451
|
Liu A, Guan G, Du P, Gou H, Liu Z, Liu J, Ma M, Yang J, Li Y, Niu Q, Ren Q, Bai Q, Yin H, Luo J. Loop-mediated isothermal amplification (LAMP) method based on two species-specific primer sets for the rapid identification of Chinese Babesia bovis and B. bigemina. Parasitol Int 2012; 61:658-63. [DOI: 10.1016/j.parint.2012.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 11/26/2022]
|
452
|
Tick infestation patterns in free ranging African buffalo (Syncercus caffer): Effects of host innate immunity and niche segregation among tick species. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2012; 2:1-9. [PMID: 24533310 PMCID: PMC3862501 DOI: 10.1016/j.ijppaw.2012.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 11/24/2022]
Abstract
Ticks are of vast importance to livestock health, and contribute to conflicts between wildlife conservation and agricultural interests; but factors driving tick infestation patterns on wild hosts are not well understood. We studied tick infestation patterns on free-ranging African buffalo (Syncercus caffer), asking (i) is there evidence for niche segregation among tick species?; and (ii) how do host characteristics affect variation in tick abundance among hosts? We identified ticks and estimated tick burdens on 134 adult female buffalo from two herds at Kruger National Park, South Africa. To assess niche segregation, we evaluated attachment site preferences and tested for correlations between abundances of different tick species. To investigate which host factors may drive variability in tick abundance, we measured age, body condition, reproductive and immune status in all hosts, and examined their effects on tick burdens. Two tick species were abundant on buffalo, Amblyomma hebraeum and Rhipicephalus evertsi evertsi. A. hebraeum were found primarily in the inguinal and axillary regions; R. e. evertsi attached exclusively in the perianal area. Abundances of A. hebraeum and R. e. evertsi on the host were unrelated. These results suggest spatial niche segregation between A. hebraeum and R. e. evertsi on the buffalo. Buffalo with stronger innate immunity, and younger buffalo, had fewer ticks. Buffalo with low body condition scores, and pregnant buffalo, had higher tick burdens, but these effects varied between the two herds we sampled. This study is one of the first to link ectoparasite abundance patterns and immunity in a free-ranging mammalian host population. Based on independent abundances of A. hebraeum and R. e. evertsi on individual buffalo, we would expect no association between the diseases these ticks transmit. Longitudinal studies linking environmental variability with host immunity are needed to understand tick infestation patterns and the dynamics of tick-borne diseases in wildlife.
Collapse
|
453
|
Kubelová M, Mazancová J, Široký P. Theileria, Babesia, and Anaplasma detected by PCR in ruminant herds at Bié Province, Angola. Parasite 2012; 19:417-22. [PMID: 23193527 PMCID: PMC3671455 DOI: 10.1051/parasite/2012194417] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/12/2012] [Indexed: 11/24/2022] Open
Abstract
Distribution of Anaplasma spp., Babesia spp., Theileria spp., and Ehrlichia ruminantium, was for the first time studied in Bié Province, central Angola. We examined 76 blood samples of cattle originated from seven farms, and 13 blood samples of goats from two farms employing molecular genetic tools (PCR). Most prevalent was A. ovis-infection in goats (100%) and A. marginale-infection in cattle (38% of examined animals, and six out of seven farms). B. bigemina-infection was detected in only one specimen at Andulo, whereas B. bovis was not detected in Bié. We did not detected T. parva, the causative agent of serious diseases in cattle; nevertheless, infection by T. velifera was quite frequent (14% of examined animals, and five out of seven farms). Causative agent of heartwater disease - E. ruminantium, was not detected. Taking into account short-term perspective of PCR methods in monitoring of epidemiological status in herds, the number of infected animals and distribution of detected pathogens should not be ignored.
Collapse
Affiliation(s)
- M. Kubelová
-
Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno Palackého 1-3 612 42 Brno Czech Republic
| | - J. Mazancová
-
Department of Sustainable Technologies, Institute of Tropics and Subtropics, Czech University of Life Sciences Prague Kamýcká 129 165 21 Praha 6 Czech Republic
| | - P. Široký
-
Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno Palackého 1-3 612 42 Brno Czech Republic
-
CEITEC-Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno Palackého 1-3 612 42 Brno Czech Republic
| |
Collapse
|
454
|
Parizi LF, Githaka NW, Logullo C, Konnai S, Masuda A, Ohashi K, da Silva Vaz I. The quest for a universal vaccine against ticks: Cross-immunity insights. Vet J 2012; 194:158-65. [DOI: 10.1016/j.tvjl.2012.05.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/19/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
|
455
|
Gohil S, Herrmann S, Günther S, Cooke BM. Bovine babesiosis in the 21st century: advances in biology and functional genomics. Int J Parasitol 2012; 43:125-32. [PMID: 23068911 DOI: 10.1016/j.ijpara.2012.09.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Bovine babesiosis caused by the protozoan parasite, Babesia bovis, remains a significant cause of avoidable economic losses to the livestock industry in many countries throughout the world. The molecular mechanisms underlying the pathophysiology of severe disease in susceptible cattle are not well understood and the tools available to study the biology of the parasite, including technologies for genetic manipulation, have only recently been developed. Recent availability of multiple parasite genomes and bioinformatic tools, in combination with the development of new biological reagents, will facilitate our better understanding of the parasite. This will ultimately assist in the identification of novel targets for the development of new therapeutics and vaccines. Here we describe some recent advances in Babesia research and highlight some important challenges for the future.
Collapse
Affiliation(s)
- Sejal Gohil
- Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | |
Collapse
|
456
|
Heekin AM, Guerrero FD, Bendele KG, Saldivar L, Scoles GA, Gondro C, Nene V, Djikeng A, Brayton KA. Analysis of Babesia bovis infection-induced gene expression changes in larvae from the cattle tick, Rhipicephalus (Boophilus) microplus. Parasit Vectors 2012; 5:162. [PMID: 22871314 PMCID: PMC3436708 DOI: 10.1186/1756-3305-5-162] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cattle babesiosis is a tick-borne disease of cattle that has severe economic impact on cattle producers throughout the world's tropical and subtropical countries. The most severe form of the disease is caused by the apicomplexan, Babesia bovis, and transmitted to cattle through the bite of infected cattle ticks of the genus Rhipicephalus, with the most prevalent species being Rhipicephalus (Boophilus) microplus. We studied the reaction of the R. microplus larval transcriptome in response to infection by B. bovis. METHODS Total RNA was isolated for both uninfected and Babesia bovis-infected larval samples. Subtracted libraries were prepared by subtracting the B. bovis-infected material with the uninfected material, thus enriching for expressed genes in the B. bovis-infected sample. Expressed sequence tags from the subtracted library were generated, assembled, and sequenced. To complement the subtracted library method, differential transcript expression between samples was also measured using custom high-density microarrays. The microarray probes were fabricated using oligonucleotides derived from the Bmi Gene Index database (Version 2). Array results were verified for three target genes by real-time PCR. RESULTS Ticks were allowed to feed on a B. bovis-infected splenectomized calf and on an uninfected control calf. RNA was purified in duplicate from whole larvae and subtracted cDNA libraries were synthesized from Babesia-infected larval RNA, subtracting with the corresponding uninfected larval RNA. One thousand ESTs were sequenced from the larval library and the transcripts were annotated. We used a R. microplus microarray designed from a R. microplus gene index, BmiGI Version 2, to look for changes in gene expression that were associated with infection of R. microplus larvae. We found 24 transcripts were expressed at a statistically significant higher level in ticks feeding upon a B. bovis-infected calf contrasted to ticks feeding on an uninfected calf. Six transcripts were expressed at a statistically significant lower level in ticks feeding upon a B. bovis-infected calf contrasted to ticks feeding on an uninfected calf. CONCLUSION Our experimental approaches yielded specific differential gene expression associated with the infection of R. microplus by B. bovis. Overall, an unexpectedly low number of transcripts were found to be differentially expressed in response to B. bovis infection. Although the BmiGI Version 2 gene index (http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=b_microplus) was a useful database to help assign putative function to some transcripts, a majority of the differentially expressed transcripts did not have annotation that was useful for assignment of function and specialized bioinformatic approaches were necessary to increase the information from these transcriptome experiments.
