451
|
Lau T, Chan E, Callow M, Waaler J, Boggs J, Blake RA, Magnuson S, Sambrone A, Schutten M, Firestein R, Machon O, Korinek V, Choo E, Diaz D, Merchant M, Polakis P, Holsworth DD, Krauss S, Costa M. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res 2013; 73:3132-44. [PMID: 23539443 DOI: 10.1158/0008-5472.can-12-4562] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most colorectal cancers (CRC) are initiated by mutations of APC, leading to increased β-catenin-mediated signaling. However, continued requirement of Wnt/β-catenin signaling for tumor progression in the context of acquired KRAS and other mutations is less well-established. To attenuate Wnt/β-catenin signaling in tumors, we have developed potent and specific small-molecule tankyrase inhibitors, G007-LK and G244-LM, that reduce Wnt/β-catenin signaling by preventing poly(ADP-ribosyl)ation-dependent AXIN degradation, thereby promoting β-catenin destabilization. We show that novel tankyrase inhibitors completely block ligand-driven Wnt/β-catenin signaling in cell culture and display approximately 50% inhibition of APC mutation-driven signaling in most CRC cell lines. It was previously unknown whether the level of AXIN protein stabilization by tankyrase inhibition is sufficient to impact tumor growth in the absence of normal APC activity. Compound G007-LK displays favorable pharmacokinetic properties and inhibits in vivo tumor growth in a subset of APC-mutant CRC xenograft models. In the xenograft model most sensitive to tankyrase inhibitor, COLO-320DM, G007-LK inhibits cell-cycle progression, reduces colony formation, and induces differentiation, suggesting that β-catenin-dependent maintenance of an undifferentiated state may be blocked by tankyrase inhibition. The full potential of the antitumor activity of G007-LK may be limited by intestinal toxicity associated with inhibition of Wnt/β-catenin signaling and cell proliferation in intestinal crypts. These results establish proof-of-concept antitumor efficacy for tankyrase inhibitors in APC-mutant CRC models and uncover potential diagnostic and safety concerns to be overcome as tankyrase inhibitors are advanced into the clinic.
Collapse
Affiliation(s)
- Ted Lau
- Department of Cancer Targets, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
452
|
Takao S, Ding Q, Matsubara S. Pancreatic cancer stem cells: regulatory networks in the tumor microenvironment and targeted therapy. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2013; 19:614-20. [PMID: 22878838 DOI: 10.1007/s00534-012-0547-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent evidence has demonstrated that the existence of a cancer stem cell (CSC) subset in a solid tumor is responsible for the progression and relapse of cancer as well as its resistance to current therapies. Over the past decade, CSC research on pancreatic cancer has progressed. A fundamental understanding of pancreatic CSCs may improve therapies and deepen insight into the role of cell-cell interactions within a tumor microenvironment in pancreatic cancer progression. This review focuses on the impact of pancreatic CSCs on the regulatory networks in the tumor microenvironment, and the implications of targeting CSCs to treat pancreatic cancer.
Collapse
Affiliation(s)
- Sonshin Takao
- Frontier Science Research Center, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8520, Japan.
