451
|
Okunuki H, Teshima R, Sakushima J, Akiyama H, Goda Y, Toyoda M, Sawada JI. Induction of active systemic anaphylaxis by oral sensitization with ovalbumin in mast-cell-deficient mice. Immunol Lett 2000; 74:233-7. [PMID: 11064108 DOI: 10.1016/s0165-2478(00)00264-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mast-cell-deficient W/W(v) mice were sensitized by oral administration of 0.1 and 1.0 mg ovalbumin (OVA) by gavage every day for 9 weeks, and active systemic anaphylaxis (ASA) was induced by intraperitoneal injection of OVA. The production of OVA-specific IgE and IgG1 by oral immunization of the W/W(v) mice was high, and the production of IL-4 by splenocytes re-stimulated with OVA in vitro was increased. In contrast, production of OVA-specific IgG2a and IgG2b was low, and production of IFN-gamma by splenocytes after re-stimulation with OVA in vitro was rather decreased. These findings suggest that Th2-dominant helper T-cell activation had occurred. No increase in serum histamine level was observed following ASA induction. However, the plasma platelet-activating factor (PAF) levels of the mice sensitized with 0.1 and 1.0 mg OVA by gavage increased significantly. The increases in plasma PAF correlated well with the ASA-associated decreases in body temperature, suggesting that PAF plays an important role in ASA in W/W(v) mice. Taken together the above findings indicate that W/W(v) mice are a good model not only for studying induction of food allergy but also for examining the role of PAF in food-induced hypersensitivity.
Collapse
Affiliation(s)
- H Okunuki
- Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, 158-8501, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
452
|
Engstrøm T, Bratholm P, Christensen NJ, Vilhardt H. Effect of oxytocin receptor blockade on rat myometrial responsiveness to prostaglandin f(2)(alpha). Biol Reprod 2000; 63:1443-9. [PMID: 11058550 DOI: 10.1095/biolreprod63.5.1443] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the present study we have shown that the genetic expression of prostaglandin (PG)F(2alpha) receptor (R) and cyclooxygenase (COX)-2 increases in laboring rat myometrium. This finding was associated with a relatively weak contractile in vitro response (E:(max)) of isolated uterine strips when challenged with PGF(2alpha). Five days postpartum PGF(2alpha)-R mRNA values exceeded those during labor while COX-2 mRNA was reduced to preparturient values. Maximal contractility of isolated strips stimulated with PGF(2alpha) at this time was enhanced and E:C(50) decreased. Oxytocin treatment of estrogen-primed nonpregnant rats down-regulated uterine contractile responsiveness to PGF(2alpha), leaving mRNA values for this receptor unchanged, whereas oxytocin receptor blockade with atosiban (an oxytocin receptor antagonist) left E:(max) unaltered. In contrast, atosiban treatment of pregnant rats resulted in a 2.5-fold increase in E:(max) and a considerably reduced EC(50) during labor when compared to untreated delivering rats. The increased contractile ability was associated with a threefold increase in PGF(2alpha)-R mRNA production, indicating that the regulation by atosiban of the PGF(2alpha)-induced response is exerted at the genetic level. Based on the present data we suggest that 1) PGF(2alpha)-R stimulation may not primarily exert a contracting role in the normally delivering myometrium, and 2) the presence of the PGF(2alpha)-R system in rat myometrium may explain the apparent functional redundancy of the oxytocinergic system during the process of birth in animals lacking oxytocin or where the oxytocin receptor is blocked. In this context PGF(2alpha) receptor stimulation may, in the absence of oxytocin receptor stimulation, exert the contractile forces needed for proper propulsion of the fetus.
Collapse
Affiliation(s)
- T Engstrøm
- Department of Internal Medicine and Endocrinology, Herlev Hospital, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
453
|
Takaku K, Sonoshita M, Sasaki N, Uozumi N, Doi Y, Shimizu T, Taketo MM. Suppression of Intestinal Polyposis inApc Δ716 Knockout Mice by an Additional Mutation in the Cytosolic Phospholipase A2Gene. J Biol Chem 2000. [DOI: 10.1074/jbc.c000586200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
454
|
Sapirstein A, Bonventre JV. Specific physiological roles of cytosolic phospholipase A(2) as defined by gene knockouts. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:139-48. [PMID: 11080683 DOI: 10.1016/s1388-1981(00)00116-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The cytosolic 85 kDa phospholipase A(2) (cPLA(2)) is a unique member of the phospholipase A(2) (PLA(2)) superfamily. Because PLA(2) activity and eicosanoid production are important in normal and pathophysiological states we and the laboratory of Shimizu created a mouse deficient in cPLA(2) (cPLA(2)(-/-) mouse). cPLA(2)(-/-) mice develop normally but the females have severe reproductive defects. cPLA(2)(-/-) mice suffer smaller infarcts and fewer neurological deficits after transient occlusion of the middle cerebral artery and have less injury after administration of a dopaminergic selective neurotoxin. cPLA(2)(-/-) mice have a more rapid recovery from allergen-induced bronchoconstriction and have no airway hyperresponsiveness. Peritoneal macrophages from cPLA(2)(-/-) mice fail to produce prostaglandins, leukotriene B(4) and cysteinyl leukotrienes after stimulation. Bone marrow-derived mast cells from cPLA(2)(-/-) mice fail to produce eicosanoids in either immediate or delayed phase responses. Thus the cPLA(2) knockout mouse has revealed important roles of cPLA(2) in normal fertility, generation of eicosanoids from inflammatory cells, brain injuries and allergic responses. Furthermore the cPLA(2)(-/-) mouse reveals that the many other forms of PLA(2) cannot replace many functions of cPLA(2). The importance of cPLA(2) in inflammation and tissue injury suggests that pharmacological targeting of this enzyme may have important therapeutic benefits.
Collapse
Affiliation(s)
- A Sapirstein
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
455
|
Six DA, Dennis EA. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:1-19. [PMID: 11080672 DOI: 10.1016/s1388-1981(00)00105-0] [Citation(s) in RCA: 990] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The phospholipase A(2) (PLA(2)) superfamily consists of a broad range of enzymes defined by their ability to catalyze the hydrolysis of the middle (sn-2) ester bond of substrate phospholipids. The hydrolysis products of this reaction, free fatty acid and lysophospholipid, have many important downstream roles, and are derived from the activity of a diverse and growing superfamily of PLA(2) enzymes. This review updates the classification of the various PLA(2)'s now described in the literature. Four criteria have been employed to classify these proteins into one of the 11 Groups (I-XI) of PLA(2)'s. First, the enzyme must catalyze the hydrolysis of the sn-2 ester bond of a natural phospholipid substrate, such as long fatty acid chain phospholipids, platelet activating factor, or short fatty acid chain oxidized phospholipids. Second, the complete amino acid sequence of the mature protein must be known. Third, each PLA(2) Group should include all of those enzymes that have readily identifiable sequence homology. If more than one homologous PLA(2) gene exists within a species, then each paralog should be assigned a Subgroup letter, as in the case of Groups IVA, IVB, and IVC PLA(2). Homologs from different species should be classified within the same Subgroup wherever such assignments are possible as is the case with zebra fish and human Group IVA PLA(2) orthologs. The current classification scheme does allow for historical exceptions of the highly homologous Groups I, II, V, and X PLA(2)'s. Fourth, catalytically active splice variants of the same gene are classified as the same Group and Subgroup, but distinguished using Arabic numbers, such as for Group VIA-1 PLA(2) and VIA-2 PLA(2)'s. These four criteria have led to the expansion or realignment of Groups VI, VII and VIII, as well as the addition of Group XI PLA(2) from plants.
Collapse
Affiliation(s)
- D A Six
- Department of Chemistry and Biochemistry, MC 0601, Revelle College and School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|
456
|
Buckland AG, Wilton DC. The antibacterial properties of secreted phospholipases A(2). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:71-82. [PMID: 11080678 DOI: 10.1016/s1388-1981(00)00111-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is a considerable body of evidence to support the antibacterial properties of the group IIa phospholipase A(2) as an important physiological function. This enzyme is able to act as an acute phase protein and may be part of the innate defence system of the body, acting in concert with other antibacterial proteins and peptides. The enzyme is most effective against Gram-positive bacteria whereas penetration of the lipopolysaccharide coat of Gram-negative bacteria requires bactericidal/permeability-increasing protein (BPI) as an additional permeabilizing factor. The global cationic nature of this protein (pI>10.5) appears to facilitate penetration of the anionic bacterial cell wall. In addition, the considerable preference of the enzyme for anionic phospholipid interfaces provides specificity toward anionic bacterial membranes as opposed to zwitterionic eucaryotic cell membranes.
