1
|
Mohammadi A, Torres-Cuenca T, Mirza-Aghazadeh-Attari M, Faeghi F, Acharya UR, Abbasian Ardakani A. Deep Radiomics Features of Median Nerves for Automated Diagnosis of Carpal Tunnel Syndrome With Ultrasound Images: A Multi-Center Study. J Ultrasound Med 2023; 42:2257-2268. [PMID: 37159483 DOI: 10.1002/jum.16244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/18/2023] [Accepted: 04/16/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVES Ultrasound is widely used in diagnosing carpal tunnel syndrome (CTS). However, the limitations of ultrasound in CTS detection are the lack of objective measures in the detection of nerve abnormality and the operator-dependent nature of ultrasound imaging. Therefore, in this study, we developed and proposed externally validated artificial intelligence (AI) models based on deep-radiomics features. METHODS We have used 416 median nerves from 2 countries (Iran and Colombia) for the development (112 entrapped and 112 normal nerves from Iran) and validation (26 entrapped and 26 normal nerves from Iran, and 70 entrapped and 70 normal nerves from Columbia) of our models. Ultrasound images were fed to the SqueezNet architecture to extract deep-radiomics features. Then a ReliefF method was used to select the clinically significant features. The selected deep-radiomics features were fed to 9 common machine-learning algorithms to choose the best-performing classifier. The 2 best-performing AI models were then externally validated. RESULTS Our developed model achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.910 (88.46% sensitivity, 88.46% specificity) and 0.908 (84.62% sensitivity, 88.46% specificity) with support vector machine and stochastic gradient descent (SGD), respectively using the internal validation dataset. Furthermore, both models consistently performed well in the external validation dataset, and achieved an AUC of 0.890 (85.71% sensitivity, 82.86% specificity) and 0.890 (84.29% sensitivity and 82.86% specificity), with SVM and SGD models, respectively. CONCLUSION Our proposed AI models fed with deep-radiomics features performed consistently with internal and external datasets. This justifies that our proposed system can be employed for clinical use in hospitals and polyclinics.
Collapse
Affiliation(s)
- Afshin Mohammadi
- Department of Radiology, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran
| | - Thomas Torres-Cuenca
- Department of Physical Medicine and Rehabilitation, National University of Colombia, Bogotá, Colombia
| | - Mohammad Mirza-Aghazadeh-Attari
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fariborz Faeghi
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Queensland, Australia
- Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Ali Abbasian Ardakani
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Dhar A, Gupta SL, Saini P, Sinha K, Khandelwal A, Tyagi R, Singh A, Sharma P, Jaiswal RK. Nanotechnology-based theranostic and prophylactic approaches against SARS-CoV-2. Immunol Res 2023:10.1007/s12026-023-09416-x. [PMID: 37682455 DOI: 10.1007/s12026-023-09416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
SARS-CoV-2 (COVID-19) pandemic has been an unpredicted burden on global healthcare system by infecting over 700 million individuals, with approximately 6 million deaths worldwide. COVID-19 significantly impacted all sectors, but it very adversely affected the healthcare system. These effects were much more evident in the resource limited part of the world. Individuals with acute conditions were also severely impacted. Although classical COVID-19 diagnostics such as RT-PCR and rapid antibody testing have played a crucial role in reducing the spread of infection, these diagnostic techniques are associated with certain limitations. For instance, drawback of RT-PCR diagnostics is that due to degradation of viral RNA during shipping, it can give false negative results. Also, rapid antibody testing majorly depends on the phase of infection and cannot be performed on immune compromised individuals. These limitations in current diagnostic tools require the development of nanodiagnostic tools for early detection of COVID-19 infection. Therefore, the SARS-CoV-2 outbreak has necessitated the development of specific, responsive, accurate, rapid, low-cost, and simple-to-use diagnostic tools at point of care. In recent years, early detection has been a challenge for several health diseases that require prompt attention and treatment. Disease identification at an early stage, increased imaging of inner health issues, and ease of diagnostic processes have all been established using a new discipline of laboratory medicine called nanodiagnostics, even before symptoms have appeared. Nanodiagnostics refers to the application of nanoparticles (material with size equal to or less than 100 nm) for medical diagnostic purposes. The special property of nanomaterials compared to their macroscopic counterparts is a lesser signal loss and an enhanced electromagnetic field. Nanosize of the detection material also enhances its sensitivity and increases the signal to noise ratio. Microchips, nanorobots, biosensors, nanoidentification of single-celled structures, and microelectromechanical systems are some of the most modern nanodiagnostics technologies now in development. Here, we have highlighted the important roles of nanotechnology in healthcare sector, with a detailed focus on the management of the COVID-19 pandemic. We outline the different types of nanotechnology-based diagnostic devices for SARS-CoV-2 and the possible applications of nanomaterials in COVID-19 treatment. We also discuss the utility of nanomaterials in formulating preventive strategies against SARS-CoV-2 including their use in manufacture of protective equipment, formulation of vaccines, and strategies for directly hindering viral infection. We further discuss the factors hindering the large-scale accessibility of nanotechnology-based healthcare applications and suggestions for overcoming them.
Collapse
Affiliation(s)
- Atika Dhar
- National Institute of Immunology, New Delhi, India, 110067
| | | | - Pratima Saini
- National Institute of Immunology, New Delhi, India, 110067
| | - Kirti Sinha
- Department of Zoology, Patna Science College, Patna University, Patna, Bihar, India
| | | | - Rohit Tyagi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alka Singh
- Department of Chemistry, Feroze Gandhi College, Raebareli, U.P, India, 229001
| | - Priyanka Sharma
- Department of Zoology, Patna Science College, Patna University, Patna, Bihar, India.
| | - Rishi Kumar Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA.
| |
Collapse
|
3
|
Yadav SK, Verma D, Yadav U, Kalkal A, Priyadarshini N, Kumar A, Mahato K. Point-of-Care Devices for Viral Detection: COVID-19 Pandemic and Beyond. Micromachines (Basel) 2023; 14:1744. [PMID: 37763907 PMCID: PMC10535693 DOI: 10.3390/mi14091744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
The pandemic of COVID-19 and its widespread transmission have made us realize the importance of early, quick diagnostic tests for facilitating effective cure and management. The primary obstacles encountered were accurately distinguishing COVID-19 from other illnesses including the flu, common cold, etc. While the polymerase chain reaction technique is a robust technique for the determination of SARS-CoV-2 in patients of COVID-19, there arises a high demand for affordable, quick, user-friendly, and precise point-of-care (POC) diagnostic in therapeutic settings. The necessity for available tests with rapid outcomes spurred the advancement of POC tests that are characterized by speed, automation, and high precision and accuracy. Paper-based POC devices have gained increasing interest in recent years because of rapid, low-cost detection without requiring external instruments. At present, microfluidic paper-based analysis devices have garnered public attention and accelerated the development of such POCT for efficient multistep assays. In the current review, our focus will be on the fabrication of detection modules for SARS-CoV-2. Here, we have included a discussion on various strategies for the detection of viral moieties. The compilation of these strategies would offer comprehensive insight into the detection of the causative agent preparedness for future pandemics. We also provide a descriptive outline for paper-based diagnostic platforms, involving the determination mechanisms, as well as a commercial kit for COVID-19 as well as their outlook.