| | | | | |
Collapse
|
453
|
Dreier J, Felderer L, Barysch M, Rozati S, Dummer R. Basal cell carcinoma: a paradigm for targeted therapies. Expert Opin Pharmacother 2013; 14:1307-18. [DOI: 10.1517/14656566.2013.798644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
454
|
Ibuki N, Ghaffari M, Pandey M, Iu I, Fazli L, Kashiwagi M, Tojo H, Nakanishi O, Gleave ME, Cox ME. TAK-441, a novel investigational smoothened antagonist, delays castration-resistant progression in prostate cancer by disrupting paracrine hedgehog signaling. Int J Cancer 2013; 133:1955-66. [PMID: 23564295 DOI: 10.1002/ijc.28193] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/20/2013] [Indexed: 01/04/2023]
Abstract
Hedgehog (Hh) signaling is a highly conserved intercellular and intracellular communication mechanism that governs organogenesis and is dysregulated in cancers of numerous tissues, including prostate. Up-regulated expression of the Hh ligands, Sonic (Shh) and Desert (Dhh), has been reported in androgen-deprived and castration-resistant prostate cancer (CRPC). In a cohort of therapy naive, short- and long-term neoadjuvant hormone therapy-treated (NHT), and CRPC specimens, we observed elevated Dhh expression predominantly in long-term NHT specimens and elevated Shh expression predominantly in CRPC specimens. Together with previously demonstrated reciprocal signaling between Shh-producing prostate cancer (PCa) cells and urogenital mesenchymal fibroblasts, these results suggest that castration-induced Hh expression promotes CRPC progression through reciprocal paracrine signaling within the tumor microenvironment. We tested whether the orally available Smoothened (Smo) antagonist, TAK-441, could impair castration-resistant progression of LNCaP PCa xenografts by disrupting paracrine Hh signaling. Although TAK-441 or cyclopamine did not affect androgen withdrawal-induced Shh up-regulation or viability of LNCaP cells, castration-resistant progression of LNCaP xenografts was significantly delayed in animals treated with TAK-441. In TAK-441-treated xenografts, expression of murine orthologs of the Hh-activated genes, Gli1, Gli2 and Ptch1, was substantially suppressed, while expression of the corresponding human orthologs was unaffected. As androgen-deprived LNCaP cells up-regulate Shh expression, but are not sensitive to Smo antagonists, these studies indicate that TAK-441 leads to delayed castration-resistant progression of LNCaP xenografts by disrupting paracrine Hh signaling with the tumor stroma. Thus, paracrine Hh signaling may offer unique opportunities for prognostic biomarker development, drug targeting and therapeutic response monitoring of PCa progression.
Collapse
Affiliation(s)
- Naokazu Ibuki
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
455
|
Spivak-Kroizman TR, Hostetter G, Posner R, Aziz M, Hu C, Demeure MJ, Von Hoff D, Hingorani SR, Palculict TB, Izzo J, Kiriakova GM, Abdelmelek M, Bartholomeusz G, James BP, Powis G. Hypoxia triggers hedgehog-mediated tumor-stromal interactions in pancreatic cancer. Cancer Res 2013; 73:3235-47. [PMID: 23633488 DOI: 10.1158/0008-5472.can-11-1433] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is characterized by a desmoplastic reaction that creates a dense fibroinflammatory microenvironment, promoting hypoxia and limiting cancer drug delivery due to decreased blood perfusion. Here, we describe a novel tumor-stroma interaction that may help explain the prevalence of desmoplasia in this cancer. Specifically, we found that activation of hypoxia-inducible factor-1α (HIF-1α) by tumor hypoxia strongly activates secretion of the sonic hedgehog (SHH) ligand by cancer cells, which in turn causes stromal fibroblasts to increase fibrous tissue deposition. In support of this finding, elevated levels of HIF-1α and SHH in pancreatic tumors were determined to be markers of decreased patient survival. Repeated cycles of hypoxia and desmoplasia amplified each other in a feed forward loop that made tumors more aggressive and resistant to therapy. This loop could be blocked by HIF-1α inhibition, which was sufficient to block SHH production and hedgehog signaling. Taken together, our findings suggest that increased HIF-1α produced by hypoxic tumors triggers the desmoplasic reaction in pancreatic cancer, which is then amplified by a feed forward loop involving cycles of decreased blood flow and increased hypoxia. Our findings strengthen the rationale for testing HIF inhibitors and may therefore represent a novel therapeutic option for pancreatic cancer.
Collapse
|
456
|
Warsame R, Grothey A. Treatment options for advanced pancreatic cancer: a review. Expert Rev Anticancer Ther 2013; 12:1327-36. [PMID: 23176620 DOI: 10.1586/era.12.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advanced pancreatic adenocarcinoma historically has a poor prognosis and the mortality rate has remained unchanged for over a decade. Common treatment options for patients with advanced pancreatic cancer include chemoradiation and/or chemotherapy. Single-agent gemcitabine has been considered the standard of care since 1997. Recently published findings indicate that the oxaliplatin, irinotecan, fluorouracil and leucovorin (FOLFIRINOX) treatment regimen significantly improves overall survival compared with gemcitabine. Research has shifted to focus on understanding the causes the resistance of pancreatic cancer to chemotherapy and potential methods to overcome it. This review will focus on the current treatment options, the evolution of targeted therapy, novel agents on the horizon and potential options to ameliorate chemoresistance.