Collapse
Affiliation(s)
- A G Buckland
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, SO16 7PX, Southampton, UK
| | | |
Collapse
|
457
|
Dessen A. Structure and mechanism of human cytosolic phospholipase A(2). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:40-7. [PMID: 11080675 DOI: 10.1016/s1388-1981(00)00108-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
cPLA(2) is an 85-kDa enzyme whose primary function, the release of arachidonic acid from phospholipid membranes, is a crucial reaction in the metabolism of lipid mediators of inflammation. cPLA(2) consists of two domains: an N-terminal, C2-type unit analogous to those present in other membrane-targeting molecules, and a catalytic domain harboring an active site dyad at the bottom of a deep, mostly hydrophobic catalytic funnel. The absence of a third active site residue in the cPLA(2) cleft, as observed in other lipases, suggests that the enzyme proceeds through a novel catalytic mechanism. Crystallographic and biochemical studies of cPLA(2) will provide essential information for the development of small molecule inhibitors which may be employed in the control of inflammatory and other highly regulated processes.
Collapse
Affiliation(s)
- A Dessen
- Institut de Biologie Structurale Jean-Pierre Ebel, 41 rue Jules Horowitz, 38027, Grenoble, France.
| |
Collapse
|
458
|
Murakami M, Nakatani Y, Kuwata H, Kudo I. Cellular components that functionally interact with signaling phospholipase A(2)s. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:159-66. [PMID: 11080685 DOI: 10.1016/s1388-1981(00)00118-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Accumulating evidence has suggested that cytosolic phospholipase A(2) (cPLA(2)) and several secretory PLA(2) (sPLA(2)) isozymes are signaling PLA(2)s that are functionally coupled with downstream cyclooxygenase (COX) isozymes for prostaglandin (PG) biosynthesis. Arachidonic acid (AA) released by cPLA(2) and sPLA(2)s is supplied to both COX-1 and COX-2 in the immediate, and predominantly to COX-2 in the delayed, PG-biosynthetic responses. Vimentin, an intermediate filament component, acts as a functional perinuclear adapter for cPLA(2), in which the C2 domain of cPLA(2) associates with the head domain of vimentin in a Ca(2+)-sensitive manner. The heparin-binding signaling sPLA(2)-IIA, IID and V bind the glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan glypican, which plays a role in sorting of these isozymes into caveolae and perinuclear compartments. Phospholipid scramblase, which facilitates transbilayer movement of anionic phospholipids, renders the cellular membranes more susceptible to signaling sPLA(2)s. There is functional cooperation between cPLA(2) and signaling sPLA(2)s in that prior activation of cPLA(2) is required for the signaling sPLA(2)s to act properly. cPLA(2)-derived AA is oxidized by 12/15-lipoxygenase, the products of which not only augment the induction of sPLA(2) expression, but also cause membrane perturbation, leading to increased cellular susceptibility to the signaling sPLA(2)s. sPLA(2)-X, a heparin-non-binding sPLA(2) isozyme, is capable of releasing AA from intact cells in the absence of cofactors. This property is attributed to its ability to avidly hydrolyze zwitterionic phosphatidylcholine, a major phospholipid in the outer plasma membrane. sPLA(2)-V can also utilize this route in several cell types. Taken together, the AA-releasing function of sPLA(2)s depends on the presence of regulatory cofactors and interfacial binding to membrane phospholipids, which differ according to cell type, stimuli, secretory processes, and subcellular distributions.
Collapse
Affiliation(s)
- M Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, 142-8555, Tokyo, Japan
| | | | | | | |
Collapse
|
459
|
Hirabayashi T, Shimizu T. Localization and regulation of cytosolic phospholipase A(2). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:124-38. [PMID: 11080682 DOI: 10.1016/s1388-1981(00)00115-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Liberation of arachidonic acid by cytosolic phospholipase A(2) (cPLA(2)) upon cell activation is often the initial and rate-limiting step in leukotriene and prostaglandin biosynthesis. This review discusses the essential features of cPLA(2) isoforms and addresses intriguing insights into the catalytic and regulatory mechanisms. Gene expression, posttranslational modification and subcellular localization can regulate these isoforms. Translocation of cPLA(2)alpha from the cytosol to the perinuclear region in response to calcium transients is critical for the immediate arachidonic acid release. Therefore, particular emphasis is placed on the mechanism of the translocation and the role of the proteins and lipids implicated in this process. The regional distribution and cellular localization of cPLA(2) may help to better understand its function as an arachidonic acid supplier to downstream enzymes and as a regulator of specific cellular processes.
Collapse
Affiliation(s)
- T Hirabayashi
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Japan.
| | | |
Collapse
|
460
|
Murakami M, Naraba H, Tanioka T, Semmyo N, Nakatani Y, Kojima F, Ikeda T, Fueki M, Ueno A, Oh S, Kudo I. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem 2000; 275:32783-92. [PMID: 10869354 DOI: 10.1074/jbc.m003505200] [Citation(s) in RCA: 726] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here we report the molecular identification of membrane-bound glutathione (GSH)-dependent prostaglandin (PG) E(2) synthase (mPGES), a terminal enzyme of the cyclooxygenase (COX)-2-mediated PGE(2) biosynthetic pathway. The activity of mPGES was increased markedly in macrophages and osteoblasts following proinflammatory stimuli. cDNA for mouse and rat mPGESs encoded functional proteins that showed high homology with the human ortholog (microsomal glutathione S-transferase-like 1). mPGES expression was markedly induced by proinflammatory stimuli in various tissues and cells and was down-regulated by dexamethasone, accompanied by changes in COX-2 expression and delayed PGE(2) generation. Arg(110), a residue well conserved in the microsomal GSH S-transferase family, was essential for catalytic function. mPGES was functionally coupled with COX-2 in marked preference to COX-1, particularly when the supply of arachidonic acid was limited. Increased supply of arachidonic acid by explosive activation of cytosolic phospholipase A(2) allowed mPGES to be coupled with COX-1. mPGES colocalized with both COX isozymes in the perinuclear envelope. Moreover, cells stably cotransfected with COX-2 and mPGES grew faster, were highly aggregated, and exhibited aberrant morphology. Thus, COX-2 and mPGES are essential components for delayed PGE(2) biosynthesis, which may be linked to inflammation, fever, osteogenesis, and even cancer.
Collapse
Affiliation(s)
- M Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
461
|
Abstract
We have examined factors concerned with the maintenance of uterine quiescence during pregnancy and the onset of uterine activity at term in an animal model, the sheep, and in primate species. We suggest that in both species the fetus exerts a critical role in the processes leading to birth, and that activation of the fetal hypothalamic-pituitary-adrenal axis is a central mechanism by which the fetal influence on gestation length is exerted. Increased cortisol output from the fetal adrenal gland is a common characteristic across animal species. In primates, there is, in addition, increased output of estrogen precursor from the adrenal in late gestation. The end result, however, in primates and in sheep is similar: an increase in estrogen production from the placenta and intrauterine tissues. We have revised the pathway by which endocrine events associated with parturition in the sheep come about and suggest that fetal cortisol directly affects placental PGHS expression. In human pregnancy we suggest that cortisol increases PGHS expression, activity, and PG output in human fetal membranes in a similar manner. Simultaneously, cortisol contributes to decreases in PG metabolism and to a feed-forward loop involving elevation of CRH production from intrauterine tissues. In human pregnancy, there is no systemic withdrawal of progesterone in late gestation. We have argued that high circulating progesterone concentrations are required to effect regionalization of uterine activity, with predominantly relaxation in the lower uterine segment, allowing contractions in the fundal region to precipitate delivery. This new information, arising from basic and clinical studies, should further the development of new methods of diagnosing the patient at risk of preterm labor, and the use of scientifically based strategies specifically for the management of this condition, which will improve the health of the newborn.