Collapse
Affiliation(s)
- Sumit K Yadav
- Department of Biotechnology, Vinoba Bhave University, Hazaribagh 825301, Jharkhand, India
| | - Damini Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ujala Yadav
- Department of Life Sciences, Central University of Jharkhand, Ranchi 835205, Jharkhand, India
| | - Ashish Kalkal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Nivedita Priyadarshini
- Department of Zoology, DAV PG College Siwan, Jai Prakash University, Chhapra 841226, Bihar, India
| | - Ashutosh Kumar
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46637, USA
| | - Kuldeep Mahato
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
4
|
Haq SU, Bazai SU, Fatima A, Marjan S, Yang J, Por LY, Anjum M, Shahab S, Ku CS. Reseek-Arrhythmia: Empirical Evaluation of ResNet Architecture for Detection of Arrhythmia. Diagnostics (Basel) 2023; 13:2867. [PMID: 37761234 PMCID: PMC10529068 DOI: 10.3390/diagnostics13182867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Arrhythmia is a cardiac condition characterized by an irregular heart rhythm that hinders the proper circulation of blood, posing a severe risk to individuals' lives. Globally, arrhythmias are recognized as a significant health concern, accounting for nearly 12 percent of all deaths. As a result, there has been a growing focus on utilizing artificial intelligence for the detection and classification of abnormal heartbeats. In recent years, self-operated heartbeat detection research has gained popularity due to its cost-effectiveness and potential for expediting therapy for individuals at risk of arrhythmias. However, building an efficient automatic heartbeat monitoring approach for arrhythmia identification and classification comes with several significant challenges. These challenges include addressing issues related to data quality, determining the range for heart rate segmentation, managing data imbalance difficulties, handling intra- and inter-patient variations, distinguishing supraventricular irregular heartbeats from regular heartbeats, and ensuring model interpretability. In this study, we propose the Reseek-Arrhythmia model, which leverages deep learning techniques to automatically detect and classify heart arrhythmia diseases. The model combines different convolutional blocks and identity blocks, along with essential components such as convolution layers, batch normalization layers, and activation layers. To train and evaluate the model, we utilized the MIT-BIH and PTB datasets. Remarkably, the proposed model achieves outstanding performance with an accuracy of 99.35% and 93.50% and an acceptable loss of 0.688 and 0.2564, respectively.
Collapse
Affiliation(s)
- Shams Ul Haq
- Department of Computer Engineering, Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta 87300, Pakistan; (S.U.H.); (A.F.)
| | - Sibghat Ullah Bazai
- Department of Computer Engineering, Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta 87300, Pakistan; (S.U.H.); (A.F.)
| | - Ali Fatima
- Department of Computer Engineering, Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta 87300, Pakistan; (S.U.H.); (A.F.)
| | - Shah Marjan
- Department of Software Engineering, Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta 87300, Pakistan
| | - Jing Yang
- Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (J.Y.); (L.Y.P.)
| | - Lip Yee Por
- Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (J.Y.); (L.Y.P.)
| | - Mohd Anjum
- Department of Computer Engineering, Aligarh Muslim University, Aligarh 202002, India;
| | - Sana Shahab
- Department of Business Administration, College of Business Administration, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Chin Soon Ku
- Department of Computer Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| |
Collapse
|
5
|
Ghassemi N, Shoeibi A, Khodatars M, Heras J, Rahimi A, Zare A, Zhang YD, Pachori RB, Gorriz JM. Automatic diagnosis of COVID-19 from CT images using CycleGAN and transfer learning. Appl Soft Comput 2023; 144:110511. [PMID: 37346824 PMCID: PMC10263244 DOI: 10.1016/j.asoc.2023.110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/23/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
The outbreak of the corona virus disease (COVID-19) has changed the lives of most people on Earth. Given the high prevalence of this disease, its correct diagnosis in order to quarantine patients is of the utmost importance in the steps of fighting this pandemic. Among the various modalities used for diagnosis, medical imaging, especially computed tomography (CT) imaging, has been the focus of many previous studies due to its accuracy and availability. In addition, automation of diagnostic methods can be of great help to physicians. In this paper, a method based on pre-trained deep neural networks is presented, which, by taking advantage of a cyclic generative adversarial net (CycleGAN) model for data augmentation, has reached state-of-the-art performance for the task at hand, i.e., 99.60% accuracy. Also, in order to evaluate the method, a dataset containing 3163 images from 189 patients has been collected and labeled by physicians. Unlike prior datasets, normal data have been collected from people suspected of having COVID-19 disease and not from data from other diseases, and this database is made available publicly. Moreover, the method's reliability is further evaluated by calibration metrics, and its decision is interpreted by Grad-CAM also to find suspicious regions as another output of the method and make its decisions trustworthy and explainable.
Collapse
Affiliation(s)
- Navid Ghassemi
- Faculty of Electrical Engineering, FPGA Lab, K. N. Toosi University of Technology, Tehran, Iran
- Computer Engineering department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Afshin Shoeibi
- Faculty of Electrical Engineering, FPGA Lab, K. N. Toosi University of Technology, Tehran, Iran
- Computer Engineering department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jonathan Heras
- Department of Mathematics and Computer Science, University of La Rioja, La Rioja, Spain
| | - Alireza Rahimi
- Computer Engineering department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Assef Zare
- Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
| | - Yu-Dong Zhang
- School of Informatics, University of Leicester, Leicester, LE1 7RH, UK
| | - Ram Bilas Pachori
- Department of Electrical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - J Manuel Gorriz
- Department of Signal Theory, Networking and Communications, Universidad de Granada, Spain
- Department of Psychiatry, University of Cambridge, UK
| |
Collapse
|
6
|
Lyu S, Zhang M, Zhang B, Yu J, Zhu J, Gao L, Yang L, Zhang Y. Application of ultrasound images-based radiomics in carpal tunnel syndrome: Without measuring the median nerve cross-sectional area. J Clin Ultrasound 2023; 51:1198-1204. [PMID: 37313858 DOI: 10.1002/jcu.23505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
PURPOSE By constructing a prediction model of carpal tunnel syndrome (CTS) based on ultrasound images, it can automatically and accurately diagnose CTS without measuring the median nerve cross-sectional area (CSA). METHODS A total of 268 wrists ultrasound images of 101 patients diagnosed with CTS and 76 controls in Ningbo NO.2 Hospital from December 2021 to August 2022 were retrospectively analyzed. The radiomics method was used to construct the Logistic model through the steps of feature extraction, feature screening, reduction, and modeling. The area under the receiver operating characteristic curve was calculated to evaluate the performance of the model, and the diagnostic efficiency of the radiomics model was compared with two radiologists with different experience. RESULTS The 134 wrists in the CTS group included 65 mild CTS, 42 moderate CTS, and 17 severe CTS. In the CTS group, 28 wrists median nerve CSA were less than the cut-off value, 17 wrists were missed by Dr. A, 26 wrists by Dr. B, and only 6 wrists were missed by radiomics model. A total of 335 radiomics features were extracted from each MN, of which 10 features were significantly different between compressed and normal nerves, and were used to construct the model. The area under curve (AUC) value, sensitivity, specificity, and accuracy of the radiomics model in the training set and testing set were 0.939, 86.17%, 87.10%, 86.63%, and 0.891, 87.50%, 80.49%, and 83.95%, respectively. The AUC value, sensitivity, specificity, and accuracy of the two doctors in the diagnosis of CTS were 0.746, 75.37%, 73.88%, 74.63% and 0.679, 68.66%, 67.16%, and 67.91%, respectively. The radiomics model was superior to the two-radiologist diagnosis, especially when there was no significant change in CSA. CONCLUSION Radiomics based on ultrasound images can quantitatively analyze the subtle changes in the median nerve, and can automatically and accurately diagnose CTS without measuring CSA, especially when there was no significant change in CSA, which was better than radiologists.