Collapse
Affiliation(s)
- Andrew M Heekin
- Knipling Bushland US Livestock Insect Research Laboratory, USDA-ARS, 2700 Fredericksburg Rd, Kerrville, TX 78028, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
457
|
Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison DA. Babesia: a world emerging. INFECTION GENETICS AND EVOLUTION 2012; 12:1788-809. [PMID: 22871652 DOI: 10.1016/j.meegid.2012.07.004] [Citation(s) in RCA: 382] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/06/2012] [Accepted: 07/08/2012] [Indexed: 11/15/2022]
Abstract
Babesia are tick-transmitted hemoprotozooans that infect mammals and birds, and which are acknowledged for their major impact on farm and pet animal health and associated economic costs worldwide. Additionally, Babesia infections of wildlife can be fatal if associated with stressful management practices; and human babesiosis, also transmitted by blood transfusion, is an increasing public-health concern. Due to the huge diversity of species reported to serve as Babesia hosts, all vertebrates might be potential carriers, as long as they are adequate hosts for Babesia-vector ticks. We here provide a comprehensive overview of the most relevant Babesia species, and a discussion of the classical taxonomic criteria. Babesia, Cytauxzoon and Theileria parasites are closely related and collectively referred to as piroplasmids. A possible scenario for the history of piroplasmids is presented in the context of recent findings, and its implications for future research avenues are outlined. Phylogenetic trees of all available 18S rRNA and hsp70 genes were generated, based on which we present a thoroughly revised molecular classification, comprising five monophyletic Babesia lineages, one Cytauxzoon clade, and one Theileria clade. Updated 18S rRNA and beta-tubulin gene trees of the B. microti isolates agree with those previously reported. To reconcile estimates of the origin of piroplasmids and ticks (~300 Ma, respectively), and mammalian radiation (60 Ma), we hypothesize that the dixenous piroplasmid life cycle evolved with the origin of ticks. Thus, the observed time gap between tick origin and mammalian radiation indicates the existence of hitherto unknown piroplasmid lineages and/or species in extant vertebrate taxa, including reptiles and possibly amphibians. The development and current status of the molecular taxonomy of Babesia, with emphasis on human-infecting species, is discussed. Finally, recent results from population genetic studies of Babesia parasites, and their implications for the development of pathogenicity, drug resistance and vaccines, are summarized.
Collapse
Affiliation(s)
- Leonhard Schnittger
- Institute of Pathobiology, Center of Research in Veterinary and Agronomic Sciences, INTA-Castelar, Argentina.
| | | | | | | |
Collapse
|
458
|
Senanayake SN, Paparini A, Latimer M, Andriolo K, Dasilva AJ, Wilson H, Xayavong MV, Collignon PJ, Jeans P, Irwin PJ. First report of human babesiosis in Australia. Med J Aust 2012; 196:350-2. [PMID: 22432676 DOI: 10.5694/mja11.11378] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
459
|
Sivakumar T, Altangerel K, Battsetseg B, Battur B, AbouLaila M, Munkhjargal T, Yoshinari T, Yokoyama N, Igarashi I. Genetic detection of Babesia bigemina from Mongolian cattle using apical membrane antigen-1 gene-based PCR assay. Vet Parasitol 2012; 187:17-22. [DOI: 10.1016/j.vetpar.2012.01.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/27/2011] [Accepted: 01/03/2012] [Indexed: 11/26/2022]
|
460
|
Cao S, Aboge GO, Terkawi MA, Yu L, Kamyingkird K, Luo Y, Li Y, Goo YK, Yamagishi J, Nishikawa Y, Yokoyama N, Suzuki H, Igarashi I, Maeda R, Inpankaew T, Jittapalapong S, Xuan X. Molecular detection and identification of Babesia bovis and Babesia bigemina in cattle in northern Thailand. Parasitol Res 2012; 111:1259-66. [PMID: 22645033 DOI: 10.1007/s00436-012-2960-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/03/2012] [Indexed: 11/30/2022]
Abstract
Although Babesia bovis and Babesia bigemina infections cause economic losses in the cattle industry in northern Thailand, there is inadequate information on Babesia isolates present in the area. Therefore, to determine the prevalence and genetic relationship between Babesia isolates, we screened 200 blood samples of cattle from Chiang Rai, Chiang Mai, and Lumpang provinces of northern Thailand. A nested polymerase chain reaction using primers targeting B. bovis spherical body protein 2 (BboSBP2) and B. bigemina rhoptry-associated protein 1a (BbiRAP-1a) genes revealed a prevalence of 12 and 21 % for B. bovis and B. bigemina, respectively, while that of mixed infections was 6.5 % samples. The prevalences of B. bovis in Chiang Rai, Chiang Mai, and Lumpang were 9.5, 3.7, and 25.5 %, respectively. For B. bigemina, the prevalences were 15.8, 12.9, and 39.2 % in Chiang Rai, Chiang Mai, and Lumpang, respectively. Mixed infections with B. bovis and B. bigemina were 6.3 % in Chiang Rai, 1.9 % in Chiang Mai, and 13.7 % in Lumpang. The identical sequences of either BboSBP2 gene or BbiRAP-1a gene were shared among the Babesia isolates in the three provinces of northern Thailand. Further analysis using the internal transcribed spacer gene revealed at least four genotypes for B. bovis and five genotypes for B. bigemina in northern Thailand, while the sequences present great genetic diversities in the different isolates. Overall, we have demonstrated a high prevalence and polymorphism of Babesia parasites in northern Thailand calling for the need to design effective control programs for bovine babesiosis.
Collapse
Affiliation(s)
- Shinuo Cao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
461
|
Sivakumar T, Kothalawala H, Abeyratne SAE, Vimalakumar SC, Meewewa AS, Hadirampela DT, Puvirajan T, Sukumar S, Kuleswarakumar K, Chandrasiri ADN, Igarashi I, Yokoyama N. A PCR-based survey of selected Babesia and Theileria parasites in cattle in Sri Lanka. Vet Parasitol 2012; 190:263-7. [PMID: 22673106 DOI: 10.1016/j.vetpar.2012.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 11/30/2022]
Abstract
Hemoprotozoan parasites are responsible for significant economic losses in cattle. We screened Sri Lankan cattle populations for the presence of Babesia bovis, Babesia bigemina, Theileria annulata, and Theileria orientalis, using species-specific PCR assays. Out of 316 samples collected from animals in four different districts of Sri Lanka (Nuwara Eliya, Polonnaruwa, Ampara, and Jaffna), 231 (73.1%) were positive for at least one parasite species. All four parasite species were detected among the study groups from all of the districts surveyed. The first and second commonest hemoprotozoan parasites identified were T. orientalis (53.5%) and B. bigemina (30.1%), respectively. We found that the dry zones (Polonnaruwa, Ampara, and Jaffna) had more Babesia-positive animals than the hill country wet zone (Nuwara Eliya). In contrast, T. orientalis was the predominant species detected in Nuwara Eliya, while infection with T. annulata was more common in the dry zones. In addition, 81 (35.1%) of the 231 positive samples were infected with more than one parasite species. The presence of multiple parasite species among the different cattle populations is of clinical and economic significance. Therefore, island-wide control and prevention programs against bovine babesiosis and theileriosis are needed to minimize the financial burden caused by these parasites.
Collapse
Affiliation(s)
- Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
462
|
Validation and field evaluation of a competitive enzyme-linked immunosorbent assay for diagnosis of Babesia bovis infections in Argentina. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:924-8. [PMID: 22492742 DOI: 10.1128/cvi.00015-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Infections by Babesia bovis limit cattle production and cause important economic losses in tropical and subtropical areas around the world. Monitoring of calf sera can be used to detect unprotected cattle herds and to decide on strategic control measures, as well as for epidemiological studies. Merozoite surface antigen 2c (MSA-2c) is an immunodominant surface protein expressed in B. bovis merozoites and sporozoites and contains B-cell epitopes that are conserved among geographic isolates. A monoclonal antibody against recombinant MSA-2c (rMSA-2c) was previously shown to inhibit the binding of anti-B. bovis antibodies to a parasite B-cell epitope in a competitive enzyme-linked immunosorbent assay (cELISA) format. In the work at hand, the parameters of this cELISA were reevaluated and adjusted when necessary, and a cutoff value was determined by receiver operator characteristic (ROC) curve analysis of a total of 357 bovine sera of known reactivity, as assessed by indirect immunofluorescence assay (IFAT). The established rMSA-2c cELISA demonstrated a specificity of 98% and a sensitivity of 96.2%. An additional set of 303 field bovine sera from regions where ticks are endemic and tick-free regions of Argentina was tested by both rMSA-2c cELISA and IFAT, and the results were shown to be in very good agreement (kappa index, 0.8325). The performance shown by rMSA-2c cELISA in the detection of B. bovis-specific antibodies and its suitability for standardization and large-scale production, as well as the possibility of its application in most veterinary diagnostic laboratories, make the assay a powerful tool for the surveillance of herd immunity as a strategic measure for the control of bovine babesiosis.
