451
|
Provost P. MicroRNAs as a molecular basis for mental retardation, Alzheimer's and prion diseases. Brain Res 2010; 1338:58-66. [PMID: 20347722 PMCID: PMC2896967 DOI: 10.1016/j.brainres.2010.03.069] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/15/2010] [Accepted: 03/18/2010] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) are small, approximately 21- to 23-nucleotide (nt) non-coding RNA species that act as key regulators of gene expression along a central and well-defined cellular process known as RNA silencing, and involving the recognition and translational control of specific messenger RNA (mRNAs). Generated through the well-orchestrated and sequential processing of miRNA precursor molecules, mature miRNAs are subsequently incorporated into miRNA-containing ribonucleoprotein effector complexes to regulate mRNA translation through the recognition of specific binding sites of imperfect complementarity located mainly in the 3' untranslated region. Predicted to regulate up to 90% of the genes in humans, miRNAs may thus control cellular processes in all cells and tissues of the human body. Likely to play a central role in health and disease, a dysfunctional miRNA-based regulation of gene expression may represent the main etiologic factor underlying diseases affecting major organs, such as the brain. In this review article, the molecular mechanisms underlying the role and function of miRNAs in the regulation of genes involved in neurological and neurodegenerative diseases will be discussed, with a focus on the fragile X syndrome, Alzheimer's disease (AD) and prion disease.
Collapse
Affiliation(s)
- Patrick Provost
- CHUL Research Center/CHUQ and Faculty of Medicine, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
452
|
Dual-target-directed 1,3-diphenylurea derivatives: BACE 1 inhibitor and metal chelator against Alzheimer's disease. Bioorg Med Chem 2010; 18:5610-5. [PMID: 20620068 DOI: 10.1016/j.bmc.2010.06.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 06/11/2010] [Accepted: 06/11/2010] [Indexed: 11/24/2022]
Abstract
Dual-target-directed 1,3-diphenylurea derivatives were designed by hybridizing BACE 1 inhibitor 1 with metal chelator LR-90. A database consisted of 1,3-diphenylurea derivatives was built and screened by the pharmacophore model (Hypo 1) of BACE 1 inhibitor. Based on the predicted results, 11 compounds (6a-d, 9a-g) with favorable Fitvalues were selected, synthesized and evaluated for their BACE 1 inhibitory activities, which showed that the predicted results were in good agreement with the experimental values. Besides, the synthesized compounds also displayed the ability to chelate metal ions. The most effective BACE 1 inhibitor 9f (27.85+/-2.46 micromol/L) was selected for further receptor-binding studies, the result of which indicated that an essential hydrogen bonds was formed between the urea group of 9f and the catalytic aspartate Asp228.
Collapse
|
453
|
Genetic targeting aromatase in male amyloid precursor protein transgenic mice down-regulates beta-secretase (BACE1) and prevents Alzheimer-like pathology and cognitive impairment. J Neurosci 2010; 30:7326-34. [PMID: 20505099 DOI: 10.1523/jneurosci.1180-10.2010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As brain testosterone plays both androgenic and estrogenic actions due to its conversion into estrogen via aromatase naturally, it is unclear that the age-related reduction of testosterone increased risk of Alzheimer's disease (AD) in men is mediated through androgen alone or both androgen and estrogen mechanisms. Our previous studies using a gene-based approach in mouse model to block the conversion of testosterone into estrogen (aromatase gene knock-out, ArKO), found a depletion of estrogen and increase in testosterone endogenously in males. Here, we use crossing the ArKO mice with APP23 transgenic mice, a mouse model of AD, to produce APP23/Ar(+/-) mice to study the estrogen-independent effect of testosterone on AD. We found a significant reduction in brain plaque formation, improved cognitive function and increase NEP activity in male APP23/Ar(+/-) mice compared with age-matched male APP23 controls. In addition, we found, for the first time, a reduction of beta-secretase (BACE1) enzyme activity, mRNA level and protein expression in the male APP23/Ar(+/-) mice, suggesting that endogenous testosterone, independent from estrogen, may protect against AD in males via two major mechanisms, downregulation of BACE1 activities at transcriptional level to reduce beta amyloid production and upregulation of NEP activities to enhance bate amyloid degradation.
Collapse
|
454
|
Boudreau RL, Davidson BL. RNAi therapeutics for CNS disorders. Brain Res 2010; 1338:112-21. [DOI: 10.1016/j.brainres.2010.03.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 12/15/2022]
|
455
|
Abstract
Alzheimer's disease is a progressive neurodegenerative disease for which no cure exists. There is a substantial need for new therapies that offer improved symptomatic benefit and disease-slowing capabilities. In recent decades there has been substantial progress in understanding the molecular and cellular changes associated with Alzheimer's disease pathology. This has resulted in identification of a large number of new drug targets. These targets include, but are not limited to, therapies that aim to prevent production of or remove the amyloid-beta protein that accumulates in neuritic plaques; to prevent the hyperphosphorylation and aggregation into paired helical filaments of the microtubule-associated protein tau; and to keep neurons alive and functioning normally in the face of these pathologic challenges. We provide a review of these targets for drug development.
Collapse
Affiliation(s)
- Joshua D Grill
- Mary S. Easton Center for Alzheimer's Disease Research, Deane F. Johnson Center for Neurotherapeutics, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | |
Collapse
|
456
|
Aguzzi A, O'Connor T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 2010; 9:237-48. [PMID: 20190788 DOI: 10.1038/nrd3050] [Citation(s) in RCA: 562] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A growing number of diseases seem to be associated with inappropriate deposition of protein aggregates. Some of these diseases--such as Alzheimer's disease and systemic amyloidoses--have been recognized for a long time. However, it is now clear that ordered aggregation of pathogenic proteins does not only occur in the extracellular space, but in the cytoplasm and nucleus as well, indicating that many other diseases may also qualify as amyloidoses. The common structural and pathogenic features of these diverse protein aggregation diseases is only now being fully understood, and may provide novel opportunities for overarching therapeutic approaches such as depleting the monomeric precursor protein, inhibiting aggregation, enhancing aggregate clearance or blocking common aggregation-induced cellular toxicity pathways.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Schmelzbergstrasse 12, CH8091 Zürich, Switzerland.
| | | |
Collapse
|
457
|
Zhu Z, Li C, Wang X, Yang Z, Chen J, Hu L, Jiang H, Shen X. 2,2',4'-trihydroxychalcone from Glycyrrhiza glabra as a new specific BACE1 inhibitor efficiently ameliorates memory impairment in mice. J Neurochem 2010; 114:374-85. [PMID: 20412384 DOI: 10.1111/j.1471-4159.2010.06751.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) characterizes a progressive neurodegenerative disorder of the brain, while AD patients are afflicted with irreversible loss of neurons and further the intellectual abilities including memory and reasoning. One of the typical hallmarks of AD is the deposition of senile plaque that is contributed mainly by amyloid-beta (Abeta), whose production is initiated by beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1). Inhibition of BACE1 is thereby regarded as an attractive strategy for anti-AD drug discovery. Here, we reported that the natural product 2,2',4'-trihydroxychalcone (TDC) from Glycyrrhiza glabra functioned as a specific non-competitive inhibitor against BACE1 enzyme, and potently repressed beta-cleavage of APP and production of Abeta in human embryo kidney cells-APPswe cells. Moreover, the amelioration ability of this compound against the in vivo memory impairment was further evaluated by APP-PS1 double transgenic mice model. It is discovered that treatment of 9 mg/kg/day of TDC could obviously decrease Abeta production and Abeta plaque formation, while efficiently improve the memory impairment based on Morris water maze test. Our findings thus demonstrated that the natural product TDC as a new BACE1 inhibitor could ameliorate memory impairment in mice, and is expected to be potentially used as a lead compound for further anti-AD reagent development.