Collapse
Affiliation(s)
- Shuyi Lyu
- Department of Interventional Therapy, Ningbo NO.2 Hospital, Ningbo, People's Republic of China
- Department of Ultrasound, Zhenhai Hospital of Traditional Chinese Medicine, Ningbo, People's Republic of China
| | - Meiwu Zhang
- Department of Interventional Therapy, Ningbo NO.2 Hospital, Ningbo, People's Republic of China
| | - Baisong Zhang
- Department of Interventional Therapy, Ningbo NO.2 Hospital, Ningbo, People's Republic of China
| | - Jianjun Yu
- Department of Neuroelectrophysiology, Ningbo NO.2 Hospital, Ningbo, People's Republic of China
| | - Jiazhen Zhu
- Department of Multi-Disciplinary Diagnosis and Treatment, Ningbo NO.2 Hospital, Ningbo, People's Republic of China
| | - Libo Gao
- Department of Interventional Therapy, Ningbo NO.2 Hospital, Ningbo, People's Republic of China
| | - Liu Yang
- Department of Interventional Therapy, Ningbo NO.2 Hospital, Ningbo, People's Republic of China
| | - Yan Zhang
- Department of Interventional Therapy, Ningbo NO.2 Hospital, Ningbo, People's Republic of China
- Department of Ultrasound, Zhenhai Hospital of Traditional Chinese Medicine, Ningbo, People's Republic of China
| |
Collapse
|
7
|
Zhang J, Liu Y, Lei B, Sun D, Wang S, Zhou C, Ding X, Chen Y, Chen F, Wang T, Huang R, Chen K. GIONet: Global information optimized network for multi-center COVID-19 diagnosis via COVID-GAN and domain adversarial strategy. Comput Biol Med 2023; 163:107113. [PMID: 37307643 PMCID: PMC10242645 DOI: 10.1016/j.compbiomed.2023.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/14/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
The outbreak of coronavirus disease (COVID-19) in 2019 has highlighted the need for automatic diagnosis of the disease, which can develop rapidly into a severe condition. Nevertheless, distinguishing between COVID-19 pneumonia and community-acquired pneumonia (CAP) through computed tomography scans can be challenging due to their similar characteristics. The existing methods often perform poorly in the 3-class classification task of healthy, CAP, and COVID-19 pneumonia, and they have poor ability to handle the heterogeneity of multi-centers data. To address these challenges, we design a COVID-19 classification model using global information optimized network (GIONet) and cross-centers domain adversarial learning strategy. Our approach includes proposing a 3D convolutional neural network with graph enhanced aggregation unit and multi-scale self-attention fusion unit to improve the global feature extraction capability. We also verified that domain adversarial training can effectively reduce feature distance between different centers to address the heterogeneity of multi-center data, and used specialized generative adversarial networks to balance data distribution and improve diagnostic performance. Our experiments demonstrate satisfying diagnosis results, with a mixed dataset accuracy of 99.17% and cross-centers task accuracies of 86.73% and 89.61%.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China
| | - Yiyao Liu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Baiying Lei
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Dandan Sun
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China
| | - Siqi Wang
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China
| | - Changning Zhou
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China
| | - Xing Ding
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China
| | - Yang Chen
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China
| | - Fen Chen
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China
| | - Tianfu Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Ruidong Huang
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China
| | - Kuntao Chen
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China.
| |
Collapse
|
8
|
Hou Y, Navarro-Cía M. A computationally-inexpensive strategy in CT image data augmentation for robust deep learning classification in the early stages of an outbreak. Biomed Phys Eng Express 2023; 9:055003. [PMID: 37413977 DOI: 10.1088/2057-1976/ace4cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has spread globally for over three years, and chest computed tomography (CT) has been used to diagnose COVID-19 and identify lung damage in COVID-19 patients. Given its widespread, CT will remain a common diagnostic tool in future pandemics, but its effectiveness at the beginning of any pandemic will depend strongly on the ability to classify CT scans quickly and correctly when only limited resources are available, as it will happen inevitably again in future pandemics. Here, we resort into the transfer learning procedure and limited hyperparameters to use as few computing resources as possible for COVID-19 CT images classification. Advanced Normalisation Tools (ANTs) are used to synthesise images as augmented/independent data and trained on EfficientNet to investigate the effect of synthetic images. On the COVID-CT dataset, classification accuracy increases from 91.15% to 95.50% and Area Under the Receiver Operating Characteristic (AUC) from 96.40% to 98.54%. We also customise a small dataset to simulate data collected in the early stages of the outbreak and report an improvement in accuracy from 85.95% to 94.32% and AUC from 93.21% to 98.61%. This study provides a feasible Low-Threshold, Easy-To-Deploy and Ready-To-Use solution with a relatively low computational cost for medical image classification at an early stage of an outbreak in which scarce data are available and traditional data augmentation may fail. Hence, it would be most suitable for low-resource settings.
Collapse
Affiliation(s)
- Yikun Hou
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Miguel Navarro-Cía
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
9
|
Kaba Ş, Haci H, Isin A, Ilhan A, Conkbayir C. The Application of Deep Learning for the Segmentation and Classification of Coronary Arteries. Diagnostics (Basel) 2023; 13:2274. [PMID: 37443668 DOI: 10.3390/diagnostics13132274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
In recent years, the prevalence of coronary artery disease (CAD) has become one of the leading causes of death around the world. Accurate stenosis detection of coronary arteries is crucial for timely treatment. Cardiologists use visual estimations when reading coronary angiography images to diagnose stenosis. As a result, they face various challenges which include high workloads, long processing times and human error. Computer-aided segmentation and classification of coronary arteries, as to whether stenosis is present or not, significantly reduces the workload of cardiologists and human errors caused by manual processes. Moreover, deep learning techniques have been shown to aid medical experts in diagnosing diseases using biomedical imaging. Thus, this study proposes the use of automatic segmentation of coronary arteries using U-Net, ResUNet-a, UNet++, models and classification using DenseNet201, EfficientNet-B0, Mobilenet-v2, ResNet101 and Xception models. In the case of segmentation, the comparative analysis of the three models has shown that U-Net achieved the highest score with a 0.8467 Dice score and 0.7454 Jaccard Index in comparison with UNet++ and ResUnet-a. Evaluation of the classification model's performances has shown that DenseNet201 performed better than other pretrained models with 0.9000 accuracy, 0.9833 specificity, 0.9556 PPV, 0.7746 Cohen's Kappa and 0.9694 Area Under the Curve (AUC).
Collapse
Affiliation(s)
- Şerife Kaba
- Department of Biomedical Engineering, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
| | - Huseyin Haci
- Department of Electrical-Electronic Engineering, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
| | - Ali Isin
- Department of Biomedical Engineering, Cyprus International University, TRNC Mersin 10, Nicosia 99138, Turkey
| | - Ahmet Ilhan
- Department of Computer Engineering, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
| | - Cenk Conkbayir
- Department of Cardiology, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
| |
Collapse
|
10
|
Lyu S, Zhang Y, Zhang M, Zhu J, Yu J, Zhang B, Gao L, Wei H. The Application of Ultrasound Image-Based Radiomics in the Diagnosis of Mild Carpal Tunnel Syndrome. J Ultrasound Med 2023; 42:1499-1508. [PMID: 36565451 DOI: 10.1002/jum.16160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVES The ultrasound diagnosis of mild carpal tunnel syndrome (CTS) is challenging. Radiomics can identify image information that the human eye cannot recognize. The purpose of our study was to explore the value of ultrasound image-based radiomics in the diagnosis of mild CTS. METHODS This retrospective study included 126 wrists in the CTS group and 88 wrists in the control group. The radiomics features were extracted from the cross-sectional ultrasound images at the entrance of median nerve carpal tunnel, and the modeling was based on robust features. Two radiologists with different experiences diagnosed CTS according to two guidelines. The area under receiver (AUC) operating characteristic curve, sensitivity, specificity, and accuracy were used to evaluate the diagnostic efficacy of the two radiologists and the radiomics model. RESULTS According to guideline one, the AUC values of the two radiologists for CTS were 0.72 and 0.67, respectively; according to guideline two, the AUC were 0.73 and 0.68, respectively. The radiomics model achieved the best accuracy when 16 important robust features were selected. The AUC values of training set and test set were 0.92 and 0.90, respectively. CONCLUSIONS The radiomics label based on ultrasound images had excellent diagnostic efficacy for mild CTS. It is expected to help radiologists to identify early CTS patients as soon as possible, especially for inexperienced doctors.
