451
|
Cui Y, Jin R, Zhang Y, Yu M, Zhou Y, Wang LQ. Cellulose Nanocrystal-Enhanced Thermal-Sensitive Hydrogels of Block Copolymers for 3D Bioprinting. Int J Bioprint 2021; 7:397. [PMID: 34805591 PMCID: PMC8600300 DOI: 10.18063/ijb.v7i4.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
The hydrogel formed by polyethylene glycol-aliphatic polyester block copolymers is an ideal bioink and biomaterial ink for three-dimensional (3D) bioprinting because of its unique temperature sensitivity, mild gelation process, good biocompatibility, and biodegradability. However, the gel forming mechanism based only on hydrophilic-hydrophobic interaction renders the stability and mechanical strength of the formed hydrogels insufficient, and cannot meet the requirements of extrusion 3D printing. In this study, cellulose nanocrystals (CNC), which is a kind of rigid, hydrophilic, and biocompatible nanomaterial, were introduced to enhance the hydrogels so as to meet the requirements of extrusion 3D printing. First, a series of poly(ε-caprolactone/lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone/lactide) (PCLA-PEG-PCLA) triblock copolymers with different molecular weights were prepared. The thermodynamic and rheological properties of CNC-enhanced hydrogels were investigated. The results showed that the addition of CNC significantly improved the thermal stability and mechanical properties of the hydrogels, and within a certain range, the enhancement effect was directly proportional to the concentration of CNC. More importantly, the PCLA-PEG-PCLA hydrogels enhanced by CNC could be extruded and printed through temperature regulation. The printed objects had high resolution and fidelity with effectively maintained structure. Moreover, the hydrogels have good biocompatibility with a high cell viability. Therefore, this is a simple and effective strategy. The addition of the hydrophilic rigid nanoparticles such as CNC improves the mechanical properties of the soft hydrogels which made it able to meet the requirements of 3D bioprinting.
Collapse
Affiliation(s)
- Yuecheng Cui
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ronghua Jin
- Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310009, P. R. China
| | - Yifan Zhang
- Hangzhou Regenovo Biotechnology Co. Ltd, Hangzhou Economic and Technological Development Area, Hangzhou 310018, P. R. China
| | - Meirong Yu
- Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310009, P. R. China
| | - Yang Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Li-Qun Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Hangzhou Medsun Biological Technology Co., Ltd, Hangzhou Economic and Technological Development Area, Hangzhou 310018, P. R. China
| |
Collapse
|
452
|
Grambow E, Sorg H, Sorg CGG, Strüder D. Experimental Models to Study Skin Wound Healing with a Focus on Angiogenesis. Med Sci (Basel) 2021; 9:medsci9030055. [PMID: 34449673 PMCID: PMC8395822 DOI: 10.3390/medsci9030055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
A large number of models are now available for the investigation of skin wound healing. These can be used to study the processes that take place in a phase-specific manner under both physiological and pathological conditions. Most models focus on wound closure, which is a crucial parameter for wound healing. However, vascular supply plays an equally important role and corresponding models for selective or parallel investigation of microcirculation regeneration and angiogenesis are also described. In this review article, we therefore focus on the different levels of investigation of skin wound healing (in vivo to in virtuo) and the investigation of angiogenesis and its parameters.
Collapse
Affiliation(s)
- Eberhard Grambow
- Department of General, Visceral, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, 18057 Rostock, Germany
- Correspondence:
| | - Heiko Sorg
- Department of Health, University of Witten/Herdecke, Alfred-Herrhausen-Str. 50, 58455 Witten, Germany;
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Klinikum Westfalen, Am Knappschaftskrankenhaus 1, 44309 Dortmund, Germany
| | - Christian G. G. Sorg
- Chair of Management and Innovation in Health Care, Department of Management and Entrepreneurship, Faculty of Management, Economics and Society, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58455 Witten, Germany;
| | - Daniel Strüder
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery “Otto Körner”, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
453
|
Gao C, Lu C, Jian Z, Zhang T, Chen Z, Zhu Q, Tai Z, Liu Y. 3D bioprinting for fabricating artificial skin tissue. Colloids Surf B Biointerfaces 2021; 208:112041. [PMID: 34425531 DOI: 10.1016/j.colsurfb.2021.112041] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 01/17/2023]
Abstract
As an organ in direct contact with the external environment, the skin is the first line of defense against external stimuli, so it is the most vulnerable to damage. In addition, there is an increasing demand for artificial skin in the fields of drug testing, disease research and cosmetic testing. Traditional skin tissue engineering has made encouraging progress after years of development. However, due to the complexity of the skin structures, there is still a big gap between existing artificial skin and natural skin in terms of function. Three-dimensional (3D) bioprinting is an advanced biological manufacturing method. It accurately deposits bioinks into pre-designed three-dimensional shapes to create complex biological tissues. This technology aims to print artificial tissues and organs with biological activities and complete physiological functions, thereby alleviating the problem of tissues and organs in short supply. Here, based on the introduction to skin structure and function, we systematically elaborate and analyze skin manufacturing methods, 3D bioprinting biomaterials and strategies, etc. Finally, the challenges and perspectives in 3D bioprinting skin field are summarized.
Collapse
Affiliation(s)
- Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Zhian Jian
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Tingrui Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China; Shanghai Engineering Research Center for External Chinese Medicine, Shanghai, 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for External Chinese Medicine, Shanghai, 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for External Chinese Medicine, Shanghai, 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for External Chinese Medicine, Shanghai, 200443, China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
454
|
3D bioprinting: novel approaches for engineering complex human tissue equivalents and drug testing. Essays Biochem 2021; 65:417-427. [PMID: 34328185 PMCID: PMC8365325 DOI: 10.1042/ebc20200153] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/09/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022]
Abstract
Conventional approaches in drug development involve testing on 2D-cultured mammalian cells, followed by experiments in rodents. Although this is the common strategy, it has significant drawbacks: in 2D cell culture with human cells, the cultivation at normoxic conditions on a plastic or glass surface is an artificial situation that significantly changes energy metabolism, shape and intracellular signaling, which in turn directly affects drug response. On the other hand, rodents as the most frequently used animal models have evolutionarily separated from primates about 100 million years ago, with significant differences in physiology, which frequently leads to results not reproducible in humans. As an alternative, spheroid technology and micro-organoids have evolved in the last decade to provide 3D context for cells similar to native tissue. However, organoids used for drug testing are usually just in the 50-100 micrometers range and thereby too small to mimic micro-environmental tissue conditions such as limited nutrient and oxygen availability. An attractive alternative offers 3D bioprinting as this allows fabrication of human tissue equivalents from scratch with hollow structures for perfusion and strict spatiotemporal control over the deposition of cells and extracellular matrix proteins. Thereby, tissue surrogates with defined geometry are fabricated that offer unique opportunities in exploring cellular cross-talk, mechanobiology and morphogenesis. These tissue-equivalents are also very attractive tools in drug testing, as bioprinting enables standardized production, parallelization, and application-tailored design of human tissue, of human disease models and patient-specific tissue avatars. This review, therefore, summarizes recent advances in 3D bioprinting technology and its application for drug screening.
Collapse
|
455
|
Cadena M, Ning L, King A, Hwang B, Jin L, Serpooshan V, Sloan SA. 3D Bioprinting of Neural Tissues. Adv Healthc Mater 2021; 10:e2001600. [PMID: 33200587 PMCID: PMC8711131 DOI: 10.1002/adhm.202001600] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Indexed: 02/06/2023]
Abstract
The human nervous system is a remarkably complex physiological network that is inherently challenging to study because of obstacles to acquiring primary samples. Animal models offer powerful alternatives to study nervous system development, diseases, and regenerative processes, however, they are unable to address some species-specific features of the human nervous system. In vitro models of the human nervous system have expanded in prevalence and sophistication, but still require further advances to better recapitulate microenvironmental and cellular features. The field of neural tissue engineering (TE) is rapidly adopting new technologies that enable scientists to precisely control in vitro culture conditions and to better model nervous system formation, function, and repair. 3D bioprinting is one of the major TE technologies that utilizes biocompatible hydrogels to create precisely patterned scaffolds, designed to enhance cellular responses. This review focuses on the applications of 3D bioprinting in the field of neural TE. Important design parameters are considered when bioprinting neural stem cells are discussed. The emergence of various bioprinted in vitro platforms are also reviewed for developmental and disease modeling and drug screening applications within the central and peripheral nervous systems, as well as their use as implants for in vivo regenerative therapies.
Collapse
Affiliation(s)
- Melissa Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Alexia King
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Steven A. Sloan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
456
|
Ma J, Qin C, Wu J, Zhang H, Zhuang H, Zhang M, Zhang Z, Ma L, Wang X, Ma B, Chang J, Wu C. 3D Printing of Strontium Silicate Microcylinder-Containing Multicellular Biomaterial Inks for Vascularized Skin Regeneration. Adv Healthc Mater 2021; 10:e2100523. [PMID: 33963672 DOI: 10.1002/adhm.202100523] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Indexed: 12/12/2022]
Abstract
The reconstruction of dermal blood vessels is essential for skin regeneration process. However, the lack of vascular structure, insufficient angiogenesis induction, and ineffective graft-host anastomosis of the existing skin substitutes are major bottle-necks for permanent skin replacement in tissue engineering. In this study, the uniform strontium silicate (SS) microcylinders are successfully synthesized and integrated into the biomaterial ink to serve as stable cell-induced factors for angiogenesis, and then a functional skin substitute based on a vascularization-induced biomimetic multicellular system is prepared via a "cell-writing" bioprinting technology. With an unprecedented combination of vascularized skin-mimicking structure and vascularization-induced function, the SS-containing multicellular system exhibits outstanding angiogenic activity both in vitro and in vivo. As a result, the bioprinted skin substitutes significantly accelerate the healing of both acute and chronic wounds by promoting the graft-host integration and vascularized skin regeneration in three animal models. Therefore, the study provides a referable strategy to fabricate biomimetic multicellular constructs with angiogenesis-induced function for regeneration of vascularized complex and hierarchical tissues.