Collapse
Affiliation(s)
- Rahma Warsame
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
457
|
Mahoney WM, Gunaje J, Daum G, Dong XR, Majesky MW. Regulator of G-protein signaling - 5 (RGS5) is a novel repressor of hedgehog signaling. PLoS One 2013; 8:e61421. [PMID: 23637832 PMCID: PMC3630190 DOI: 10.1371/journal.pone.0061421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/10/2013] [Indexed: 01/11/2023] Open
Abstract
Hedgehog (Hh) signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc) and smoothened (Smo). Recent studies identify Smo as a G-protein coupled receptor (GPCR)-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS) proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs) for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh)-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP), we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases.
Collapse
Affiliation(s)
- William M. Mahoney
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail: (WMM); (MWM)
| | - Jagadambika Gunaje
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
| | - Guenter Daum
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
| | - Xiu Rong Dong
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, United States of America
| | - Mark W. Majesky
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, United States of America
- * E-mail: (WMM); (MWM)
| |
Collapse
|
458
|
Humphreys BD. Targeting pericyte differentiation as a strategy to modulate kidney fibrosis in diabetic nephropathy. Semin Nephrol 2013; 32:463-70. [PMID: 23062987 DOI: 10.1016/j.semnephrol.2012.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pericytes are a heterogeneous group of extensively branched cells located in microvessels where they make focal contacts with endothelium. Pericytes stabilize blood vessels, regulate vascular tone, synthesize matrix, participate in repair, and serve as progenitor cells, among other functions. Recent work has highlighted the role of pericytes and pericyte-like cells in fibrosis, in which chronic injury triggers pericyte proliferation and differentiation into collagen-secretory, contractile myofibroblasts with migration away from vessels, causing microvascular rarefaction. In this review the developmental origins of kidney pericytes and perivascular fibroblasts are summarized, pericyte to myofibroblast transition in type I diabetic nephropathy is discussed, and the regulation of pericyte differentiation into myofibroblasts as a therapeutic target for treatment of diabetic nephropathy is described.
Collapse
Affiliation(s)
- Benjamin D Humphreys
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
459
|
Expression of the glioma-associated oncogene homolog 1 (gli1) in advanced serous ovarian cancer is associated with unfavorable overall survival. PLoS One 2013; 8:e60145. [PMID: 23555905 PMCID: PMC3610749 DOI: 10.1371/journal.pone.0060145] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/22/2013] [Indexed: 11/19/2022] Open
Abstract
Recent evidence links aberrant activation of Hedgehog (Hh) signaling with the pathogenesis of several cancers including medulloblastoma, glioblastoma, melanoma as well as pancreas, colorectal, and prostate carcinomas. Here we investigated the role of the transcription factor Gli1 in ovarian cancer. To this end, the expression profile of Gli1 was examined in normal ovaries, ovarian tumors, and ovarian cancer cell lines, and the in vitro effects of a specific Hh-pathway blocker, KAAD-cyclopamine, or a specific Gli1 inhibitor (GANT58) on cell proliferation and on Hh target gene expression were also assessed. Results obtained showed that epithelial cells in ovarian cancer tissue express significantly higher levels of nuclear Gli1 than in normal ovarian tissue, where the protein was almost undetectable. In addition, multivariate analysis showed that nuclear Gli1 was independently associated to poor survival in advanced serous ovarian cancer patients (HR = 2.2, 95%CI 1.0–5.1, p = 0.04). In vitro experiments demonstrated Gli1 expression in the three ovarian carcinoma cell lines tested, A2780, SKOV-3 and OVCAR-3. Remarkably, although KAAD-cyclopamine led to decreased cell proliferation, this treatment did not inhibit hedgehog target gene expression in any of the three ovarian cancer cell lines, suggesting that the inhibition of cell proliferation was a nonspecific or toxic effect. In line with these data, no differences on cell proliferation were observed when cell lines were treated with GANT58. Overall, our clinical data support the role of Gli1 as a prognostic marker in advanced serous ovarian cancer and as a possible therapeutic target in this disease. However, our in vitro findings draw attention to the need for selection of appropriate experimental models that accurately represent human tumor for testing future therapies involving Hh pathway inhibitors.