Collapse
Affiliation(s)
- Shuyi Lyu
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Zhejiang, China
- Ningbo Clinical Research Center for Medical Imaging, Zhejiang, China
- Provincial and Municipal Co-construction Key Discipline for Medical Imaging, Zhejiang, China
| | - Yan Zhang
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Zhejiang, China
- Ningbo Clinical Research Center for Medical Imaging, Zhejiang, China
- Provincial and Municipal Co-construction Key Discipline for Medical Imaging, Zhejiang, China
| | - Meiwu Zhang
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Zhejiang, China
- Ningbo Clinical Research Center for Medical Imaging, Zhejiang, China
- Provincial and Municipal Co-construction Key Discipline for Medical Imaging, Zhejiang, China
| | - Jiazhen Zhu
- Ningbo Clinical Research Center for Medical Imaging, Zhejiang, China
- Provincial and Municipal Co-construction Key Discipline for Medical Imaging, Zhejiang, China
- Multi-disciplinary Diagnosis and Treatment Department, Ningbo No. 2 Hospital, Zhejiang, China
| | - Jianjun Yu
- Department of Neuroelectrophysiology, Ningbo No. 2 Hospital, Zhejiang, China
| | - Baisong Zhang
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Zhejiang, China
- Ningbo Clinical Research Center for Medical Imaging, Zhejiang, China
- Provincial and Municipal Co-construction Key Discipline for Medical Imaging, Zhejiang, China
| | - Libo Gao
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Zhejiang, China
- Ningbo Clinical Research Center for Medical Imaging, Zhejiang, China
- Provincial and Municipal Co-construction Key Discipline for Medical Imaging, Zhejiang, China
| | - Huilin Wei
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Zhejiang, China
- Ningbo Clinical Research Center for Medical Imaging, Zhejiang, China
- Provincial and Municipal Co-construction Key Discipline for Medical Imaging, Zhejiang, China
| |
Collapse
|
11
|
Dou B, Zhu Z, Merkurjev E, Ke L, Chen L, Jiang J, Zhu Y, Liu J, Zhang B, Wei GW. Machine Learning Methods for Small Data Challenges in Molecular Science. Chem Rev 2023. [PMID: 37384816 DOI: 10.1021/acs.chemrev.3c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Small data are often used in scientific and engineering research due to the presence of various constraints, such as time, cost, ethics, privacy, security, and technical limitations in data acquisition. However, big data have been the focus for the past decade, small data and their challenges have received little attention, even though they are technically more severe in machine learning (ML) and deep learning (DL) studies. Overall, the small data challenge is often compounded by issues, such as data diversity, imputation, noise, imbalance, and high-dimensionality. Fortunately, the current big data era is characterized by technological breakthroughs in ML, DL, and artificial intelligence (AI), which enable data-driven scientific discovery, and many advanced ML and DL technologies developed for big data have inadvertently provided solutions for small data problems. As a result, significant progress has been made in ML and DL for small data challenges in the past decade. In this review, we summarize and analyze several emerging potential solutions to small data challenges in molecular science, including chemical and biological sciences. We review both basic machine learning algorithms, such as linear regression, logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), kernel learning (KL), random forest (RF), and gradient boosting trees (GBT), and more advanced techniques, including artificial neural network (ANN), convolutional neural network (CNN), U-Net, graph neural network (GNN), Generative Adversarial Network (GAN), long short-term memory (LSTM), autoencoder, transformer, transfer learning, active learning, graph-based semi-supervised learning, combining deep learning with traditional machine learning, and physical model-based data augmentation. We also briefly discuss the latest advances in these methods. Finally, we conclude the survey with a discussion of promising trends in small data challenges in molecular science.
Collapse
Affiliation(s)
- Bozheng Dou
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Zailiang Zhu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Ekaterina Merkurjev
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lu Ke
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Long Chen
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Jian Jiang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yueying Zhu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Bengong Zhang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
12
|
Nouman Khan M, Wang Q, Idrees BS, Waheed R, Haq AU, Abrar M, Jamil Y. Evaluation of medicinal plants using laser-induced breakdown spectroscopy (LIBS) combined with chemometric techniques. Lasers Med Sci 2023; 38:149. [PMID: 37365431 DOI: 10.1007/s10103-023-03805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Medicinal plants play a vital role in herbal medical field and allopathic medicine field industry. Chemical and spectroscopic studies of Taraxacum officinale, Hyoscyamus niger, Ajuga bracteosa, Elaeagnus angustifolia, Camellia sinensis, and Berberis lyceum are conducted in this paper by using a 532-nm Nd:YAG laser in an open air environment. These medicinal plant's leaves, roots, seed, and flowers are used to treat a range of diseases by the locals. It is crucial to be able to distinguish between beneficial and detrimental metal elements in these plants. We demonstrated how various elements are categorized and how roots, leaves, seeds and flowers of same plants differ from each other on the basis of elemental analysis. Furthermore, for classification purpose, different classification models, partial least square discriminant analysis (PLS-DA), k-nearest neighbors (kNN), and principal component analysis (PCA) are used. We found silicon (Si), aluminum (Al), iron (Fe), copper (Cu), calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), manganese (Mn), phosphorous (P), and vanadium (V) in all of the medicinal plant samples with a molecular form of carbon and nitrogen band. We detected Ca, Mg, Si, and P as primary components in all of the plant samples, as well as V, Fe, Mn, Al, and Ti as essential medicinal metals, and additional trace elements like Si, Sr, and Al. The result's findings show that the PLS-DA classification model with single normal variate (SNV) preprocessing method is the most effective classification model for different types of plant samples. The average correct classification rate obtained for PLS-DA with SNV is 95%. Moreover, laser-induced breakdown spectroscopy (LIBS) was successfully employed to perform rapid, sensitive, and quantitative trace element analysis on medicinal herbs and plant samples.
Collapse
Affiliation(s)
- Muhammad Nouman Khan
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, China.
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Qianqian Wang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314033, China
| | - Bushra Sana Idrees
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Rijah Waheed
- Department of Physics, Hazara University, Mansehra, Pakistan
| | - Ajaz Ul Haq
- Department of Physics, Hazara University, Mansehra, Pakistan
| | - Muhammad Abrar
- Department of Physics, Hazara University, Mansehra, Pakistan
| | - Yasir Jamil
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
13
|
JavadiMoghaddam S. A novel framework based on deep learning for COVID-19 diagnosis from X-ray images. PeerJ Comput Sci 2023; 9:e1375. [PMID: 37346600 PMCID: PMC10280393 DOI: 10.7717/peerj-cs.1375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/10/2023] [Indexed: 06/23/2023]
Abstract
Background The coronavirus infection has endangered human health because of the high speed of the outbreak. A rapid and accurate diagnosis of the infection is essential to avoid further spread. Due to the cost of diagnostic kits and the availability of radiology equipment in most parts of the world, the COVID-19 detection method using X-ray images is still used in underprivileged countries. However, they are challenging due to being prone to human error, time-consuming, and demanding. The success of deep learning (DL) in automatic COVID-19 diagnosis systems has necessitated a detection system using these techniques. The most critical challenge in using deep learning techniques in diagnosing COVID-19 is accuracy because it plays an essential role in controlling the spread of the disease. Methods This article presents a new framework for detecting COVID-19 using X-ray images. The model uses a modified version of DenseNet-121 for the network layer, an image data loader to separate images in batches, a loss function to reduce the prediction error, and a weighted random sampler to balance the training phase. Finally, an optimizer changes the attributes of the neural networks. Results Extensive experiments using different types of pneumonia expresses satisfactory diagnosis performance with an accuracy of 99.81%. Conclusion This work aims to design a new deep neural network for highly accurate online recognition of medical images. The evaluation results show that the proposed framework can be considered an auxiliary device to help radiologists accurately confirm initial screening.