Collapse
Affiliation(s)
- Jingge Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jinfu Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hui Zhuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhaowenbin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lingling Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xin Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
457
|
Jiang WC, Hsu WY, Ao-Ieong WS, Wang CY, Wang J, Yet SF. A novel engineered vascular construct of stem cell-laden 3D-printed PGSA scaffold enhances tissue revascularization. Biofabrication 2021; 13. [PMID: 34233298 DOI: 10.1088/1758-5090/ac1259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022]
Abstract
Development of transplantable engineered tissue has been hampered by lacking vascular network within the engineered tissue. Three-dimensional (3D) printing has emerged as a new technology with great potential in fabrication and customization of geometric microstructure. In this study, utilizing digital light processing system, we manufactured a recently designed novel 3D architecture scaffold with poly(glycerol sebacate) acrylate (PGSA). Vascular construct was subsequently generated by seeding stem cells within this scaffold. PGSA provided inductive substrate in terms of supporting three-germ layer differentiation of embryonic stem cells (ESCs) and also promoting ESCs-derived vascular progenitor cells (VPCs) differentiation into endothelial cells (ECs). Furthermore, the differentiation efficiency of VPCs into ECs on PGSA was much higher than that on collagen IV or fibronectin. The results from seeding VPCs in the rotating hexagonal PGSA scaffold suggest that this architectural framework is highly efficient for cell engraftment in 3D structures. After long-term suspension culture of the VPCs in scaffold under directed EC differentiation condition, VPC-differentiated ECs were populated in the scaffold and expressed EC markers. Transplantation of the vascular construct in mice resulted in formation of new vascular network and integration of the microvasculature within the scaffold into the existing vasculature of host tissue. Importantly, in a mouse model of wound healing, ECs from the transplanted vascular construct directly contributed to revascularization and enhanced blood perfusion at the injured site. Collectively, this transplantable vascular construct provides an innovative alternative therapeutic strategy for vascular tissue engineering.
Collapse
Affiliation(s)
- Wei-Cheng Jiang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Wan-Yuan Hsu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Wai-Sam Ao-Ieong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Yen Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
458
|
Bioprintable Lung Extracellular Matrix Hydrogel Scaffolds for 3D Culture of Mesenchymal Stromal Cells. Polymers (Basel) 2021; 13:polym13142350. [PMID: 34301107 PMCID: PMC8309540 DOI: 10.3390/polym13142350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cell (MSC)-based cell therapy in acute respiratory diseases is based on MSC secretion of paracrine factors. Several strategies have proposed to improve this are being explored including pre-conditioning the MSCs prior to administration. We here propose a strategy for improving the therapeutic efficacy of MSCs based on cell preconditioning by growing them in native extracellular matrix (ECM) derived from the lung. To this end, a bioink with tunable stiffness based on decellularized porcine lung ECM hydrogels was developed and characterized. The bioink was suitable for 3D culturing of lung-resident MSCs without the need for additional chemical or physical crosslinking. MSCs showed good viability, and contraction assays showed the existence of cell–matrix interactions in the bioprinted scaffolds. Adhesion capacity and length of the focal adhesions formed were increased for the cells cultured within the lung hydrogel scaffolds. Also, there was more than a 20-fold increase of the expression of the CXCR4 receptor in the 3D-cultured cells compared to the cells cultured in plastic. Secretion of cytokines when cultured in an in vitro model of lung injury showed a decreased secretion of pro-inflammatory mediators for the cells cultured in the 3D scaffolds. Moreover, the morphology of the harvested cells was markedly different with respect to conventionally (2D) cultured MSCs. In conclusion, the developed bioink can be used to bioprint structures aimed to improve preconditioning MSCs for therapeutic purposes.
Collapse
|
459
|
Jiang J, Tan Y, Liu A, Yan R, Ma Y, Guo L, Sun J, Guo Z, Fan H. Tissue engineered artificial liver model based on viscoelastic hyaluronan-collagen hydrogel and the effect of EGCG intervention on ALD. Colloids Surf B Biointerfaces 2021; 206:111980. [PMID: 34293578 DOI: 10.1016/j.colsurfb.2021.111980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
In alcoholic liver disease (ALD) research, animal models, as one of the most popular methods to explore pathology and therapeutic drug screening, show the limitations of expensive cost and ethic, as well as long modeling time. To minimize the use of animal models in ALD research, an artificial liver model has been developed by incorporating HepG2 cells into hydrogel matrix based on difunctional hyaluronan and collagen. And on this basis an alcohol-induced ALD model in vitro by adding alcohol in the engineering process has been established. Results showed that the construct exhibited a simulated synthetic and metabolic liver function thanks to the bionic fibrillar and viscoelastic characteristics of hydrogels. And the in vitro alcohol-induced ALD model was also proved to be successfully established, even presenting equal results with ALD mice. Furthermore, epigallocatechin gallate (EGCG) as an intervention on ALD was confirmed in both in vitro and in vivo model. The findings indicate our simple artificial liver model is not only highly predictive but also easy to apply to drug screening and implantation studies, suggesting a promising alternative to animal models. Moreover, as the main active ingredient of tea, EGCG's effective intervention and reversal effect on fatty liver provides support for the theory that green tea could prevent alcoholic fatty liver.
Collapse
Affiliation(s)
- Ji Jiang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yanfei Tan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Amin Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Rentai Yan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yanzhe Ma
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Likun Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Zhenzhen Guo
- Department of Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| |
Collapse
|
460
|
Li H, Li P, Yang Z, Gao C, Fu L, Liao Z, Zhao T, Cao F, Chen W, Peng Y, Yuan Z, Sui X, Liu S, Guo Q. Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Front Cell Dev Biol 2021; 9:661802. [PMID: 34327197 PMCID: PMC8313827 DOI: 10.3389/fcell.2021.661802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Knee menisci are structurally complex components that preserve appropriate biomechanics of the knee. Meniscal tissue is susceptible to injury and cannot heal spontaneously from most pathologies, especially considering the limited regenerative capacity of the inner avascular region. Conventional clinical treatments span from conservative therapy to meniscus implantation, all with limitations. There have been advances in meniscal tissue engineering and regenerative medicine in terms of potential combinations of polymeric biomaterials, endogenous cells and stimuli, resulting in innovative strategies. Recently, polymeric scaffolds have provided researchers with a powerful instrument to rationally support the requirements for meniscal tissue regeneration, ranging from an ideal architecture to biocompatibility and bioactivity. However, multiple challenges involving the anisotropic structure, sophisticated regenerative process, and challenging healing environment of the meniscus still create barriers to clinical application. Advances in scaffold manufacturing technology, temporal regulation of molecular signaling and investigation of host immunoresponses to scaffolds in tissue engineering provide alternative strategies, and studies have shed light on this field. Accordingly, this review aims to summarize the current polymers used to fabricate meniscal scaffolds and their applications in vivo and in vitro to evaluate their potential utility in meniscal tissue engineering. Recent progress on combinations of two or more types of polymers is described, with a focus on advanced strategies associated with technologies and immune compatibility and tunability. Finally, we discuss the current challenges and future prospects for regenerating injured meniscal tissues.
Collapse
Affiliation(s)
- Hao Li
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Pinxue Li
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhen Yang
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Cangjian Gao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Liwei Fu
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhiyao Liao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Tianyuan Zhao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Fuyang Cao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Wei Chen
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yu Peng
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Sui
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Shuyun Liu
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Quanyi Guo
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
461
|
Vascularization Strategies in Bone Tissue Engineering. Cells 2021; 10:cells10071749. [PMID: 34359919 PMCID: PMC8306064 DOI: 10.3390/cells10071749] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bone is a highly vascularized tissue, and its development, maturation, remodeling, and regeneration are dependent on a tight regulation of blood vessel supply. This condition also has to be taken into consideration in the context of the development of artificial tissue substitutes. In classic tissue engineering, bone-forming cells such as primary osteoblasts or mesenchymal stem cells are introduced into suitable scaffolds and implanted in order to treat critical-size bone defects. However, such tissue substitutes are initially avascular. Because of the occurrence of hypoxic conditions, especially in larger tissue substitutes, this leads to the death of the implanted cells. Therefore, it is necessary to devise vascularization strategies aiming at fast and efficient vascularization of implanted artificial tissues. In this review article, we present and discuss the current vascularization strategies in bone tissue engineering. These are based on the use of angiogenic growth factors, the co-implantation of blood vessel forming cells, the ex vivo microfabrication of blood vessels by means of bioprinting, and surgical methods for creating surgically transferable composite tissues.
Collapse
|
462
|
Disrupting 3D printing of medicines with machine learning. Trends Pharmacol Sci 2021; 42:745-757. [PMID: 34238624 DOI: 10.1016/j.tips.2021.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
3D printing (3DP) is a progressive technology capable of transforming pharmaceutical development. However, despite its promising advantages, its transition into clinical settings remains slow. To make the vital leap to mainstream clinical practice and improve patient care, 3DP must harness modern technologies. Machine learning (ML), an influential branch of artificial intelligence, may be a key partner for 3DP. Together, 3DP and ML can utilise intelligence based on human learning to accelerate drug product development, ensure stringent quality control (QC), and inspire innovative dosage-form design. With ML's capabilities, streamlined 3DP drug delivery could mark the next era of personalised medicine. This review details how ML can be applied to elevate the 3DP of pharmaceuticals and importantly, how it can expedite 3DP's integration into mainstream healthcare.
