demonstrated that REMAIN effectively induced apoptosis of lung cancer cells and inhibited LUAD development and progression by targeting ADAM9. Conclusion The novel style of stealth and MMP2-activated biomimetic nanoparticles show great potential in miRNA delivery. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01651-4.
Collapse
Affiliation(s)
- Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiyu Cen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jionghua Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.,Department of Cardiovascular Disease, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Aiping Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenyan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Siran Wang
- Department of Preventive Dentistry, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, 510182, Guangzhou, China
| | - Zhijun Chen
- Department of Medical Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Lin Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiqi Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xin Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Lingmin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
27
|
Tan Y, Li Y, Zhu H, Wu X, Mei K, Li P, Yang Q, Shi Z. miR-187/PDLIM1 Gets Involved in Gastric Cancer Progression and Cisplatin Sensitivity of Cisplatin by Mediating the Hippo-YAP Signaling Pathway. Journal of Oncology 2022; 2022:1-15. [PMID: 36164345 PMCID: PMC9509220 DOI: 10.1155/2022/5456016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies in the digestive system across the world. The function and mechanism of PDLIM1, a cancer-suppressing gene, in gastric cancer progression remain unclear. This study is aimed at investigating the expression features and function of PDLIM1 in GC. RT-qPCR and western blot were used to compare the profiles of PDLIM1 and miR-187 between GC and normal tissues. The cell models of PDLIM1 overexpression and low expression were established in gastric cancer cell lines MKN45 and AGS. CCK8 and BrdU assays measured cell proliferation. Flow cytometry monitored cell apoptosis. Transwell analyzed cell invasion and migration. The influence of miR-187 overexpression on gastric cancer development was assessed. We predicted the targeted correlation between miR-187 and PDLIM1 through bioinformatics, which was corroborated via dual luciferase activity assay and RIP. Meanwhile, the cell model of PDLIM1 overexpression was built in AGS cells transfected with miR-187 mimics. A rescue experiment was conducted to assess the impact of PDLIM1 overexpression on the procancer function of miR-187. As a result, in contrast with normal paracancer tissues, PDLIM1 was substantially downregulated in GC tissues. Moreover, PDLIM1 overexpression considerably dampened proliferation, invasion, and migration in GC cells, boosted the cell apoptosis, and bolstered their sensitivity to cisplatin. PDLIM1 knockdown or miR-187 overexpression dramatically fostered GC cell proliferation, invasion, and migration and repressed cell apoptosis. Mechanism studies demonstrated that PDLIM1 vigorously restrained the profiles of the Hippo-YAP signaling pathway and the downstream target genes. miR-187 targeted PDLIM1, while miR-187 overexpression cramped PDLIM1 expression. The rescue experiment suggested that PDLIM1 overexpression weakened the procancer function of miR-187 in GC cells. In conclusion, our study demonstrated that PDLIM1 presented a low expression in GC tissues, while miR-187/PDLIM1 participated in GC development and cisplatin sensitivity by mediating the Hippo-YAP signaling pathway.
Collapse
|
28
|
Zhang Y, Li L, Tu Y, Feng Z, Li Z, Cao Y, Li Y. A DCS-related lncRNA signature predicts the prognosis and chemotherapeutic response of patients with gastric cancer. Biosci Rep 2022:BSR20220989. [PMID: 35993308 DOI: 10.1042/BSR20220989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
The combination of docetaxel, cisplatin, and S-1 (DCS) is a common chemotherapy regimen for patients with gastric cancer (GC). However, studies on long noncoding RNAs (lncRNAs) associated with the chemotherapeutic response to and prognosis after DCS remain lacking. The aim of the present study was to identify DCS mRNAs-lncRNAs associated with chemotherapy response and prognosis in GC patients. In the present study, we identified 548 lncRNAs associated with these 16 mRNAs in the TCGA and GSE31811 datasets. Eleven lncRNAs were used to construct a prognostic signature by least absolute shrinkage and selection operator (LASSO) regression. A model including the 11 lncRNAs (LINC02532, AC007277.1, AC005324.4, AL512506.1, AC068790.7, AC022509.2, AC113139.1, LINC00106, AC005165.1, MIR100HG, and UBE2R2-AS1) associated with the prognosis of GC was constructed. The signature was validated in the TCGA database, model comparison, and qRT-PCR experiments. The results showed that the risk signature was a more effective prognostic factor for GC patients. Furthermore, the results showed that this model can well predicting chemotherapy drug response and immune infiltration of GC patients. In addition, our experimental results indicated that lower expression levels of LINC00106 and UBE2R2-AS1 predicted worse drug resistance in AGS/DDP cells. The experimental results agreed with the predictions. Furthermore, knockdown of LINC00106 or UBE2R2-AS1 can significantly enhanced the proliferation and migration of GC AGS cells in vitro. In conclusion, a novel DCS therapy-related lncRNA signature may become a new strategy to predict chemotherapy response and prognosis in GC patients. LINC00106 and UBE2R2-AS1 may exhibit a tumor suppressive function in GC.