Collapse
|
462
|
Enomoto A, Murakami M, Valentin E, Lambeau G, Gelb MH, Kudo I. Redundant and segregated functions of granule-associated heparin-binding group II subfamily of secretory phospholipases A2 in the regulation of degranulation and prostaglandin D2 synthesis in mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4007-14. [PMID: 11034411 DOI: 10.4049/jimmunol.165.7.4007] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We herein demonstrate that mast cells express all known members of the group II subfamily of secretory phospholipase A2 (sPLA2) isozymes, and those having heparin affinity markedly enhance the exocytotic response. Rat mastocytoma RBL-2H3 cells transfected with heparin-binding (sPLA2-IIA, -V, and -IID), but not heparin-nonbinding (sPLA2-IIC), enzymes released more granule-associated markers (beta-hexosaminidase and histamine) than mock- or cytosolic PLA2alpha (cPLA2alpha)-transfected cells after stimulation with IgE and Ag. Site-directed mutagenesis of sPLA2-IIA and -V revealed that both the catalytic and heparin-binding domains are essential for this function. Confocal laser and electron microscopic analyses revealed that sPLA2-IIA, which was stored in secretory granules in unstimulated cells, accumulated on the membranous sites where fusion between the plasma membrane and granule membranes occurred in activated cells. These results suggest that the heparin-binding sPLA2s bind to the perigranular membranes through their heparin-binding domain, and lysophospholipids produced in situ by their enzymatic action may facilitate the ongoing membrane fusion. In contrast to the redundant role of sPLA2-IIA, -IID, and -V in the regulation of degranulation, only sPLA2-V had the ability to markedly augment IgE/Ag-stimulated immediate PGD2 production, which reached a level comparable to that elicited by cPLA2alpha. The latter observation reveals an unexplored functional segregation among the three related isozymes expressed in the same cell population.
Collapse
Affiliation(s)
- A Enomoto
- Department of Health Chemistry, Showa University School of Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
463
|
Shimizu T, Yokomizo T, Izumi T. Leukotriene-B4 receptor and signal transduction. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2000:125-41. [PMID: 10943331 DOI: 10.1007/978-3-662-04047-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- T Shimizu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Tokyo, Japan
| | | | | |
Collapse
|
464
|
Morioka Y, Saiga A, Yokota Y, Suzuki N, Ikeda M, Ono T, Nakano K, Fujii N, Ishizaki J, Arita H, Hanasaki K. Mouse group X secretory phospholipase A2 induces a potent release of arachidonic acid from spleen cells and acts as a ligand for the phospholipase A2 receptor. Arch Biochem Biophys 2000; 381:31-42. [PMID: 11019817 DOI: 10.1006/abbi.2000.1977] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Group X secretory phospholipase A2 (sPLA2-X) has recently been shown to possess a powerful potency for releasing arachidonic acid from cell membrane phospholipids. Here, we report the purification of mouse pro- and mature forms of sPLA2-X, as well as its expression and biological functions. Purified pro-sPLA2-X was found to possess a propeptide of 11 amino acid residues attached at the NH2-terminals of the mature protein, and showed as little as 8% of the PLA2 activity of the mature form. Limited proteolysis of pro-sPLA2-X with trypsin resulted in the appearance of the mature form with a concomitant increase in PLA2 activity, suggesting a requirement of proteolytic removal of the propeptide for the optimal activity. The expression of sPLA2-X mRNA was detected in various tissues including the lung, thymus, and spleen, and immunohistochemical analysis revealed its expression in splenic macrophages. In the spleen cells, mature sPLA2-X elicited a prompt release of arachidonic acid with significant production of prostaglandin E2 more efficiently than group IB and IIA sPLA2s. In addition, sPLA2-X was identified as a high-affinity ligand for both native and recombinant form of mouse PLA2 receptor (PLA2R). However, there was no significant difference in the sPLA2-X-induced arachidonic acid release responses in the spleen cells between wild-type and PLA2R-deficient mice. These findings strongly suggest that sPLA2-X possesses two distinct biological functions in mice: it elicits a marked release of arachidonic acid from membrane phospholipids leading to the production of lipid mediators based on its enzymatic potency, and it acts as a natural ligand for the PLA2R that has been shown to play a critical role in the production of inflammatory cytokines during endotoxic shock.
Collapse
Affiliation(s)
- Y Morioka
- Shionogi Research Laboratories, Shionogi & Co., Ltd, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
465
|
Carbillon L, Uzan M, Challier JC, Merviel P, Uzan S. Fetal-placental and decidual-placental units: role of endocrine and paracrine regulations in parturition. Fetal Diagn Ther 2000; 15:308-18. [PMID: 10971086 DOI: 10.1159/000021027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In primates, fetal adrenal and placental steroidogenic enzymatic systems are complementary in a fetal-placental unit, synchronizing fetal maturation and myometrial activation in late gestation. Moreover, as hemochorial placentation characterizes rodents and primates, paracrine regulations between decidua and placenta are essential to the immunotolerance of the conceptus and its development. Thus, the decidual-placental unit remains in a striking state of decidual quiescence throughout gestation, and the reversal of this quiescence is thought to play a key role in myometrial stimulation and the onset of parturition. A comprehensive view of the control of myometrial contractility, through the interaction of paracrine and endocrine modifications in late gestation, is proposed. The failure of these mechanisms underlie prematurity and the use of fetal therapy in threatened preterm labor.
Collapse
Affiliation(s)
- L Carbillon
- Department of Obstetrics and Gynecology, Assistance Publique-- Hôpitaux de Paris, Hôpital Jean Verdier, Bondy, France.
| | | | | | | | | |
Collapse
|
466
|
Gewert K, Hiller G, Sundler R. Effects of dexamethasone on mitogen-activated protein kinases in mouse macrophages: implications for the regulation of 85 kDa cytosolic phospholipase A(2). Biochem Pharmacol 2000; 60:545-51. [PMID: 10874129 DOI: 10.1016/s0006-2952(00)00358-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In mouse macrophages, arachidonate mobilisation in response to several stimuli is severely inhibited by prolonged (16-20 hr) treatment with nanomolar dexamethasone (dex). It was shown earlier that this inhibition was accompanied by a dual effect on cPLA(2); down-regulation of the enzyme protein and inhibition of its activation. We now report that cycloheximide, a protein synthesis inhibitor, caused an almost complete reversion of the inhibitory effects of dex on cPLA(2) activation. These results indicate that the effects depend on new protein synthesis. This is consistent with other data, obtained with a glucocorticoid receptor antagonist, indicating that the effects are mediated via the glucocorticoid receptor. Northern blot results showed pronounced down-regulation of cPLA(2) at the level of its mRNA. The possibility that dex also targeted the level or activation of one or more of the three mitogen-activated protein kinases (MAP kinases), extracellular signal-regulated kinase (ERK), p38, or c-Jun N-terminal kinase (JNK) was also addressed. While the level of these MAP kinases and their phorbol myristate acetate (PMA)-induced activation were unaffected by dex, there was a partial inhibition of their zymosan-induced activation. However, this inhibition was not as pronounced as the dex-mediated inhibition of cPLA(2) activation. These data were confirmed by Western blot using antibodies against the phosphorylated forms of ERK, p38, and JNK. The results suggest that dex-mediated inhibition of PMA-induced cPLA(2) activation is exerted downstream of the MAP kinases, while the partial inhibition of the zymosan-induced activation may be explained by effects exerted more upstream. Thus, the MAP kinases investigated here do not appear to be main targets for the inhibitory effects of dex on cPLA(2) activation.
Collapse
Affiliation(s)
- K Gewert
- Department of Cell and Molecular Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
467
|
Yokomizo T, Kato K, Terawaki K, Izumi T, Shimizu T. A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J Exp Med 2000; 192:421-32. [PMID: 10934230 PMCID: PMC2193217 DOI: 10.1084/jem.192.3.421] [Citation(s) in RCA: 391] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Leukotriene B(4) (LTB(4)) is a potent chemoattractant and activator of both granulocytes and macrophages. The actions of LTB(4) appear to be mediated by a specific G protein-coupled receptor (GPCR) BLT1, originally termed BLT (Yokomizo, T., T. Izumi, K. Chang, Y. Takuwa, and T. Shimizu. 1997. Nature. 387:620-624). Here, we report the molecular cloning of a novel GPCR for LTB(4), designated BLT2, which binds LTB(4) with a Kd value of 23 nM compared with 1.1 nM for BLT1, but still efficiently transduces intracellular signaling. BLT2 is highly homologous to BLT1, with an amino acid identity of 45.2%, and its open reading frame is located in the promoter region of the BLT1 gene. BLT2 is expressed ubiquitously, in contrast to BLT1, which is expressed predominantly in leukocytes. Chinese hamster ovary cells expressing BLT2 exhibit LTB(4)-induced chemotaxis, calcium mobilization, and pertussis toxin-insensitive inhibition of adenylyl cyclase. Several BLT1 antagonists, including U 75302, failed to inhibit LTB(4) binding to BLT2. Thus, BLT2 is a pharmacologically distinct receptor for LTB(4), and may mediate cellular functions in tissues other than leukocytes. BLT2 provides a novel target for antiinflammatory therapy and promises to expand our knowledge of LTB(4) function. The location of the gene suggests shared transcriptional regulation of these two receptors.