Collapse
|
463
|
Shebish E, Vemulapalli R, Oseto C. Prevalence and molecular detection of Anaplasma marginale, Babesia bovis and Babesia bigemina in cattle from Puntarenas Province, Costa Rica. Vet Parasitol 2012; 188:164-7. [PMID: 22465150 DOI: 10.1016/j.vetpar.2012.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 11/26/2022]
Abstract
A study was conducted in 2008 to determine the prevalence of Anaplasma and Babesia infections in cattle in the Puntarenas Province of Costa Rica. Blood samples were taken from a total of 449 cattle during the month of March at 30 farms in the region of Espiritu Santu, Costa Rica. Commercially available enzyme-linked immunosorbent assays (ELISA) were used to determine presence of antibodies to Babesia bigemina and Anaplasma marginale, and real-time PCR was used to determine the presence of DNA from the disease-causing organisms. The ELISA results indicated that 87.5% of the cattle sampled were positive for antibodies to A. marginale, while 59.1% were positive for antibodies to B. bigemina. The real-time PCR results showed that 235 cattle were carrying A. marginale DNA (56.9%), 6 with B. bigemina DNA (1.34%), and 2 with B. bovis DNA (0.45%).
Collapse
|
464
|
Brake DK, Pérez de León AA. Immunoregulation of bovine macrophages by factors in the salivary glands of Rhipicephalus microplus. Parasit Vectors 2012; 5:38. [PMID: 22333193 PMCID: PMC3320552 DOI: 10.1186/1756-3305-5-38] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/14/2012] [Indexed: 11/13/2022] Open
Abstract
Background Alternative strategies are required to control the southern cattle tick, Rhipicephalus microplus, due to evolving resistance to commercially available acaricides. This invasive ectoparasite is a vector of economically important diseases of cattle such as bovine babesiosis and anaplasmosis. An understanding of the biological intricacies underlying vector-host-pathogen interactions is required to innovate sustainable tick management strategies that can ultimately mitigate the impact of animal and zoonotic tick-borne diseases. Tick saliva contains molecules evolved to impair host innate and adaptive immune responses, which facilitates blood feeding and pathogen transmission. Antigen presenting cells are central to the development of robust T cell responses including Th1 and Th2 determination. In this study we examined changes in co-stimulatory molecule expression and cytokine response of bovine macrophages exposed to salivary gland extracts (SGE) obtained from 2-3 day fed, pathogen-free adult R. microplus. Methods Peripheral blood-derived macrophages were treated for 1 hr with 1, 5, or 10 μg/mL of SGE followed by 1, 6, 24 hr of 1 μg/mL of lipopolysaccharide (LPS). Real-time PCR and cytokine ELISA were used to measure changes in co-stimulatory molecule expression and cytokine response. Results Changes were observed in co-stimulatory molecule expression of bovine macrophages in response to R. microplus SGE exposure. After 6 hrs, CD86, but not CD80, was preferentially up-regulated on bovine macrophages when treated with 1 μg/ml SGE and then LPS, but not SGE alone. At 24 hrs CD80, CD86, and CD69 expression was increased with LPS, but was inhibited by the addition of SGE. SGE also inhibited LPS induced upregulation of TNFα, IFNγ and IL-12 cytokines, but did not alter IL-4 or CD40 mRNA expression. Conclusions Molecules from the salivary glands of adult R. microplus showed bimodal concentration-, and time-dependent effects on differential up-regulation of CD86 in bovine macrophages activated by the TLR4-ligand, LPS. Up regulation of proinflammatory cytokines and IL-12, a Th1 promoting cytokine, were inhibited in a dose-dependent manner. The co-stimulatory molecules CD80, as well as the cell activation marker, CD69, were also suppressed in macrophages exposed to SGE. Continued investigation of the immunomodulatory factors will provide the knowledge base to research and develop therapeutic or prophylactic interventions targeting R. microplus-cattle interactions at the blood-feeding interface.
Collapse
Affiliation(s)
- Danett K Brake
- USDA-ARS Knipling, Livestock Insects Research Laboratory, Kerrville, TX 78028, USA.
| | | |
Collapse
|
465
|
Guan G, Moreau E, Liu J, Ma M, Rogniaux H, Liu A, Niu Q, Li Y, Ren Q, Luo J, Chauvin A, Yin H. BQP35 is a novel member of the intrinsically unstructured protein (IUP) family which is a potential antigen for the sero-diagnosis of Babesia sp. BQ1 (Lintan) infection. Vet Parasitol 2012; 187:421-30. [PMID: 22317784 DOI: 10.1016/j.vetpar.2012.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 01/04/2012] [Accepted: 01/13/2012] [Indexed: 11/19/2022]
Abstract
A new gene of Babesia sp. BQ1 (Lintan) (BQP35) was cloned by screening a merozoite cDNA expression library with infected sheep serum and using rapid amplification of cDNA ends (RACE). The nucleotide sequence of the cDNA was 1140bp with an open reading frame (ORF) of 936bp encoding a 35-kDa predicted polypeptide with 311 amino acid residues. Comparison of BQP35 cDNA and genomic DNA sequences showed that BQP35 does not possess an intron. Recombinant BQP35 (rBQP35), expressed in a prokaryotic expression system, showed abnormally slow migration on SDS-PAGE. Gel shifting, amino acid sequence and in silico disorder region prediction indicated that BQP35 protein has characteristics of intrinsically unstructured proteins (IUPs). This is the first description of such proteins in the Babesia genus. BQP35 induced antibodies production as early as one week after Babesia sp. BQ1 (Lintan) infection in sheep. No cross-reaction was observed with sera from sheep infected with other ovine piroplasms dominant in China, except with Babesia sp. Tianzhu. The interest of BQP35 as a diagnostic antigen is discussed.
Collapse
Affiliation(s)
- Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu 730046, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
466
|
Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. Int J Parasitol 2012; 42:187-95. [PMID: 22265898 DOI: 10.1016/j.ijpara.2011.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 11/22/2022]
Abstract
Ticks are obligate haematophagous ectoparasites of wild and domestic animals as well as humans, considered to be second worldwide to mosquitoes as vectors of human diseases, but the most important vectors of disease-causing pathogens in domestic and wild animals. Babesia spp. are tick-borne pathogens that cause a disease called babesiosis in a wide range of animals and in humans. In particular, Babesia bovis and Babesia bigemina are transmitted by cattle ticks, Rhipicephalus (Boophilus) annulatus and Rhipicephalus microplus, which are considered the most important cattle ectoparasites with major economic impacts on cattle production. The objectives of this study were to identify R. annulatus genes differentially expressed in response to infection with B. bigemina. Functional analyses were conducted on selected genes by RNA interference in both R. annulatus and R. microplus ticks. Eight hundred randomly selected suppression-subtractive hybridisation library clones were sequenced and analysed. Molecular function Gene Ontology assignments showed that the obtained tick sequences encoded for proteins with different cellular functions. Differentially expressed genes with putative functions in tick-pathogen interactions were selected for validation of SSH results by real-time reverse transcription-PCR. Genes encoding for TROSPA, calreticulin, ricinusin and serum amyloid A were over-expressed in B. bigemina-infected ticks while Kunitz-type protease inhibitor 5 mRNA levels were down-regulated in infected ticks. Functional analysis of differentially expressed genes by double stranded RNA-mediated RNAi showed that under the conditions of the present study knockdown of TROSPA and serum amyloid A significantly reduced B. bigemina infection levels in R. annulatus while in R. microplus, knockdown of TROSPA, serum amyloid A and calreticulin also reduced pathogen infection levels when compared with controls. Several studies have characterised the tick-pathogen interface at the molecular level. However, to our knowledge this is the first report of functional genomics studies in R. annulatus infected with B. bigemina. The results reported here increase our understanding of the role of tick genes in Babesia infection/multiplication.