Collapse
Affiliation(s)
- Zhiyuan Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
458
|
Crews L, Masliah E. Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum Mol Genet 2010; 19:R12-20. [PMID: 20413653 PMCID: PMC2875049 DOI: 10.1093/hmg/ddq160] [Citation(s) in RCA: 510] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 04/19/2010] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment, progressive neurodegeneration and formation of amyloid-beta (Abeta)-containing plaques and neurofibrillary tangles composed of hyperphosphorylated tau. The neurodegenerative process in AD is initially characterized by synaptic damage accompanied by neuronal loss. In addition, recent evidence suggests that alterations in adult neurogenesis in the hippocampus might play a role. Synaptic loss is one of the strongest correlates to the cognitive impairment in patients with AD. Several lines of investigation support the notion that the synaptic pathology and defective neurogenesis in AD are related to progressive accumulation of Abeta oligomers rather than fibrils. Abnormal accumulation of Abeta resulting in the formation of toxic oligomers is the result of an imbalance between the levels of Abeta production, aggregation and clearance. Abeta oligomers might lead to synaptic damage by forming pore-like structures with channel activity; alterations in glutamate receptors; circuitry hyper-excitability; mitochondrial dysfunction; lysosomal failure and alterations in signaling pathways related to synaptic plasticity, neuronal cell and neurogenesis. A number of signaling proteins, including fyn kinase; glycogen synthase kinase-3beta (GSK3beta) and cyclin-dependent kinase-5 (CDK5), are involved in the neurodegenerative progression of AD. Therapies for AD might require the development of anti-aggregation compounds, pro-clearance pathways and blockers of hyperactive signaling pathways.
Collapse
Affiliation(s)
| | - Eliezer Masliah
- Department of Pathology and
- Department of Neurosciences, University of California – San Diego, 9500 Gilman Drive, La Jolla, CA 92003-0624, USA
| |
Collapse
|
459
|
De Strooper B. Proteases and Proteolysis in Alzheimer Disease: A Multifactorial View on the Disease Process. Physiol Rev 2010; 90:465-94. [DOI: 10.1152/physrev.00023.2009] [Citation(s) in RCA: 343] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alzheimer disease is characterized by the accumulation of abnormally folded protein fragments, i.e., amyloid beta peptide (Aβ) and tau that precipitate in amyloid plaques and neuronal tangles, respectively. In this review we discuss the complicated proteolytic pathways that are responsible for the generation and clearance of these fragments, and how disturbances in these pathways interact and provide a background for a novel understanding of Alzheimer disease as a multifactorial disorder. Recent insights evolve from the static view that the morphologically defined plaques and tangles are disease driving towards a more dynamic, biochemical view in which the intermediary soluble Aβ oligomers and soluble tau fragments are considered as the main mediators of neurotoxicity. The relevance of proteolytic pathways, centered on the generation and clearance of toxic Aβ, on the cleavage and nucleation of tau, and on the general proteostasis of the neurons, then becomes obvious. Blocking or stimulating these pathways provide, or have the potential to provide, interesting drug targets, which raises the hope that we will be able to provide a cure for this dreadful disorder.
Collapse
Affiliation(s)
- Bart De Strooper
- Center for Human Genetics, K.U.Leuven and Department for Molecular and Developmental Genetics, VIB, Leuven, Belgium
| |
Collapse
|
460
|
Nilsson P, Iwata N, Muramatsu SI, Tjernberg LO, Winblad B, Saido TC. Gene therapy in Alzheimer's disease - potential for disease modification. J Cell Mol Med 2010; 14:741-57. [PMID: 20158567 PMCID: PMC3823109 DOI: 10.1111/j.1582-4934.2010.01038.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 02/09/2010] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia in the elderly, leading to memory loss and cognitive decline. The mechanism underlying onset of the disease has not been fully elucidated. However, characteristic pathological manifestations include extracellular accumulation and aggregation of the amyloid beta-peptide (Abeta) into plaques and intracellular accumulation and aggregation of hyperphosphorylated tau, forming neurofibrillary tangles. Despite extensive research worldwide, no disease modifying treatment is yet available. In this review, we focus on gene therapy as a potential treatment for AD, and summarize recent work in the field, ranging from proof-of-concept studies in animal models to clinical trials. The multifactorial causes of AD offer a variety of possible targets for gene therapy, including two neurotrophic growth factors, nerve growth factor and brain-derived neurotrophic factor, Abeta-degrading enzymes, such as neprilysin, endothelin-converting enzyme and cathepsin B, and AD associated apolipoprotein E. This review also discusses advantages and drawbacks of various rapidly developing virus-mediated gene delivery techniques for gene therapy. Finally, approaches aiming at down-regulating amyloid precursor protein (APP) and beta-site APP cleaving enzyme 1 levels by means of siRNA-mediated knockdown are briefly summarized. Overall, the prospects appear hopeful that gene therapy has the potential to be a disease modifying treatment for AD.
Collapse
Affiliation(s)
- Per Nilsson
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWako-shi, Saitama, Japan
- KI-Alzheimer’s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska InstitutetNovum, Huddinge, Sweden
| | - Nobuhisa Iwata
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWako-shi, Saitama, Japan
| | - Shin-ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical SchoolShimotsuke, Tochigi, Japan
| | - Lars O Tjernberg
- KI-Alzheimer’s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska InstitutetNovum, Huddinge, Sweden
| | - Bengt Winblad
- KI-Alzheimer’s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska InstitutetNovum, Huddinge, Sweden
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWako-shi, Saitama, Japan
| |
Collapse
|
461
|
Okada H, Zhang W, Peterhoff C, Hwang JC, Nixon RA, Ryu SH, Kim TW. Proteomic identification of sorting nexin 6 as a negative regulator of BACE1-mediated APP processing. FASEB J 2010; 24:2783-94. [PMID: 20354142 DOI: 10.1096/fj.09-146357] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The beta-site APP cleaving enzyme-1 (BACE1) mediates the first cleavage of the beta-amyloid precursor protein (APP) to yield the amyloid beta-peptide (Abeta), a key pathogenic agent in Alzheimer's disease (AD). Using a proteomic approach based on in-cell chemical cross-linking and tandem affinity purification (TAP), we herein identify sorting nexin 6 (SNX6) as a BACE1-associated protein. SNX6, a PX domain protein, is a putative component of retromer, a multiprotein cargo complex that mediates the retrograde trafficking of the cation-independent mannose-6-phosphate receptor (CI-MPR) and sortilin. RNA interference suppression of SNX6 increased BACE1-dependent secretion of soluble APP (sAPPbeta) and cell-associated fragments (C99), resulting in increased Abeta secretion. Furthermore, SNX6 reduction led to elevated steady-state BACE1 levels as well as increased retrograde transport of BACE1 in the endocytic pathway, suggesting that SNX6 modulates the retrograde trafficking and basal levels of BACE1, thereby regulating BACE1-mediated APP processing and Abeta biogenesis. Our study identifies a novel cellular pathway by which SNX6 negatively modulates BACE1-mediated cleavage of APP.
Collapse
Affiliation(s)
- Hirokazu Okada
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University Medical Center, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
462
|
Abstract
The generation of amyloid beta-peptide (A beta) by enzymatic cleavages of the beta-amyloid precursor protein (APP) has been at the center of Alzheimer's disease (AD) research. While the basic process of beta- and gamma-secretase-mediated generation of A beta is text book knowledge, new aspects of A beta and other cleavage products have emerged in recent years. Also our understanding of the enzymes involved in APP proteolysis has increased dramatically. All of these discoveries contribute to a more complete understanding of APP processing and the physiologic and pathologic roles of its secreted and intracellular protein products. Understanding APP processing is important for any therapeutic strategy aimed at reducing A beta levels in AD. In this review, we provide a concise description of the current state of understanding the enzymes involved in APP processing, the cleavage products generated by different processing patterns, and the potential functions of those cleavage products.
Collapse
Affiliation(s)
- Vivian W. Chow
- Department of Pathology, Division of Neuropathology, The Johns Hopkins University School of Medicine
| | | | - Philip C. Wong
- Department of Pathology, Division of Neuropathology, The Johns Hopkins University School of Medicine
| | | |
Collapse
|
463
|
Frigerio CS, Fadeeva JV, Minogue AM, Citron M, Leuven FV, Stufenbiel M, Paganetti P, Selkoe DJ, Walsh DM. beta-Secretase cleavage is not required for generation of the intracellular C-terminal domain of the amyloid precursor family of proteins. FEBS J 2010; 277:1503-18. [PMID: 20163459 PMCID: PMC2847843 DOI: 10.1111/j.1742-4658.2010.07579.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The amyloid precursor family of proteins are of considerable interest, both because of their role in Alzheimer's disease pathogenesis and because of their normal physiological functions. In mammals, the amyloid precursor protein (APP) has two homologs, amyloid precursor-like protein (APLP) 1 and APLP2. All three proteins undergo ectodomain shedding and regulated intramembrane proteolysis, and important functions have been attributed to the full-length proteins, shed ectodomains, C-terminal fragments and intracellular domains (ICDs). One of the proteases that is known to cleave APP and that is essential for generation of the amyloid beta-protein is the beta-site APP-cleaving enzyme 1 (BACE1). Here, we investigated the effects of genetic manipulation of BACE1 on the processing of the APP family of proteins. BACE1 expression regulated the levels and species of full-length APLP1, APP and APLP2, of their shed ectodomains, and of their membrane-bound C-terminal fragments. In particular, APP processing appears to be tightly regulated, with changes in beta-cleaved APPs (APPsbeta) being compensated for by changes in alpha-cleaved APPs (APPsalpha). In contrast, the total levels of soluble cleaved APLP1 and APLP2 species were less tightly regulated, and fluctuated with BACE1 expression. Importantly, the production of ICDs for all three proteins was not decreased by loss of BACE1 activity. These results indicate that BACE1 is involved in regulating ectodomain shedding, maturation and trafficking of the APP family of proteins. Consequently, whereas inhibition of BACE1 is unlikely to adversely affect potential ICD-mediated signaling, it may alter other important facets of amyloid precursor-like protein/APP biology.