Collapse
Affiliation(s)
- Takehiko Yokomizo
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Tokyo 113-0033, Japan
| | - Kazuhiko Kato
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Pharmaceutical Research Center, Meiji Seika Kaisha, Limited, Yokohama 222-8567, Japan
| | - Kan Terawaki
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Tokyo 113-0033, Japan
| | - Takashi Izumi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Tokyo 113-0033, Japan
| | - Takao Shimizu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Tokyo 113-0033, Japan
| |
Collapse
|
468
|
Kato K, Yokomizo T, Izumi T, Shimizu T. Cell-specific transcriptional regulation of human leukotriene B(4) receptor gene. J Exp Med 2000; 192:413-20. [PMID: 10934229 PMCID: PMC2193224 DOI: 10.1084/jem.192.3.413] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2000] [Accepted: 04/18/2000] [Indexed: 11/04/2022] Open
Abstract
Leukotriene B(4) (LTB(4)) is a lipid mediator that activates leukocytes and is involved in host defense and inflammation. BLT1, a high-affinity receptor for LTB(4) (originally termed BLT), is expressed exclusively in inflammatory cells and is inducible in macrophages upon activation. The mechanisms of tissue-specific expression and induction of BLT1 are important for the understanding of mechanism of onset and the potential treatment of inflammatory disorders. Here, we report the genomic structure and a promoter analysis of the human BLT1 gene, with an emphasis on the mechanism of cell-specific transcription. No TATA or CAAT elements exist around the transcription initiation sites, but a GC-rich sequence is observed in this region. A reporter gene assay revealed that a region approximately 80 basepair upstream from the initiator sequence is required for the basal transcription of the BLT1 gene. Sp1 was found to be a major activator of basal transcription by electrophoretic mobility shift assays and site-directed mutagenesis. The CpG sites of the BLT1 promoter region were highly methylated in BLT1-nonexpressing cells, but not methylated in BLT1-expressing cells. Further, methylation of this region in vitro inhibited the promoter activity to approximately 15% of the control. Thus, methylation at CpG sites in the promoter region is important for cell-specific transcription of the BLT1 gene. The promoter region of the BLT1 gene is localized within the open reading frame (ORF) of the BLT2 gene, which encodes a low-affinity receptor for LTB(4) (Yokomizo, T., K. Kato, K. Terawaki, T. Izumi, and T. Shimizu. 2000. J. Exp. Med. 192:421-431). To our knowledge, this is the first example of "promoter in ORF" in higher eukaryotes.
Collapse
Affiliation(s)
- Kazuhiko Kato
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Pharmaceutical Research Center, Meiji Seika Kaisha, Limited, Yokohama 222-8567, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Tokyo 113-0033, Japan
| | - Takashi Izumi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Tokyo 113-0033, Japan
| | - Takao Shimizu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Tokyo 113-0033, Japan
| |
Collapse
|
469
|
Gijón MA, Spencer DM, Leslie CC. Recent advances in the regulation of cytosolic phospholipase A(2). ADVANCES IN ENZYME REGULATION 2000; 40:255-68. [PMID: 10828354 DOI: 10.1016/s0065-2571(99)00031-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- M A Gijón
- Division of Basic Science, Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | |
Collapse
|
470
|
Forsell PKAL, Lindberg Å, Karlsson S, Lindgren JÅ, Claesson HE. Purification, characterization, and cDNA sequencing of cytosolic phospholipase A2 from equine neutrophils. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)33429-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
471
|
Nagase T, Uozumi N, Ishii S, Kume K, Izumi T, Ouchi Y, Shimizu T. Acute lung injury by sepsis and acid aspiration: a key role for cytosolic phospholipase A2. Nat Immunol 2000; 1:42-6. [PMID: 10881173 DOI: 10.1038/76897] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adult respiratory distress syndrome (ARDS) is characterized by acute lung injury with a high mortality rate and yet its mechanism is poorly understood. Sepsis syndrome and acid aspiration are the most frequent causes of ARDS, leading to increased lung permeability, enhanced polymorphonuclear neutrophil (PMN) sequestration and respiratory failure. Using a murine model of acute lung injury induced by septic syndrome or acid aspiration, we investigated the role of cytosolic phospholipase A2 (cPLA2) in ARDS. We found that disruption of the gene encoding cPLA2 significantly reduced pulmonary edema, PMN sequestration and deterioration of gas exchange caused by lipopolysaccharide and zymosan administration. Acute lung injury induced by acid aspiration was similarly reduced in mice with a disrupted cpla2 gene. Our observations suggest that cPLA2 is a mediator of acute lung injury induced by sepsis syndrome or acid aspiration. Thus, the inhibition of cPLA2-initiated pathways may provide a therapeutic approach to acute lung injury, for which no pharmaceutical agents are currently effective.
Collapse
Affiliation(s)
- T Nagase
- Department of Geriatric Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | | | |
Collapse
|
472
|
Sugimoto Y, Narumiya S, Ichikawa A. Distribution and function of prostanoid receptors: studies from knockout mice. Prog Lipid Res 2000; 39:289-314. [PMID: 10856600 DOI: 10.1016/s0163-7827(00)00008-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent developments in the molecular biology of the prostanoid receptors has allowed the investigation of the physiological roles of each individual receptor type and subtype. The following article reports the prostanoid receptor distributions deduced from Northern blot and in situ hybridization analyses, summarizes the phenotypes of each receptor knockout mice, and discusses recent studies investigating the effects of each receptor deficiency on the inflammatory response and female reproductive processes. The combination of expression pattern and knockout analyses enabled us to determine which receptor expressed in a particular cell is important for the maintenance of normal and/or pathological physiology. The results from these analyses may be useful in the development of novel therapeutics that can selectively manipulate prostanoid-mediated actions.
Collapse
Affiliation(s)
- Y Sugimoto
- Department of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | |
Collapse
|
473
|
Gijón MA, Spencer DM, Siddiqi AR, Bonventre JV, Leslie CC. Cytosolic phospholipase A2 is required for macrophage arachidonic acid release by agonists that Do and Do not mobilize calcium. Novel role of mitogen-activated protein kinase pathways in cytosolic phospholipase A2 regulation. J Biol Chem 2000; 275:20146-56. [PMID: 10867029 DOI: 10.1074/jbc.m908941199] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 85-kDa cytosolic phospholipase A(2) (cPLA(2)) mediates agonist-induced arachidonic acid release and eicosanoid production. Calcium and phosphorylation on Ser-505 by mitogen-activated protein kinases (MAPKs) regulate cPLA(2). Arachidonic acid release and eicosanoid production induced by stimuli that do (A23187, zymosan) or do not (phorbol myristate acetate (PMA), okadaic acid) mobilize calcium were quantitatively suppressed in cPLA(2)-deficient mouse peritoneal macrophages. The contribution of MAPKs to cPLA(2)-mediated arachidonic acid release was investigated. Both extracellular signal-regulated kinases (ERKs) and p38 contributed to cPLA(2) phosphorylation on Ser-505. However, although ERK inhibition did not affect A23187-induced arachidonic acid release, it suppressed zymosan-, PMA-, and okadaic acid-induced arachidonic acid release under conditions where phosphorylation of cPLA(2) on Ser-505 was unaffected. This indicates an additional regulatory mechanism for the ERK pathway. A role for transcriptional regulation is suggested by data showing that cycloheximide and actinomycin D inhibited arachidonic acid release induced by zymosan, PMA and, okadaic acid but not by A23187. Our results show that MAPK pathways contribute to arachidonic acid release in macrophages through alternative mechanisms in addition to their ability to phosphorylate cPLA(2) on Ser-505 and suggest a role for new protein synthesis.