Collapse
|
14
|
Mathur G, Pandey A, Goyal S. A review on blockchain for DNA sequence: security issues, application in DNA classification, challenges and future trends. Multimed Tools Appl 2023:1-23. [PMID: 37362738 PMCID: PMC10209554 DOI: 10.1007/s11042-023-15857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/09/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023]
Abstract
In biological science, the study of DNA sequences is considered an important factor because it carries the genomic details that can be used by researchers and doctors for the early prediction of disease using DNA classification. The NCBI has the world's largest database of genetic sequences, but the security of this massive amount of data is currently the greatest issue. One of the options is to encrypt these genetic sequences using blockchain technology. As a result, this paper presents a survey on healthcare data breaches, the necessity for blockchain in healthcare, and the number of research studies done in this area. In addition, the report suggests DNA sequence classification for earlier disease identification and evaluates previous work in the field.
Collapse
Affiliation(s)
- Garima Mathur
- Department of Computer Science and Engineering, UIT, RGPV, Bhopal, India
| | - Anjana Pandey
- Department of Information Technology, UIT, RGPV, Bhopal, India
| | - Sachin Goyal
- Department of Information Technology, UIT, RGPV, Bhopal, India
| |
Collapse
|
15
|
Kaushik B, Chadha A, Sharma R. Performance Evaluation of Learning Models for the Prognosis of COVID-19. New Gener Comput 2023; 41:1-19. [PMID: 37362547 PMCID: PMC10206363 DOI: 10.1007/s00354-023-00220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/04/2023] [Indexed: 06/28/2023]
Abstract
COVID-19 has developed as a worldwide pandemic that needs ways to be detected. It is a communicable disease and is spreading widely. Deep learning and transfer learning methods have achieved promising results and performance for the detection of COVID-19. Therefore, a hybrid deep transfer learning technique has been proposed in this study to detect COVID-19 from chest X-ray images. The work done previously contains a very less number of COVID-19 X-ray images. However, the dataset taken in this work is balanced with a total of 28,384 X-ray images, having 14,192 images in the COVID-19 class and 14,192 images in the normal class. Experimental evaluations were conducted using a chest X-ray dataset to test the efficacy of the proposed hybrid technique. The results clearly reveal that the proposed hybrid technique attains better performance in comparison to the existing contemporary transfer learning and deep learning techniques.
Collapse
Affiliation(s)
- Baijnath Kaushik
- School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra, India
| | - Akshma Chadha
- School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra, India
| | - Reya Sharma
- School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra, India
| |
Collapse
|
16
|
Hassan A, Elhoseny M, Kayed M. A novel and accurate deep learning-based Covid-19 diagnostic model for heart patients. Signal Image Video Process 2023; 17:1-8. [PMID: 37362230 PMCID: PMC10197036 DOI: 10.1007/s11760-023-02561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 06/28/2023]
Abstract
Using radiographic changes of COVID-19 in the medical images, artificial intelligence techniques such as deep learning are used to extract some graphical features of COVID-19 and present a Covid-19 diagnostic tool. Differently from previous works that focus on using deep learning to analyze CT scans or X-ray images, this paper uses deep learning to scan electro diagram (ECG) images to diagnose Covid-19. Covid-19 patients with heart disease are the most people exposed to violent symptoms of Covid-19 and death. This shows that there is a special, unclear relation (until now) and parameters between covid-19 and heart disease. So, as previous works, using a general diagnostic model to detect covid-19 from all patients, based on the same rules, is not accurate as we prove later in the practical section of our paper because the model faces dispersion in the data during the training process. So, this paper aims to propose a novel model that focuses on diagnosing accurately Covid-19 for heart patients only to increase the accuracy and to reduce the waiting time of a heart patient to perform a covid-19 diagnosis. Also, we handle the only one existed dataset that contains ECGs of Covid-19 patients and produce a new version, with the help of a heart diseases expert, which consists of two classes: ECGs of heart patients with positive Covid-19 and ECGs of heart patients with negative Covid-19 cases. This dataset will help medical experts and data scientists to study the relation between Covid-19 and heart patients. We achieve overall accuracy, sensitivity and specificity 99.1%, 99% and 100%, respectively. Supplementary Information The online version contains supplementary material available at 10.1007/s11760-023-02561-8.
Collapse
Affiliation(s)
- Ahmed Hassan
- Faculty of Science, Beni-Suef University, Beni-Suef, 62511 Egypt
| | - Mohamed Elhoseny
- Faculty of Computers and Information, Mansoura University, Mansoura, 35516 Egypt
| | - Mohammed Kayed
- Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, 62511 Egypt
| |
Collapse
|
17
|
Lakshmi M, Das R. Classification of Monkeypox Images Using LIME-Enabled Investigation of Deep Convolutional Neural Network. Diagnostics (Basel) 2023; 13:diagnostics13091639. [PMID: 37175030 PMCID: PMC10178151 DOI: 10.3390/diagnostics13091639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 05/15/2023] Open
Abstract
In this research, we demonstrate a Deep Convolutional Neural Network-based classification model for the detection of monkeypox. Monkeypox can be difficult to diagnose clinically in its early stages since it resembles both chickenpox and measles in symptoms. The early diagnosis of monkeypox helps doctors cure it more quickly. Therefore, pre-trained models are frequently used in the diagnosis of monkeypox, because the manual analysis of a large number of images is labor-intensive and prone to inaccuracy. Therefore, finding the monkeypox virus requires an automated process. The large layer count of convolutional neural network (CNN) architectures enables them to successfully conceptualize the features on their own, thereby contributing to better performance in image classification. The scientific community has recently articulated significant attention in employing artificial intelligence (AI) to diagnose monkeypox from digital skin images due primarily to AI's success in COVID-19 identification. The VGG16, VGG19, ResNet50, ResNet101, DenseNet201, and AlexNet models were used in our proposed method to classify patients with monkeypox symptoms with other diseases of a similar kind (chickenpox, measles, and normal). The majority of images in our research are collected from publicly available datasets. This study suggests an adaptive k-means clustering image segmentation technique that delivers precise segmentation results with straightforward operation. Our preliminary computational findings reveal that the proposed model could accurately detect patients with monkeypox. The best overall accuracy achieved by ResNet101 is 94.25%, with an AUC of 98.59%. Additionally, we describe the categorization of our model utilizing feature extraction using Local Interpretable Model-Agnostic Explanations (LIME), which provides a more in-depth understanding of particular properties that distinguish the monkeypox virus.