Collapse
Affiliation(s)
- Carlo Sala Frigerio
- Laboratory for Neurodegenerative Research, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Julia V. Fadeeva
- Department of Neurology, Harvard Medical School and Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115
| | - Aedín M. Minogue
- Laboratory for Neurodegenerative Research, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Martin Citron
- Amgen Inc., Thousand Oaks, CA 91320-1799, Current affiliation: Eli Lilly and Company, Indianapolis, IN 46285
| | - Fred Van Leuven
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Matthias Stufenbiel
- Nervous System Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Paolo Paganetti
- Nervous System Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dennis J. Selkoe
- Department of Neurology, Harvard Medical School and Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| |
Collapse
|
464
|
Björklund C, Oscarson S, Benkestock K, Borkakoti N, Jansson K, Lindberg J, Vrang L, Hallberg A, Rosenquist Å, Samuelsson B. Design and Synthesis of Potent and Selective BACE-1 Inhibitors. J Med Chem 2010; 53:1458-64. [DOI: 10.1021/jm901168f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Catarina Björklund
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Stefan Oscarson
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- School of Chemistry and Chemical Biology, UCD, Dublin 4, Ireland
| | | | | | | | | | - Lotta Vrang
- Medivir AB, P.O. Box 1086, SE-141 22 Huddinge, Sweden
| | - Anders Hallberg
- Department of Medicinal Chemistry, BMC, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | | | - Bertil Samuelsson
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- Medivir AB, P.O. Box 1086, SE-141 22 Huddinge, Sweden
| |
Collapse
|
465
|
Abstract
The amyloid hypothesis has yielded a series of well-validated candidate drug targets with potential for the treatment of Alzheimer disease (AD). Three proteases that are involved in the processing of amyloid precursor protein-alpha-secretase, beta-secretase and gamma-secretase-are of particular interest as they are central to the generation and modulation of amyloid-beta peptide and can be targeted by small compounds in vitro and in vivo. Given that these proteases also fulfill other important biological roles, inhibiting their activity will clearly be inherently associated with mechanism-based toxicity. Carefully determining a suitable therapeutic window and optimizing the selectivity of the drug treatments towards amyloid precursor protein processing might be ways of overcoming this potential complication. Secretase inhibitors are likely to be the first small-molecule therapies aimed at AD modification that will be fully tested in the clinic. Success or failure of these first-generation AD therapies will have enormous consequences for further drug development efforts for AD and possibly other neurodegenerative conditions.
Collapse
Affiliation(s)
- Bart De Strooper
- Center for Human Genetics, VIB and KULeuven, Herestraat 49, Leuven, Belgium.
| | | | | |
Collapse
|
466
|
Meredith JA, Björklund C, Adolfsson H, Jansson K, Hallberg A, Rosenquist Å, Samuelsson B. P2′-truncated BACE-1 inhibitors with a novel hydroxethylene-like core. Eur J Med Chem 2010; 45:542-54. [DOI: 10.1016/j.ejmech.2009.10.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/27/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
|
467
|
Kimura R, Devi L, Ohno M. Partial reduction of BACE1 improves synaptic plasticity, recent and remote memories in Alzheimer's disease transgenic mice. J Neurochem 2010; 113:248-61. [PMID: 20089133 DOI: 10.1111/j.1471-4159.2010.06608.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
beta-Site amyloid precursor protein cleaving enzyme 1 (BACE1) initiates amyloid-beta (Abeta) generation that is central to the pathophysiology of Alzheimer's disease (AD). Therefore, lowering Abeta levels by BACE1 manipulations represents a key therapeutic strategy, but it remains unclear whether partial inhibition of BACE1, as expected for AD treatments, can improve memory deficits. In this study, we used heterozygous BACE1 gene knockout (BACE1+/-) mice to evaluate the effects of partial BACE1 suppression on different types of synaptic and cognitive dysfunctions in Alzheimer's transgenic mice (5XFAD model). We found that approximately 50% BACE1 reductions rescued deficits of 5XFAD mice not only in hippocampus-dependent memories as tested by contextual fear conditioning and spontaneous alternation Y-maze paradigms but also in cortex-dependent remote memory stabilization during 30 days after contextual conditioning. Furthermore, 5XFAD-associated impairments in long-term potentiation (a synaptic model of learning and memory) and declines in synaptic plasticity/learning-related brain-derived neurotrophic factor-tyrosine kinase B signaling pathways were prevented in BACE1+/-.5XFAD mice. Finally, these improvements were related with reduced levels of beta-secretase-cleaved C-terminal fragment (C99), Abeta peptides and plaque burden in relevant brain regions of BACE1+/-.5XFAD mice. Therefore, our findings provide compelling evidence for beneficial effects of partially BACE1-inhibiting approaches on multiple forms of functional defects associated with AD.
Collapse
Affiliation(s)
- Ryoichi Kimura
- Center for Dementia Research, Nathan Kline Institute, New York University School of Medicine, Orangeburg, New York 10962, USA
| | | | | |
Collapse
|
468
|
Kume H, Murayama KS, Araki W. The two-hydrophobic domain tertiary structure of reticulon proteins is critical for modulation of beta-secretase BACE1. J Neurosci Res 2010; 87:2963-72. [PMID: 19405102 DOI: 10.1002/jnr.22112] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
beta-Site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is a membrane-bound protease that is essential for the production of beta-amyloid protein (Abeta). Given the crucial role of Abeta accumulation in Alzheimer's disease (AD), inhibition of BACE1 activity may represent a feasible therapeutic strategy in the treatment of AD. Recently, we and others identified reticulon 3 (RTN3) and reticulon 4-B/C (RTN4-B/C or Nogo-B/C) as membrane proteins that interact with BACE1 and inhibit its ability to produce Abeta. In this study, we employed various mutants of RTN3 and RTN4-C and C. elegans RTN to investigate the molecular mechanisms by which RTNs regulate BACE1. We found that RTN3 mutants lacking the N-terminal or C-terminal or loop domain as well as a RTN4-C mutant lacking the C-terminal domain bound to BACE1 comparably to wild-type RTN3 and RTN4-C. Furthermore, overexpression of wild-type RTN3, RTN4-C, and these RTN mutants similarly reduced Abeta40 and Abeta42 secretion by cells expressing Swedish mutant APP. C. elegans RTN, which has low homology to human RTNs, also interacted with BACE1 and inhibited Abeta secretion. In contrast, two RTN3 mutants containing deletions of the first or second potential transmembrane domains and an RTN3 swap mutant of the second transmembrane domain bound BACE1 but failed to inhibit Abeta secretion. Collectively, these results suggest that the two-transmembrane-domain tertiary structure of RTN proteins is critical for the ability of RTNs to modulate BACE1 activity, whereas N-terminal, C-terminal and loop regions are not essential for this function.
Collapse
Affiliation(s)
- Hideaki Kume
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | | | | |
Collapse
|
469
|
Abstract
Alzheimer's disease (AD) pathogenesis is widely believed to be driven by the production and deposition of the amyloid-beta peptide (Abeta). For many years, investigators have been puzzled by the weak to nonexistent correlation between the amount of neuritic plaque pathology in the human brain and the degree of clinical dementia. Recent advances in our understanding of the development of amyloid pathology have helped solve this mystery. Substantial evidence now indicates that the solubility of Abeta, and the quantity of Abeta in different pools, may be more closely related to disease state. The composition of these pools of Abeta reflects different populations of amyloid deposits and has definite correlates with the clinical status of the patient. Imaging technologies, including new amyloid imaging agents based on the chemical structure of histologic dyes, are now making it possible to track amyloid pathology along with disease progression in the living patient. Interestingly, these approaches indicate that the Abeta deposited in AD is different from that found in animal models. In general, deposited Abeta is more easily cleared from the brain in animal models and does not show the same physical and biochemical characteristics as the amyloid found in AD. This raises important issues regarding the development and testing of future therapeutic agents.