Collapse
|
463
|
Agostinacchio F, Mu X, Dirè S, Motta A, Kaplan DL. In Situ 3D Printing: Opportunities with Silk Inks. Trends Biotechnol 2021; 39:719-730. [PMID: 33279280 PMCID: PMC8169713 DOI: 10.1016/j.tibtech.2020.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/17/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022]
Abstract
In situ 3D printing is an emerging technique designed for patient-specific needs and performed directly in the patient's tissues in the operating room. While this technology has progressed rapidly, several improvements are needed to push it forward for widespread utility, including ink formulations and optimization for in situ context. Silk fibroin inks emerge as a viable option due to the diverse range of formulations, aqueous processability, robust and tunable mechanical properties, and self-assembly via biophysical adsorption to avoid exogenous chemical or photochemical sensitizer additives, among other features. In this review, we focus on this new frontier of 3D in situ printing for tissue regeneration, where silk is proposed as candidate biomaterial ink due to the unique and useful properties of this protein polymer.
Collapse
Affiliation(s)
- Francesca Agostinacchio
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; BIOTech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento, via Delle Regole 101, Trento 38123, Italy
| | - Xuan Mu
- Department of Biomedical Engineering Tufts University Medford, MA 02155, USA
| | - Sandra Dirè
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; 'Klaus Muller' Magnetic Resonance Laboratory, Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy; BIOTech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento, via Delle Regole 101, Trento 38123, Italy
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University Medford, MA 02155, USA.
| |
Collapse
|
464
|
Wang B, Díaz-Payno PJ, Browe DC, Freeman FE, Nulty J, Burdis R, Kelly DJ. Affinity-bound growth factor within sulfated interpenetrating network bioinks for bioprinting cartilaginous tissues. Acta Biomater 2021; 128:130-142. [PMID: 33866035 DOI: 10.1016/j.actbio.2021.04.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
3D bioprinting has emerged as a promising technology in the field of tissue engineering and regenerative medicine due to its ability to create anatomically complex tissue substitutes. However, it still remains challenging to develop bioactive bioinks that provide appropriate and permissive environments to instruct and guide the regenerative process in vitro and in vivo. In this study alginate sulfate, a sulfated glycosaminoglycan (sGAG) mimic, was used to functionalize an alginate-gelatin methacryloyl (GelMA) interpenetrating network (IPN) bioink to enable the bioprinting of cartilaginous tissues. The inclusion of alginate sulfate had a limited influence on the viscosity, shear-thinning and thixotropic properties of the IPN bioink, enabling high-fidelity bioprinting and supporting mesenchymal stem cell (MSC) viability post-printing. The stiffness of printed IPN constructs greatly exceeded that achieved by printing alginate or GelMA alone, while maintaining resilience and toughness. Furthermore, given the high affinity of alginate sulfate to heparin-binding growth factors, the sulfated IPN bioink supported the sustained release of transforming growth factor-β3 (TGF-β3), providing an environment that supported robust chondrogenesis in vitro, with little evidence of hypertrophy or mineralization over extended culture periods. Such bioprinted constructs also supported chondrogenesis in vivo, with the controlled release of TGF-β3 promoting significantly higher levels of cartilage-specific extracellular matrix deposition. Altogether, these results demonstrate the potential of bioprinting sulfated bioinks as part of a 'single-stage' or 'point-of-care' strategy for regenerating cartilaginous tissues. STATEMENT OF SIGNIFICANCE: This study highlights the potential of using sulfated interpenetrating network (IPN) bioink to support the regeneration of phenotypically stable articular cartilage. Construction of interpenetrating networks in the bioink enables unique high-fidelity bioprinting and provides synergistic increases in mechanical properties. The presence of alginate sulfate enables the capacity of high affinity-binding of TGF-β3, which promoted robust chondrogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Bin Wang
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Pedro J Díaz-Payno
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - David C Browe
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Fiona E Freeman
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Jessica Nulty
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Ross Burdis
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
465
|
Cellular Technologies in Traumatology: From Cells to Tissue Engineering. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.2.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Injuries and degenerative changes of tendons are common damages of the musculoskeletal system. Due to its hypovascular character the tendon has a limited natural ability to recover. For typical surgical treatment, the tendon integrity is restored, but in most cases, there occurs formation of the connective tissue scar resulting in structural and mechanical functionality disruption. The insufficient effectiveness of traditional therapy methods requires the search for alternative ways to restore damaged tendon tissues. This article discusses new effective methods for improving the treatment that base on the use of cellular technologies among which one of the main directions is mesenchymal stem cell application. Due to mesenchymal stem cells, there is a shift from pro-fibrotic and pro-inflammatory reactions of cells to pro-regenerative ones. Stem cells being multipotent and having among other things tenogenic potential are considered a promising material for repairing damaged tendons. The article also describes the sources of progenitor tendon cells including the tendon bundles and pericytes the main markers of which are Scx and Mkx that are proteins of the transcription factor superfamily, and Tnmd that is transmembrane glycoprotein.The growth factors that not only enhance the proliferative activity of mesenchymal stem cells but also promote in vitro tenogenic genes expression as well as the collagen Itype production what is necessary for tendon formation are considered. Along with growth factors, the morphogenetic protein BMP14 is presented, this protein increases themesenchymal stem cell proliferation and contributes directed tenogenic differentiation of these cells, suppressing their adipogenic and chondrogenic potentials.In recent years, mesenchymal stem cells have been used both separately and in combination with various growth factors and different three-dimensional structures providing the interaction with all of the cell types.The issues of the latest 3D-bioprinting technology allowing to make tissue-like structures for replacement damaged tissues and organs are discussed. 3D-bioprinting technology is known to allow acting exact spatio-temporal control of the distribution of cells, growth factors, small molecules, drugs and biologically active substances.
Collapse
|
466
|
Strategies for inclusion of growth factors into 3D printed bone grafts. Essays Biochem 2021; 65:569-585. [PMID: 34156062 DOI: 10.1042/ebc20200130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
There remains a critical need to develop new technologies and materials that can meet the demands of treating large bone defects. The advancement of 3-dimensional (3D) printing technologies has allowed the creation of personalized and customized bone grafts, with specific control in both macro- and micro-architecture, and desired mechanical properties. Nevertheless, the biomaterials used for the production of these bone grafts often possess poor biological properties. The incorporation of growth factors (GFs), which are the natural orchestrators of the physiological healing process, into 3D printed bone grafts, represents a promising strategy to achieve the bioactivity required to enhance bone regeneration. In this review, the possible strategies used to incorporate GFs to 3D printed constructs are presented with a specific focus on bone regeneration. In particular, the strengths and limitations of different methods, such as physical and chemical cross-linking, which are currently used to incorporate GFs to the engineered constructs are critically reviewed. Different strategies used to present one or more GFs to achieve simultaneous angiogenesis and vasculogenesis for enhanced bone regeneration are also covered in this review. In addition, the possibility of combining several manufacturing approaches to fabricate hybrid constructs, which better mimic the complexity of biological niches, is presented. Finally, the clinical relevance of these approaches and the future steps that should be taken are discussed.
Collapse
|
467
|
Kronemberger GS, Miranda GASC, Tavares RSN, Montenegro B, Kopke ÚDA, Baptista LS. Recapitulating Tumorigenesis in vitro: Opportunities and Challenges of 3D Bioprinting. Front Bioeng Biotechnol 2021; 9:682498. [PMID: 34239860 PMCID: PMC8258101 DOI: 10.3389/fbioe.2021.682498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is considered one of the most predominant diseases in the world and one of the principal causes of mortality per year. The cellular and molecular mechanisms involved in the development and establishment of solid tumors can be defined as tumorigenesis. Recent technological advances in the 3D cell culture field have enabled the recapitulation of tumorigenesis in vitro, including the complexity of stromal microenvironment. The establishment of these 3D solid tumor models has a crucial role in personalized medicine and drug discovery. Recently, spheroids and organoids are being largely explored as 3D solid tumor models for recreating tumorigenesis in vitro. In spheroids, the solid tumor can be recreated from cancer cells, cancer stem cells, stromal and immune cell lineages. Organoids must be derived from tumor biopsies, including cancer and cancer stem cells. Both models are considered as a suitable model for drug assessment and high-throughput screening. The main advantages of 3D bioprinting are its ability to engineer complex and controllable 3D tissue models in a higher resolution. Although 3D bioprinting represents a promising technology, main challenges need to be addressed to improve the results in cancer research. The aim of this review is to explore (1) the principal cell components and extracellular matrix composition of solid tumor microenvironment; (2) the recapitulation of tumorigenesis in vitro using spheroids and organoids as 3D culture models; and (3) the opportunities, challenges, and applications of 3D bioprinting in this area.