Collapse
Affiliation(s)
- M A Gijón
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | | | |
Collapse
|
474
|
Gross G, Imamura T, Vogt SK, Wozniak DF, Nelson DM, Sadovsky Y, Muglia LJ. Inhibition of cyclooxygenase-2 prevents inflammation-mediated preterm labor in the mouse. Am J Physiol Regul Integr Comp Physiol 2000; 278:R1415-23. [PMID: 10848506 DOI: 10.1152/ajpregu.2000.278.6.r1415] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostaglandins (PGs) have proven important during parturition, but inhibition of PG production treating preterm labor (PTL) results in significant maternal and fetal side effects. We hypothesize that specific inhibition of either cyclooxygenase (COX)-1 or -2 may result in separation of therapeutic and toxic effects. We demonstrate that COX-2, but not COX-1, is induced during inflammation-mediated PTL caused by lipopolysaccharide (LPS) administration. A two- to threefold increase in uterine and ovarian PG concentrations coincides with this induction of COX-2. The COX-2-selective inhibitor SC-236 proved effective in stopping preterm delivery and the increases in PGs. The COX-1-selective inhibitor SC-560 also attenuated uterine and ovarian PG production after LPS but did not inhibit PTL as efficiently as SC-236. COX-1-deficient mice, which show delay in the onset of term labor, exhibited no delay in onset of PTL after LPS. These findings suggest that the mechanisms for initiation of inflammation-mediated PTL and term labor differ and that selective COX-2 inhibition may provide a means of stopping inflammation-induced PTL in humans.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Calcium/metabolism
- Cyclooxygenase 1
- Cyclooxygenase 2
- Cyclooxygenase 2 Inhibitors
- Cyclooxygenase Inhibitors/pharmacology
- Disease Models, Animal
- Female
- Gene Expression Regulation, Enzymologic
- Indomethacin/pharmacology
- Ionophores/pharmacology
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/genetics
- Isoenzymes/pharmacology
- Labor, Obstetric/drug effects
- Labor, Obstetric/immunology
- Lipopolysaccharides/pharmacology
- Membrane Proteins
- Mice
- Mice, Inbred C3H
- Mice, Knockout
- Obstetric Labor, Premature/drug therapy
- Obstetric Labor, Premature/immunology
- Obstetric Labor, Premature/prevention & control
- Ovary/enzymology
- Peritonitis/chemically induced
- Peritonitis/immunology
- Pregnancy
- Prostaglandin-Endoperoxide Synthases/genetics
- Prostaglandin-Endoperoxide Synthases/pharmacology
- Prostaglandins/immunology
- Pyrazoles/pharmacology
- RNA, Messenger/analysis
- Sulfonamides/pharmacology
- Uterus/enzymology
Collapse
Affiliation(s)
- G Gross
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
475
|
Tabuchi K, Ito Z, Tsuji S, Wada T, Takahashi K, Hara A, Kusakari J. The contribution of phospholipase A2 to the cochlear dysfunction induced by transient ischemia. Hear Res 2000; 144:1-7. [PMID: 10831860 DOI: 10.1016/s0378-5955(00)00038-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The objective of the present study was to examine whether mepacrine, a commonly used phospholipase A2 inhibitor, decreases ischemic damage to the cochlea. Transient ischemia of the cochlea was induced in albino guinea pigs for 15, 30 or 60 min by pressing the labyrinthine artery at the porus acusticus internus. The animals were intraperitoneally given mepacrine or physiological saline solution (PSS) 20 min prior to ischemia. Although mepacrine failed to alleviate the post-ischemic threshold shift of compound action potential (CAP) in case of 60 min ischemia, a statistically significant reduction in the CAP threshold shift was observed in the mepacrine-treated animals after 15 and 30 min ischemia. However, there was no statistically significant difference in the post-ischemic threshold shift of cochlear microphonic between the mepacrine-given and the PSS-given animals. Furthermore, mepacrine partially alleviated ischemia-induced swelling of radial afferent dendrites of primary auditory neurons. These results suggest that excessive activation of phospholipase A2 plays an injury-producing role at least by enhancing excitotoxicity in ischemia-reperfusion injury of the cochlea.
Collapse
Affiliation(s)
- K Tabuchi
- Department of Otolaryngology, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, 305-8575, Tsukuba, Japan
| | | | | | | | | | | | | |
Collapse
|
476
|
Shindou H, Ishii S, Uozumi N, Shimizu T. Roles of cytosolic phospholipase A(2) and platelet-activating factor receptor in the Ca-induced biosynthesis of PAF. Biochem Biophys Res Commun 2000; 271:812-7. [PMID: 10814544 DOI: 10.1006/bbrc.2000.2723] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Casein-elicited peritoneal exudate cells (PEC), mainly consisted of neutrophils, were collected from platelet-activating factor receptor-knock-out (PAFR-KO), cytosolic phospholipase A(2) knock-out (cPLA(2)-KO), and wild-type (WT) mice. After stimulation of PEC with calcium ionophore A 23187, PAF levels were measured by radio-ligand binding assay using receptor-rich membrane fraction prepared from the PAF receptor transgenic mice. We found that the level of PAF production by PEC was not different between WT and PAFR-KO mice. On the other hand, cPLA(2)-KO mice were deficient in the PAF production. These results provide the direct evidence while cPLA(2) is essential in the production of PAF, PAF receptor deficiency has little effect on the PAF production.
Collapse
Affiliation(s)
- H Shindou
- Department of Biochemistry and Molecular Biology, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | |
Collapse
|
477
|
Balsinde J, Balboa MA, Li WH, Llopis J, Dennis EA. Cellular regulation of cytosolic group IV phospholipase A2 by phosphatidylinositol bisphosphate levels. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5398-402. [PMID: 10799904 DOI: 10.4049/jimmunol.164.10.5398] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytosolic group IV phospholipase A2 (cPLA2) is a ubiquitously expressed enzyme with key roles in intracellular signaling. The current paradigm for activation of cPLA2 by stimuli proposes that both an increase in intracellular calcium and mitogen-activated protein kinase-mediated phosphorylation occur together to fully activate the enzyme. Calcium is currently thought to be needed for translocation of the cPLA2 to the membrane via a C2 domain, whereas the role of cPLA2 phosphorylation is less clearly defined. Herein, we report that brief exposure of P388D1 macrophages to UV radiation results in a rapid, cPLA2-mediated arachidonic acid mobilization, without increases in intracellular calcium. Thus, increased Ca2+ availability is a dispensable signal for cPLA2 activation, which suggests the existence of alternative mechanisms for the enzyme to efficiently interact with membranes. Our previous in vitro data suggested the importance of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) in the association of cPLA2 to model membranes and hence in the regulation of cPLA2 activity. Experiments described herein show that PtdInsP2 also serves a similar role in vivo. Moreover, inhibition of PtdInsP2 formation during activation conditions leads to inhibition of the cPLA2-mediated arachidonic acid mobilization. These results suggest that cellular PtdInsP2 levels are involved in the regulation of group IV cPLA2 activation.
Collapse
Affiliation(s)
- J Balsinde
- Department of Chemistry, University of California at San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
478
|
Liberles SD, Schreiber SL. Apoptosis-inducing natural products found in utero during murine pregnancy. CHEMISTRY & BIOLOGY 2000; 7:365-72. [PMID: 10801475 DOI: 10.1016/s1074-5521(00)00114-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Hormones, lipids, vitamins and other biologically active small molecules can be removed from animal tissues by extraction with organic solvents. These compounds can have dramatic effects on cultured cells and the characterization of such compounds can lead to the discovery of new functions for known molecules, or even to the discovery of previously unknown compounds. RESULTS Organic-soluble compounds in 17.5-day-old mouse embryos were removed with tert-butylmethylether and found to induce apoptosis in T-antigen-transformed Jurkat T cells. These embryonic extracts were fractionated and their apoptosis-inducing components were identified as a mixture of polyunsaturated fatty acids, including arachidonic, docosatetraenoic and docosahexaenoic acids. Docosatetraenoic acid was the most potent apoptosis inducer with an effective dose (ED(50)) of 30 microM. CONCLUSIONS A family of polyunsaturated fatty acids is shown to be abundant in utero during pregnancy. Members of this family are able to induce cleavage of poly(ADP)ribose polymerase, and ultimately to induce apoptosis, in T-antigen-transformed Jurkat T cells. Free radical scavengers, including phenol and benzyl alcohol, block the apoptosis-inducing properties of these polyunsaturated fatty acids; this is consistent with a lipid peroxidation mechanism involving formation of hydroperoxy fatty acids.
Collapse
Affiliation(s)
- S D Liberles
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
479
|
Abstract
Phospholipases A2 (PLA2s) regulate hydrolysis of fatty acids, including arachidonic acid, from the sn-2 position of phospholipid membranes. PLA2 activity has been implicated in neurotoxicity and neurodegenerative processes secondary to ischemia and reperfusion and other oxidative stresses. The PLA2s constitute a superfamily whose members have diverse functions and patterns of expression. A large number of PLA2s have been identified within the central nervous systems of rodents and humans. We postulated that group IV large molecular weight, cytosolic phospholipase A2 (cPLA2) has a unique role in neurotoxicity associated with ischemic or toxin stress. We created mice deficient in cPLA2 and tested this hypothesis in two injury models, ischemia/reperfusion and MPTP neurotoxicity. In each model cPLA2 deficient mice are protected against neuronal injury when compared to their wild type littermate controls. These experiments support the hypothesis that cPLA2 is an important mediator of ischemic and oxidative injuries in the brain.