Collapse
Affiliation(s)
- M Lakshmi
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raja Das
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
18
|
Dabbagh R, Jamal A, Bhuiyan Masud JH, Titi MA, Amer YS, Khayat A, Alhazmi TS, Hneiny L, Baothman FA, Alkubeyyer M, Khan SA, Temsah MH. Harnessing Machine Learning in Early COVID-19 Detection and Prognosis: A Comprehensive Systematic Review. Cureus 2023; 15:e38373. [PMID: 37265897 PMCID: PMC10230599 DOI: 10.7759/cureus.38373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/03/2023] Open
Abstract
During the early phase of the COVID-19 pandemic, reverse transcriptase-polymerase chain reaction (RT-PCR) testing faced limitations, prompting the exploration of machine learning (ML) alternatives for diagnosis and prognosis. Providing a comprehensive appraisal of such decision support systems and their use in COVID-19 management can aid the medical community in making informed decisions during the risk assessment of their patients, especially in low-resource settings. Therefore, the objective of this study was to systematically review the studies that predicted the diagnosis of COVID-19 or the severity of the disease using ML. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), we conducted a literature search of MEDLINE (OVID), Scopus, EMBASE, and IEEE Xplore from January 1 to June 31, 2020. The outcomes were COVID-19 diagnosis or prognostic measures such as death, need for mechanical ventilation, admission, and acute respiratory distress syndrome. We included peer-reviewed observational studies, clinical trials, research letters, case series, and reports. We extracted data about the study's country, setting, sample size, data source, dataset, diagnostic or prognostic outcomes, prediction measures, type of ML model, and measures of diagnostic accuracy. Bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO), with the number CRD42020197109. The final records included for data extraction were 66. Forty-three (64%) studies used secondary data. The majority of studies were from Chinese authors (30%). Most of the literature (79%) relied on chest imaging for prediction, while the remainder used various laboratory indicators, including hematological, biochemical, and immunological markers. Thirteen studies explored predicting COVID-19 severity, while the rest predicted diagnosis. Seventy percent of the articles used deep learning models, while 30% used traditional ML algorithms. Most studies reported high sensitivity, specificity, and accuracy for the ML models (exceeding 90%). The overall concern about the risk of bias was "unclear" in 56% of the studies. This was mainly due to concerns about selection bias. ML may help identify COVID-19 patients in the early phase of the pandemic, particularly in the context of chest imaging. Although these studies reflect that these ML models exhibit high accuracy, the novelty of these models and the biases in dataset selection make using them as a replacement for the clinicians' cognitive decision-making questionable. Continued research is needed to enhance the robustness and reliability of ML systems in COVID-19 diagnosis and prognosis.
Collapse
Affiliation(s)
- Rufaidah Dabbagh
- Family & Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | - Amr Jamal
- Family & Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
- Research Chair for Evidence-Based Health Care and Knowledge Translation, Family and Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | | | - Maher A Titi
- Quality Management Department, King Saud University Medical City, Riyadh, SAU
- Research Chair for Evidence-Based Health Care and Knowledge Translation, Family and Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | - Yasser S Amer
- Pediatrics, Quality Management Department, King Saud University Medical City, Riyadh, SAU
- Research Chair for Evidence-Based Health Care and Knowledge Translation, Family and Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | - Afnan Khayat
- Health Information Management Department, Prince Sultan Military College of Health Sciences, Al Dhahran, SAU
| | - Taha S Alhazmi
- Family & Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | - Layal Hneiny
- Medicine, Wegner Health Sciences Library, University of South Dakota, Vermillion, USA
| | - Fatmah A Baothman
- Department of Information Systems, King Abdulaziz University, Jeddah, SAU
| | | | - Samina A Khan
- School of Computer Sciences, Universiti Sains Malaysia, Penang, MYS
| | - Mohamad-Hani Temsah
- Pediatric Intensive Care Unit, Department of Pediatrics, King Saud University, Riyadh, SAU
| |
Collapse
|
19
|
Soundrapandiyan R, Naidu H, Karuppiah M, Maheswari M, Poonia RC. AI-based wavelet and stacked deep learning architecture for detecting coronavirus (COVID-19) from chest X-ray images. Comput Electr Eng 2023; 108:108711. [PMID: 37065503 PMCID: PMC10086108 DOI: 10.1016/j.compeleceng.2023.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
A novel coronavirus (COVID-19), belonging to a family of severe acute respiratory syndrome coronavirus 2 (SARs-CoV-2), was identified in Wuhan city, Hubei, China, in November 2019. The disease had already infected more than 681.529665 million people as of March 13, 2023. Hence, early detection and diagnosis of COVID-19 are essential. For this purpose, radiologists use medical images such as X-ray and computed tomography (CT) images for the diagnosis of COVID-19. It is very difficult for researchers to help radiologists to do automatic diagnoses by using traditional image processing methods. Therefore, a novel artificial intelligence (AI)-based deep learning model to detect COVID-19 from chest X-ray images is proposed. The proposed work uses a wavelet and stacked deep learning architecture (ResNet50, VGG19, Xception, and DarkNet19) named WavStaCovNet-19 to detect COVID-19 from chest X-ray images automatically. The proposed work has been tested on two publicly available datasets and achieved an accuracy of 94.24% and 96.10% on 4 classes and 3 classes, respectively. From the experimental results, we believe that the proposed work can surely be useful in the healthcare domain to detect COVID-19 with less time and cost, and with higher accuracy.
Collapse
Affiliation(s)
- Rajkumar Soundrapandiyan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | | | - Marimuthu Karuppiah
- School of Computer Science and Engineering & Information Science, Presidency University, Bengaluru, Karnataka 560064, India
| | - M Maheswari
- Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Ramesh Chandra Poonia
- Department of Computer Science, CHRIST (Deemed to be University), Bengaluru, Karnataka 560029, India
| |
Collapse
|
20
|
Karbasi Z, Gohari SH, Sabahi A. Bibliometric analysis of the use of artificial intelligence in COVID-19 based on scientific studies. Health Sci Rep 2023; 6:e1244. [PMID: 37152228 PMCID: PMC10158785 DOI: 10.1002/hsr2.1244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 05/09/2023] Open
Abstract
Background and Aims One such strategy is citation analysis used by researchers for research planning an article referred to by another article receives a "citation." By using bibliometric analysis, the development of research areas and authors' influence can be investigated. The current study aimed to identify and analyze the characteristics of 100 highly cited articles on the use of artificial intelligence concerning COVID-19. Methods On July 27, 2022, this database was searched using the keywords "artificial intelligence" and "COVID-19" in the topic. After extensive searching, all retrieved articles were sorted by the number of citations, and 100 highly cited articles were included based on the number of citations. The following data were extracted: year of publication, type of study, name of journal, country, number of citations, language, and keywords. Results The average number of citations for 100 highly cited articles was 138.54. The top three cited articles with 745, 596, and 549 citations. The top 100 articles were all in English and were published in 2020 and 2021. China was the most prolific country with 19 articles, followed by the United States with 15 articles and India with 10 articles. Conclusion The current bibliometric analysis demonstrated the significant growth of the use of artificial intelligence for COVID-19. Using these results, research priorities are more clearly defined, and researchers can focus on hot topics.
Collapse
Affiliation(s)
- Zahra Karbasi
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
- Department of Health Information Sciences, Faculty of Management and Medical Information SciencesKerman University of Medical SciencesKermanIran
| | - Sadrieh H. Gohari
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
| | - Azam Sabahi
- Department of Health Information Technology, Ferdows School of Health and Allied Medical SciencesBirjand University of Medical SciencesBirjandIran
| |
Collapse
|
21
|
Borhani A, Afyouni S, Attari MMA, Mohseni A, Catalano O, Kamel IR. PET/MR enterography in inflammatory bowel disease: A review of applications and technical considerations. Eur J Radiol 2023; 163:110846. [PMID: 37121100 DOI: 10.1016/j.ejrad.2023.110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Positron emission tomography (PET) magnetic resonance (MR) enterography is a novel hybrid imaging technique that is gaining popularity in the study of complex inflammatory disorders of the gastrointestinal system, such as inflammatory bowel disease (IBD). This imaging technique combines the metabolic information of PET imaging with the spatial resolution and soft tissue contrast of MR imaging. Several studies have suggested potential roles for PET/MR imaging in determining the activity status of IBD, evaluating treatment response, stratifying risk, and predicting long-term clinical outcomes. However, there are challenges in generalizing findings due to limited studies, technical aspects of hybrid MR/PET imaging, and clinical indications of this imaging modality. This review aims to further elucidate the possible role of PET/MR in IBD, highlight important technical aspects of imaging, and address potential pitfalls and prospects of this modality in IBDs.