Collapse
Affiliation(s)
- Gabriela S. Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | - Guilherme A. S. C. Miranda
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Renata S. N. Tavares
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Bianca Montenegro
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | - Úrsula de A. Kopke
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Leandra S. Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
468
|
Liu X, Fang J, Huang S, Wu X, Xie X, Wang J, Liu F, Zhang M, Peng Z, Hu N. Tumor-on-a-chip: from bioinspired design to biomedical application. MICROSYSTEMS & NANOENGINEERING 2021; 7:50. [PMID: 34567763 PMCID: PMC8433302 DOI: 10.1038/s41378-021-00277-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 05/08/2023]
Abstract
Cancer is one of the leading causes of human death, despite enormous efforts to explore cancer biology and develop anticancer therapies. The main challenges in cancer research are establishing an efficient tumor microenvironment in vitro and exploring efficient means for screening anticancer drugs to reveal the nature of cancer and develop treatments. The tumor microenvironment possesses human-specific biophysical and biochemical factors that are difficult to recapitulate in conventional in vitro planar cell models and in vivo animal models. Therefore, model limitations have hindered the translation of basic research findings to clinical applications. In this review, we introduce the recent progress in tumor-on-a-chip devices for cancer biology research, medicine assessment, and biomedical applications in detail. The emerging tumor-on-a-chip platforms integrating 3D cell culture, microfluidic technology, and tissue engineering have successfully mimicked the pivotal structural and functional characteristics of the in vivo tumor microenvironment. The recent advances in tumor-on-a-chip platforms for cancer biology studies and biomedical applications are detailed and analyzed in this review. This review should be valuable for further understanding the mechanisms of the tumor evolution process, screening anticancer drugs, and developing cancer therapies, and it addresses the challenges and potential opportunities in predicting drug screening and cancer treatment.
Collapse
Affiliation(s)
- Xingxing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Jiaru Fang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Shuang Huang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Xiaoxue Wu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Fanmao Liu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Meng Zhang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Zhenwei Peng
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Ning Hu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, 200050 Shanghai, China
| |
Collapse
|
469
|
Sun F, Lu Y, Wang Z, Shi H. Vascularization strategies for tissue engineering for tracheal reconstruction. Regen Med 2021; 16:549-566. [PMID: 34114475 DOI: 10.2217/rme-2020-0091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tissue engineering technology provides effective alternative treatments for tracheal reconstruction. The formation of a functional microvascular network is essential to support cell metabolism and ensure the long-term survival of grafts. Although several tracheal replacement therapy strategies have been developed in the past, the critical significance of the formation of microvascular networks in 3D scaffolds has not attracted sufficient attention. Here, we review key technologies and related factors of microvascular network construction in tissue-engineered trachea and explore optimized preparation processes of vascularized functional tissues for clinical applications.
Collapse
Affiliation(s)
- Fei Sun
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Yi Lu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Zhihao Wang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| |
Collapse
|
470
|
Bioinstructive Layer-by-Layer-Coated Customizable 3D Printed Perfusable Microchannels Embedded in Photocrosslinkable Hydrogels for Vascular Tissue Engineering. Biomolecules 2021; 11:biom11060863. [PMID: 34200682 PMCID: PMC8230362 DOI: 10.3390/biom11060863] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
The development of complex and large 3D vascularized tissue constructs remains the major goal of tissue engineering and regenerative medicine (TERM). To date, several strategies have been proposed to build functional and perfusable vascular networks in 3D tissue-engineered constructs to ensure the long-term cell survival and the functionality of the assembled tissues after implantation. However, none of them have been entirely successful in attaining a fully functional vascular network. Herein, we report an alternative approach to bioengineer 3D vascularized constructs by embedding bioinstructive 3D multilayered microchannels, developed by combining 3D printing with the layer-by-layer (LbL) assembly technology, in photopolymerizable hydrogels. Alginate (ALG) was chosen as the ink to produce customizable 3D sacrificial microstructures owing to its biocompatibility and structural similarity to the extracellular matrices of native tissues. ALG structures were further LbL coated with bioinstructive chitosan and arginine–glycine–aspartic acid-coupled ALG multilayers, embedded in shear-thinning photocrosslinkable xanthan gum hydrogels and exposed to a calcium-chelating solution to form perfusable multilayered microchannels, mimicking the biological barriers, such as the basement membrane, in which the endothelial cells were seeded, denoting an enhanced cell adhesion. The 3D constructs hold great promise for engineering a wide array of large-scale 3D vascularized tissue constructs for modular TERM strategies.
Collapse
|
471
|
Jin S, Xia X, Huang J, Yuan C, Zuo Y, Li Y, Li J. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater 2021; 127:56-79. [PMID: 33831569 DOI: 10.1016/j.actbio.2021.03.067] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022]
Abstract
Bone regeneration is an interdisciplinary complex lesson, including but not limited to materials science, biomechanics, immunology, and biology. Having witnessed impressive progress in the past decades in the development of bone substitutes; however, it must be said that the most suitable biomaterial for bone regeneration remains an area of intense debate. Since its discovery, poly (lactic-co-glycolic acid) (PLGA) has been widely used in bone tissue engineering due to its good biocompatibility and adjustable biodegradability. This review systematically covers the past and the most recent advances in developing PLGA-based bone regeneration materials. Taking the different application forms of PLGA-based materials as the starting point, we describe each form's specific application and its corresponding advantages and disadvantages with many examples. We focus on the progress of electrospun nanofibrous scaffolds, three-dimensional (3D) printed scaffolds, microspheres/nanoparticles, hydrogels, multiphasic scaffolds, and stents prepared by other traditional and emerging methods. Finally, we briefly discuss the current limitations and future directions of PLGA-based bone repair materials. STATEMENT OF SIGNIFICANCE: As a key synthetic biopolymer in bone tissue engineering application, the progress of PLGA-based bone substitute is impressive. In this review, we summarized the past and the most recent advances in the development of PLGA-based bone regeneration materials. According to the typical application forms and corresponding crafts of PLGA-based substitutes, we described the development of electrospinning nanofibrous scaffolds, 3D printed scaffolds, microspheres/nanoparticles, hydrogels, multiphasic scaffolds and scaffolds fabricated by other manufacturing process. Finally, we briefly discussed the current limitations and proposed the newly strategy for the design and fabrication of PLGA-based bone materials or devices.
Collapse
|
472
|
Zheng F, Xiao Y, Liu H, Fan Y, Dao M. Patient-Specific Organoid and Organ-on-a-Chip: 3D Cell-Culture Meets 3D Printing and Numerical Simulation. Adv Biol (Weinh) 2021; 5:e2000024. [PMID: 33856745 PMCID: PMC8243895 DOI: 10.1002/adbi.202000024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2021] [Indexed: 12/11/2022]
Abstract
The last few decades have witnessed diversified in vitro models to recapitulate the architecture and function of living organs or tissues and contribute immensely to advances in life science. Two novel 3D cell culture models: 1) Organoid, promoted mainly by the developments of stem cell biology and 2) Organ-on-a-chip, enhanced primarily due to microfluidic technology, have emerged as two promising approaches to advance the understanding of basic biological principles and clinical treatments. This review describes the comparable distinct differences between these two models and provides more insights into their complementarity and integration to recognize their merits and limitations for applicable fields. The convergence of the two approaches to produce multi-organoid-on-a-chip or human organoid-on-a-chip is emerging as a new approach for building 3D models with higher physiological relevance. Furthermore, rapid advancements in 3D printing and numerical simulations, which facilitate the design, manufacture, and results-translation of 3D cell culture models, can also serve as novel tools to promote the development and propagation of organoid and organ-on-a-chip systems. Current technological challenges and limitations, as well as expert recommendations and future solutions to address the promising combinations by incorporating organoids, organ-on-a-chip, 3D printing, and numerical simulation, are also summarized.
Collapse
Affiliation(s)
- Fuyin Zheng
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuminghao Xiao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hui Liu
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
473
|
Haleem A, Javaid M, Suman R, Singh RP. 3D Printing Applications for Radiology: An Overview. Indian J Radiol Imaging 2021; 31:10-17. [PMID: 34316106 PMCID: PMC8299499 DOI: 10.1055/s-0041-1729129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) printing technologies are part of additive manufacturing processes and are used to manufacture a 3D physical model from a digital computer-aided design model as per the required shape and size. These technologies are now used for advanced radiology applications by providing all information through 3D physical model. It provides innovation in radiology for clinical applications, treatment planning, procedural simulation, medical and patient education. Radiological advancements have been made in diagnosis and communication through medical digital imaging techniques like computed tomography, magnetic resonance imaging. These images are converted into Digital Imaging and Communications in Medicine in Standard Triangulate Language file format, easily printable in 3D printing technologies. This 3D model provides in-depth information about pathologic and anatomic states. It is useful to create new opportunities related to patient care. This article discusses the potential of 3D printing technology in radiology. The steps involved in 3D printing for radiology are discussed diagrammatically, and finally identified 12 significant applications of 3D printing technology for radiology with a brief description. A radiologist can incorporate this technology to fulfil different challenges such as training, planning, guidelines, and better communications.
Collapse
Affiliation(s)
- Abid Haleem
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Mohd Javaid
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Rajiv Suman
- Department of Industrial and Production Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Ravi Pratap Singh
- Department of Industrial and Production Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| |
Collapse
|
474
|
Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture). Transp Porous Media 2021. [DOI: 10.1007/s11242-021-01618-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
475
|
Establishing a 3D In Vitro Hepatic Model Mimicking Physiologically Relevant to In Vivo State. Cells 2021; 10:cells10051268. [PMID: 34065411 PMCID: PMC8161177 DOI: 10.3390/cells10051268] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) bioprinting is a promising technology to establish a 3D in vitro hepatic model that holds great potential in toxicological evaluation. However, in current hepatic models, the central area suffers from hypoxic conditions, resulting in slow and weak metabolism of drugs and toxins. It remains challenging to predict accurate drug effects in current bioprinted hepatic models. Here, we constructed a hexagonal bioprinted hepatic construct and incorporated a spinning condition with continuous media stimuli. Under spinning conditions, HepG2 cells in the bioprinted hepatic construct exhibited enhanced proliferation capacity and functionality compared to those under static conditions. Additionally, the number of spheroids that play a role in boosting drug-induced signals and responses increased in the bioprinted hepatic constructs cultured under spinning conditions. Moreover, HepG2 cells under spinning conditions exhibited intensive TGFβ-induced epithelial-to-mesenchymal transition (EMT) and increased susceptibility to acetaminophen (APAP)-induced hepatotoxicity as well as hepatotoxicity prevention by administration of N-acetylcysteine (NAC). Taken together, the results of our study demonstrate that the spinning condition employed during the generation of bioprinted hepatic constructs enables the recapitulation of liver injury and repair phenomena in particular. This simple but effective culture strategy facilitates bioprinted hepatic constructs to improve in vitro modeling for drug effect evaluation.