Collapse
|
467
|
Terkawi MA, Alhasan H, Huyen NX, Sabagh A, Awier K, Cao S, Goo YK, Aboge G, Yokoyama N, Nishikawa Y, Kalb-Allouz AK, Tabbaa D, Igarashi I, Xuan X. Molecular and serological prevalence of Babesia bovis and Babesia bigemina in cattle from central region of Syria. Vet Parasitol 2012; 187:307-11. [PMID: 22265803 DOI: 10.1016/j.vetpar.2011.12.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/19/2011] [Accepted: 12/29/2011] [Indexed: 11/24/2022]
Abstract
A total of 207 bovine blood samples were collected from clinically healthy cattle bred in central region of Syria and examined by Giemsa-stained blood smears, nested PCR, ELISA, and IFAT to determine the molecular and serological prevalence of Babesia bovis and B. bigemina. All samples were negative to Babesia spp. by microscopic examination of blood smears. On the other hand, the overall prevalence of B. bovis and B. bigemina was 9.18% and 15.46% by nPCR, 15.46% and 18.84% by ELISA, and 18.36% and 21.74% by IFAT, respectively. Mixed infections were detected in a total of 5 samples (2.4%) by nPCR, 16 (7.73%) by ELISA and 27 (13.04%) by IFAT. Statistically significant differences in the prevalence of the two infections were observed on the basis of age and location. These data provide valuable information regarding the occurrence and epidemiology of B. bovis and B. bigemina infections in Syrian cattle, which can be employed in developing rational strategies for disease control and management.
Collapse
Affiliation(s)
- Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
468
|
Expression and characterization of the Babesia bigemina cysteine protease BbiCPL1. Acta Trop 2012; 121:1-5. [PMID: 21986365 DOI: 10.1016/j.actatropica.2011.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 08/25/2011] [Accepted: 09/12/2011] [Indexed: 11/21/2022]
Abstract
BbiCPL1 was the first papain-like cysteine protease from a piroplasm to be identified with proteolytic activity. Here we report the improved production of the active recombinant enzyme, and the biochemical characterization of this potential drug target. BbiCPL1 showed characteristic properties of its class, including hydrolysis of papain-family peptide substrates, an acidic pH optimum, requirement of a reducing environment for maximum activity, and inhibition by standard cysteine protease inhibitors such as E-64, leupeptin, ALLN and cystatin. The optimum pH for the protease activity against peptide substrates was 5.5, but enzymatic activity was observed between pH 4.0 and pH 9.0. At slightly basic pH 7.5, BbiCPL1 maintained 83% of maximum activity, suggesting a role in cytosol environment.
Collapse
|
469
|
Anderson-White B, Beck JR, Chen CT, Meissner M, Bradley PJ, Gubbels MJ. Cytoskeleton assembly in Toxoplasma gondii cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:1-31. [PMID: 22878103 PMCID: PMC4066374 DOI: 10.1016/b978-0-12-394309-5.00001-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cell division across members of the protozoan parasite phylum Apicomplexa displays a surprising diversity between different species as well as between different life stages of the same parasite. In most cases, infection of a host cell by a single parasite results in the formation of a polyploid cell from which individual daughters bud in a process dependent on a final round of mitosis. Unlike other apicomplexans, Toxoplasma gondii divides by a binary process consisting of internal budding that results in only two daughter cells per round of division. Since T. gondii is experimentally accessible and displays the simplest division mode, it has manifested itself as a model for apicomplexan daughter formation. Here, we review newly emerging insights in the prominent role that assembly of the cortical cytoskeletal scaffold plays in the process of daughter parasite formation.
Collapse
Affiliation(s)
| | - Josh R. Beck
- University of California Los Angeles, Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA 90095, USA
| | - Chun-Ti Chen
- Boston College, Department of Biology, Chestnut Hill, MA 02467, USA
| | - Markus Meissner
- Division of Infection and Immunity, Institute of Biomedical Life Sciences, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Peter J. Bradley
- University of California Los Angeles, Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA 90095, USA
| | - Marc-Jan Gubbels
- Boston College, Department of Biology, Chestnut Hill, MA 02467, USA
| |
Collapse
|
470
|
Mosqueda J, Olvera-Ramirez A, Aguilar-Tipacamu G, Canto GJ. Current advances in detection and treatment of babesiosis. Curr Med Chem 2012; 19:1504-18. [PMID: 22360483 PMCID: PMC3355466 DOI: 10.2174/092986712799828355] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 01/15/2023]
Abstract
Babesiosis is a disease with a world-wide distribution affecting many species of mammals principally cattle and man. The major impact occurs in the cattle industry where bovine babesiosis has had a huge economic effect due to loss of meat and beef production of infected animals and death. Nowadays to those costs there must be added the high cost of tick control, disease detection, prevention and treatment. In almost a century and a quarter since the first report of the disease, the truth is: there is no a safe and efficient vaccine available, there are limited chemotherapeutic choices and few low-cost, reliable and fast detection methods. Detection and treatment of babesiosis are important tools to control babesiosis. Microscopy detection methods are still the cheapest and fastest methods used to identify Babesia parasites although their sensitivity and specificity are limited. Newer immunological methods are being developed and they offer faster, more sensitive and more specific options to conventional methods, although the direct immunological diagnoses of parasite antigens in host tissues are still missing. Detection methods based on nucleic acid identification and their amplification are the most sensitive and reliable techniques available today; importantly, most of those methodologies were developed before the genomics and bioinformatics era, which leaves ample room for optimization. For years, babesiosis treatment has been based on the use of very few drugs like imidocarb or diminazene aceturate. Recently, several pharmacological compounds were developed and evaluated, offering new options to control the disease. With the complete sequence of the Babesia bovis genome and the B. bigemina genome project in progress, the post-genomic era brings a new light on the development of diagnosis methods and new chemotherapy targets. In this review, we will present the current advances in detection and treatment of babesiosis in cattle and other animals, with additional reference to several apicomplexan parasites.
Collapse
Affiliation(s)
- J Mosqueda
- C.A. Salud Animal y Microbiología Ambiental. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Mexico.
| | | | | | | |
Collapse
|
471
|
An epidemiological survey on bovine and ovine babesiosis in Kurdistan Province, western Iran. Trop Anim Health Prod 2011; 44:319-22. [DOI: 10.1007/s11250-011-0023-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
|
472
|
Ferreri LM, Brayton KA, Sondgeroth KS, Lau AO, Suarez CE, McElwain TF. Expression and strain variation of the novel "small open reading frame" (smorf) multigene family in Babesia bovis. Int J Parasitol 2011; 42:131-8. [PMID: 22138017 PMCID: PMC3459096 DOI: 10.1016/j.ijpara.2011.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/11/2011] [Accepted: 10/05/2011] [Indexed: 11/19/2022]
Abstract
Small open reading frame (smorf) genes comprise the second largest Babesia bovis multigene family. All known 44 variant smorf genes are located in close chromosomal proximity to ves1 genes, which encode proteins that mediate cytoadhesion and contribute to immune evasion. In this study, we characterised the general topology of smorf genes and investigated the gene repertoire, transcriptional profile and SMORF expression in two distinct strains, T2Bo and Mo7. Sequence analysis using degenerate primers identified additional smorf genes in each strain and demonstrated that the smorf gene repertoire varies between strains, with conserved and unique genes in both. Smorf genes have multiple semi-conserved and variable blocks, and a large hypervariable insertion in 20 of the 44 genes defines two major branches of the family, termed smorf A and smorf B. A total of 32 smorf genes are simultaneously transcribed in T2Bo strain B. bovis merozoites obtained from deep brain tissue of an acutely infected animal. SMORF peptide-specific antiserum bound in immunoblots to multiple proteins with a range of sizes predicted by smorf genes, confirming translation of smorf gene products from these transcripts. These results indicate that the smorf multigene family is larger than previously described and demonstrate that smorf genes are expressed and are undergoing variation, both within strains and in a lineage-specific pattern independent of strain specificity. The function of these novel proteins is unknown.