Collapse
Affiliation(s)
- Ali Borhani
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States
| | - Shadi Afyouni
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States
| | - Mohammad Mirza Aghazadeh Attari
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States
| | - Alireza Mohseni
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States
| | - Onofrio Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Ihab R Kamel
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
22
|
Velu M, Dhanaraj RK, Balusamy B, Kadry S, Yu Y, Nadeem A, Rauf HT. Human Pathogenic Monkeypox Disease Recognition Using Q-Learning Approach. Diagnostics (Basel) 2023; 13:diagnostics13081491. [PMID: 37189591 DOI: 10.3390/diagnostics13081491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
While the world is working quietly to repair the damage caused by COVID-19's widespread transmission, the monkeypox virus threatens to become a global pandemic. There are several nations that report new monkeypox cases daily, despite the virus being less deadly and contagious than COVID-19. Monkeypox disease may be detected using artificial intelligence techniques. This paper suggests two strategies for improving monkeypox image classification precision. Based on reinforcement learning and parameter optimization for multi-layer neural networks, the suggested approaches are based on feature extraction and classification: the Q-learning algorithm determines the rate at which an act occurs in a particular state; Malneural networks are binary hybrid algorithms that improve the parameters of neural networks. The algorithms are evaluated using an openly available dataset. In order to analyze the proposed optimization feature selection for monkeypox classification, interpretation criteria were utilized. In order to evaluate the efficiency, significance, and robustness of the suggested algorithms, a series of numerical tests were conducted. There were 95% precision, 95% recall, and 96% f1 scores for monkeypox disease. As compared to traditional learning methods, this method has a higher accuracy value. The overall macro average was around 0.95, and the overall weighted average was around 0.96. When compared to the benchmark algorithms, DDQN, Policy Gradient, and Actor-Critic, the Malneural network had the highest accuracy (around 0.985). In comparison with traditional methods, the proposed methods were found to be more effective. Clinicians can use this proposal to treat monkeypox patients and administration agencies can use it to observe the origin and current status of the disease.
Collapse
Affiliation(s)
- Malathi Velu
- School of Computer Science and Engineering, Panimalar Engineering College, Poonamallee, Chennai 600123, India
| | - Rajesh Kumar Dhanaraj
- School of Computing Science and Engineering, Galgotias University, Greater Noida 203201, India
| | - Balamurugan Balusamy
- Associate Dean-Student Engagement, Shiv Nadar Institution of Eminence, Delhi-National Capital Region (NCR), Gautam Buddha Nagar 201314, India
| | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, 4612 Kristiansand, Norway
- Artificial Intelligence Research Center (AIRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon
| | - Yang Yu
- Centre for Infrastructure Engineering and Safety (CIES), The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hafiz Tayyab Rauf
- Centre for Smart Systems, A.I. and Cybersecurity, Staffordshire University, Stoke-on-Trent ST4 2DE, UK
| |
Collapse
|
23
|
Chen CC, Huang JF, Lin WC, Cheng CT, Chen SC, Fu CY, Lee MS, Liao CH, Chung CY. The Feasibility and Performance of Total Hip Replacement Prediction Deep Learning Algorithm with Real World Data. Bioengineering (Basel) 2023; 10:bioengineering10040458. [PMID: 37106645 PMCID: PMC10136253 DOI: 10.3390/bioengineering10040458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Hip degenerative disorder is a common geriatric disease is the main causes to lead to total hip replacement (THR). The surgical timing of THR is crucial for post-operative recovery. Deep learning (DL) algorithms can be used to detect anomalies in medical images and predict the need for THR. The real world data (RWD) were used to validate the artificial intelligence and DL algorithm in medicine but there was no previous study to prove its function in THR prediction. (2) Methods: We designed a sequential two-stage hip replacement prediction deep learning algorithm to identify the possibility of THR in three months of hip joints by plain pelvic radiography (PXR). We also collected RWD to validate the performance of this algorithm. (3) Results: The RWD totally included 3766 PXRs from 2018 to 2019. The overall accuracy of the algorithm was 0.9633; sensitivity was 0.9450; specificity was 1.000 and the precision was 1.000. The negative predictive value was 0.9009, the false negative rate was 0.0550, and the F1 score was 0.9717. The area under curve was 0.972 with 95% confidence interval from 0.953 to 0.987. (4) Conclusions: In summary, this DL algorithm can provide an accurate and reliable method for detecting hip degeneration and predicting the need for further THR. RWD offered an alternative support of the algorithm and validated its function to save time and cost.
Collapse
Affiliation(s)
- Chih-Chi Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taoyuan 33328, Taiwan
| | - Jen-Fu Huang
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taoyuan 33328, Taiwan
| | - Wei-Cheng Lin
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taoyuan 33328, Taiwan
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chi-Tung Cheng
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taoyuan 33328, Taiwan
| | - Shann-Ching Chen
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taoyuan 33328, Taiwan
| | - Chih-Yuan Fu
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taoyuan 33328, Taiwan
| | - Mel S Lee
- Department of Orthopaedic Surgery, Pao-Chien Hospital, Pingtung 90078, Taiwan
| | - Chien-Hung Liao
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taoyuan 33328, Taiwan
| | - Chia-Ying Chung
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taoyuan 33328, Taiwan
| |
Collapse
|
24
|
Khattab R, Abdelmaksoud IR, Abdelrazek S. Deep Convolutional Neural Networks for Detecting COVID-19 Using Medical Images: A Survey. New Gener Comput 2023; 41:343-400. [PMID: 37229176 PMCID: PMC10071474 DOI: 10.1007/s00354-023-00213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/23/2023] [Indexed: 05/27/2023]
Abstract
Coronavirus Disease 2019 (COVID-19), which is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2), surprised the world in December 2019 and has threatened the lives of millions of people. Countries all over the world closed worship places and shops, prevented gatherings, and implemented curfews to stand against the spread of COVID-19. Deep Learning (DL) and Artificial Intelligence (AI) can have a great role in detecting and fighting this disease. Deep learning can be used to detect COVID-19 symptoms and signs from different imaging modalities, such as X-Ray, Computed Tomography (CT), and Ultrasound Images (US). This could help in identifying COVID-19 cases as a first step to curing them. In this paper, we reviewed the research studies conducted from January 2020 to September 2022 about deep learning models that were used in COVID-19 detection. This paper clarified the three most common imaging modalities (X-Ray, CT, and US) in addition to the DL approaches that are used in this detection and compared these approaches. This paper also provided the future directions of this field to fight COVID-19 disease.