Collapse
Affiliation(s)
- M Paul Murphy
- Department of Molecular and Cellular Biochemistry and the Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, USA.
| | | |
Collapse
|
470
|
Wang YS, Strickland C, Voigt JH, Kennedy ME, Beyer BM, Senior MM, Smith EM, Nechuta TL, Madison VS, Czarniecki M, McKittrick BA, Stamford AW, Parker EM, Hunter JC, Greenlee WJ, Wyss DF. Application of Fragment-Based NMR Screening, X-ray Crystallography, Structure-Based Design, and Focused Chemical Library Design to Identify Novel μM Leads for the Development of nM BACE-1 (β-Site APP Cleaving Enzyme 1) Inhibitors. J Med Chem 2009; 53:942-50. [DOI: 10.1021/jm901472u] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu-Sen Wang
- Schering-Plough Research Institute, 320 Bent Street, Cambridge, Massachusetts 02141
| | - Corey Strickland
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Johannes H. Voigt
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Matthew E. Kennedy
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Brian M. Beyer
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Mary M. Senior
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Elizabeth M. Smith
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Terry L. Nechuta
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Vincent S. Madison
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Michael Czarniecki
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Brian A. McKittrick
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Andrew W. Stamford
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Eric M. Parker
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - John C. Hunter
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - William J. Greenlee
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033
| | - Daniel F. Wyss
- Schering-Plough Research Institute, 320 Bent Street, Cambridge, Massachusetts 02141
| |
Collapse
|
471
|
Zhu Z, Sun ZY, Ye Y, Voigt J, Strickland C, Smith EM, Cumming J, Wang L, Wong J, Wang YS, Wyss DF, Chen X, Kuvelkar R, Kennedy ME, Favreau L, Parker E, McKittrick BA, Stamford A, Czarniecki M, Greenlee W, Hunter JC. Discovery of Cyclic Acylguanidines as Highly Potent and Selective β-Site Amyloid Cleaving Enzyme (BACE) Inhibitors: Part I—Inhibitor Design and Validation. J Med Chem 2009; 53:951-65. [DOI: 10.1021/jm901408p] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
472
|
Identification of beta-secretase (BACE1) substrates using quantitative proteomics. PLoS One 2009; 4:e8477. [PMID: 20041192 PMCID: PMC2793532 DOI: 10.1371/journal.pone.0008477] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022] Open
Abstract
β-site APP cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease with a lumenal active site that sheds the ectodomains of membrane proteins through juxtamembrane proteolysis. BACE1 has been studied principally for its role in Alzheimer's disease as the β-secretase responsible for generating the amyloid-β protein. Emerging evidence from mouse models has identified the importance of BACE1 in myelination and cognitive performance. However, the substrates that BACE1 processes to regulate these functions are unknown, and to date only a few β-secretase substrates have been identified through candidate-based studies. Using an unbiased approach to substrate identification, we performed quantitative proteomic analysis of two human epithelial cell lines stably expressing BACE1 and identified 68 putative β-secretase substrates, a number of which we validated in a cell culture system. The vast majority were of type I transmembrane topology, although one was type II and three were GPI-linked proteins. Intriguingly, a preponderance of these proteins are involved in contact-dependent intercellular communication or serve as receptors and have recognized roles in the nervous system and other organs. No consistent sequence motif predicting BACE1 cleavage was identified in substrates versus non-substrates. These findings expand our understanding of the proteins and cellular processes that BACE1 may regulate, and suggest possible mechanisms of toxicity arising from chronic BACE1 inhibition.
Collapse
|
473
|
Ahmed RR, Holler CJ, Webb RL, Li F, Beckett TL, Murphy MP. BACE1 and BACE2 enzymatic activities in Alzheimer's disease. J Neurochem 2009; 112:1045-53. [PMID: 19968762 DOI: 10.1111/j.1471-4159.2009.06528.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
beta-Secretase is the rate limiting enzymatic activity in the production of the amyloid-beta peptide (Abeta) and is thought to be involved in Alzheimer's disease (AD) pathogenesis. Although BACE1 (beta-site APP Cleaving Enzyme 1, EC 3.4.23.46) has received significant attention, the related BACE2 (EC 3.4.23.45) has not. Though BACE2 is also expressed in the brain, its potential role in AD has not been resolved. In this study, we compared the activities of both BACE1 and BACE2, which were isolated from the same samples of frontal cortex from both AD-affected individuals and age-matched controls. BACE1 activity showed a significant positive correlation with the amount of extractable Abeta, and BACE1 protein and activity were significantly increased in AD cases. Unexpectedly, there were substantial total amounts of BACE2 protein and enzymatic activity in the human brain. BACE2 activity did not change significantly in the AD brain, and was not related to Abeta concentration. These data indicate that BACE1 likely accounts for most of the Abeta produced in the human brain, and that BACE2 activity is not a likely contributor. However, as both forms of BACE compete for the same substrate pool, even small changes in BACE2 activity could have consequences for human disease.
Collapse
Affiliation(s)
- Rachel R Ahmed
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | |
Collapse
|
474
|
Sealy JM, Truong AP, Tso L, Probst GD, Aquino J, Hom RK, Jagodzinska BM, Dressen D, Wone DW, Brogley L, John V, Tung JS, Pleiss MA, Tucker JA, Konradi AW, Dappen MS, Toth G, Pan H, Ruslim L, Miller J, Bova MP, Sinha S, Quinn KP, Sauer JM. Design and synthesis of cell potent BACE-1 inhibitors: Structure–activity relationship of P1′ substituents. Bioorg Med Chem Lett 2009; 19:6386-91. [DOI: 10.1016/j.bmcl.2009.09.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 09/14/2009] [Accepted: 09/16/2009] [Indexed: 11/16/2022]
|
475
|
Epis R, Gardoni F, Marcello E, Genazzani A, Canonico PL, Di Luca M. Searching for new animal models of Alzheimer's disease. Eur J Pharmacol 2009; 626:57-63. [PMID: 19836370 DOI: 10.1016/j.ejphar.2009.10.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
The pathophysiology of chronic neurodegenerative diseases, as Alzheimer's diseases, has remained inaccessible till recently. But this situation is changing quickly. In the past decades, genes causing familiar forms of the disease have been identified and provided the genetic framework for the emerging amyloid hypothesis. On the basis of these findings, engineered mouse models have been developed and have allowed the understanding of crucial information about the pathogenic process. Certain observations obtained by transgenic mice, however, do not easily fit with the simplest version of the amyloid hypothesis. Even if there are transgenic lines that offer robust and relatively faithful reproductions of a subset of Alzheimer's disease's features, a mouse model that recapitulates all aspects of the disease has not yet been produced. Several still not completely known factors combine to produce highly variability across transgenic mouse models. Discrepancies in neuropathology and behaviour between transgenic mouse models and human Alzheimer's disease, and among different transgenic-lines, suggest caution in the interpretation of the results. Here we try to analyze critically some of the information provided by transgenic mice but ascertaining which elements of the neuropathological and behavioural phenotype of these various strains of transgenic mice are relevant to that observed in Alzheimer's disease continues to be a challenge.
Collapse
Affiliation(s)
- Roberta Epis
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases. University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
476
|
Vassar R, Kovacs DM, Yan R, Wong PC. The beta-secretase enzyme BACE in health and Alzheimer's disease: regulation, cell biology, function, and therapeutic potential. J Neurosci 2009; 29:12787-94. [PMID: 19828790 PMCID: PMC2879048 DOI: 10.1523/jneurosci.3657-09.2009] [Citation(s) in RCA: 445] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 08/27/2009] [Accepted: 08/28/2009] [Indexed: 01/08/2023] Open
Abstract
The beta-amyloid (Abeta) peptide is the major constituent of amyloid plaques in Alzheimer's disease (AD) brain and is likely to play a central role in the pathogenesis of this devastating neurodegenerative disorder. The beta-secretase, beta-site amyloid precursor protein cleaving enzyme (BACE1; also called Asp2, memapsin 2), is the enzyme responsible for initiating Abeta generation. Thus, BACE is a prime drug target for the therapeutic inhibition of Abeta production in AD. Since its discovery 10 years ago, much has been learned about BACE. This review summarizes BACE properties, describes BACE translation dysregulation in AD, and discusses BACE physiological functions in sodium current, synaptic transmission, myelination, and schizophrenia. The therapeutic potential of BACE will also be considered. This is a summary of topics covered at a symposium held at the 39th annual meeting of the Society for Neuroscience and is not meant to be a comprehensive review of BACE.