Collapse
Affiliation(s)
- Lucas M. Ferreri
- Department of Veterinary Microbiology and Pathology and School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6040, USA
| | - Kelly A. Brayton
- Department of Veterinary Microbiology and Pathology and School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6040, USA
| | - Kerry S. Sondgeroth
- Department of Veterinary Microbiology and Pathology and School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6040, USA
| | - Audrey O.T. Lau
- Department of Veterinary Microbiology and Pathology and School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6040, USA
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, WA 99164, USA
| | - Terry F. McElwain
- Department of Veterinary Microbiology and Pathology and School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6040, USA
- Corresponding author. Tel.: +1 509 335 6342; fax: +1 509 335 7424.
| |
Collapse
|
473
|
Galay RL, Maeda H, Aung KM, Umemiya-Shirafuji R, Xuan X, Igarashi I, Tsuji N, Tanaka T, Fujisaki K. Anti-babesial activity of a potent peptide fragment derived from longicin of Haemaphysalis longicornis. Trop Anim Health Prod 2011; 44:343-8. [DOI: 10.1007/s11250-011-0027-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2011] [Indexed: 12/20/2022]
|
474
|
Abstract
SUMMARYThe aim of this study was to compare the genetic diversity of the single copyBv80gene sequences ofBabesia bovisin populations of attenuated and virulent parasites. PCR/ RT-PCR followed by cloning and sequence analyses of 4 attenuated and 4 virulent strains were performed. Multiple fragments in the range of 420 to 744 bp were amplified by PCR or RT-PCR. Cloning of the PCR fragments and sequence analyses revealed the presence of mixed subpopulations in either virulent or attenuated parasites with a total of 19 variants with 12 different sequences that differed in number and type of tandem repeats. High levels of intra- and inter-strain diversity of theBv80gene, with the presence of mixed populations of parasites were found in both the virulent field isolates and the attenuated vaccine strains. In addition, during the attenuation process, sequence analyses showed changes in the pattern of the parasite subpopulations. Despite high polymorphism found by sequence analyses, the patterns observed and the number of repeats, order, or motifs found could not discriminate between virulent field isolates and attenuated vaccine strains of the parasite.
Collapse
|
475
|
Natural occurrence of lethal aspergillosis in the cattle tickRhipicephalus (Boophilus) microplus(Acari:Ixodidae). Parasitology 2011; 139:259-63. [DOI: 10.1017/s0031182011001843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThe purpose of this study was to describe an unreported entomopathogenic fungus that naturally infects the cattle tickRhipicephalus (Boophilus) microplus(Acari: Ixodidae). Engorged female ticks, showed symptoms of fungal infection after controlled tick infestation of cattle. Infected ticks developed a distinctive dark colour, a pale mould grew over the cuticle and the ticks eventually died covered with fungal conidiophores. The responsible fungus was isolated and cultured on mycological medium and submitted to microscopic morphology, biochemical phenotyping and 18S rRNA ribotyping analyses, which identified it as aflatoxin-producingAspergillus flavus. Spores from the cultured fungus were experimentally sprayed over healthy engorged female ticks, obtaining an 80% prevalence of experimental infection of healthy ticks and their egg masses, the larval progeny after incubation under laboratory conditions was also infected. These results demonstrate thatA. flavusis the causative agent of the natural fungal disease of the cattle tickR. microplusdescribed here.
Collapse
|
476
|
A hidden Markov model for analysis of frontline veterinary data for emerging zoonotic disease surveillance. PLoS One 2011; 6:e24833. [PMID: 21949763 PMCID: PMC3174964 DOI: 10.1371/journal.pone.0024833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/22/2011] [Indexed: 11/19/2022] Open
Abstract
Surveillance systems tracking health patterns in animals have potential for early warning of infectious disease in humans, yet there are many challenges that remain before this can be realized. Specifically, there remains the challenge of detecting early warning signals for diseases that are not known or are not part of routine surveillance for named diseases. This paper reports on the development of a hidden Markov model for analysis of frontline veterinary sentinel surveillance data from Sri Lanka. Field veterinarians collected data on syndromes and diagnoses using mobile phones. A model for submission patterns accounts for both sentinel-related and disease-related variability. Models for commonly reported cattle diagnoses were estimated separately. Region-specific weekly average prevalence was estimated for each diagnoses and partitioned into normal and abnormal periods. Visualization of state probabilities was used to indicate areas and times of unusual disease prevalence. The analysis suggests that hidden Markov modelling is a useful approach for surveillance datasets from novel populations and/or having little historical baselines.
Collapse
|
477
|
Begley DW, Edwards TE, Raymond AC, Smith ER, Hartley RC, Abendroth J, Sankaran B, Lorimer DD, Myler PJ, Staker BL, Stewart LJ. Inhibitor-bound complexes of dihydrofolate reductase-thymidylate synthase from Babesia bovis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1070-7. [PMID: 21904052 PMCID: PMC3169404 DOI: 10.1107/s1744309111029009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/18/2011] [Indexed: 02/03/2023]
Abstract
Babesiosis is a tick-borne disease caused by eukaryotic Babesia parasites which are morphologically similar to Plasmodium falciparum, the causative agent of malaria in humans. Like Plasmodium, different species of Babesia are tuned to infect different mammalian hosts, including rats, dogs, horses and cattle. Most species of Plasmodium and Babesia possess an essential bifunctional enzyme for nucleotide synthesis and folate metabolism: dihydrofolate reductase-thymidylate synthase. Although thymidylate synthase is highly conserved across organisms, the bifunctional form of this enzyme is relatively uncommon in nature. The structural characterization of dihydrofolate reductase-thymidylate synthase in Babesia bovis, the causative agent of babesiosis in livestock cattle, is reported here. The apo state is compared with structures that contain dUMP, NADP and two different antifolate inhibitors: pemetrexed and raltitrexed. The complexes reveal modes of binding similar to that seen in drug-resistant malaria strains and point to the utility of applying structural studies with proven cancer chemotherapies towards infectious disease research.
Collapse
Affiliation(s)
- Darren W Begley
- Seattle Structural Genomics Center for Infectious Disease (http://www.ssgcid.org), USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
478
|
Suarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol 2011; 180:109-25. [DOI: 10.1016/j.vetpar.2011.05.032] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
479
|
Isolation and characterisation of acaricidal and larvicidal novel compound (2S,5R,6R)-2-hydroxy-3,5,6-trimethyloctan-4-one from Streptomyces sp. against blood-sucking parasites. Parasitol Res 2011; 111:1151-63. [DOI: 10.1007/s00436-011-2493-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
|
480
|
Chalaire KC, Kim TK, Garcia-Rodriguez H, Mulenga A. Amblyomma americanum (L.) (Acari: Ixodidae) tick salivary gland serine protease inhibitor (serpin) 6 is secreted into tick saliva during tick feeding. ACTA ACUST UNITED AC 2011; 214:665-73. [PMID: 21270316 DOI: 10.1242/jeb.052076] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In order to successfully feed and transmit disease agents, ticks are thought to inject serine protease inhibitors (serpins) into the host to modulate host defense responses to tick feeding, such as inflammation, the complement activation pathway and blood coagulation. In this study, we show that Amblyomma americanum (Aam) serpin (S) 6 is putatively injected into the host during tick feeding, in that the antibody to recombinant (r) AamS6 specifically reacted with the expected ∼43/45 kDa AamS6 protein band on western blots of pilocarpine-induced tick saliva. Additionally, antibodies to tick saliva proteins that were generated by repeated 48 h infestations of rabbits with adult A. americanum specifically reacted with rAamS6. We speculate that AamS6 is associated with regulating events at the start of the tick feeding process, as temporal and spatial RT-PCR and western blot analyses revealed that both AamS6 mRNA and protein are strongly expressed during the first 24-72 h of feeding time before starting to fade from 96 h. The AamS6 protein has an apparently slow turnover rate in that, although the injection of AamS6 dsRNA into unfed ticks triggered complete disruption of the AamS6 mRNA by the 48 h feeding time point, western blot analysis of protein extracts of the same animals showed that the AamS6 protein that may have been expressed prior to disruption of the AamS6 mRNA was not depleted. We speculate that the presence of the AamS6 protein in ticks despite the complete disruption of the AamS6 mRNA explains the observation that RNAi-mediated silencing of the AamS6 mRNA did not affect the ability of A. americanum ticks to attach onto host skin, successfully feed and lay eggs. These findings are discussed in regards to advances in the molecular biology of ticks.