Collapse
|
460
|
Hui M, Cazet A, Nair R, Watkins DN, O'Toole SA, Swarbrick A. The Hedgehog signalling pathway in breast development, carcinogenesis and cancer therapy. Breast Cancer Res 2013; 15:203. [PMID: 23547970 PMCID: PMC3672663 DOI: 10.1186/bcr3401] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite the progress achieved in breast cancer screening and therapeutic innovations, the basal-like subtype of breast cancer (BLBC) still represents a particular clinical challenge. In order to make an impact on survival in this type of aggressive breast cancer, new targeted therapeutic agents are urgently needed. Aberrant activation of the Hedgehog (Hh) signalling pathway has been unambiguously tied to cancer development and progression in a variety of solid malignancies, and the recent approval of vismodegib, an orally bioavailable small-molecule inhibitor of Smoothened, validates Hh signalling as a valuable therapeutic target. A number of recent publications have highlighted a role for Hh signalling in breast cancer models and clinical specimens. Interestingly, Hh ligand overexpression is associated with the BLBC phenotype and a poor outcome in terms of metastasis and breast cancer-related death. In this review, we provide a comprehensive overview of the canonical Hh signalling pathway in mammals, highlight its roles in mammary gland development and breast carcinogenesis and discuss its potential therapeutic value in BLBC.
Collapse
|
461
|
Smith S, Hoyt J, Whitebread N, Manna J, Peluso M, Faia K, Campbell V, Tremblay M, Nair S, Grogan M, Castro A, Campbell M, Ferguson J, Arsenault B, Nevejans J, Carter B, Lee J, Dunbar J, McGovern K, Read M, Adams J, Constan A, Loewen G, Sydor J, Palombella V, Soglia J. The pre-clinical absorption, distribution, metabolism and excretion properties of IPI-926, an orally bioavailable antagonist of the hedgehog signal transduction pathway. Xenobiotica 2013; 43:875-85. [PMID: 23527529 DOI: 10.3109/00498254.2013.780671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. IPI-926 is a novel semisynthetic cyclopamine derivative that is a potent and selective Smoothened inhibitor that blocks the hedgehog signal transduction pathway. 2. The in vivo clearance of IPI-926 is low in mouse and dog and moderate in monkey. The volume of distribution is high across species. Oral bioavailability ranges from moderate in monkey to high in mouse and dog. Predicted human clearance using simple allometry is low (24 L h(-1)), predicted volume of distribution is high (469 L) and predicted half-life is long (20 h). 3. IPI-926 is highly bound to plasma proteins and has minimal interaction with human α-1-acid glycoprotein. 4. In vitro metabolic stability ranges from stable to moderately stable. Twelve oxidative metabolites were detected in mouse, rat, dog, monkey and human liver microsome incubations and none were unique to human. 5. IPI-926 is not a potent reversible inhibitor of CYP1A2, 2C8, 2C9 or 3A4 (testosterone). IPI-926 is a moderate inhibitor of CYP2C19, 2D6 and 3A4 (midazolam) with KI values of 19, 16 and 4.5 µM, respectively. IPI-926 is both a substrate and inhibitor (IC50 = 1.9 µM) of P-glycoprotein. 6. In summary, IPI-926 has desirable pre-clinical absorption, distribution, metabolism and excretion properties.
Collapse
Affiliation(s)
- Sherri Smith
- Infinity Pharmaceuticals, Inc. , Cambridge, MA , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
462
|
Gallinari P, Filocamo G, Jones P, Pazzaglia S, Steinkühler C. Smoothened antagonists: a promising new class of antitumor agents. Expert Opin Drug Discov 2013; 4:525-44. [PMID: 23485085 DOI: 10.1517/17460440902852686] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Hedgehog signaling is essential for the development of most metazoans. In recent years, evidence has accumulated showing that many human tumors aberrantly re-activate this developmental signaling pathway and that interfering with it may provide a new strategy for the development of novel anti-cancer therapeutics. Smoothened is a G-protein coupled receptor-like protein that is essentially involved in hedgehog signal transduction and small molecule antagonists of Smoothened have started to show antitumor activity in preclinical models and in clinical trials. OBJECTIVE We critically review the role of hedgehog signaling in normal development and in human malignancies, the available drug discovery tools and the classes of small molecule inhibitors that are in development. We further aim to address the potential impact that pathway antagonists may have on the treatment options of cancer patients. METHODS Literature, patents and clinical trial results from the past 5 years were analyzed. CONCLUSIONS 1) A large body of evidence suggests a frequent reactivation of hedgehog signaling in human cancer. 2) Smoothened is an attractive, highly druggable target with extensive preclinical and initial clinical validation in basal cell carcinoma. Several promising novel classes of Smoothened antagonists have been discovered and are being developed as anticancer agents. 3) Our knowledge of the biology of hedgehog signaling in cancer is still very incomplete and significant efforts will be required to understand how to use the emerging novel agents in the clinic.