Collapse
|
476
|
Falcone G, Saviano M, Aquino RP, Del Gaudio P, Russo P. Coaxial semi-solid extrusion and ionotropic alginate gelation: A successful duo for personalized floating formulations via 3D printing. Carbohydr Polym 2021; 260:117791. [PMID: 33712139 DOI: 10.1016/j.carbpol.2021.117791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
With the aim to fulfill the patient-centered approach of precision medicine, in this research, innovative floating drug delivery systems have been developed through the use of alginate matrix and fully characterized. Particularly, to exploit the ionotropic gelation of alginate, a customized coaxial extruder for Semi-solid Extrusion 3D printing, has been used for the simultaneous dispensing of ink gel (sodium alginate 6% w/v) and crosslinking gel (hydroxyethyl cellulose 3 %w/v, calcium chloride 0.1M and Tween 85 0.1% v/v). The latter also loaded with Propranolol Hydrochloride 12.5%w/v. A novel single-step process gelation for the extemporaneous gelation of loaded oral systems has been therefore developed. These technologically advanced formulations showed high printing reproducibility in manufacturing different models (mass of a single layer 535.41 ± 40.00 mg with an average drug loading efficiency of 85% w/w) and similar release behavior, paving the way for their customization in terms of drug dosages via this pioneering process.
Collapse
Affiliation(s)
- Giovanni Falcone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Italy
| | - Marilena Saviano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Italy
| | - Rita P Aquino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy
| | - Paola Russo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy.
| |
Collapse
|
477
|
Spiteri C, Caprettini V, Chiappini C. Biomaterials-based approaches to model embryogenesis. Biomater Sci 2021; 8:6992-7013. [PMID: 33136109 DOI: 10.1039/d0bm01485k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding, reproducing, and regulating the cellular and molecular processes underlying human embryogenesis is critical to improve our ability to recapitulate tissues with proper architecture and function, and to address the dysregulation of embryonic programs that underlies birth defects and cancer. The rapid emergence of stem cell technologies is enabling enormous progress in understanding embryogenesis using simple, powerful, and accessible in vitro models. Biomaterials are playing a central role in providing the spatiotemporal organisation of biophysical and biochemical signalling necessary to mimic, regulate and dissect the evolving embryonic niche in vitro. This contribution is rapidly improving our understanding of the mechanisms underlying embryonic patterning, in turn enabling the development of more effective clinical interventions for regenerative medicine and oncology. Here we highlight how key biomaterial approaches contribute to organise signalling in human embryogenesis models, and we summarise the biological insights gained from these contributions. Importantly, we highlight how nanotechnology approaches have remained largely untapped in this space, and we identify their key potential contributions.
Collapse
Affiliation(s)
- Chantelle Spiteri
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
| | | | | |
Collapse
|
478
|
Carvalho V, Gonçalves I, Lage T, Rodrigues RO, Minas G, Teixeira SFCF, Moita AS, Hori T, Kaji H, Lima RA. 3D Printing Techniques and Their Applications to Organ-on-a-Chip Platforms: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:3304. [PMID: 34068811 PMCID: PMC8126238 DOI: 10.3390/s21093304] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 02/01/2023]
Abstract
Three-dimensional (3D) in vitro models, such as organ-on-a-chip platforms, are an emerging and effective technology that allows the replication of the function of tissues and organs, bridging the gap amid the conventional models based on planar cell cultures or animals and the complex human system. Hence, they have been increasingly used for biomedical research, such as drug discovery and personalized healthcare. A promising strategy for their fabrication is 3D printing, a layer-by-layer fabrication process that allows the construction of complex 3D structures. In contrast, 3D bioprinting, an evolving biofabrication method, focuses on the accurate deposition of hydrogel bioinks loaded with cells to construct tissue-engineered structures. The purpose of the present work is to conduct a systematic review (SR) of the published literature, according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, providing a source of information on the evolution of organ-on-a-chip platforms obtained resorting to 3D printing and bioprinting techniques. In the literature search, PubMed, Scopus, and ScienceDirect databases were used, and two authors independently performed the search, study selection, and data extraction. The goal of this SR is to highlight the importance and advantages of using 3D printing techniques in obtaining organ-on-a-chip platforms, and also to identify potential gaps and future perspectives in this research field. Additionally, challenges in integrating sensors in organs-on-chip platforms are briefly investigated and discussed.
Collapse
Affiliation(s)
- Violeta Carvalho
- MEtRICs, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Inês Gonçalves
- MEtRICs, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Teresa Lage
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (T.L.); (R.O.R.); (G.M.)
| | - Raquel O. Rodrigues
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (T.L.); (R.O.R.); (G.M.)
| | - Graça Minas
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (T.L.); (R.O.R.); (G.M.)
| | | | - Ana S. Moita
- IN+, Center for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- CINAMIL, Department of Exact Sciences and Engineering, Portuguese Military Academy, R. Gomes Freire 203, 1169-203 Lisboa, Portugal
| | - Takeshi Hori
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan; (T.H.); (H.K.)
| | - Hirokazu Kaji
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan; (T.H.); (H.K.)
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Rui A. Lima
- MEtRICs, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- CEFT, Faculty of Engineering of the University of Porto (FEUP), R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
479
|
Rahman J, Quodbach J. Versatility on demand - The case for semi-solid micro-extrusion in pharmaceutics. Adv Drug Deliv Rev 2021; 172:104-126. [PMID: 33705878 DOI: 10.1016/j.addr.2021.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022]
Abstract
Since additive manufacturing of pharmaceuticals has been introduced as viable method to produce individualized drug delivery systems with complex geometries and release profiles, semi-solid micro-extrusion has shown to be uniquely beneficial. Easy incorporation of actives, room-temperature processability and avoidance of cross-contamination by using disposables are some of the advantages that led many researchers to focus their work on this technology in the last few years. First acceptability and in-vivo studies have brought it closer towards implementation in decentralized settings. This review covers recently established process models in light of viscosity and printability discussions to help develop high quality printed medicines. Quality defining formulation and process parameters to characterize the various developed dosage forms are presented before critically discussing the role of semi-solid micro-extrusion in the future of personalized drug delivery systems. Remaining challenges regarding regulatory guidance and quality assurance that pose the last hurdle for large scale and commercial manufacturing are addressed.
Collapse
|
480
|
Abdollahiyan P, Oroojalian F, Hejazi M, de la Guardia M, Mokhtarzadeh A. Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. J Control Release 2021; 333:391-417. [DOI: 10.1016/j.jconrel.2021.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022]
|
481
|
Liu N, Ye X, Yao B, Zhao M, Wu P, Liu G, Zhuang D, Jiang H, Chen X, He Y, Huang S, Zhu P. Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioact Mater 2021; 6:1388-1401. [PMID: 33210031 PMCID: PMC7658327 DOI: 10.1016/j.bioactmat.2020.10.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease is still one of the leading causes of death in the world, and heart transplantation is the current major treatment for end-stage cardiovascular diseases. However, because of the shortage of heart donors, new sources of cardiac regenerative medicine are greatly needed. The prominent development of tissue engineering using bioactive materials has creatively laid a direct promising foundation. Whereas, how to precisely pattern a cardiac structure with complete biological function still requires technological breakthroughs. Recently, the emerging three-dimensional (3D) bioprinting technology for tissue engineering has shown great advantages in generating micro-scale cardiac tissues, which has established its impressive potential as a novel foundation for cardiovascular regeneration. Whether 3D bioprinted hearts can replace traditional heart transplantation as a novel strategy for treating cardiovascular diseases in the future is a frontier issue. In this review article, we emphasize the current knowledge and future perspectives regarding available bioinks, bioprinting strategies and the latest outcome progress in cardiac 3D bioprinting to move this promising medical approach towards potential clinical implementation.
Collapse
Affiliation(s)
- Nanbo Liu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Xing Ye
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- Department of Cardiac Surgery, Affiliated South China Hospital, Southern Medical University (Guangdong Provincial People's Hospital) and The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China
| | - Mingyi Zhao
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Peng Wu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- Department of Cardiac Surgery, Affiliated South China Hospital, Southern Medical University (Guangdong Provincial People's Hospital) and The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guihuan Liu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Donglin Zhuang
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Haodong Jiang
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaowei Chen
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Yinru He
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China
| | - Ping Zhu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
- Department of Cardiac Surgery, Affiliated South China Hospital, Southern Medical University (Guangdong Provincial People's Hospital) and The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
482
|
Esdaille CJ, Washington KS, Laurencin CT. Regenerative engineering: a review of recent advances and future directions. Regen Med 2021; 16:495-512. [PMID: 34030463 PMCID: PMC8356698 DOI: 10.2217/rme-2021-0016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Regenerative engineering is defined as the convergence of the disciplines of advanced material science, stem cell science, physics, developmental biology and clinical translation for the regeneration of complex tissues and organ systems. It is an expansion of tissue engineering, which was first developed as a method of repair and restoration of human tissue. In the past three decades, advances in regenerative engineering have made it possible to treat a variety of clinical challenges by utilizing cutting-edge technology currently available to harness the body's healing and regenerative abilities. The emergence of new information in developmental biology, stem cell science, advanced material science and nanotechnology have provided promising concepts and approaches to regenerate complex tissues and structures.