Collapse
|
481
|
Terkawi MA, Thekisoe OMM, Katsande C, Latif AA, Mans BJ, Matthee O, Mkize N, Mabogoane N, Marais F, Yokoyama N, Xuan X, Igarashi I. Serological survey of Babesia bovis and Babesia bigemina in cattle in South Africa. Vet Parasitol 2011; 182:337-42. [PMID: 21700393 DOI: 10.1016/j.vetpar.2011.05.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/28/2011] [Accepted: 05/25/2011] [Indexed: 11/19/2022]
Abstract
A total of 719 serum samples collected from clinically healthy cattle from eight provinces located in different districts of South Africa were examined by the indirect enzyme-linked immunosorbent assay (ELISA) and the standard indirect fluorescent antibody test (IFAT) to determine the serological prevalence of Babesia bovis and Babesia bigemina. The results showed that 35.3% and 39.7% of cattle were positive for B. bovis and 30% and 36.5% were positive for B. bigemina antibodies on ELISA and IFAT, respectively. Mixed infections were detected in 18.2% and 26.3% of the samples using ELISA and IFAT, respectively. Consequently, the ELISAs with recombinant B. bovis spherical body protein-4 (BbSBP-4) and B. bigemina C-terminal rhoptry-associated protein-1 (BbigRAP-1/CT) were proven to be highly reliable in the serological diagnoses of bovine babesiosis in South African cattle, as evidenced by the significant concordance rates when the results were compared to those of IFAT. Moreover, the serological prevalence was significantly different among the tested provinces, in which the ranges exhibited between 15% and 73% for B. bovis infection and between 13% and 54% for B. bigemina infection. High sero-positive rates were present in Mpumalanga and KwaZulu-Natal provinces, while the lowest rate was in the North West province. Our data provide important information regarding the current seroprevalence of bovine babesiosis in South Africa, which might be beneficial in developing rational strategies for disease control and management.
Collapse
Affiliation(s)
- Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
482
|
Arong G, Okon O, Opara K, Etim S, Oku E, Iboh C. Experimental Transmission of Babesia bigemina by Boophilus decoloratus in Cattle. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jp.2011.168.175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
483
|
A novel neutralization sensitive and subdominant RAP-1-related antigen (RRA) is expressed byBabesia bovismerozoites. Parasitology 2011; 138:809-18. [DOI: 10.1017/s0031182011000321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYObjective.TheBabesia bovisgenome encodes arap-1related gene denominated RAP-1 related antigen (RRA). In this study, we analysed the pattern of expression, immunogenicity and functional relevance of RRA.Methods.Phylogenetic analysis was performed using the program Phylip. Expression ofrrawas analysed by Northern blots, RT-PCR, immunoprecipitation, Western blots and immunofluorescence. RRA antigenicity was tested by T-cell proliferation and Western blot analysis, and functional relevance was determined in anin vitroneutralization assay.Results.RRA is more closely related to RAP-1b ofBabesia bigeminathan toB. bovisRAP-1, and it is highly conserved among distinct strains. Transcriptional analysis suggests lower numbers ofrratranscripts compared torap-1.Immunoprecipitation of metabolically labelledB. bovisproteins with antibodies against synthetic peptides representing predicted antigenic regions of RRA confirmed the expression of a ∼43 kDa RRA in cultured merozoites. Antibodies present inB. bovishyperimmune sera, but not in field-infected cattle sera, reacted weakly with recombinant RRA, and no significant stimulation was obtained using recombinant RRA as antigen in T-cell proliferation assays, indicating that RRA is a subdominant antigen. Antibodies against RRA synthetic peptides reacted with merozoites using immunofluorescence, and were able to significantly inhibit erythrocyte invasion inin vitroneutralization tests, suggesting functional relevance for parasite survival.Conclusion.B. bovisexpress a novel subdominant RAP-1-like molecule that may contribute to erythrocyte invasion and/or egression by the parasite.
Collapse
|
484
|
Terkawi MA, Seuseu FJ, Eko-Wibowo P, Huyen NX, Minoda Y, AbouLaila M, Kawai S, Yokoyama N, Xuan X, Igarashi I. Secretion of a new spherical body protein of Babesia bovis into the cytoplasm of infected erythrocytes. Mol Biochem Parasitol 2011; 178:40-5. [PMID: 21406202 DOI: 10.1016/j.molbiopara.2011.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 02/08/2011] [Accepted: 02/14/2011] [Indexed: 11/17/2022]
Abstract
A cDNA encoding a new Babesia bovis spherical body protein 4 (BbSBP-4) was reported to have no significant homology to other apicomplexan proteins or previously reported B. bovis spherical body proteins. In the present study, we further examined the molecular characteristics of BbSBP-4 including the expression and cellular localization of the BbSBP-4. An anti-rBbSBP-4 mouse serum specifically reacted to a 41-kDa native protein B. bovis in Western blot analysis. The immunoelectron microscopic examination confirmed the localization of BbSBP-4 in spherical bodies, but not in the nucleus, rhoptries, and micronemes. Interestingly, the protein was found to be localized not only in the spherical body of B. bovis but also in the cytoplasm of infected erythrocytes (iRBC) at the later stage of parasite development. The confocal laser microscopic examination and Western blot analysis demonstrated the increased accumulation of BbSBP-4 in the cytoplasm of iRBC and in the supernatant of cultivated B. bovis during the late developmental stage of the parasite. These results suggest that BbSBP-4 was secreted from spherical body into cytoplasm of iRBC during the late developmental stage of the parasite before the rupture of infected RBC. Taken together, BbSBP-4 might play an important role as a secreted protein in the intracellular development and/or survival of B. bovis.
Collapse
Affiliation(s)
- Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
485
|
Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Velayutham K. Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol Res 2011; 109:461-72. [DOI: 10.1007/s00436-011-2277-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/28/2011] [Indexed: 01/20/2023]
|
486
|
Terkawi MA, Huyen NX, Shinuo C, Inpankaew T, Maklon K, Aboulaila M, Ueno A, Goo YK, Yokoyama N, Jittapalapong S, Xuan X, Igarashi I. Molecular and serological prevalence of Babesia bovis and Babesia bigemina in water buffaloes in the northeast region of Thailand. Vet Parasitol 2011; 178:201-7. [PMID: 21324601 DOI: 10.1016/j.vetpar.2011.01.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
Abstract
Bovine babesiosis is a tick-transmitted hemoprotozoan disease that is mainly caused by Babesia bovis and Babesia bigemina and is characterized by significant morbidity and mortality worldwide. The disease is widespread in the northeastern region of Thailand, where an increasingly large part of the livestock is composed of water buffaloes. The present study was therefore conducted to investigate the epidemiological distribution of B. bovis and B. bigemina in water buffaloes in the northeastern region of Thailand. A total of 305 buffalo blood samples were randomly collected from five provinces and simultaneously analyzed by the nested PCR (nPCR) assay, ELISA, and IFAT techniques. The overall prevalence of B. bovis and B. bigemina was 11.2% and 3.6% by nPCR, 14.7% and 5.9% by ELISA, and 16.8% and 5.6% by IFAT, respectively. The high concordance between the molecular and the serological detection tests revealed the specificity and sensitivity of the diagnostic assays used for the detection of infection as well as the endemic stability status of the parasites in the surveyed areas. Statistically significant differences in the prevalence of the two infections were observed on the basis of age and location but not gender. Our data provide valuable information regarding the epidemiology of B. bovis and B. bigemina infection in water buffaloes in the northeastern region of Thailand which will likely be very beneficial for management and control programs of this disease.
Collapse
Affiliation(s)
- Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
487
|
Identification of papain-like cysteine proteases from the bovine piroplasm Babesia bigemina and evolutionary relationship of piroplasms C1 family of cysteine proteases. Exp Parasitol 2011; 127:184-94. [DOI: 10.1016/j.exppara.2010.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 11/18/2022]
|
488
|
Tsai YL, Chomel BB, Chang CC, Kass PH, Conrad PA, Chuang ST. Bartonella and Babesia infections in cattle and their ticks in Taiwan. Comp Immunol Microbiol Infect Dis 2010; 34:179-87. [PMID: 21194750 DOI: 10.1016/j.cimid.2010.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 10/26/2010] [Accepted: 11/03/2010] [Indexed: 11/29/2022]
Abstract
Bartonella and Babesia infections and the association with cattle breed and age as well as tick species infesting selected cattle herds in Taiwan were investigated. Blood samples were collected from 518 dairy cows and 59 beef cattle on 14 farms and 415 ticks were collected from these animals or in a field. Bartonella and Babesia species were isolated and/or detected in the cattle blood samples and from a selected subset (n=254) of the ticks either by culture or DNA extraction, PCR testing and DNA sequence analysis. Bartonella bovis was isolated from a dairy cow and was detected in 25 (42.4%) beef cattle and 40 (15.7%) tick DNA samples. This is the first isolation of B. bovis from cattle in Asia and detection of a wide variety of Bartonella species in Rhipicephalus microplus. Babesia spp. were detected only on one farm from dairy cows either infected by Babesia bovis (n=10, 1.9%) or B. bigemina (n=3, 0.6%).