Collapse
Affiliation(s)
- Paola Gallinari
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, Department of Oncology, IRBM- Merck Research Laboratories Rome, Via Pontina Km 30,600, 00040 Pomezia, Italy +39 06 91093232 ; +39 06 91093549 ;
| | | | | | | | | |
Collapse
|
463
|
Tang L, Tan YX, Jiang BG, Pan YF, Li SX, Yang GZ, Wang M, Wang Q, Zhang J, Zhou WP, Dong LW, Wang HY. The prognostic significance and therapeutic potential of hedgehog signaling in intrahepatic cholangiocellular carcinoma. Clin Cancer Res 2013; 19:2014-24. [PMID: 23493353 DOI: 10.1158/1078-0432.ccr-12-0349] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE The correlation of the hedgehog signaling pathway with the progression, prognosis, and therapeutics of intrahepatic cholangiocellular carcinoma (ICC) has not been well documented. The study aimed to investigate the expression, prognostic significance, and therapeutic value of hedgehog components in ICC. EXPERIMENTAL DESIGN Two independent cohorts of 200 patients with ICC were enrolled. By real-time PCR and immunohistochemistry assay, hedgehog components expression was evaluated. The prognostic values of hedgehog proteins were identified and verified. Cyclopamine or siRNA-targeting Gli was used to block the hedgehog signaling. Cell proliferation and apoptosis were observed by CCK8, cell cycle, and annexin V staining assays. In vivo murine tumor model was used to evaluate the role of hedgehog in ICC. RESULTS In ICC tissues, the Gli1 nuclear immune-intensity was associated with intrahepatic metastasis and the expression of Gli2 was associated with intrahepatic metastasis, venous invasion, and Unio Internationale Contra Cancrum (UICC) pT characteristics. In survival analysis, high Gli1 or Gli2 expressers had an unfavorable overall survival (OS) prognosis and a shorter disease-free survival (DFS) than those with low expression. In multivariate analysis, Gli1 expression was found to be an independent prognostic factor of OS, which was validated by another independent cohort. Furthermore, blocking the hedgehog signaling by cyclopamine or siRNA-targeting Gli1 resulted in apoptosis and growth inhibition in ICC cells. CONCLUSIONS This study shows, for the first time, activation of hedgehog pathway associated with the progression and metastasis in ICC, which may provide prognostic and therapeutic values for this tumor.
Collapse
Affiliation(s)
- Liang Tang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
464
|
Worthley DL, Si Y, Quante M, Churchill M, Mukherjee S, Wang TC. Bone marrow cells as precursors of the tumor stroma. Exp Cell Res 2013; 319:1650-6. [PMID: 23499739 DOI: 10.1016/j.yexcr.2013.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/02/2013] [Indexed: 12/24/2022]
Abstract
Cancer is a systemic disease. Local and distant factors conspire to promote or inhibit tumorigenesis. The bone marrow is one important source of tumor promoting cells. These include the important mature and immature hematopoietic cells as well as circulating mesenchymal progenitors. Recruited bone marrow cells influence carcinogenesis at the primary site, within the lymphoreticular system and even presage metastasis through their recruitment to distant organs. In this review we focus on the origins and contribution of cancer-associated fibroblasts in tumorigenesis. Mesenchymal cells present an important opportunity for targeted cancer prevention and therapy.