Collapse
Affiliation(s)
- Caldon J Esdaille
- Howard University College of Medicine, Washington, DC 20011, USA
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond & Beverly Sackler Center for Biomedical, Biological, Physical & Engineering Sciences, University of Connecticut Health, Farmington, CT 06030, USA
| | - Kenyatta S Washington
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond & Beverly Sackler Center for Biomedical, Biological, Physical & Engineering Sciences, University of Connecticut Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond & Beverly Sackler Center for Biomedical, Biological, Physical & Engineering Sciences, University of Connecticut Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06030, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, USA
| |
Collapse
|
483
|
Souza PR, de Oliveira AC, Vilsinski BH, Kipper MJ, Martins AF. Polysaccharide-Based Materials Created by Physical Processes: From Preparation to Biomedical Applications. Pharmaceutics 2021; 13:621. [PMID: 33925380 PMCID: PMC8146878 DOI: 10.3390/pharmaceutics13050621] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharide-based materials created by physical processes have received considerable attention for biomedical applications. These structures are often made by associating charged polyelectrolytes in aqueous solutions, avoiding toxic chemistries (crosslinking agents). We review the principal polysaccharides (glycosaminoglycans, marine polysaccharides, and derivatives) containing ionizable groups in their structures and cellulose (neutral polysaccharide). Physical materials with high stability in aqueous media can be developed depending on the selected strategy. We review strategies, including coacervation, ionotropic gelation, electrospinning, layer-by-layer coating, gelation of polymer blends, solvent evaporation, and freezing-thawing methods, that create polysaccharide-based assemblies via in situ (one-step) methods for biomedical applications. We focus on materials used for growth factor (GFs) delivery, scaffolds, antimicrobial coatings, and wound dressings.
Collapse
Affiliation(s)
- Paulo R. Souza
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Ariel C. de Oliveira
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
| | - Bruno H. Vilsinski
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| | - Alessandro F. Martins
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| |
Collapse
|
484
|
Milojević M, Harih G, Vihar B, Vajda J, Gradišnik L, Zidarič T, Stana Kleinschek K, Maver U, Maver T. Hybrid 3D Printing of Advanced Hydrogel-Based Wound Dressings with Tailorable Properties. Pharmaceutics 2021; 13:pharmaceutics13040564. [PMID: 33923475 PMCID: PMC8073841 DOI: 10.3390/pharmaceutics13040564] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the extensive utilization of polysaccharide hydrogels in regenerative medicine, current fabrication methods fail to produce mechanically stable scaffolds using only hydrogels. The recently developed hybrid extrusion-based bioprinting process promises to resolve these current issues by facilitating the simultaneous printing of stiff thermoplastic polymers and softer hydrogels at different temperatures. Using layer-by-layer deposition, mechanically advantageous scaffolds can be produced by integrating the softer hydrogel matrix into a stiffer synthetic framework. This work demonstrates the fabrication of hybrid hydrogel-thermoplastic polymer scaffolds with tunable structural and chemical properties for applications in tissue engineering and regenerative medicine. Through an alternating deposition of polycaprolactone and alginate/carboxymethylcellulose gel strands, scaffolds with the desired architecture (e.g., filament thickness, pore size, macro-/microporosity), and rheological characteristics (e.g., swelling capacity, degradation rate, and wettability) were prepared. The hybrid fabrication approach allows the fine-tuning of wettability (approx. 50–75°), swelling (approx. 0–20× increased mass), degradability (approx. 2–30+ days), and mechanical strength (approx. 0.2–11 MPa) in the range between pure hydrogels and pure thermoplastic polymers, while providing a gradient of surface properties and good biocompatibility. The controlled degradability and permeability of the hydrogel component may also enable controlled drug delivery. Our work shows that the novel hybrid hydrogel-thermoplastic scaffolds with adjustable characteristics have immense potential for tissue engineering and can serve as templates for developing novel wound dressings.
Collapse
Affiliation(s)
- Marko Milojević
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia; (M.M.); (B.V.); (J.V.); (L.G.); (T.Z.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| | - Gregor Harih
- Laboratory for Intelligent CAD Systems, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
| | - Boštjan Vihar
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia; (M.M.); (B.V.); (J.V.); (L.G.); (T.Z.)
- IRNAS Ltd., Valvasorjeva 42, SI-2000 Maribor, Slovenia
| | - Jernej Vajda
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia; (M.M.); (B.V.); (J.V.); (L.G.); (T.Z.)
| | - Lidija Gradišnik
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia; (M.M.); (B.V.); (J.V.); (L.G.); (T.Z.)
| | - Tanja Zidarič
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia; (M.M.); (B.V.); (J.V.); (L.G.); (T.Z.)
| | - Karin Stana Kleinschek
- Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, AT-8010 Graz, Austria;
| | - Uroš Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia; (M.M.); (B.V.); (J.V.); (L.G.); (T.Z.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
- Correspondence: (U.M.); (T.M.); Tel.: +386-223-458-23 (U.M.); +386-223-458-78 (T.M.)
| | - Tina Maver
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
- Laboratory for Characterisation and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Correspondence: (U.M.); (T.M.); Tel.: +386-223-458-23 (U.M.); +386-223-458-78 (T.M.)
| |
Collapse
|
485
|
Manita PG, Garcia-Orue I, Santos-Vizcaino E, Hernandez RM, Igartua M. 3D Bioprinting of Functional Skin Substitutes: From Current Achievements to Future Goals. Pharmaceuticals (Basel) 2021; 14:ph14040362. [PMID: 33919848 PMCID: PMC8070826 DOI: 10.3390/ph14040362] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to present 3D bioprinting of skin substitutes as an efficient approach of managing skin injuries. From a clinical point of view, classic treatments only provide physical protection from the environment, and existing engineered scaffolds, albeit acting as a physical support for cells, fail to overcome needs, such as neovascularisation. In the present work, the basic principles of bioprinting, together with the most popular approaches and choices of biomaterials for 3D-printed skin construct production, are explained, as well as the main advantages over other production methods. Moreover, the development of this technology is described in a chronological manner through examples of relevant experimental work in the last two decades: from the pioneers Lee et al. to the latest advances and different innovative strategies carried out lately to overcome the well-known challenges in tissue engineering of skin. In general, this technology has a huge potential to offer, although a multidisciplinary effort is required to optimise designs, biomaterials and production processes.
Collapse
Affiliation(s)
- Paula Gabriela Manita
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (R.M.H.); (M.I.)
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (R.M.H.); (M.I.)
| |
Collapse
|
486
|
Wanczyk H, Jensen T, Weiss DJ, Finck C. Advanced single-cell technologies to guide the development of bioengineered lungs. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1101-L1117. [PMID: 33851545 DOI: 10.1152/ajplung.00089.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung transplantation remains the only viable option for individuals suffering from end-stage lung failure. However, a number of current limitations exist including a continuing shortage of suitable donor lungs and immune rejection following transplantation. To address these concerns, engineering a decellularized biocompatible lung scaffold from cadavers reseeded with autologous lung cells to promote tissue regeneration is being explored. Proof-of-concept transplantation of these bioengineered lungs into animal models has been accomplished. However, these lungs were incompletely recellularized with resulting epithelial and endothelial leakage and insufficient basement membrane integrity. Failure to repopulate lung scaffolds with all of the distinct cell populations necessary for proper function remains a significant hurdle for the progression of current engineering approaches and precludes clinical translation. Advancements in 3D bioprinting, lung organoid models, and microfluidic device and bioreactor development have enhanced our knowledge of pulmonary lung development, as well as important cell-cell and cell-matrix interactions, all of which will help in the path to a bioengineered transplantable lung. However, a significant gap in knowledge of the spatiotemporal interactions between cell populations as well as relative quantities and localization within each compartment of the lung necessary for its proper growth and function remains. This review will provide an update on cells currently used for reseeding decellularized scaffolds with outcomes of recent lung engineering attempts. Focus will then be on how data obtained from advanced single-cell analyses, coupled with multiomics approaches and high-resolution 3D imaging, can guide current lung bioengineering efforts for the development of fully functional, transplantable lungs.
Collapse
Affiliation(s)
- Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut
| | - Todd Jensen
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut.,Department of Surgery, Connecticut Children's Medical Center, Hartford, Connecticut
| |
Collapse
|
487
|
Decante G, Costa JB, Silva-Correia J, Collins MN, Reis RL, Oliveira JM. Engineering bioinks for 3D bioprinting. Biofabrication 2021; 13. [PMID: 33662949 DOI: 10.1088/1758-5090/abec2c] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
In recent years, three-dimensional (3D) bioprinting has attracted wide research interest in biomedical engineering and clinical applications. This technology allows for unparalleled architecture control, adaptability and repeatability that can overcome the limits of conventional biofabrication techniques. Along with the emergence of a variety of 3D bioprinting methods, bioinks have also come a long way. From their first developments to support bioprinting requirements, they are now engineered to specific injury sites requirements to mimic native tissue characteristics and to support biofunctionality. Current strategies involve the use of bioinks loaded with cells and biomolecules of interest, without altering their functions, to deliverin situthe elements required to enhance healing/regeneration. The current research and trends in bioink development for 3D bioprinting purposes is overviewed herein.