Collapse
Affiliation(s)
- A Sapirstein
- Anesthesia and Critical Care, Massachusetts General Hospital, Charlestown 02129, USA.
| | | |
Collapse
|
480
|
Abstract
Peroxisome proliferator-activated receptors (PPARs), members of the nuclear hormone superfamily, are the target of extensive investigation because of their role in various pathophysiological processes. Recently, a novel biological function of PPAR delta, a less studied member of the family, was observed in the mouse. Evidence suggests that cyclooxygenase 2-derived prostacyclin mediates blastocyst implantation via this receptor. In this review, this new function of PPAR delta in implantation is highlighted, and future directions to investigate its mechanism of action are discussed.
Collapse
Affiliation(s)
- H Lim
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, 20 Shattuck Street, Thorn 1010, Boston, MA 02115, USA
| | | |
Collapse
|
481
|
Abstract
The application of targeted gene inactivation methodologies to the study of late fetal development and control of the timing for parturition in mice has yielded insight into the mechanisms that enhance fetal survival. An essential role for glucocorticoids in promoting lung maturation sufficient for viability ex utero before the onset of normal parturition has been demonstrated in corticotropin-releasing hormone-deficient mice. In contrast, maternal deficiency in the prostaglandin synthetic enzyme cyclooxygenase-1 results in the markedly delayed onset of labor and fetal demise because of postdates gestation. The complex interplay of factors that govern the onset of labor is highlighted by mice deficient in both cyclooxygenase-1 and oxytocin. Whereas mice deficient in oxytocin demonstrate normal parturition, simultaneous cyclooxygenase-1 and oxytocin deficiency rescues the delayed onset of labor found in cyclooxygenase-1 knockout mice but results in the prolonged duration of labor. The consequences of complete deficiency of molecules involved in parturition in mice suggest novel interventions for human preterm labor.
Collapse
Affiliation(s)
- L J Muglia
- Washington University School of Medicine, Department of Pediatrics, St. Louis Children's Hospital, MO 63110, USA
| |
Collapse
|
482
|
Dolan-O'Keefe M, Chow V, Monnier J, Visner GA, Nick HS. Transcriptional regulation and structural organization of the human cytosolic phospholipase A(2) gene. Am J Physiol Lung Cell Mol Physiol 2000; 278:L649-57. [PMID: 10749741 DOI: 10.1152/ajplung.2000.278.4.l649] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytokines are established regulators of the arachidonic acid cascade in lung cells. The levels of various arachidonic metabolites distinguish the normal and pathogenic states of the human lung. Arachidonyl-selective cytosolic phospholipase A(2) (cPLA(2)) is ubiquitously present in human lung and is most likely the rate-limiting step in eicosanoid generation. We therefore studied the regulation of this pivotal gene in human lung fibroblasts and epithelial cells by proinflammatory cytokines. We demonstrate a dose- and time-dependent induction of human cPLA(2) mRNA by interleukin-1beta, tumor necrosis factor-alpha, and interferon-gamma as well as the abrogation of this induction by glucocorticoids. Nuclear runoff studies demonstrate that de novo transcription of the cPLA(2) gene is required for cytokine induction. We have characterized the human cPLA(2) gene, which is encoded by 18 exons and spans in excess of 137 kb. Deletion analysis of a 3.4-kb fragment of the human promoter identified two regions responsible for basal expression of the cPLA(2) gene. Conversely, a CA-dinucleotide repeat in the proximal promoter appears to repress overall promoter activity. Understanding the molecular mechanisms associated with cytokine-dependent expression of the cPLA(2) gene should provide further insight into regulating the level of proinflammatory mediators in pulmonary diseases.
Collapse
Affiliation(s)
- M Dolan-O'Keefe
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
483
|
Breyer RM, Kennedy CR, Zhang Y, Breyer MD. Structure-function analyses of eicosanoid receptors. Physiologic and therapeutic implications. Ann N Y Acad Sci 2000; 905:221-31. [PMID: 10818456 DOI: 10.1111/j.1749-6632.2000.tb06552.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prostaglandins (PGs) are ubiquitous lipid mediators derived from cyclooxygenase (COX) metabolism of arachidonic acid that exert a broad range of physiologic activities including modulation of inflammation, ovulation, and arterial blood pressure. The physiologic actions of PGs are mediated in part by their interaction with specific G-protein-coupled PG receptors. Eight PG receptors have been cloned, including four for the major COX metabolite, PGE2. The physiologic roles of the PGE2 receptors have been investigated utilizing subtype-selective agonists, localization of receptor mRNA expression, and creation of mice with targeted disruption of PG receptor genes. These analyses have delineated discrete roles for the various PG receptor subtypes. Recent studies on mice lacking the PGE2 EP2 receptor have implicated the PGE2 EP2 receptor subtype in arterial dilatation and salt-sensitive hypertension, and also indicate that this receptor plays a key role in female fertility. The EP2 receptor may thus prove to be a productive target for pharmacological intervention in the treatment of hypertension and infertility.
Collapse
Affiliation(s)
- R M Breyer
- Department of Medicine (Division of Nephrology), Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | | | | | |
Collapse
|
484
|
Murakami M, Tada K, Nakajima K, Kudo I. Regulation of prostaglandin, leukotriene, and platelet-activating factor metabolism in mast cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 469:37-42. [PMID: 10667307 DOI: 10.1007/978-1-4615-4793-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- M Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | | | |
Collapse
|
485
|
Tibes U, Röhr SP, Scheuer W, Amandi-Burgermeister E, Litters A. Suppression of acute experimental inflammation by antisense oligonucleotides targeting secretory phospholipase A2 (sPLA2) in vitro and in vivo experiments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 469:199-207. [PMID: 10667331 DOI: 10.1007/978-1-4615-4793-8_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
In HepG2 cells phosphorothioate modified antisense oligonucleotides against a sequence in the Ca2+ binding domain (AS-Ca2+) of type II sPLA2 mRNA restrained IL-6-induced synthesis of sPLA2 protein, sPLA2 mRNA (northern blot), and abolished IL-6 stimulated PGE2 release. An antisense oligonucleotide corresponding to a sequence in the catalytic domain (AS-Cat) of sPLA2 was less effective. The antisense oligonucleotides did not affect albumin synthesis in HepG2 cells, additionally demonstrating their specificity. The corresponding AS-Ca2+ against a homologous part of the rat sPLA2 mRNA depressed rat carrageenin oedema for 60-70%. Identical suppression was achieved by specific low molecular weight inhibitors of sPLA2. Since cyclo- and 5-lipoxygenase inhibitors exerted similar reductions of carrageenin oedema type II sPLA2 dependent eicosanoid formation seems to be a key cascade in this type of inflammation.
Collapse
Affiliation(s)
- U Tibes
- Boehringer Mannheim GmbH, Dept. of Preclinical Research, Mannheim
| | | | | | | | | |
Collapse
|
486
|
Seno K, Okuno T, Nishi K, Murakami Y, Watanabe F, Matsuura T, Wada M, Fujii Y, Yamada M, Ogawa T, Okada T, Hashizume H, Kii M, Hara S, Hagishita S, Nakamoto S, Yamada K, Chikazawa Y, Ueno M, Teshirogi I, Ono T, Ohtani M. Pyrrolidine inhibitors of human cytosolic phospholipase A(2). J Med Chem 2000; 43:1041-4. [PMID: 10737736 DOI: 10.1021/jm9905155] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K Seno
- Shionogi Research Laboratories, Shionogi & Company, Ltd., 12-4, Sagisu 5-chome, Fukushima-ku, Osaka 553-0002, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
487
|
Mazereeuw-Hautier J, Redoules D, Tarroux R, Charveron M, Salles JP, Simon MF, Cerutti I, Assalit MF, Gall Y, Bonafe JL, Chap H. Identification of pancreatic type I secreted phospholipase A2 in human epidermis and its determination by tape stripping. Br J Dermatol 2000; 142:424-31. [PMID: 10735945 DOI: 10.1046/j.1365-2133.2000.03351.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phospholipases A2 (PLA2) catalyse the release of fatty acids from the sn-2 position of phospholipids and have been suggested to play a key part in permeability barrier homeostasis. Using a sensitive and versatile fluorometric method, significant PLA2 activity has been detected in both human skin homogenates and tape strippings of stratum corneum. Based on various properties (resistance to heat and sulphuric acid treatment, neutral optimal pH, absolute requirement for millimolar calcium concentrations, inhibition by dithiothreitol and p-bromophenacyl bromide, and resistance to a trifluoromethyl ketone derivative of arachidonic acid, AACOCF3, a specific inhibitor of cytosolic PLA2), this enzyme was characterized as a secretory PLA2 (sPLA2). Immunohistochemistry revealed strong labelling of type I pancreatic sPLA2 at the stratum corneum-stratum granulosum junction, type II sPLA2 being undetectable. An increase in PLA2 activity in tape-stripped material from the deepest level of the stratum corneum was correlated with partial morphological disappearance of type I sPLA2 immunolabelling. Our data thus provide the first convincing evidence that pancreatic sPLA2 is significantly expressed in human epidermis, where it might participate in the accumulation of free fatty acids contributing to the permeability barrier. In addition, our method for determining PLA2 activity in easily available tape strippings should allow further clinical studies aimed to explore possible PLA2 abnormalities in various dermatoses.