Collapse
Affiliation(s)
- Robert Vassar
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
477
|
Crews L, Tsigelny I, Hashimoto M, Masliah E. Role of synucleins in Alzheimer's disease. Neurotox Res 2009; 16:306-17. [PMID: 19551456 PMCID: PMC2727399 DOI: 10.1007/s12640-009-9073-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/07/2009] [Accepted: 06/08/2009] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common causes of dementia and movement disorders in the elderly. While progressive accumulation of oligomeric amyloid-beta protein (Abeta) has been identified as one of the central toxic events in AD leading to synaptic dysfunction, accumulation of alpha-synuclein (alpha-syn) resulting in the formation of oligomers has been linked to PD. Most of the studies in AD have been focused on investigating the role of Abeta and Tau; however, recent studies suggest that alpha-syn might also play a role in the pathogenesis of AD. For example, fragments of alpha-syn can associate with amyloid plaques and Abeta promotes the aggregation of alpha-syn in vivo and worsens the deficits in alpha-syn tg mice. Moreover, alpha-syn has also been shown to accumulate in limbic regions in AD, Down's syndrome, and familial AD cases. Abeta and alpha-syn might directly interact under pathological conditions leading to the formation of toxic oligomers and nanopores that increase intracellular calcium. The interactions between Abeta and alpha-syn might also result in oxidative stress, lysosomal leakage, and mitochondrial dysfunction. Thus, better understanding the steps involved in the process of Abeta and alpha-syn aggregation is important in order to develop intervention strategies that might prevent or reverse the accumulation of toxic proteins in AD.
Collapse
Affiliation(s)
- Leslie Crews
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093-0624 USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92093-0624 USA
| | - Igor Tsigelny
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0624 USA
- San Diego Super Computer Center, University of California San Diego, La Jolla, CA 92093-0624 USA
| | - Makoto Hashimoto
- Laboratory for Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, Japan
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093-0624 USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92093-0624 USA
| |
Collapse
|
478
|
Laky K, Annaert W, Fowlkes BJ. Amyloid precursor family proteins are expressed by thymic and lymph node stromal cells but are not required for lymphocyte development. Int Immunol 2009; 21:1163-74. [PMID: 19710207 PMCID: PMC2750246 DOI: 10.1093/intimm/dxp083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pharmacological inhibitors that block amyloid precursor protein (APP) cleavage and the formation of senile plaques are under development for the treatment of familial Alzheimer's disease. Unfortunately, many inhibitors that block γ-secretase-mediated cleavage of APP also have immunosuppressive side effects. In addition to APP, numerous other proteins undergo γ-secretase-mediated cleavage. In order to develop safer inhibitors, it is necessary to determine which of the γ-secretase substrates contribute to the immunosuppressive effects. Because APP family members are widely expressed and are reported to influence calcium flux, transcription and apoptosis, they could be important for normal lymphocyte maturation. We find that APP and amyloid precursor-like protein 2 are expressed by stromal cells of thymus and lymph nodes, but not by lymphocytes. Although signals provided by thymic stromal cells are critical for normal T cell differentiation, lymphocyte development proceeds unperturbed in mice deficient for these APP family members.
Collapse
Affiliation(s)
- Karen Laky
- Laboratory of Cellular and Molecular Immunology, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892-0420, USA
| | | | | |
Collapse
|
479
|
Constitutive JAK2/STAT1 activation regulates endogenous BACE1 expression in neurons. Biochem Biophys Res Commun 2009; 386:175-80. [DOI: 10.1016/j.bbrc.2009.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 11/15/2022]
|
480
|
Huber T, Manzenrieder F, Kuttruff CA, Dorner-Ciossek C, Kessler H. Prolonged stability by cyclization: Macrocyclic phosphino dipeptide isostere inhibitors of β-secretase (BACE1). Bioorg Med Chem Lett 2009; 19:4427-31. [DOI: 10.1016/j.bmcl.2009.05.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 11/25/2022]
|
481
|
Jacobsen KT, Iverfeldt K. Amyloid precursor protein and its homologues: a family of proteolysis-dependent receptors. Cell Mol Life Sci 2009; 66:2299-318. [PMID: 19333550 PMCID: PMC11115575 DOI: 10.1007/s00018-009-0020-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 02/18/2009] [Accepted: 03/11/2009] [Indexed: 10/20/2022]
Abstract
The Alzheimer's amyloid precursor protein (APP) belongs to a conserved gene family that also includes the mammalian APLP1 and APLP2, the Drosophila APPL, and the C. elegans APL-1. The biological function of APP is still not fully clear. However, it is known that the APP family proteins have redundant and partly overlapping functions, which demonstrates the importance of studying all APP family members to gain a more complete picture. When APP was first cloned, it was speculated that it could function as a receptor. This theory has been further substantiated by studies showing that APP and its homologues bind both extracellular ligands and intracellular adaptor proteins. The APP family proteins undergo regulated intramembrane proteolysis (RIP), generating secreted and cytoplasmic fragments that have been ascribed different functions. In this review, we will discuss the APP family with focus on biological functions, binding partners, and regulated processing.
Collapse
Affiliation(s)
| | - Kerstin Iverfeldt
- Department of Neurochemistry, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
482
|
Abstract
The most common animal models currently used for Alzheimer disease (AD) research are transgenic mice that express a mutant form of human Aβ precursor protein (APP) and/or some of the enzymes implicated in their metabolic processing. However, these transgenic mice carry their own APP and APP-processing enzymes, which may interfere in the production of different amyloid-beta (Aβ) peptides encoded by the human transgenes. Additionally, the genetic backgrounds of the different transgenic mice are a possible confounding factor with regard to crucial aspects of AD that they may (or may not) reproduce. Thus, although the usefulness of transgenic mice is undisputed, we hypothesized that additional relevant information on the physiopathology of AD could be obtained from other natural non-transgenic models. We have analyzed the chick embryo and the dog, which may be better experimental models because their enzymatic machinery for processing APP is almost identical to that of humans. The chick embryo is extremely easy to access and manipulate. It could be an advantageous natural model in which to study the cell biology and developmental function of APP and a potential assay system for drugs that regulate APP processing. The dog suffers from an age-related syndrome of cognitive dysfunction that naturally reproduces key aspects of AD including Aβ cortical pathology, neuronal degeneration and learning and memory disabilities. However, dense core neuritic plaques and neurofibrillary tangles have not been consistently demonstrated in the dog. Thus, these species may be natural models with which to study the biology of AD, and could also serve as assay systems for Aβ-targeted drugs or new therapeutic strategies against this devastating disease.
Collapse
|
483
|
Elvang AB, Volbracht C, Pedersen LØ, Jensen KG, Karlsson JJ, Larsen SA, Mørk A, Stensbøl TB, Bastlund JF. Differential effects of gamma-secretase and BACE1 inhibition on brain Abeta levels in vitro and in vivo. J Neurochem 2009; 110:1377-87. [PMID: 19519664 DOI: 10.1111/j.1471-4159.2009.06215.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is hypothesized to result from elevated brain levels of beta-amyloid peptide (Abeta) which is the main component of plaques found in AD brains and which cause memory impairment in mice. Therefore, there has been a major focus on the development of inhibitors of the Abeta producing enzymes gamma-secretase and beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1). In this study, we investigated the Abeta-lowering effects of the BACE1 inhibitor LY2434074 in vitro and in vivo, comparing it to the well characterized gamma-secretase inhibitor LY450139. We sampled interstitial fluid Abeta from awake APPswe/PS1dE9 AD mice by in vivo Abeta microdialysis. In addition, we measured levels of endogenous brain Abeta extracted from wildtype C57BL/6 mice. In our in vitro assays both compounds showed similar Abeta-lowering effects. However, while systemic administration of LY450139 resulted in transient reduction of Abeta in both in vivo models, we were unable to show any Abeta-lowering effect by systemic administration of the BACE1 inhibitor LY2434074 despite brain exposure exceeding the in vitro IC(50) value several fold. In contrast, significant reduction of 40-50% of interstitial fluid Abeta and wildtype cortical Abeta was observed when infusing LY2434074 directly into the brain by means of reverse microdialysis or by dosing the BACE1 inhibitor to p-glycoprotein (p-gp) mutant mice. The effects seen in p-gp mutant mice and subsequent data from our cell-based p-gp transport assay suggested that LY2434074 is a p-gp substrate. This may partly explain why BACE1 inhibition by LY2434074 has lower in vivo efficacy, with respect to decreased Abeta40 levels, compared with gamma-secretase inhibition by LY450139.