Collapse
Affiliation(s)
- Guy Decante
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João B Costa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maurice N Collins
- Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
488
|
Abstract
3D-Bioprinting has seen a rapid expansion in the last few years, with an increasing number of reported bioinks. Alginate is a natural biopolymer that forms hydrogels by ionic cross-linking with calcium ions. Due to its biocompatibility and ease of gelation, it is an ideal ingredient for bioinks. This review focuses on recent advances on bioink formulations based on the combination of alginate with other polysaccharides. In particular, the molecular weight of the alginate and its loading level have an impact on the material's performance, as well as the loading of the divalent metal salt and its solubility, which affects the cross-linking of the gel. Alginate is often combined with other polysaccharides that can sigificantly modify the properties of the gel, and can optimise alginate for use in different biological applications. It is also possible to combine alginate with sacrificial polymers, which can temporarily reinforce the 3D printed construct, but then be removed at a later stage. Other additives can be formulated into the gels to enhance performance, including nanomaterials that tune rheological properties, peptides to encourage cell adhesion, or growth factors to direct stem cell differentiation. The ease of formulating multiple components into alginate gels gives them considerable potential for further development. In summary, this review will facilitate the identification of different alginate-polysaccharide bioink formulations and their optimal applications, and help inform the design of second generation bioinks, allowing this relatively simple gel system to achieve more sophisticated control over biological processes.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - David K Smith
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| |
Collapse
|
489
|
Palmieri V, De Maio F, De Spirito M, Papi M. Face masks and nanotechnology: Keep the blue side up. NANO TODAY 2021; 37:101077. [PMID: 33519950 PMCID: PMC7833187 DOI: 10.1016/j.nantod.2021.101077] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 05/18/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) is one of the biggest challenges of the 21st century. While researchers are working on vaccine development and elucidating the mechanism of action and evolution of the harmful SARS-CoV-2, the current most important public health measure, second only to social distancing, is the obligatory wearing of facial protection. The Centers for Disease Control and Prevention recommended in April 2020 that the public wear face coverings in areas with high rates of transmission based on epidemiological evidence on the strong relationship between mask wearing and pandemic control. This protection against SARS-CoV-2 and other airborne pathogens, boost the design and production of innovative solutions by industry stakeholders. Nanoparticles, nanofibers, and other pioneering technologies based on nanomaterials have been introduced in mask production chains to improve performance and confer antiviral properties. During an emergency like COVID-19, these products directly available to the public should be carefully analyzed in terms of efficacy and possible long-term effects on the wearers' skin and lungs as well as on the environment. This opinion paper provides a wealth of information on the role of nanotechnologies in improving the performance of facial masks and on possible future consequences caused by a poorly regulated use of nanotechnology in textiles.
Collapse
Affiliation(s)
- Valentina Palmieri
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Rome, Italy
| | - Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Rome, Italy
| |
Collapse
|
490
|
Liu J, Yao X, Wang Z, Ye J, Luan C, He Y, Lin H, Fu J. A flexible porous chiral auxetic tracheal stent with ciliated epithelium. Acta Biomater 2021; 124:153-165. [PMID: 33529770 DOI: 10.1016/j.actbio.2021.01.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Tracheal stent placement is a principal treatment for tracheobronchial stenosis, but complications such as mucus plugging, secondary stenosis, migration, and strong foreign body sensation remain unavoidable challenges. In this study, we designed a flexible porous chiral tracheal stent intended to reduce or overcome these complications. The stent was innovatively designed with a flexible tetrachiral and anti-tetrachiral hybrid structure as the frame and hollows filled with porous silicone sponge. Detailed finite element analysis (FEA) showed that the designed frame can maintain a Poisson's ratio that is negative or close to zero at up to 50% tensile strain. This contributes to improved airway ventilation and better resistance to migration during physiological activities such as respiration and neck movement. The preparation process combined indirect 3D printing with gas foaming and particulate leaching methods to efficiently fabricate the stent. The stent was then subjected to uniaxial tension and local radial compression tests, which indicated that it not only has the same desirable auxetic performance but also has flexibility similar to the native trachea. The porous sponge facilitated the adhesion of cells, allowed nutrient diffusion, and would prevent the ingrowth of granulation tissue. Furthermore, a ciliated tracheal epithelium similar to that of the native trachea was differentiated from normal human bronchial primary epithelial cells on the internal wall of the stent under air-liquid interface conditions. These results suggest that the designed stent has the potential for application in the treatment of tracheobronchial stenosis.
Collapse
Affiliation(s)
- Jiapeng Liu
- State Key Laboratory of Fluid Power & Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xinhua Yao
- State Key Laboratory of Fluid Power & Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Zhenwei Wang
- State Key Laboratory of Fluid Power & Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jian Ye
- Department of Pneumology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, People's Republic of China
| | - Congcong Luan
- State Key Laboratory of Fluid Power & Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yong He
- State Key Laboratory of Fluid Power & Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power & Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
491
|
Ruiz-Alonso S, Lafuente-Merchan M, Ciriza J, Saenz-Del-Burgo L, Pedraz JL. Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques. J Control Release 2021; 333:448-486. [PMID: 33811983 DOI: 10.1016/j.jconrel.2021.03.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Tendon injuries are a global health problem that affects millions of people annually. The properties of tendons make their natural rehabilitation a very complex and long-lasting process. Thanks to the development of the fields of biomaterials, bioengineering and cell biology, a new discipline has emerged, tissue engineering. Within this discipline, diverse approaches have been proposed. The obtained results turn out to be promising, as increasingly more complex and natural tendon-like structures are obtained. In this review, the nature of the tendon and the conventional treatments that have been applied so far are underlined. Then, a comparison between the different tendon tissue engineering approaches that have been proposed to date is made, focusing on each of the elements necessary to obtain the structures that allow adequate regeneration of the tendon: growth factors, cells, scaffolds and techniques for scaffold development. The analysis of all these aspects allows understanding, in a global way, the effect that each element used in the regeneration of the tendon has and, thus, clarify the possible future approaches by making new combinations of materials, designs, cells and bioactive molecules to achieve a personalized regeneration of a functional tendon.
Collapse
Affiliation(s)
- Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Laura Saenz-Del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
| |
Collapse
|
492
|
Vera D, García-Díaz M, Torras N, Álvarez M, Villa R, Martinez E. Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13920-13933. [PMID: 33739812 DOI: 10.1021/acsami.0c21573] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tissue barriers play a crucial role in human physiology by establishing tissue compartmentalization and regulating organ homeostasis. At the interface between the extracellular matrix (ECM) and flowing fluids, epithelial and endothelial barriers are responsible for solute and gas exchange. In the past decade, microfluidic technologies and organ-on-chip devices became popular as in vitro models able to recapitulate these biological barriers. However, in conventional microfluidic devices, cell barriers are primarily grown on hard polymeric membranes within polydimethylsiloxane (PDMS) channels that do not mimic the cell-ECM interactions nor allow the incorporation of other cellular compartments such as stromal tissue or vascular structures. To develop models that accurately account for the different cellular and acellular compartments of tissue barriers, researchers have integrated hydrogels into microfluidic setups for tissue barrier-on-chips, either as cell substrates inside the chip, or as self-contained devices. These biomaterials provide the soft mechanical properties of tissue barriers and allow the embedding of stromal cells. Combining hydrogels with microfluidics technology provides unique opportunities to better recreate in vitro the tissue barrier models including the cellular components and the functionality of the in vivo tissues. Such platforms have the potential of greatly improving the predictive capacities of the in vitro systems in applications such as drug development, or disease modeling. Nevertheless, their development is not without challenges in their microfabrication. In this review, we will discuss the recent advances driving the fabrication of hydrogel microfluidic platforms and their applications in multiple tissue barrier models.
Collapse
Affiliation(s)
- Daniel Vera
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona 08193, Spain
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - María García-Díaz
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Núria Torras
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Mar Álvarez
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona 08193, Spain
| | - Rosa Villa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red (CIBER), Madrid 28029, Spain
| | - Elena Martinez
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red (CIBER), Madrid 28029, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona (UB), Barcelona 08028, Spain
| |
Collapse
|
493
|
Tupone MG, d'Angelo M, Castelli V, Catanesi M, Benedetti E, Cimini A. A State-of-the-Art of Functional Scaffolds for 3D Nervous Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:639765. [PMID: 33816451 PMCID: PMC8012845 DOI: 10.3389/fbioe.2021.639765] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Exploring and developing multifunctional intelligent biomaterials is crucial to improve next-generation therapies in tissue engineering and regenerative medicine. Recent findings show how distinct characteristics of in situ microenvironment can be mimicked by using different biomaterials. In vivo tissue architecture is characterized by the interconnection between cells and specific components of the extracellular matrix (ECM). Last evidence shows the importance of the structure and composition of the ECM in the development of cellular and molecular techniques, to achieve the best biodegradable and bioactive biomaterial compatible to human physiology. Such biomaterials provide specialized bioactive signals to regulate the surrounding biological habitat, through the progression of wound healing and biomaterial integration. The connection between stem cells and biomaterials stimulate the occurrence of specific modifications in terms of cell properties and fate, influencing then processes such as self-renewal, cell adhesion and differentiation. Recent studies in the field of tissue engineering and regenerative medicine have shown to deal with a broad area of applications, offering the most efficient and suitable strategies to neural repair and regeneration, drawing attention towards the potential use of biomaterials as 3D tools for in vitro neurodevelopment of tissue models, both in physiological and pathological conditions. In this direction, there are several tools supporting cell regeneration, which associate cytokines and other soluble factors delivery through the scaffold, and different approaches considering the features of the biomaterials, for an increased functionalization of the scaffold and for a better promotion of neural proliferation and cells-ECM interplay. In fact, 3D scaffolds need to ensure a progressive and regular delivery of cytokines, growth factors, or biomolecules, and moreover they should serve as a guide and support for injured tissues. It is also possible to create scaffolds with different layers, each one possessing different physical and biochemical aspects, able to provide at the same time organization, support and maintenance of the specific cell phenotype and diversified ECM morphogenesis. Our review summarizes the most recent advancements in functional materials, which are crucial to achieve the best performance and at the same time, to overcome the current limitations in tissue engineering and nervous tissue regeneration.