Collapse
Affiliation(s)
- J Mazereeuw-Hautier
- Service de Dermatologie, Hôpital de Rangueil, 1 avenue J Poulhès, 31403 Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
488
|
Soloff MS, Jeng YJ, Copland JA, Strakova Z, Hoare S. Signal pathways mediating oxytocin stimulation of prostaglandin synthesis in select target cells. Exp Physiol 2000; 85 Spec No:51S-58S. [PMID: 10795906 DOI: 10.1111/j.1469-445x.2000.tb00007.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A major action of oxytocin is to stimulate prostaglandin production in reproductive tissues. The two major enzyme systems involved are cytosolic phospholipase A2 (cPLA2), which catalyses the formation of arachidonic acid from membrane glycerophospholipids, and prostaglandin endoperoxide-H synthases-1 and -2, which allow conversion of arachidonic acid to prostaglandins. During gestation, the concentrations of all three enzymes rise in the rabbit amnion. Agonists, including oxytocin, increase cPLA2 activity, in part, by elevating intracellular Ca2+ concentration, which causes cPLA2 to be translocated from the cytosol to intracellular membrane binding sites. Cytosolic PLA2 is then activated by a mitogen-activated protein kinase (MAPK)-dependent step. Our studies have elucidated signal pathways involved in oxytocin-stimulated prostaglandin output in both rabbit amnion cells and Chinese hamster ovary cells stably transfected with the rat oxytocin receptor. The two cell types are alike with respect to oxytocin-stimulated intracellular Ca2+ transients, mediation via Gq, and the specific MAPK that catalyses the phosphorylation of cPLA2. However, they differ with respect to the mechanisms of upregulation of key enzymes involved in prostaglandin E2 synthesis. These findings illustrate the tiers of complementary mechanisms involved in oxytocin stimulation of prostaglandin E2, and the extent of the diversity in the cellular signalling pathways involved.
Collapse
Affiliation(s)
- M S Soloff
- Department of Obstetrics and Gynaecology, The University of Texas Medical Branch, Galveston, USA.
| | | | | | | | | |
Collapse
|
489
|
Abstract
The use of topical corticosteroids has revolutionised the treatment of inflammatory skin diseases. However, problems including pharmacological resistance, as well as the side effect profile of potent topical corticosteroids, has prompted studies to investigate into other topical non-corticosteroidal agents in inflammatory skin diseases. This review outlines the major types of inflammatory skin diseases and discusses emerging therapies based on topical immunosuppressive macrolide antibiotics. In particular, tacrolimus and ascomycin derivatives have been shown to be effective for treating atopic dermatitis with a surprising lack of side effects. It is expected that these agents will play an important role in future dermatological therapy. Accumulating evidence suggests the importance of lipid-derived mediators of inflammation (eicosanoids and platelet-activating factor) in cutaneous inflammatory diseases. The role of these mediators in skin inflammation is also addressed in this review. Though there appears to be a large amount of redundancy in the activities of these lipid mediators, this family of agents could potentially serve as targets for anti-inflammatory therapy. Inasmuch as the phospholipase A(2) family of enzymes serve to synthesise both eicosanoids and platelet-activating factor, inhibition at this step could have important therapeutic benefits in designing therapy for inflammatory skin diseases.
Collapse
Affiliation(s)
- J B Travers
- Departments of Dermatology, Pediatrics, Pharmacology, Indiana University School of Medicine, 550 University Blvd Suite 3240, Indianapolis, Indiana 46202, USA.
| |
Collapse
|
490
|
Abstract
The phospholipases A(2) (PLA(2)s) are a large family of enzymes with varied lipidic products which are involved in numerous signal transduction pathways. The structural and functional characterization of several PLA(2)s have revealed the various mechanisms used by these enzymes to ingeniously manipulate the phospholipidic metabolic machinery.
Collapse
Affiliation(s)
- A Dessen
- European Molecular Biology Laboratory, Grenoble, 38000, France.
| |
Collapse
|
491
|
Burgermeister E, Pessara U, Tibes U, Küster A, Heinrich PC, Scheuer WV. Inhibition of cytosolic phospholipase A(2) attenuates activation of mitogen-activated protein kinases in human monocytic cells. Eur J Pharmacol 2000; 388:195-208. [PMID: 10675727 DOI: 10.1016/s0014-2999(99)00816-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Eicosanoids and platelet-activating factor generated upon activation of cytosolic phospholipase A(2) enhance activity of transcription factors and synthesis of proinflammatory cytokines. Here, we show that selective inhibitors and antisense oligonucleotides against this enzyme suppressed expression of the interleukin-1beta gene at the level of transcription and promoter activation in human monocytic cell lines. This inhibitory effect was due to failure of activation of mitogen-activated protein kinases (MAPK) through phosphorylation by upstream mitogen-activated protein kinase kinases (MKK). Consequently, phosphorylation and degradation of inhibitor-kappaBalpha (I-kappaBalpha) and subsequent cytoplasmic mobilization, DNA-binding and the transactivating potential of nuclear factor-kappaB (NF-kB), nuclear factor-interleukin-6 (NF-IL6), activation protein-1 (AP-1) and signal-transducer-and-activator-of-transcription-1 (STAT-1) were impaired. It is concluded, that lipid mediators promote activation of MAPKs, which in turn lead to phosphorylation and liberation of active transcription factors. Since inhibition of cytosolic phospholipase A(2) ameliorates inflammation in vivo, this potency may reside in interference with the MAPK pathway.
Collapse
Affiliation(s)
- E Burgermeister
- Department of Molecular Pharmacology, Roche Diagnostics, Nonnenwald. 2, D-82372, Penzberg, Germany
| | | | | | | | | | | |
Collapse
|
492
|
Yokomizo T, Masuda K, Kato K, Toda A, Izumi T, Shimizu T. Leukotriene B4 receptor. Cloning and intracellular signaling. Am J Respir Crit Care Med 2000; 161:S51-5. [PMID: 10673227 DOI: 10.1164/ajrccm.161.supplement_1.ltta-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- T Yokomizo
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
493
|
Abstract
Sepsis is defined as the systemic inflammatory response to infection. Phospholipase A2 (PLA2) plays an important role in inflammation processes by initiating the production of inflammatory mediators. The role of cytosolic PLA (cPLA2) has not yet been identified in inflammatory and infectious disease clinical settings. The aim of the present research was to determine whether cPLA2 activity has a role during sepsis. Since neutrophil activation has been documented during sepsis, these cells were chosen as a model to evaluate the function of cPLA2 in this clinical setting. cPLA2 was studied at 3 levels: activity, protein expression, and messenger RNA (mRNA). Neutrophils from 32 septic patients with and without bacteremia were examined. cPLA2 activity was measured using labeled phosphatidyl choline vesicles as a substrate, and total PLA2 was determined by the release of labeled arachidonic acid from prelabeled cells. A significant increase in cPLA2activity, protein expression, and total PLA2 activity in neutrophils was detected during sepsis. mRNA levels, detected by reverse transcriptase–polymerase chain reaction, were significantly higher during sepsis, indicating that the increase in the amount of cPLA2 is regulated on the mRNA level. The significant elevation of cPLA2 activity and expression in neutrophils during sepsis suggests that this enzyme plays a major role in neutrophil function in this clinical setting.