Collapse
Affiliation(s)
- Anders Brandt Elvang
- Department of In Vivo Neurobiology-Neurodegeneration, H. Lundbeck A/S, Ottiliavej 9, Valby 2500, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
484
|
Bengoechea TG, Chen Z, O'Leary DA, Masliah E, Lee KF. p75 reduces beta-amyloid-induced sympathetic innervation deficits in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 2009; 106:7870-5. [PMID: 19416837 PMCID: PMC2683130 DOI: 10.1073/pnas.0901533106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Indexed: 11/18/2022] Open
Abstract
Beta-amyloid (Abeta) has adverse effects on brain cells, but little is known about its effects on the peripheral nervous system in Alzheimer's disease (AD). Several lines of in vitro evidence suggest that the neurotrophin receptor p75 mediates or exacerbates Abeta-induced neurotoxicity. Here, we show that p75-deficient sympathetic neurons are more sensitive to Abeta-induced neurite growth inhibition. To investigate the role of p75 in the sympathetic nervous system of AD, p75 mutant mice were crossed with a mouse line of AD model. The majority of p75-deficient AD mice died by 3 weeks of age. The lethality is associated with severe defects in sympathetic innervation to multiple organs. When 1 copy of the BACE1 gene encoding a protein essential in Abeta production was deleted in p75-deficient AD mice, sympathetic innervation was significantly restored. These results suggest that p75 is neuroprotective for the sympathetic nervous system in a mouse model of AD.
Collapse
Affiliation(s)
- Tasha G. Bengoechea
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; and
| | - Zhijiang Chen
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; and
| | - Debra A. O'Leary
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; and
| | - Eliezer Masliah
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093
| | - Kuo-Fen Lee
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; and
| |
Collapse
|
485
|
Khan TK, Nelson TJ, Verma VA, Wender PA, Alkon DL. A cellular model of Alzheimer's disease therapeutic efficacy: PKC activation reverses Abeta-induced biomarker abnormality on cultured fibroblasts. Neurobiol Dis 2009; 34:332-9. [PMID: 19233276 PMCID: PMC2683973 DOI: 10.1016/j.nbd.2009.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Accepted: 02/03/2009] [Indexed: 12/21/2022] Open
Abstract
PKC signaling is critical for the non-toxic degradation of amyloid precursor protein (APP) and inhibition of GSK3beta, which controls phosphorylation of tau protein in Alzheimer's disease (AD). Thus the misregulation of PKC signaling could contribute to the origins of AD. Bryostatin, a potent PKC modulator, has the potential to ameliorate both the neurodegeneration and the recent memory loss associated with AD. As reported herein bryostatin and a potent synthetic analog (picolog) are found to cause stimulation of non-amyloidogenic pathways by increasing alpha-secretase activity and thus lowering the amount of toxic Abeta produced. Both bryostatin and picolog increased the secretion of the alpha-secretase product (s-APP-alpha) of APP at sub-nanomolar to nanomolar concentrations. A peripheral AD-Biomarker has previously been autopsy-validated. This Biomarker, based on bradykinin-induced differential phosphorylation of Erk1 and Erk2, has been used here to test the therapeutic efficacy both for bryostatin and picolog. Both of these PKC activators are then shown to convert the AD Erk1/2 phenotype of fibroblasts into the phenotype of "normal" control skin fibroblasts. This conversion occurred for both the abnormal Erk1/2 phenotype induced by application of Abeta(1-42) to the fibroblasts or the phenotype observed for fibroblasts of AD patients. The Abeta(1-42)-induction, and PKC modulator reversal of the AD Erk1/2 biomarker phenotype demonstrate the AD-Biomarker's potential to monitor both disease progression and treatment response. Additionally, this first demonstration of the therapeutic potential in AD of a synthetically accessible bryostatin analog warrants further preclinical advancement.
Collapse
Affiliation(s)
- Tapan K Khan
- Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, 26506, USA.
| | | | | | | | | |
Collapse
|
486
|
Sevalle J, Ayral E, Hernandez JF, Martinez J, Checler F. Pharmacological evidences for DFK167-sensitive presenilin-independent gamma-secretase-like activity. J Neurochem 2009; 110:275-83. [PMID: 19457123 DOI: 10.1111/j.1471-4159.2009.06131.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Amyloid-beta (Abeta) peptides production is thought to be a key event in the neurodegenerative process ultimately leading to Alzheimer's disease (AD) pathology. A bulk of studies concur to propose that the C-terminal moiety of Abeta is released from its precursor beta-amyloid precursor protein by a high molecular weight enzymatic complex referred to as gamma-secretase, that is composed of at least, nicastrin (NCT), Aph-1, Pen-2, and presenilins (PS) 1 or 2. They are thought to harbor the gamma-secretase catalytic activity. However, several lines of evidence suggest that additional gamma-secretase-like activities could potentially contribute to Abeta production. By means of a quenched fluorimetric substrate (JMV2660) mimicking the beta-amyloid precursor protein sequence targeted by gamma-secretase, we first show that as expected, this probe allows monitoring of an activity detectable in several cell systems including the neuronal cell line telencephalon specific murine neurons (TSM1). This activity is reduced by DFK167, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), and LY68458, three inhibitors known to functionally interact with PS. Interestingly, JMV2660 but not the unrelated peptide JMV2692, inhibits Abeta production in an in vitrogamma-secretase assay as expected from a putative substrate competitor. This activity is enhanced by PS1 and PS2 mutations known to be responsible for familial forms of AD and reduced by aspartyl mutations inactivating PS or in cells devoid of PS or NCT. However, we clearly establish that residual JMV2660-hydrolysing activity could be recovered in PS- and NCT-deficient fibroblasts and that this activity remained inhibited by DFK167. Overall, our study describes the presence of a proteolytic activity displaying gamma-secretase-like properties but independent of PS and still blocked by DFK167, suggesting that the PS-dependent complex could not be the unique gamma-secretase activity responsible for Abeta production and delineates PS-independent gamma-secretase activity as a potential additional therapeutic target to fight AD pathology.
Collapse
Affiliation(s)
- Jean Sevalle
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de NeuroMédecine Moléculaire, UMR6097 CNRS/UNSA, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| | | | | | | | | |
Collapse
|
487
|
Robles A. Pharmacological Treatment of Alzheimer's Disease: Is it Progressing Adequately? Open Neurol J 2009; 3:27-44. [PMID: 19461897 PMCID: PMC2684708 DOI: 10.2174/1874205x00903010027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 12/26/2008] [Accepted: 01/02/2009] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Between 1993 and 2000 four acetylcholinesterase inhibitors were marketed as a symptomatic treatment for Alzheimer's disease (AD), as well as memantine in 2003. Current research is focused on finding drugs that favorably modify the course of the disease. However, their entrance into the market does not seem to be imminent. RESEARCH DEVELOPMENT The aim of AD research is to find substances that inhibit certain elements of the AD pathogenic chain (beta- and gamma-secretase inhibitors, alpha-secretase stimulants, beta-amyloid aggregability reducers or disaggregation and elimination inductors, as well as tau-hyperphosphorylation, glutamate excitotoxicity, oxidative stress and mitochondrial damage reducers, among other action mechanisms). Demonstrating a disease's retarding effect demands longer trials than those necessary to ascertain symptomatic improvement. Besides, a high number of patients (thousands of them) is necessary, all of which turns out to be difficult and costly. Furthermore, it would be necessary to count on diagnosis and progression markers in the disease's pre-clinical stage, markers for specific phenotypes, as well as high-selectivity molecules acting only where necessary. In order to compensate these difficulties, drugs acting on several defects of the pathogenic chain or showing both symptomatic and neuroprotective action simultaneously are being researched. CONCLUSIONS There are multiple molecules used in research to modify AD progression. Although it turns out to be difficult to obtain drugs with sufficient efficacy so that their marketing is approved, if they were achieved they would lead to a reduction of AD prevalence.