Collapse
Affiliation(s)
- Maria Grazia Tupone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Center for Microscopy, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
494
|
Liao J, Han R, Wu Y, Qian Z. Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res 2021; 9:18. [PMID: 33727543 PMCID: PMC7966774 DOI: 10.1038/s41413-021-00139-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
Bone tumors, especially those in osteosarcoma, usually occur in adolescents. The standard clinical treatment includes chemotherapy, surgical therapy, and radiation therapy. Unfortunately, surgical resection often fails to completely remove the tumor, which is the main cause of postoperative recurrence and metastasis, resulting in a high mortality rate. Moreover, bone tumors often invade large areas of bone, which cannot repair itself, and causes a serious effect on the quality of life of patients. Thus, bone tumor therapy and bone regeneration are challenging in the clinic. Herein, this review presents the recent developments in bifunctional biomaterials to achieve a new strategy for bone tumor therapy. The selected bifunctional materials include 3D-printed scaffolds, nano/microparticle-containing scaffolds, hydrogels, and bone-targeting nanomaterials. Numerous related studies on bifunctional biomaterials combining tumor photothermal therapy with enhanced bone regeneration were reviewed. Finally, a perspective on the future development of biomaterials for tumor therapy and bone tissue engineering is discussed. This review will provide a useful reference for bone tumor-related disease and the field of complex diseases to combine tumor therapy and tissue engineering.
Collapse
Grants
- The National Key Research and Development Program of China (2017YFC1103500, 2017YFC1103502), NSFC 31771096, NSFC 31930067, #x00A0;NSFC 31525009, 1·3·5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYGD18002)
- the National Natural Science Foundation (31972925), Sichuan Science and Technology Program (2020YJ0065), Sichuan University Spark Project (2018SCUH0029), State Key Laboratory of Oral Diseases Foundation (SKLOD202016)
Collapse
Affiliation(s)
- Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ruxia Han
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Zhiyong Qian
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
495
|
Ponmozhi J, Dhinakaran S, Varga-Medveczky Z, Fónagy K, Bors LA, Iván K, Erdő F. Development of Skin-On-A-Chip Platforms for Different Utilizations: Factors to Be Considered. MICROMACHINES 2021; 12:mi12030294. [PMID: 33802208 PMCID: PMC8001759 DOI: 10.3390/mi12030294] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
There is increasing interest in miniaturized technologies in diagnostics, therapeutic testing, and biomedicinal fundamental research. The same is true for the dermal studies in topical drug development, dermatological disease pathology testing, and cosmetic science. This review aims to collect the recent scientific literature and knowledge about the application of skin-on-a-chip technology in drug diffusion studies, in pharmacological and toxicological experiments, in wound healing, and in fields of cosmetic science (ageing or repair). The basic mathematical models are also presented in the article to predict physical phenomena, such as fluid movement, drug diffusion, and heat transfer taking place across the dermal layers in the chip using Computational Fluid Dynamics techniques. Soon, it can be envisioned that animal studies might be at least in part replaced with skin-on-a-chip technology leading to more reliable results close to study on humans. The new technology is a cost-effective alternative to traditional methods used in research institutes, university labs, and industry. With this article, the authors would like to call attention to a new investigational family of platforms to refresh the researchers’ theranostics and preclinical, experimental toolbox.
Collapse
Affiliation(s)
- J. Ponmozhi
- Microfluidics Laboratory, Department of Mechanical Engineering, IPS Academy-Institute of Engineering Science, Indore 452012, India;
| | - S. Dhinakaran
- The Centre for Fluid Dynamics, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore 453552, India;
| | - Zsófia Varga-Medveczky
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Katalin Fónagy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Luca Anna Bors
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
- Heart and Vascular Centre, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
- Correspondence:
| |
Collapse
|
496
|
Rajabi N, Rezaei A, Kharaziha M, Bakhsheshi-Rad HR, Luo H, RamaKrishna S, Berto F. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair. Tissue Eng Part A 2021; 27:679-702. [PMID: 33499750 DOI: 10.1089/ten.tea.2020.0350] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bioprinting of body tissues has gained great attention in recent years due to its unique advantages, including the creation of complex geometries and printing the patient-specific tissues with various drug and cell types. The most momentous part of the bioprinting process is bioink, defined as a mixture of living cells and biomaterials (especially hydrogels). Among different biomaterials, natural polymers are the best choices for hydrogel-based bioinks due to their intrinsic biocompatibility and minimal inflammatory response in body condition. Gelatin methacryloyl (GelMA) hydrogel is one of the high-potential hydrogel-based bioinks due to its easy synthesis with low cost, great biocompatibility, transparent structure that is useful for cell monitoring, photocrosslinkability, and cell viability. Furthermore, the potential of adjusting properties of GelMA due to the synthesis protocol makes it a suitable choice for soft or hard tissues. In this review, different methods for the bioprinting of GelMA-based bioinks, as well as various effective process parameters, are reviewed. Also, several solutions for challenges in the printing of GelMA-based bioinks are discussed, and applications of GelMA-based bioprinted tissues argued as well. Impact statement Bioprinting has been demonstrated as a promising and alternative approach for organ transplantation to develop various types of living tissue. Bioinks, with great biological characteristics similar to the host tissues and rheological/flow features, are the first requirements for the successful bioprinting approach. Gelatin methacryloyl (GelMA) hydrogel is one of the high-potential hydrogel-based bioinks. This review provides a comprehensive look at different methods for the bioprinting of GelMA-based bioinks and applications of GelMA-based bioprinted tissues for tissue repair.
Collapse
Affiliation(s)
- Negar Rajabi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Ali Rezaei
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hongrong Luo
- National Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Seeram RamaKrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
497
|
Sánchez-Salazar MG, Álvarez MM, Trujillo-de Santiago G. Advances in 3D bioprinting for the biofabrication of tumor models. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bprint.2020.e00120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
498
|
Cooke ME, Rosenzweig DH. The rheology of direct and suspended extrusion bioprinting. APL Bioeng 2021; 5:011502. [PMID: 33564740 PMCID: PMC7864677 DOI: 10.1063/5.0031475] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Bioprinting is a tool increasingly used in tissue engineering laboratories around the world. As an extension to classic tissue engineering, it enables high levels of control over the spatial deposition of cells, materials, and other factors. It is a field with huge promise for the production of implantable tissues and even organs, but the availability of functional bioinks is a barrier to success. Extrusion bioprinting is the most commonly used technique, where high-viscosity solutions of materials and cells are required to ensure good shape fidelity of the printed tissue construct. This is contradictory to hydrogels used in tissue engineering, which are generally of low viscosity prior to cross-linking to ensure cell viability, making them not directly translatable to bioprinting. This review provides an overview of the important rheological parameters for bioinks and methods to assess printability, as well as the effect of bioink rheology on cell viability. Developments over the last five years in bioink formulations and the use of suspended printing to overcome rheological limitations are then discussed.
Collapse
|
499
|
Saska S, Pilatti L, Blay A, Shibli JA. Bioresorbable Polymers: Advanced Materials and 4D Printing for Tissue Engineering. Polymers (Basel) 2021; 13:563. [PMID: 33668617 PMCID: PMC7918883 DOI: 10.3390/polym13040563] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 01/10/2023] Open
Abstract
Three-dimensional (3D) printing is a valuable tool in the production of complexes structures with specific shapes for tissue engineering. Differently from native tissues, the printed structures are static and do not transform their shape in response to different environment changes. Stimuli-responsive biocompatible materials have emerged in the biomedical field due to the ability of responding to other stimuli (physical, chemical, and/or biological), resulting in microstructures modifications. Four-dimensional (4D) printing arises as a new technology that implements dynamic improvements in printed structures using smart materials (stimuli-responsive materials) and/or cells. These dynamic scaffolds enable engineered tissues to undergo morphological changes in a pre-planned way. Stimuli-responsive polymeric hydrogels are the most promising material for 4D bio-fabrication because they produce a biocompatible and bioresorbable 3D shape environment similar to the extracellular matrix and allow deposition of cells on the scaffold surface as well as in the inside. Subsequently, this review presents different bioresorbable advanced polymers and discusses its use in 4D printing for tissue engineering applications.
Collapse
Affiliation(s)
- Sybele Saska
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
| | - Livia Pilatti
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
| | - Alberto Blay
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
| | - Jamil Awad Shibli
- M3 Health Industria e Comercio de Produtos Medicos, Odontologicos e Correlatos S.A., Jundiaí, Sao Paulo 13212-213, Brazil; (S.S.); (L.P.); (A.B.)
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos, Sao Paulo 07023-070, Brazil
| |
Collapse
|
500
|
Extrusion bioprinting of hydroxyethylcellulose-based bioink for cervical tumor model. Carbohydr Polym 2021; 260:117793. [PMID: 33712141 DOI: 10.1016/j.carbpol.2021.117793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 01/16/2023]
Abstract
The present study demonstrates the extrusion printing of highly viscous and thixotropic hydroxyethylcellulose-based bioinks blended with various concentrations of sodium alginate (SA) and embedded with HeLa cells. The cell viability is shown to be inversely proportional to the relative SA content and can be as high as 81.5 % following one day of incubation. Furthermore, the biocompatibility of the hydrogel matrix supports cell proliferation resulting in an order of magnitude larger number of cells after a 7-day incubation. The cell viability is negatively affected mostly by the extrusion printing itself with some cell death occurring during their embedding in the hydrogels. After embedding the HeLa cells in the blends containing 1 and 2.5 % SA, the cell viability is not significantly affected by the residence time of up to 90 min before the bioink extrusion. The printed constructs can be utilized as a cervical tumor model.
Collapse
|