Collapse
Affiliation(s)
- Yi-Lun Tsai
- Department of Population Health and Reproduction, School of Veterinary Medicine, 1 Shields Avenue, University of California Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
489
|
Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 2010; 108:1541-9. [DOI: 10.1007/s00436-010-2212-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
|
490
|
Spherical body protein 4 is a new serological antigen for global detection of Babesia bovis infection in cattle. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:337-42. [PMID: 21123520 DOI: 10.1128/cvi.00388-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Five Babesia bovis recombinant proteins, including merozoite surface antigen 2c (BbMSA-2c), C-terminal rhoptry-associated protein 1 (BbRAP-1/CT), truncated thrombospondin-related anonymous protein (BbTRAP-T), spherical body protein 1 (BbSBP-1), and spherical body protein 4 (BbSBP-4), were evaluated as diagnostic antigens to detect the infection in cattle. The recombinant proteins were highly antigenic when tested with experimentally B. bovis-infected bovine serum in Western blot analysis. Furthermore, five antisera that had been raised against each of the recombinant proteins reacted specifically with the corresponding authentic protein, as determined in Western blot analysis. Next, enzyme-linked immunosorbent assays (ELISAs) using these recombinant proteins were evaluated for diagnostic use, and the sensitivity and specificity of each protein were demonstrated with a series of serum samples from experimentally B. bovis-infected cattle. Furthermore, a total of 669 field serum samples collected from cattle in regions of B. bovis endemicity in seven countries were tested with the ELISAs, and the results were compared to those of an indirect fluorescent antibody test (IFAT), as a reference. Among five recombinant antigens, recombinant BbSBP-4 (rBbSBP-4) had the highest concordance rate (85.3%) and kappa value (0.705), indicating its reliability in the detection of specific antibodies to B. bovis in cattle, even in different geographical regions. Overall, we have successfully developed an ELISA based on rBbSBP-4 as a new serological antigen for a practical and sensitive test which will be applicable for epidemiologic survey and control programs in the future.
Collapse
|
491
|
Mesplet M, Echaide I, Dominguez M, Mosqueda JJ, Suarez CE, Schnittger L, Florin-Christensen M. Bovipain-2, the falcipain-2 ortholog, is expressed in intraerythrocytic stages of the tick-transmitted hemoparasite Babesia bovis. Parasit Vectors 2010; 3:113. [PMID: 21092313 PMCID: PMC3003645 DOI: 10.1186/1756-3305-3-113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/23/2010] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Cysteine proteases have been shown to be highly relevant for Apicomplexan parasites. In the case of Babesia bovis, a tick-transmitted hemoparasite of cattle, inhibitors of these enzymes were shown to hamper intraerythrocytic replication of the parasite, underscoring their importance for survival. RESULTS Four papain-like cysteine proteases were found to be encoded by the B. bovis genome using the MEROPS database. One of them, the ortholog of Plasmodium falciparum falcipain-2, here named bovipain-2, was further characterized. Bovipain-2 is encoded in B. bovis chromosome 4 by an ORF of 1.3 kb, has a predicted molecular weight of 42 kDa, and is hydrophilic with the exception of a transmembrane region. It has orthologs in several other apicomplexans, and its predicted amino acid sequence shows a high degree of conservation among several B. bovis isolates from North and South America. Synteny studies demonstrated that the bovipain-2 gene has expanded in the genomes of two related piroplasmids, Theileria parva and T. annulata, into families of 6 and 7 clustered genes respectively. The bovipain-2 gene is transcribed in in vitro cultured intra-erythrocyte forms of a virulent and an attenuated B. bovis strain from Argentina, and has no introns, as shown by RT-PCR followed by sequencing. Antibodies against a recombinant form of bovipain-2 recognized two parasite protein bands of 34 and 26 kDa, which coincide with the predicted sizes of the pro-peptidase and mature peptidase, respectively. Immunofluorescence studies showed an intracellular localization of bovipain-2 in the middle-rear region of in vitro cultured merozoites, as well as diffused in the cytoplasm of infected erythrocytes. Anti-bovipain-2 antibodies also reacted with B. bigemina-infected erythrocytes giving a similar pattern, which suggests cross-reactivity among these species. Antibodies in sera of two out of six B. bovis-experimentally infected bovines tested, reacted specifically with recombinant bovipain-2 in immunoblots, thus demonstrating expression and immunogenicity during bovine-infecting stages. CONCLUSIONS Overall, we present the characterization of bovipain-2 and demonstrate its in vitro and in vivo expression in virulent and attenuated strains. Given the involvement of apicomplexan cysteine proteases in essential parasite functions, bovipain-2 constitutes a new vaccine candidate and potential drug target for bovine babesiosis.
Collapse
Affiliation(s)
- María Mesplet
- Instituto de Patobiología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, INTA-Castelar, Argentina.
| | | | | | | | | | | | | |
Collapse
|
492
|
Bastos RG, Ueti MW, Knowles DP, Scoles GA. The Rhipicephalus (Boophilus) microplus Bm86 gene plays a critical role in the fitness of ticks fed on cattle during acute Babesia bovis infection. Parasit Vectors 2010; 3:111. [PMID: 21092112 PMCID: PMC2994843 DOI: 10.1186/1756-3305-3-111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/19/2010] [Indexed: 12/25/2022] Open
Abstract
Background Rhipicephalus (Boophilus) microplus is an economically important tick of cattle involved in the transmission of Babesia bovis, the etiological agent of bovine babesiosis. Commercial anti-tick vaccines based on the R. microplus Bm86 glycoprotein have shown some effect in controlling tick infestation; however their efficacy as a stand-alone solution for tick control has been questioned. Understanding the role of the Bm86 gene product in tick biology is critical to identifying additional methods to utilize Bm86 to reduce R. microplus infestation and babesia transmission. Additionally, the role played by Bm86 in R. microplus fitness during B. bovis infection is unknown. Results Here we describe in two independent experiments that RNA interference-mediated silencing of Bm86 decreased the fitness of R. microplus females fed on cattle during acute B. bovis infection. Notably, Bm86 silencing decreased the number and survival of engorged females, and decreased the weight of egg masses. However, gene silencing had no significant effect on the efficiency of transovarial transmission of B. bovis from surviving female ticks to their larval offspring. The results also show that Bm86 is expressed, in addition to gut cells, in larvae, nymphs, adult males and ovaries of partially engorged adult R. microplus females, and its expression was significantly down-regulated in ovaries of ticks fed on B. bovis-infected cattle. Conclusion The R. microplus Bm86 gene plays a critical role during tick feeding and after repletion during blood digestion in ticks fed on cattle during acute B. bovis infection. Therefore, the data indirectly support the rationale for using Bm86-based vaccines, perhaps in combination with acaricides, to control tick infestation particularly in B. bovis endemic areas.
Collapse
Affiliation(s)
- Reginaldo G Bastos
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | |
Collapse
|
493
|
Brake DK, Wikel SK, Tidwell JP, Pérez de León AA. Rhipicephalus microplus salivary gland molecules induce differential CD86 expression in murine macrophages. Parasit Vectors 2010; 3:103. [PMID: 21054882 PMCID: PMC2993695 DOI: 10.1186/1756-3305-3-103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/05/2010] [Indexed: 01/01/2023] Open
Abstract
Background Tick parasitism is a major impediment for cattle production in many parts of the world. The southern cattle tick, Rhipicephalus (Boophilus) microplus, is an obligate hematophagous parasite of domestic and wild animals that serves as vector of infectious agents lethal to cattle. Tick saliva contains molecules evolved to modulate host innate and adaptive immune responses which facilitates blood feeding and pathogen transmission. Tick feeding promotes CD4 T cell polarization to a Th2 profile usually accompanied by down-regulation of Th1 cytokines through as yet undefined mechanisms. Co-stimulatory molecules on antigen presenting cells are central to development of T cell responses including Th1 and Th2 responses. Tick induced changes to antigen presenting cell signal transduction pathways are largely unknown. Here we document the ability of R. microplus salivary gland extracts (SGE) to effect differential CD86 expression. Results We examined changes in co-stimulatory molecule expression in murine RAW 264.7 cells in response to R. microplus SGE exposure in the presence of the toll-like receptor 4 (TLR4) ligand, LPS. After 24 hrs, CD86, but not CD80, was preferentially up-regulated on mouse macrophage RAW 264.7 cells when treated with SGE and then LPS, but not SGE alone. CD80 and CD40 expression was increased with LPS, but the addition of SGE did not alter expression. Higher concentrations of SGE were less effective at increasing CD86 RNA expression. The addition of mitogen or extracellular kinase (MEK) inhibitor, PD98059, significantly reduced the ability for SGE to induce CD86 expression, indicating activation of MEK is necessary for SGE induced up-regulation. Conclusions Molecules in SGE of R. microplus have a concentration-dependent effect on differential up-regulation of CD86 in a macrophage cell line activated by the TLR4 ligand, LPS. This CD86 up-regulation is at least partially dependent on the ERK1/2 pathway and may serve to promote Th2 polarization of the immune response.