Collapse
Affiliation(s)
- Alfredo Robles
- La Rosaleda Hospital, Santiago León de Caracas street, no. 1, 15706 – Santiago de Compostela, Spain
| |
Collapse
|
488
|
Abstract
Since the discovery of the beta-secretase responsible for initiating the Alzheimer's amyloid cascade as a novel membrane-bound aspartic proteinase, termed 'beta-site amyloid precursor protein cleaving enzyme', 'aspartyl protease-2' or 'membrane-anchored aspartic proteinase of the pepsin family-2', huge efforts have been devoted to an understanding of its biology and structure in the subsequent decade. This has paid off in many respects, as it has been cloned, its structure solved, novel physiological substrates of the enzyme discovered, and numerous inhibitors of its activity developed in a relatively short space of time. The inhibition of beta-secretase activity in vivo remains one of the most viable strategies for the treatment of Alzheimer's disease, although progress in getting inhibitors to the clinic has been slow, partly as a consequence of its aspartic proteinase character, which poses considerable problems for the production of potent, selective and brain-accessible compounds. This review reflects on the development of beta-secretase biology and chemistry to date, highlighting the diverse and innovative strategies applied to the modulation of its activity at the molecular and cellular levels.
Collapse
Affiliation(s)
- Clare E Hunt
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | |
Collapse
|
489
|
Abstract
AIMS Reticulon 3 (RTN3), a member of the reticulon family of proteins, interacts with the beta-secretase, beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1), and inhibits its activity to produce beta-amyloid protein. The aim of the present study was to clarify the biological role of RTN3 in the brain and its potential involvement in the neuropathology of Alzheimer's disease (AD). METHODS We performed immunohistochemical and biochemical analyses using a specific antibody against RTN3 to investigate the expression and subcellular localization of RTN3 in control and AD brain tissue samples. RESULTS Western blot analysis revealed no significant differences in the RTN3 levels between control and AD brains. Immunohistochemical staining showed that RTN3 immunoreactivity was predominantly localized in pyramidal neurones of the cerebral cortex. The patterns of RTN3 immunostaining were similar in control and AD cerebral cortices, and senile plaques were generally negative for RTN3. Biochemical subcellular fractionation disclosed that RTN3 colocalized with BACE1 in various fractions, including the endoplasmic reticulum and the Golgi apparatus. Double-immunofluorescence staining additionally indicated that RTN3 was localized in both endoplasmic reticulum and Golgi compartments in neurones. CONCLUSIONS These results show that RTN3 is primarily expressed in pyramidal neurones of the human cerebral cortex and that no clear difference of RTN3 immunoreactivity is observable between control and AD brains. Our data also suggest that there is considerable colocalization of RTN3 with BACE1 at a subcellular level.
Collapse
Affiliation(s)
- Hideaki Kume
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodara, Tokyo, Japan
| | - Yoshihiro Konishi
- Department of Clinical Research, National Tottori Medical Center, Mitsu, Tottori, Japan
| | - Kiyoko S. Murayama
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodara, Tokyo, Japan
| | - Fuyuki Kametani
- Tokyo Institute of Psychiatry, Tokyo Metropolitan Organization for Medical Research, Setagaya, Tokyo, Japan
| | - Wataru Araki
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodara, Tokyo, Japan
| |
Collapse
|
490
|
Liu Y, Zhang YW, Wang X, Zhang H, You X, Liao FF, Xu H. Intracellular trafficking of presenilin 1 is regulated by beta-amyloid precursor protein and phospholipase D1. J Biol Chem 2009; 284:12145-52. [PMID: 19276086 DOI: 10.1074/jbc.m808497200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Excessive accumulation of beta-amyloid peptides in the brain is a major cause for the pathogenesis of Alzheimer disease. beta-Amyloid is derived from beta-amyloid precursor protein (APP) through sequential cleavages by beta- and gamma-secretases, whose enzymatic activities are tightly controlled by subcellular localization. Delineation of how intracellular trafficking of these secretases and APP is regulated is important for understanding Alzheimer disease pathogenesis. Although APP trafficking is regulated by multiple factors including presenilin 1 (PS1), a major component of the gamma-secretase complex, and phospholipase D1 (PLD1), a phospholipid-modifying enzyme, regulation of intracellular trafficking of PS1/gamma-secretase and beta-secretase is less clear. Here we demonstrate that APP can reciprocally regulate PS1 trafficking; APP deficiency results in faster transport of PS1 from the trans-Golgi network to the cell surface and increased steady state levels of PS1 at the cell surface, which can be reversed by restoring APP levels. Restoration of APP in APP-deficient cells also reduces steady state levels of other gamma-secretase components (nicastrin, APH-1, and PEN-2) and the cleavage of Notch by PS1/gamma-secretase that is more highly correlated with cell surface levels of PS1 than with APP overexpression levels, supporting the notion that Notch is mainly cleaved at the cell surface. In contrast, intracellular trafficking of beta-secretase (BACE1) is not regulated by APP. Moreover, we find that PLD1 also regulates PS1 trafficking and that PLD1 overexpression promotes cell surface accumulation of PS1 in an APP-independent manner. Our results clearly elucidate a physiological function of APP in regulating protein trafficking and suggest that intracellular trafficking of PS1/gamma-secretase is regulated by multiple factors, including APP and PLD1.
Collapse
Affiliation(s)
- Yun Liu
- Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
491
|
Checler F, Buée L. Données fondamentales sur les pathologies amyloïde et Tau dans la maladie d’Alzheimer : quelles perspectives thérapeutiques ? ANNALES PHARMACEUTIQUES FRANÇAISES 2009; 67:136-53. [DOI: 10.1016/j.pharma.2009.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 01/18/2009] [Accepted: 01/18/2009] [Indexed: 01/24/2023]
|
492
|
Structure-based design and synthesis of macrocyclic peptidomimetic β-secretase (BACE-1) inhibitors. Bioorg Med Chem Lett 2009; 19:1361-5. [DOI: 10.1016/j.bmcl.2009.01.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/09/2009] [Accepted: 01/14/2009] [Indexed: 11/22/2022]
|
493
|
Macrocyclic peptidomimetic β-secretase (BACE-1) inhibitors with activity in vivo. Bioorg Med Chem Lett 2009; 19:1366-70. [DOI: 10.1016/j.bmcl.2009.01.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 11/20/2022]
|
494
|
Holloway MK, Hunt P, McGaughey GB. Structure and modeling in the design of β- and γ-secretase inhibitors. Drug Dev Res 2009. [DOI: 10.1002/ddr.20291] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
495
|
Zhu YP, Xiao K, Yu HP, Ma LP, Xiong B, Zhang HY, Wang X, Li JY, Li J, Shen JK. Discovery of potent beta-secretase (bace-1) inhibitors by the synthesis of isophthalamide-containing hybrids. Acta Pharmacol Sin 2009; 30:259-69. [PMID: 19169270 DOI: 10.1038/aps.2008.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM The aim of this study was to design and synthesize a series of high activity compounds against aspartyl protease beta-secretase (BACE-1) bearing hydroxyethylene (HE) framework. METHODS First, we designed the small library based on our previous work and rational analysis. Subsequently, thirteen compounds were selected and synthesized using skilled solid phase synthetic methods to explore the relationship between structure and activity. We then used molecular modeling to explain the possible binding mode. RESULTS Thirteen new compounds (6-18) have been designed, synthesized and bioassayed. Their structures were determined by nuclear magnetic resonance (NMR) spectra, low- and high-resolution mass spectra and optical rotation. Most compounds have shown moderate to excellent activities, and compound 10, which contains fewer amino acids and amide bonds than GRL-7234, was about 5-fold more potent than the control compound 4 discovered by Merck. The molecular modeling results have indicated the possible binding mode and explained the difference between compounds 10 and 16, providing direction for further study. CONCLUSION This study yielded several high activity compounds bearing fewer amino acids and amide bonds than previous compounds, providing insight into the further development of potent BACE-1 inhibitors for the treatment of Alzheimer's disease.
Collapse
|
496
|
Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol 2009; 87:212-51. [PMID: 19395337 DOI: 10.1016/j.pneurobio.2008.12.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/11/2008] [Accepted: 12/17/2008] [Indexed: 12/12/2022]
Abstract
Peptide and protein (P/P) drugs have been identified as showing great promises for the treatment of various neurodegenerative diseases. A major challenge in this regard, however, is the delivery of P/P drugs over the blood-brain barrier (BBB). Intense research over the last 25 years has enabled a better understanding of the cellular and molecular transport mechanisms at the BBB, and several strategies for enhanced P/P drug delivery over the BBB have been developed and tested in preclinical and clinical-experimental research. Among them, technology-based approaches (comprising functionalized nanocarriers and liposomes) and pharmacological strategies (such as the use of carrier systems and chimeric peptide technology) appear to be the most promising ones. This review combines a comprehensive overview on the current understanding of the transport mechanisms at the BBB with promising selected strategies published so far that can be applied to facilitate enhanced P/P drug delivery over the BBB.