Collapse
Affiliation(s)
- Rana Khattab
- Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | - Islam R. Abdelmaksoud
- Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | - Samir Abdelrazek
- Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| |
Collapse
|
25
|
Gürsoy E, Kaya Y. An overview of deep learning techniques for COVID-19 detection: methods, challenges, and future works. Multimed Syst 2023; 29:1603-1627. [PMID: 37261262 PMCID: PMC10039775 DOI: 10.1007/s00530-023-01083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/20/2023] [Indexed: 06/02/2023]
Abstract
The World Health Organization (WHO) declared a pandemic in response to the coronavirus COVID-19 in 2020, which resulted in numerous deaths worldwide. Although the disease appears to have lost its impact, millions of people have been affected by this virus, and new infections still occur. Identifying COVID-19 requires a reverse transcription-polymerase chain reaction test (RT-PCR) or analysis of medical data. Due to the high cost and time required to scan and analyze medical data, researchers are focusing on using automated computer-aided methods. This review examines the applications of deep learning (DL) and machine learning (ML) in detecting COVID-19 using medical data such as CT scans, X-rays, cough sounds, MRIs, ultrasound, and clinical markers. First, the data preprocessing, the features used, and the current COVID-19 detection methods are divided into two subsections, and the studies are discussed. Second, the reported publicly available datasets, their characteristics, and the potential comparison materials mentioned in the literature are presented. Third, a comprehensive comparison is made by contrasting the similar and different aspects of the studies. Finally, the results, gaps, and limitations are summarized to stimulate the improvement of COVID-19 detection methods, and the study concludes by listing some future research directions for COVID-19 classification.
Collapse
Affiliation(s)
- Ercan Gürsoy
- Department of Computer Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey
| | - Yasin Kaya
- Department of Computer Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey
| |
Collapse
|
26
|
M. Emin Sahin, Hasan Ulutas, Esra Yuce, Mustafa Fatih Erkoc. Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images. Neural Comput Appl 2023. [ DOI: 10.1007/s00521-023-08450-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
The coronavirus (COVID-19) pandemic has a devastating impact on people’s daily lives and healthcare systems. The rapid spread of this virus should be stopped by early detection of infected patients through efficient screening. Artificial intelligence techniques are used for accurate disease detection in computed tomography (CT) images. This article aims to develop a process that can accurately diagnose COVID-19 using deep learning techniques on CT images. Using CT images collected from Yozgat Bozok University, the presented method begins with the creation of an original dataset, which includes 4000 CT images. The faster R-CNN and mask R-CNN methods are presented for this purpose in order to train and test the dataset to categorize patients with COVID-19 and pneumonia infections. In this study, the results are compared using VGG-16 for faster R-CNN model and ResNet-50 and ResNet-101 backbones for mask R-CNN. The faster R-CNN model used in the study has an accuracy rate of 93.86%, and the ROI (region of interest) classification loss is 0.061 per ROI. At the conclusion of the final training, the mask R-CNN model generates mAP (mean average precision) values for ResNet-50 and ResNet-101, respectively, of 97.72% and 95.65%. The results for five folds are obtained by applying the cross-validation to the methods used. With training, our model performs better than the industry standard baselines and can help with automated COVID-19 severity quantification in CT images.
Collapse
|
27
|
Bhosale YH, Patnaik KS. Bio-medical imaging (X-ray, CT, ultrasound, ECG), genome sequences applications of deep neural network and machine learning in diagnosis, detection, classification, and segmentation of COVID-19: a Meta-analysis & systematic review. Multimed Tools Appl 2023:1-54. [PMID: 37362676 PMCID: PMC10015538 DOI: 10.1007/s11042-023-15029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 02/01/2023] [Accepted: 02/27/2023] [Indexed: 06/28/2023]
Abstract
This review investigates how Deep Machine Learning (DML) has dealt with the Covid-19 epidemic and provides recommendations for future Covid-19 research. Despite the fact that vaccines for this epidemic have been developed, DL methods have proven to be a valuable asset in radiologists' arsenals for the automated assessment of Covid-19. This detailed review debates the techniques and applications developed for Covid-19 findings using DL systems. It also provides insights into notable datasets used to train neural networks, data partitioning, and various performance measurement metrics. The PRISMA taxonomy has been formed based on pretrained(45 systems) and hybrid/custom(17 systems) models with radiography modalities. A total of 62 systems with respect to X-ray(32), CT(19), ultrasound(7), ECG(2), and genome sequence(2) based modalities as taxonomy are selected from the studied articles. We originate by valuing the present phase of DL and conclude with significant limitations. The restrictions contain incomprehensibility, simplification measures, learning from incomplete labeled data, and data secrecy. Moreover, DML can be utilized to detect and classify Covid-19 from other COPD illnesses. The proposed literature review has found many DL-based systems to fight against Covid19. We expect this article will assist in speeding up the procedure of DL for Covid-19 researchers, including medical, radiology technicians, and data engineers.
Collapse
Affiliation(s)
- Yogesh H. Bhosale
- Computer Science and Engineering Department, Birla Institute of Technology, Mesra, Ranchi, India
| | - K. Sridhar Patnaik
- Computer Science and Engineering Department, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
28
|
Shaheed K, Szczuko P, Abbas Q, Hussain A, Albathan M. Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier. Healthcare (Basel) 2023; 11:healthcare11060837. [PMID: 36981494 PMCID: PMC10047954 DOI: 10.3390/healthcare11060837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
In recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia. First, a pre-processing method based on a Gaussian filter and logarithmic operator is applied to input chest X-ray (CXR) images to improve the poor-quality images by enhancing the contrast, reducing the noise, and smoothing the image. Second, robust features are extracted from each enhanced chest X-ray image using a Convolutional Neural Network (CNNs) transformer and an optimal collection of grey-level co-occurrence matrices (GLCM) that contain features such as contrast, correlation, entropy, and energy. Finally, based on extracted features from input images, a random forest machine learning classifier is used to classify images into three classes, such as COVID-19, pneumonia, or normal. The predicted output from the model is combined with Gradient-weighted Class Activation Mapping (Grad-CAM) visualisation for diagnosis. (3) Results: Our work is evaluated using public datasets with three different train–test splits (70–30%, 80–20%, and 90–10%) and achieved an average accuracy, F1 score, recall, and precision of 97%, 96%, 96%, and 96%, respectively. A comparative study shows that our proposed method outperforms existing and similar work. The proposed approach can be utilised to screen COVID-19-infected patients effectively. (4) Conclusions: A comparative study with the existing methods is also performed. For performance evaluation, metrics such as accuracy, sensitivity, and F1-measure are calculated. The performance of the proposed method is better than that of the existing methodologies, and it can thus be used for the effective diagnosis of the disease.
Collapse
Affiliation(s)
- Kashif Shaheed
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Piotr Szczuko
- Department of Multimedia Systems, Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Qaisar Abbas
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
| | - Ayyaz Hussain
- Department of Computer Science, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Mubarak Albathan
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
- Correspondence: ; Tel.: +966-503451575
| |
Collapse
|
29
|
Yadav DP, Jalal AS, Goyal A, Mishra A, Uprety K, Guragai N. COVID-19 radiograph prognosis using a deep CResNeXt network. Multimed Tools Appl 2023; 82:1-27. [PMID: 37362635 PMCID: PMC9993361 DOI: 10.1007/s11042-023-14960-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
COVID-19 has caused an epidemic in the entire world and it is caused by the novel virus SARS-COV-2. In severe conditions, this virus can cause a critical lung infection or viral pneumonia. To administer the correct treatment to patients, COVID-19 testing is important for diagnosing and determining patients who are infected with COVID-19, as opposed to those infected with other bacterial or viral infections. In this paper, a CResNeXt chest radiograph COVID-19 prediction model is proposed using residual network architecture. The advantage of the proposed model is that it requires lesser free hyper-parameters as compared to other residual networks. In addition, the training time per epochs of the model is very less compared to VGG19, ResNet-50, ResNeXt. The proposed CResNeXt model's binary classification (COVID-19 versus No-Finding) accuracy is observed to be 98.63% and 99.99% and multi-class classification (COVID-19, Pneumonia, and No-Finding) accuracy is observed to be 97.42% and 99.27% on the original and augmented datasets, respectively.
Collapse
|