Collapse
Affiliation(s)
| | - Yiling Si
- Department of Medicine, Columbia University, NY, USA
| | - Michael Quante
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitat Munchen, Munich, Germany
| | | | | | | |
Collapse
|
465
|
Gu D, Liu H, Su GH, Zhang X, Chin-Sinex H, Hanenberg H, Mendonca MS, Shannon HE, Chiorean EG, Xie J. Combining hedgehog signaling inhibition with focal irradiation on reduction of pancreatic cancer metastasis. Mol Cancer Ther 2013; 12:1038-48. [PMID: 23468532 DOI: 10.1158/1535-7163.mct-12-1030] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer often presents in advanced stages and is unresponsive to conventional treatments. Thus, the need to develop novel treatment strategies for pancreatic cancer has never been greater. Here, we report that combination of focal irradiation with hedgehog (Hh) signaling inhibition exerts better than additive effects on reducing metastases. In an orthotopic model, we found that focal irradiation alone effectively reduced primary tumor growth but did not significantly affect metastasis. We hypothesized that cancer stem cells (CSC) of pancreatic cancer are responsible for the residual tumors following irradiation, which may be regulated by Hh signaling. To test our hypothesis, we showed that tumor metastasis in our model was accompanied by increased expression of CSC cell surface markers as well as Hh target genes. We generated tumor spheres from orthotopic pancreatic and metastatic tumors, which have elevated levels of CSC markers relative to the parental cells and elevated expression of Hh target genes. Irradiation of tumor spheres further elevated CSC cell surface markers and increased Hh target gene expression. Combination of Hh signaling inhibition with radiation had more than additive effects on tumor sphere regeneration in vitro. This phenotype was observed in two independent cell lines. In our orthotopic animal model, focal radiation plus Hh inhibition had more than additive effects on reducing lymph node metastasis. We identified several potential molecules in mediating Hh signaling effects. Taken together, our data provide a rationale for combined use of Hh inhibition with irradiation for clinical treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Dongsheng Gu
- Division of Medical Oncology, IU Simon Cancer Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
466
|
O'Toole SA, Beith JM, Millar EKA, West R, McLean A, Cazet A, Swarbrick A, Oakes SR. Therapeutic targets in triple negative breast cancer. J Clin Pathol 2013; 66:530-42. [DOI: 10.1136/jclinpath-2012-201361] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
467
|
Samusik N, Krukovskaya L, Meln I, Shilov E, Kozlov AP. PBOV1 is a human de novo gene with tumor-specific expression that is associated with a positive clinical outcome of cancer. PLoS One 2013; 8:e56162. [PMID: 23418531 PMCID: PMC3572036 DOI: 10.1371/journal.pone.0056162] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 01/10/2013] [Indexed: 01/20/2023] Open
Abstract
PBOV1 is a known human protein-coding gene with an uncharacterized function. We have previously found that PBOV1 lacks orthologs in non-primate genomes and is expressed in a wide range of tumor types. Here we report that PBOV1 protein-coding sequence is human-specific and has originated de novo in the primate evolution through a series of frame-shift and stop codon mutations. We profiled PBOV1 expression in multiple cancer and normal tissue samples and found that it was expressed in 19 out of 34 tumors of various origins but completely lacked expression in any of the normal adult or fetal human tissues. We found that, unlike the cancer/testis antigens that are typically controlled by CpG island-containing promoters, PBOV1 was expressed from a GC-poor TATA-containing promoter which was not influenced by CpG demethylation and was inactive in testis. Our analysis of public microarray data suggests that PBOV1 activation in tumors could be dependent on the Hedgehog signaling pathway. Despite the recent de novo origin and the lack of identifiable functional signatures, a missense SNP in the PBOV1 coding sequence has been previously associated with an increased risk of breast cancer. Using publicly available microarray datasets, we found that high levels of PBOV1 expression in breast cancer and glioma samples were significantly associated with a positive outcome of the cancer disease. We also found that PBOV1 was highly expressed in primary but not in recurrent high-grade gliomas, suggesting the presence of a negative selection against PBOV1-expressing cancer cells. Our findings could contribute to the understanding of the mechanisms behind de novo gene origin and the possible role of tumors in this process.
Collapse
Affiliation(s)
- Nikolay Samusik
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany.
| | | | | | | | | |
Collapse
|
468
|
Guerra C, Barbacid M. Genetically engineered mouse models of pancreatic adenocarcinoma. Mol Oncol 2013; 7:232-47. [PMID: 23506980 DOI: 10.1016/j.molonc.2013.02.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/14/2013] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of human cancer for which there are no effective therapies. Deep sequencing of PDAC tumors has revealed the presence of a high number of mutations (>50) that affect at least a dozen key signaling pathways. This scenario highlights the urgent need to develop experimental models that faithfully reproduce the natural history of these human tumors in order to understand their biology and to design therapeutic approaches that might effectively interfere with their multiple mutated pathways. Over the last decade, several models, primarily based on the genetic activation of resident KRas oncogenes knocked-in within the endogenous KRas locus have been generated. These models faithfully reproduce the histological lesions that characterize human pancreatic tumors. Decoration of these models with additional mutations, primarily involving tumor suppressor loci known to be also mutated in human PDAC tumors, results in accelerated tumor progression and in the induction of invasive and metastatic malignancies. Mouse PDACs also display a desmoplastic stroma and inflammatory responses that closely resemble those observed in human patients. Interestingly, adult mice appear to be resistant to PDAC development unless the animals undergo pancreatic damage, mainly in the form of acute, chronic or even temporary pancreatitis. In this review, we describe the most representative models available to date and how their detailed characterization is allowing us to understand their cellular origin as well as the events involved in tumor progression. Moreover, their molecular dissection is starting to unveil novel therapeutic strategies that could be translated to the clinic in the very near future.