Collapse
|
29
|
Cheng Z, Guo Y, Sun J, Zheng L. Four-copy number alteration (CNA)-related lncRNA prognostic signature for liver cancer. Sci Rep 2022; 12:14261. [PMID: 35995822 PMCID: PMC9395537 DOI: 10.1038/s41598-022-17927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022] Open
Abstract
The objective of this study was to identify CNA-related lncRNAs that can better evaluate the prognosis of patients with liver cancer. Prognostic molecular subtypes were identified, followed by tumor mutation and differential expression analyses. Genomic copy number anomalies and their association with lncRNAs were also evaluated. A risk model was built based on lncRNAs, as well as a nomogram, and the differences in the tumor immune microenvironment and drug sensitivity between the High_ and Low_risk groups were compared. Weighted gene co-expression network analysis was used to identify modules with significant enrichment in prognostic-related lncRNAs. In total, two subtypes were identified, TP53 and CTNNB1 were common high-frequency mutated genes in the two subtypes. A total of 8,372 differentially expressed (DE) mRNAs and 798 DElncRNAs were identified between cluster1 and cluster2. In addition, a four-lncRNA signature was constructed, and statistically significant differences between the Low_ and High_risk groups were found in terms of CD8 T cells, resting memory CD4 T cells, etc. Enrichment analysis showed that prognostic-related lncRNAs were involved in the cell cycle, p53 signaling pathway, non-alcoholic fatty liver disease, etc. A prognostic prediction signature, based on four-CNA-related lncRNAs, could contribute to a more accurate prognosis of patients with liver cancer.
Collapse
Affiliation(s)
- Zhenyun Cheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian She East Road, Zhengzhou, Henan, People's Republic of China, 450052.,Key Clinical Laboratory of Henan Province, NO.1 Jian She East Road, Zhengzhou, Henan, People's Republic of China, 450052
| | - Yan Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian She East Road, Zhengzhou, Henan, People's Republic of China, 450052.,Key Clinical Laboratory of Henan Province, NO.1 Jian She East Road, Zhengzhou, Henan, People's Republic of China, 450052
| | - Jingjing Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian She East Road, Zhengzhou, Henan, People's Republic of China, 450052.,Key Clinical Laboratory of Henan Province, NO.1 Jian She East Road, Zhengzhou, Henan, People's Republic of China, 450052
| | - Lei Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian She East Road, Zhengzhou, Henan, People's Republic of China, 450052. .,Key Clinical Laboratory of Henan Province, NO.1 Jian She East Road, Zhengzhou, Henan, People's Republic of China, 450052.
| |
Collapse
|
30
|
Zamani M, Foroughmand AM, Hajjari MR, Bakhshinejad B, Johnson R, Galehdari H. CASC11 and PVT1 spliced transcripts play an oncogenic role in colorectal carcinogenesis. Front Oncol 2022; 12:954634. [PMID: 36052265 PMCID: PMC9424822 DOI: 10.3389/fonc.2022.954634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is fundamentally a genetic disorder that alters cellular information flow toward aberrant growth. The coding part accounts for less than 2% of the human genome, and it has become apparent that aberrations within the noncoding genome drive important cancer phenotypes. The numerous carcinogenesis-related genomic variations in the 8q24 region include single nucleotide variations (SNVs), copy number variations (CNVs), and viral integrations occur in the neighboring areas of the MYC locus. It seems that MYC is not the only target of these alterations. The MYC-proximal mutations may act via regulatory noncoding RNAs (ncRNAs). In this study, gene expression analyses indicated that the expression of some PVT1 spliced linear transcripts, CircPVT1, CASC11, and MYC is increased in colorectal cancer (CRC). Moreover, the expression of these genes is associated with some clinicopathological characteristics of CRC. Also, in vitro studies in CRC cell lines demonstrated that CASC11 is mostly detected in the nucleus, and different transcripts of PVT1 have different preferences for nuclear and cytoplasmic parts. Furthermore, perturbation of PVT1 expression and concomitant perturbation in PVT1 and CASC11 expression caused MYC overexpression. It seems that transcription of MYC is under regulatory control at the transcriptional level, i.e., initiation and elongation of transcription by its neighboring genes. Altogether, the current data provide evidence for the notion that these noncoding transcripts can significantly participate in the MYC regulation network and in the carcinogenesis of colorectal cells.
Collapse
Affiliation(s)
- Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Mohammad-Reza Hajjari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- *Correspondence: Hamid Galehdari,
| |
Collapse
|
31
|
Zhang H, Liu X, Liu Y, Liu J, Gong X, Li G, Tang M. Crosstalk between regulatory non-coding RNAs and oxidative stress in Parkinson’s disease. Front Aging Neurosci 2022; 14:975248. [PMID: 36016854 PMCID: PMC9396353 DOI: 10.3389/fnagi.2022.975248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disease after Alzheimer’s disease, which imposes an ever-increasing burden on society. Many studies have indicated that oxidative stress may play an important role in Parkinson’s disease through multiple processes related to dysfunction or loss of neurons. Besides, several subtypes of non-coding RNAs are found to be involved in this neurodegenerative disorder. However, the interplay between oxidative stress and regulatory non-coding RNAs in Parkinson’s disease remains to be clarified. In this article, we comprehensively survey and overview the role of regulatory ncRNAs in combination with oxidative stress in Parkinson’s disease. The interaction between them is also summarized. We aim to provide readers with a relatively novel insight into the pathogenesis of Parkinson’s disease, which would contribute to the development of pre-clinical diagnosis and treatment.
Collapse
|