Collapse
Affiliation(s)
- Danett K Brake
- USDA-ARS Knipling-Bushland U,S, Livestock Insects Research Laboratory, 2700 Fredericksberg Rd, Kerrville, TX 78028, USA.
| | | | | | | |
Collapse
|
494
|
Hasle G, Bjune GA, Christensson D, Røed KH, Whist AC, Leinaas HP. Detection of Babesia divergens in southern Norway by using an immunofluorescence antibody test in cow sera. Acta Vet Scand 2010; 52:55. [PMID: 20925923 PMCID: PMC2959048 DOI: 10.1186/1751-0147-52-55] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 10/06/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of bovine babesiosis, caused by Babesia divergens (Apicomplexa: Piroplasmida) has decreased markedly since the 1930 s, but may re-emerge as a consequence of climate change and changes in legislation and pasturing practices. This is a potentially serious disease, with both economical and animal welfare consequences. Therefore, there is a need to survey the distribution of B. divergens. METHODS We tested sera from 306 healthy pastured cows from 24 farms along the southern Norwegian coast by using an indirect immunofluorescence IgG antibody test (IFAT). Fractions of seropositive cows were compared by calculating 95% CI. RESULTS The results of this test showed that 27% of the sera were positive for B. divergens antibodies. The fraction of antibody-positive sera that we detected showed a two-humped distribution, with a high fraction of positives being found in municipalities in the western and eastern parts of the study area, while the municipalities between these areas had few or no positive serum samples. CONCLUSIONS Neither the farmers' observations nor the Norwegian Dairy Herd Recording System give an adequate picture of the distribution of bovine babesiosis. Serological testing of cows by using IFAT is a convenient way of screening for the presence of B. divergens in an area.
Collapse
|
495
|
Ghosh S, Sharma AK, Kumar S, Tiwari SS, Rastogi S, Srivastava S, Singh M, Kumar R, Paul S, Ray DD, Rawat AKS. In vitro and in vivo efficacy of Acorus calamus extract against Rhipicephalus (Boophilus) microplus. Parasitol Res 2010; 108:361-70. [DOI: 10.1007/s00436-010-2070-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 09/13/2010] [Indexed: 10/19/2022]
|
496
|
Gohil S, Kats LM, Sturm A, Cooke BM. Recent insights into alteration of red blood cells by Babesia bovis: moovin' forward. Trends Parasitol 2010; 26:591-9. [PMID: 20598944 DOI: 10.1016/j.pt.2010.06.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/07/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
Abstract
Over the past decade or so, our understanding of the biology of apicomplexan parasites has increased dramatically, particularly in the case of malaria. Notable achievements are the availability of complete genome sequences, transcriptome and proteome profiles and the establishment of in vitro transfection techniques for asexual-stage malaria parasites. Interestingly, despite their major economic importance and striking similarities with malaria, Babesia parasites have been relatively ignored, but change is on the horizon. Here, we bring together recent work on Babesia bovis parasites which are beginning to unravel the molecular mechanisms that underlie the pathogenesis of babesiosis and highlight some opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Sejal Gohil
- Department of Microbiology, Monash University, Victoria, Australia
| | | | | | | |
Collapse
|
497
|
Heyman P, Cochez C, Hofhuis A, van der Giessen J, Sprong H, Porter SR, Losson B, Saegerman C, Donoso-Mantke O, Niedrig M, Papa A. A clear and present danger: tick-borne diseases in Europe. Expert Rev Anti Infect Ther 2010; 8:33-50. [PMID: 20014900 DOI: 10.1586/eri.09.118] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ticks can transmit a variety of viruses, bacteria or parasites that can cause serious infections or conditions in humans and animals. While tick-borne diseases are becoming an increasing and serious problem in Europe, tick-borne diseases are also responsible for major depressions in livestock production and mortality in sub-Saharan Africa, Latin America and Asia. This review will focus on the most important circulating tick-transmitted pathogens in Europe (Borrelia spp., Anaplasma phagocytophilum, Babesia spp., tick-borne encephalitis virus, Rickettsia spp. and Crimean-Congo hemorrhagic fever virus).
Collapse
Affiliation(s)
- Paul Heyman
- Research Laboratory for Vector Borne Diseases, Queen Astrid Military Hospital, Bruynstraat 1, B-1120 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
498
|
Ramos CAN, Araújo FR, Souza IIF, Oliveira RHM, Elisei C, Soares CO, Sacco AMS, Rosinha GMS, Alves LC. Molecular and antigenic characterisation of ribosomal phosphoprotein P0 from Babesia bovis. Mem Inst Oswaldo Cruz 2010; 104:998-1002. [PMID: 20027467 DOI: 10.1590/s0074-02762009000700010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 09/23/2009] [Indexed: 11/21/2022] Open
Abstract
Babesia bovis is a tick-borne pathogen that remains an important constraint for the development of cattle industries in tropical and subtropical regions of the world. Effective control can be achieved by vaccination with live attenuated phenotypes of the parasite. However, these phenotypes have a number of drawbacks, which justifies the search for new, more efficient immunogens based mainly on recombinant protein technology. In the present paper, ribosomal phosphoprotein P0 from a Brazilian isolate of B. bovis was produced and evaluated with regard to conservation and antigenicity. The protein sequence displayed high conservation between different Brazilian isolates of B. bovis and several Apicomplexa parasites such as Theileria, Neospora and Toxoplasma. IgG from cattle experimentally and naturally infected with B. bovisas well as IgG1 and IgG2 from naturally infected cattle reacted with the recombinant protein. IgG from cattle experimentally infected with Babesia bigemina cross-reacted with B. bovis recombinant P0. These characteristics suggest that P0 is a potential antigen for recombinant vaccine preparations against bovine babesiosis.
Collapse
Affiliation(s)
- Carlos A N Ramos
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
499
|
Molecular detection ofBabesiaspp. and other haemoparasitic infections of cattle in Maputo Province, Mozambique. Parasitology 2010; 137:939-46. [DOI: 10.1017/s003118200999196x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYMolecular detection ofBabesiaspecies in apparently healthy cattle within an endemic region was carried out in order to determine the prevalence of carriers and the geographical distribution ofBabesia bigeminaandBabesia bovisin Maputo Province, Mozambique. Samples from 477 animals at 5 localities were analysed using 2 techniques, the semi-nested hot-start PCR and the reverse line blot (RLB) assay. With the semi-nested hot-start PCR, detection ofB. bigeminaranged between 30% and 89%, and ofB. bovisbetween 27% and 83%. The RLB assay was comparatively less sensitive in this study and detection ofB. bovisranged from 0% to 17%, andB. bigeminawas not detected at all by this technique. Analysis of new sequences of the 18S rRNA gene revealed that the currentB. bigeminaRLB probe is not specific for the identification of isolates in Mozambique. The RLB assay, however, resulted in the detection of 8 other haemoparasite species belonging to the generaBabesia,Theileria,AnaplasmaandEhrlichia. 18S rRNA gene sequences from theTheileriaspp. were identified, and a phylogenic tree constructed with these sequences yielded a heterogeneousT. mutans-like group. In conclusion, infection withB. bigeminaandB. bovisis endemic in Maputo Province, but rates of transmission vary. Furthermore, mixed infections with the haemoparasites responsible for several tick-borne diseases in cattle are common in Mozambique.
Collapse
|
500
|
Perez-Llaneza A, Caballero M, Baravalle E, Mesplet M, Mosqueda J, Suarez CE, Echaide I, Katzer F, Pacheco GM, Florin-Christensen M, Schnittger L. Development of a tandem repeat-based multilocus typing system distinguishing Babesia bovis geographic isolates. Vet Parasitol 2010; 167:196-204. [DOI: 10.1016/j.vetpar.2009.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|