Collapse
Affiliation(s)
- Carmen Guerra
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernandez Almagro 3, E-28029 Madrid, Spain.
| | | |
Collapse
|
469
|
Chang Q, Foltz WD, Chaudary N, Hill RP, Hedley DW. Tumor-stroma interaction in orthotopic primary pancreatic cancer xenografts during hedgehog pathway inhibition. Int J Cancer 2013; 133:225-34. [PMID: 23280784 DOI: 10.1002/ijc.28006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/08/2012] [Accepted: 12/17/2012] [Indexed: 11/06/2022]
Abstract
To test the effects of hedgehog (Hh) pathway inhibition on the stroma of orthotopically grown primary pancreatic cancer xenografts, and investigate the potential to monitor these effects non-invasively using magnetic resonance imaging (MRI), mice bearing orthotopically grown primary pancreatic cancer xenografts were treated with the Hh neutralizing antibody 5E1. Pathway inhibition was determined by RT-PCR using primer sets for human and mouse Hh pathway genes, and effects on stroma assessed by automated image analysis of tissue sections stained for collagen and α-smooth muscle actin (αSMA). MRI provided quantitative biomarkers of stromal density based on magnetization transfer (MT-MRI) and dynamic contrast enhancement (DCE-MRI). Modest growth inhibition was seen in both models tested using 5E1, but was greater in OCIP19, which showed high expression of mouse Hh pathway genes and an extensive fibrous stroma. However, despite profound inhibition of both mouse and human Hh pathway genes, in neither model did we observe depletion of the stroma. Alignment of MT-MRI ratio images to histological sections showed co-registration with areas of fibrosis, although this was confounded by the presence of tumor necrosis. Due to the lack of stromal depletion by 5E1 it was not possible to determine the utility of MT-MRI for monitoring this effect. Cancer- and stromal cell-derived Hh signaling elements are expressed in orthotopic primary pancreatic cancer xenografts, and selective targeting is growth-inhibitory. In contrast to some recent reports, growth inhibition does not involve attenuation of the tumor stroma, pointing to additional effects of Hh signaling in pancreatic cancer.
Collapse
Affiliation(s)
- Qing Chang
- Ontario Cancer Institute/Princess Margaret Hospital, ON, Canada
| | | | | | | | | |
Collapse
|
470
|
Carcinoma-associated fibroblasts are a promising therapeutic target. Cancers (Basel) 2013; 5:149-69. [PMID: 24216702 PMCID: PMC3730310 DOI: 10.3390/cancers5010149] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 12/21/2022] Open
Abstract
Human carcinomas frequently exhibit significant stromal reactions such as the so-called "desmoplastic stroma" or "reactive stroma", which is characterised by the existence of large numbers of stromal cells and extracellular matrix proteins. Carcinoma-associated fibroblasts (CAFs), which are rich in activated fibroblast populations exemplified by myofibroblasts, are among the predominant cell types present within the tumour-associated stroma. Increased numbers of stromal myofibroblasts are often associated with high-grade malignancies with poor prognoses in humans. CAF myofibroblasts possess abilities to promote primary tumour development, growth and progression by stimulating the processes of neoangiogenesis as well as tumour cell proliferation, survival, migration and invasion. Moreover, it has been demonstrated that CAFs serve as a niche supporting the metastatic colonisation of disseminated carcinoma cells in distant organs. Their contribution to primary and secondary malignancies makes these fibroblasts a potential therapeutic target and they also appear to be relevant to the development of drug resistance and tumour recurrence. This review summarises our current knowledge of tumour-promoting CAFs and discusses the therapeutic feasibility of targeting these cells as well as disrupting heterotypic interactions with other cell types in tumours that may improve the efficacy of current anti-tumour therapies.