Collapse
|
494
|
Nakatani Y, Tanioka T, Sunaga S, Murakami M, Kudo I. Identification of a cellular protein that functionally interacts with the C2 domain of cytosolic phospholipase A(2)alpha. J Biol Chem 2000; 275:1161-8. [PMID: 10625659 DOI: 10.1074/jbc.275.2.1161] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic phospholipase A(2) (cPLA(2)) alpha plays critical roles in lipid mediator synthesis. We performed far-Western analysis and identified a 60-kDa protein (P60) that interacted with cPLA(2)alpha in a Ca(2+)-dependent manner. Peptide microsequencing revealed that purified P60 was identical to vimentin, a major component of the intermediate filament. The interaction occurred between the C2 domain of cPLA(2)alpha and the head domain of vimentin. Immunofluorescence microscopic analysis demonstrated that cPLA(2)alpha and vimentin colocalized around the perinuclear area in cPLA(2)alpha-overexpressing human embryonic kidney 293 cells following A23187 stimulation. Forcible expression of vimentin in vimentin-deficient SW13 cells augmented A23187-induced arachidonate release. Moreover, overexpression of the vimentin head domain in rat fibroblastic 3Y1 cells exerted a dominant inhibitory effect on arachidonate metabolism, significantly reducing A23187-induced arachidonate release and attendant prostanoid generation. These results suggest that vimentin is an adaptor for cPLA(2)alpha to function properly during the eicosanoid-biosynthetic process.
Collapse
Affiliation(s)
- Y Nakatani
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | |
Collapse
|
495
|
Ushikubi F, Sugimoto Y, Ichikawa A, Narumiya S. Roles of Prostanoids Revealed From Studies Using Mice Lacking Specific Prostanoid Receptors. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0021-5198(19)30561-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
496
|
Lehr M, Griessbach K. Involvement of different protein kinases and phospholipases A2 in phorbol ester (TPA)-induced arachidonic acid liberation in bovine platelets. Mediators Inflamm 2000; 9:31-4. [PMID: 10877452 PMCID: PMC1781745 DOI: 10.1080/09629350050024357] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The effect of various phospholipase A2 and protein kinase inhibitors on the arachidonic acid liberation in bovine platelets induced by the protein kinase activator 12-O-tetradecanoylphorbol-13-acetate (TPA) was studied. TPA stimulates arachidonic acid release mainly by activating group IV cytosolic PLA2 (cPLA2), since inhibitors of this enzyme markedly inhibited arachidonic acid formation. However, group VI Ca2+-independent PLA2 (iPLA2) seems to contribute to the arachidonic acid liberation too, since the relatively specific iPLA2 inhibitor bromoenol lactone (BEL) decreased arachidonic acid generation in part. The pronounced inhibition of the TPA-induced arachidonic acid release by the protein kinase C (PKC) inhibitors GF 109203X and Ro 31-82220, respectively, and by the p38 MAP kinase inhibitor SB 202190 suggests that the activation of the PLA2s by TPA is mediated via PKC and p38 MAP kinase.
Collapse
Affiliation(s)
- M Lehr
- Institute of Pharmaceutical Chemistry, University of Münster, Germany.
| | | |
Collapse
|
497
|
Nagase T, Kurihara H, Kurihara Y, Aoki-Nagase T, Nagai R, Ouchi Y. Disruption of ET-1 gene enhances pulmonary responses to methacholine via functional mechanism in knockout mice. J Appl Physiol (1985) 1999; 87:2020-4. [PMID: 10601144 DOI: 10.1152/jappl.1999.87.6.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelin (ET)-1 has been shown to have various pathophysiological roles in the lung. Recently, it has been reported that ET-1 and a gene encoding ET-1 (Edn1) might be involved in airway hyperresponsiveness, which is a major feature of bronchial asthma. Meanwhile, it remains unclear whether ET-1 might be involved in airway remodeling in vivo. In the present study, we hypothesized whether ET-1 might play a role in airway remodeling, leading to altered responsiveness. To test this hypothesis, we investigated airway function in vivo and airway wall structure in Edn1(+/-) heterozygous knockout mice, which genetically produce lower levels of ET-1, and Edn1(+/+) wild-type mice. In the physiological study, enhanced responses in lung elastance and resistance to methacholine administration were observed in Edn1(+/-) mice, whereas there was no difference in serotonin responsiveness. In the morphometric study, there were no differences in either lamina propria or airway smooth muscle thickness between Edn1(+/-) mice and Edn1(+/+) mice. These findings suggest that ET-1 gene disruption is involved in methacholine pulmonary hyperresponsiveness via functional mechanism, but not airway remodeling, in mice. The ET-1 knockout mice may provide appropriate models to study diseases related to ET-1 metabolism.
Collapse
Affiliation(s)
- T Nagase
- Department of Geriatric Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan.
| | | | | | | | | | | |
Collapse
|
498
|
Austin SC, Funk CD. Insight into prostaglandin, leukotriene, and other eicosanoid functions using mice with targeted gene disruptions. Prostaglandins Other Lipid Mediat 1999; 58:231-52. [PMID: 10593166 DOI: 10.1016/s0090-6980(99)00041-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In recent years, there has been an exponential increase in the number of targeted gene disruptions performed in mice. At least 18 different gene knockouts have now been reported that have direct relevance to eicosanoid biology. These include genes that influence substrate availability (phospholipases), metabolism to eicosanoids (e.g., prostaglandin H synthases, lipoxygenases), and eicosanoid action (e.g., receptors for various prostaglandins). This minireview will outline the phenotype of these knockout mice and what has been learned about eicosanoid functions through use of this novel methodology.
Collapse
Affiliation(s)
- S C Austin
- Center for Experimental Therapeutics, Stellar-Chance Labs, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
499
|
Abstract
Arachidonic acid (5.8,11,14-eicosatetraenoic acid C20:4, n-6) is released from the cell membrane by the action of phospholipases on membrane phospholipids. Metabolites of arachidonic acid, which are generically termed eicosanoids, including prostaglandins, thromboxane, leukotrienes and hydroxyeicosatetraenoic acids, have been implicated as mediators or modulators of a number of physiological functions and pathological conditions in both normal and diseased human skin. Particularly, eicosanoids have been suspected to play an important role in the pathogenesis of psoriasis, because a number of phenomena observed in psoriasis can be explained, at least in part, by the action of eicosanoids. This review will focus on recent progress regarding the significance of eicosanoids in the pathogenesis of psoriasis. Recent developments in the molecular biology in the eicosanoids have renewed interest in the role of eicosanoids in psoriasis. New understanding of the etiology of psoriasis and advances in its treatment due to recent progress in eicosanoid biology will also be presented.
Collapse
Affiliation(s)
- K Ikai
- Department of Dermatology, Kyoto University, Graduate School of Medicine, Japan.
| |
Collapse
|
500
|
Penrose JF, Austen KF. The biochemical, molecular, and genomic aspects of leukotriene C4 synthase. PROCEEDINGS OF THE ASSOCIATION OF AMERICAN PHYSICIANS 1999; 111:537-46. [PMID: 10591082 DOI: 10.1046/j.1525-1381.1999.99212.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Leukotriene C4 (LTC4) synthase is an 18 kD integral membrane enzyme of the 5-lipoxygenase/LTC4 synthase pathway and is positioned as the pivotal and only committed enzyme for the formation of the cysteinyl leukotrienes. Although its function is to conjugate catalytically LTA4 to reduced glutathione, LTC4 synthase is differentiated from other glutathione S-transferase family members by its lack of amino acid homology, substrate specificity, and kinetics. LTC4 synthase (LTC4S) protein is present in the perinuclear membranes of a limited number of hematopoietic cells involved in allergic inflammation, including mast cells, eosinophils, basophils, and macrophages. The cDNA encodes a monomeric protein of 150 amino acids with three hydrophobic domains interspersed with two hydrophilic loops. Site-directed mutagenic studies reveal that the enzyme functions as a homodimer and that arginine-51 in the first hydrophilic loop, and tyrosine-93 in the second hydrophilic loop, are involved in the acid and base catalysis of LTA4 and glutathione, respectively. Homology and secondary structural predictions indicate that LTC4S is a novel member of a new gene superfamily of integral membrane proteins, each with the capacity to participate in leukotriene biosynthesis. The gene for LTC4S is 2.5 kb in length and is localized on chromosome 5q35, distal to that of the genes for cytokines and receptors important in the development and perpetuation of allergic inflammation. Immunohistochemical studies of mucosal biopsies from the bronchi of aspirin-intolerant asthmatics show that LTC4S is overrepresented in individuals with this phenotype, and this finding correlates with overproduction of cysteinyl leukotrienes and lysine-aspirin bronchial hyperreactivity.
Collapse
Affiliation(s)
- J F Penrose
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|