Collapse
|
497
|
Boissonneault V, Plante I, Rivest S, Provost P. MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem 2009; 284:1971-81. [PMID: 18986979 PMCID: PMC2908704 DOI: 10.1074/jbc.m807530200] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are key regulatory RNAs known to repress mRNA translation through recognition of specific binding sites located mainly in their 3'-untranslated region (UTR). Loss of specific miRNA control of gene expression is thus expected to underlie serious genetic diseases. Intriguingly, previous post-mortem analyses showed higher beta-amyloid precursor protein-converting enzyme (BACE) protein, but not mRNA, levels in the brain of patients that suffered from Alzheimer disease (AD). Here we also observed a loss of correlation between BACE1 mRNA and protein levels in the hippocampus of a mouse model of AD. Consistent with an impairment of miRNA-mediated regulation of BACE1 expression, these findings prompted us to investigate the regulatory role of the BACE1 3'-UTR element and the possible involvement of specific miRNAs in cultured neuronal (N2a) and fibroblastic (NIH 3T3) cells. Through various experimental approaches, we validated computational predictions and demonstrated that miR-298 and miR-328 recognize specific binding sites in the 3'-UTR of BACE1 mRNA and exert regulatory effects on BACE1 protein expression in cultured neuronal cells. Our results may provide the molecular basis underlying BACE1 deregulation in AD and offer new perspectives on the etiology of this neurological disorder.
Collapse
Affiliation(s)
- Vincent Boissonneault
- Centre de Recherche en Rhumatologie et Immunologie, CHUL Research Center/CHUQ, Quebec, QC, G1V 4G2, Canada
- Department of Anatomy and Physiology, Faculty of Medicine, Université Laval
| | - Isabelle Plante
- Centre de Recherche en Rhumatologie et Immunologie, CHUL Research Center/CHUQ, Quebec, QC, G1V 4G2, Canada
- Department of Anatomy and Physiology, Faculty of Medicine, Université Laval
| | - Serge Rivest
- Laboratory of Molecular Endocrinology, CHUL Research Center/CHUQ, Quebec, QC, G1V 4G2, Canada
- Department of Anatomy and Physiology, Faculty of Medicine, Université Laval
| | - Patrick Provost
- Centre de Recherche en Rhumatologie et Immunologie, CHUL Research Center/CHUQ, Quebec, QC, G1V 4G2, Canada
- Department of Anatomy and Physiology, Faculty of Medicine, Université Laval
| |
Collapse
|
498
|
Volbracht C, Penzkofer S, Mansson D, Christensen KV, Fog K, Schildknecht S, Leist M, Nielsen J. Measurement of cellular beta-site of APP cleaving enzyme 1 activity and its modulation in neuronal assay systems. Anal Biochem 2009; 387:208-20. [PMID: 19454261 DOI: 10.1016/j.ab.2009.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/22/2008] [Accepted: 01/06/2009] [Indexed: 12/22/2022]
Abstract
Amyloid-beta peptide (Abeta), a putatively causative agent of Alzheimer's disease (AD), is proteolytically derived from beta-amyloid precursor protein (APP). Here we describe cellular assays to detect the activity of the key protease beta-site of APP cleaving enzyme 1 (BACE1) based on an artificial reporter construct containing the BACE1 cleavage site of APP. These methods allow identification of inhibitors and indirect modulators of BACE1. In primary neuronal cultures transfected with human APP constructs (huAPP), Abeta production was modified by BACE1 inhibitors similarly to the production of endogenous murine Abeta in wild-type cells and to that of different transgenic neurons. To further improve the assay, we substituted the extracellular domain of APP by secreted alkaline phosphatase (SEAP). SEAP was easily quantified in the cell culture supernatants after cleavage of SEAP-APP by BACE1 or alpha-secretases. To render the assay specific for BACE1, the alpha-secretase cleavage site of SEAP-APP was eliminated either by site-directed mutagenesis or by substituting the transmembrane part of APP by the membrane domain of the erythropoietin receptor (EpoR). The pharmacology of these constructs was characterized in detail in HEK293 cells (human embryonic kidney cell line), and the SEAP-APP-EpoR construct was also introduced into primary murine neurons and there allowed specific measurement of BACE1 activity.
Collapse
|
499
|
Zhu Y, Xiao K, Ma L, Xiong B, Fu Y, Yu H, Wang W, Wang X, Hu D, Peng H, Li J, Gong Q, Chai Q, Tang X, Zhang H, Li J, Shen J. Design, synthesis and biological evaluation of novel dual inhibitors of acetylcholinesterase and beta-secretase. Bioorg Med Chem 2009; 17:1600-13. [PMID: 19162488 DOI: 10.1016/j.bmc.2008.12.067] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/26/2008] [Accepted: 12/30/2008] [Indexed: 11/27/2022]
Abstract
To explore novel effective drugs for the treatment of Alzheimer's disease (AD), a series of dual inhibitors of acetylcholineterase (AChE) and beta-secretase (BACE-1) were designed based on the multi-target-directed ligands strategy. Among them, inhibitor 28 exhibited good dual potency in enzyme inhibitory potency assay (BACE-1: IC(50)=0.567 microM; AChE: IC(50)=1.83 microM), and also showed excellent inhibitory effects on Abeta production of APP transfected HEK293 cells (IC(50)=98.7 nM) and mild protective effect against hydrogen peroxide (H(2)O(2))-induced PC12 cell injury. Encouragingly, intracerebroventricular injection of 28 into amyloid precursor protein (APP) transgenic mice caused a 29% reduction of Abeta(1-40) production. Therefore, 28 was demonstrated as a good lead compound for the further study and more importantly, the strategy of AChE and BACE-1 dual inhibitors might be a promising direction for developing novel drugs for AD patients.
Collapse
Affiliation(s)
- Yiping Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
500
|
Sankaranarayanan S, Holahan MA, Colussi D, Crouthamel MC, Devanarayan V, Ellis J, Espeseth A, Gates AT, Graham SL, Gregro AR, Hazuda D, Hochman JH, Holloway K, Jin L, Kahana J, Lai MT, Lineberger J, McGaughey G, Moore KP, Nantermet P, Pietrak B, Price EA, Rajapakse H, Stauffer S, Steinbeiser MA, Seabrook G, Selnick HG, Shi XP, Stanton MG, Swestock J, Tugusheva K, Tyler KX, Vacca JP, Wong J, Wu G, Xu M, Cook JJ, Simon AJ. First demonstration of cerebrospinal fluid and plasma A beta lowering with oral administration of a beta-site amyloid precursor protein-cleaving enzyme 1 inhibitor in nonhuman primates. J Pharmacol Exp Ther 2009; 328:131-40. [PMID: 18854490 DOI: 10.1124/jpet.108.143628] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
beta-Site amyloid precursor protein (APP)-cleaving enzyme (BACE) 1 cleavage of amyloid precursor protein is an essential step in the generation of the potentially neurotoxic and amyloidogenic A beta 42 peptides in Alzheimer's disease. Although previous mouse studies have shown brain A beta lowering after BACE1 inhibition, extension of such studies to nonhuman primates or man was precluded by poor potency, brain penetration, and pharmacokinetics of available inhibitors. In this study, a novel tertiary carbinamine BACE1 inhibitor, tertiary carbinamine (TC)-1, was assessed in a unique cisterna magna ported rhesus monkey model, where the temporal dynamics of A beta in cerebrospinal fluid (CSF) and plasma could be evaluated. TC-1, a potent inhibitor (IC(50) approximately 0.4 nM), has excellent passive membrane permeability, low susceptibility to P-glycoprotein transport, and lowered brain A beta levels in a mouse model. Intravenous infusion of TC-1 led to a significant but transient lowering of CSF and plasma A beta levels in conscious rhesus monkeys because it underwent CYP3A4-mediated metabolism. Oral codosing of TC-1 with ritonavir, a potent CYP3A4 inhibitor, twice daily over 3.5 days in rhesus monkeys led to sustained plasma TC-1 exposure and a significant and sustained reduction in CSF sAPP beta, A beta 40, A beta 42, and plasma A beta 40 levels. CSF A beta 42 lowering showed an EC(50) of approximately 20 nM with respect to the CSF [TC-1] levels, demonstrating excellent concordance with its potency in a cell-based assay. These results demonstrate the first in vivo proof of concept of CSF A beta lowering after oral administration of a BACE1 inhibitor in a nonhuman primate.
Collapse
Affiliation(s)
- Sethu Sankaranarayanan
- Department of Alzheimer's Research, WP 26A-2000, Merck Research Labs, 770 Sumneytown Pike, West Point, PA 19486, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|