Collapse
|
471
|
Abstract
Human carcinomas frequently exhibit significant stromal reactions such as the so-called "desmoplastic stroma" or "reactive stroma", which is characterised by the existence of large numbers of stromal cells and extracellular matrix proteins. Carcinoma-associated fibroblasts (CAFs), which are rich in activated fibroblast populations exemplified by myofibroblasts, are among the predominant cell types present within the tumour-associated stroma. Increased numbers of stromal myofibroblasts are often associated with high-grade malignancies with poor prognoses in humans. CAF myofibroblasts possess abilities to promote primary tumour development, growth and progression by stimulating the processes of neoangiogenesis as well as tumour cell proliferation, survival, migration and invasion. Moreover, it has been demonstrated that CAFs serve as a niche supporting the metastatic colonisation of disseminated carcinoma cells in distant organs. Their contribution to primary and secondary malignancies makes these fibroblasts a potential therapeutic target and they also appear to be relevant to the development of drug resistance and tumour recurrence. This review summarises our current knowledge of tumour-promoting CAFs and discusses the therapeutic feasibility of targeting these cells as well as disrupting heterotypic interactions with other cell types in tumours that may improve the efficacy of current anti-tumour therapies.
Collapse
|
472
|
BMP and TGF-β pathway mediators are critical upstream regulators of Wnt signaling during midbrain dopamine differentiation in human pluripotent stem cells. Dev Biol 2013; 376:62-73. [PMID: 23352789 DOI: 10.1016/j.ydbio.2013.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 01/21/2023]
Abstract
Although many laboratories currently use small molecule inhibitors of the BMP (Dorsomorphin/DM) and TGF-β (SB431542/SB) signaling pathways in protocols to generate midbrain dopamine (mDA) neurons from hES and hiPS cells, until now, these substances have not been thought to play a role in the mDA differentiation process. We report here that the transient inhibition of constitutive BMP (pSMADs 1, 5, 8) signaling, either alone or in combination with TGF-β inhibition (pSMADs 2, 3), is critically important in the upstream regulation of Wnt1-Lmx1a signaling in mDA progenitors. We postulate that the mechanism via which DM or DM/SB mediates these effects involves the up-regulation in SMAD-interacting protein 1 (SIP1), which results in greater repression of the Wnt antagonist, secreted frizzled related protein 1 (Sfrp1) in stem cells. Accordingly, knockdown of SIP1 reverses the inductive effects of DM/SB on mDA differentiation while Sfrp1 knockdown/inhibition mimics DM/SB. The rise in Wnt1-Lmx1a levels in SMAD-inhibited cultures is, however, accompanied by a reciprocal down-regulation in SHH-Foxa2 levels leading to the generation of few TH+ neurons that co-express Foxa2. If however, exogenous SHH/FGF8 is added along with SMAD inhibitors, equilibrium in these two important pathways is achieved such that authentic (Lmx1a+Foxa2+TH+) mDA neuron differentiation is promoted while alternate cell fates are suppressed in stem cell cultures. These data indicate that activators/inhibitors of BMP and TGF-β signaling play a critical upstream regulatory role in the mDA differentiation process in human pluripotent stem cells.
Collapse
|
473
|
Szkandera J, Kiesslich T, Haybaeck J, Gerger A, Pichler M. Hedgehog signaling pathway in ovarian cancer. Int J Mol Sci 2013; 14:1179-96. [PMID: 23303278 PMCID: PMC3565315 DOI: 10.3390/ijms14011179] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 12/30/2012] [Accepted: 01/05/2013] [Indexed: 12/11/2022] Open
Abstract
Despite advances in surgical and chemotherapeutic treatment options, less than 50% of patients with advanced-stage ovarian cancer survive five years after initial diagnosis. In this regard, novel treatment approaches are warranted utilizing molecularly targeted therapies directed against particular components of specific signaling pathways which are required for tumor development and progression. One molecular pathway of interest is the hedgehog (Hh) signaling pathway. Activation of the Hh pathway has been observed in several cancer types, including ovarian cancer. This review highlights the crucial role of Hh signaling in the development and progression of ovarian cancer and might lead to a better understanding of the Hh signaling in ovarian tumorigenesis, thus encouraging the investigation of novel targeted therapies.
Collapse
Affiliation(s)
- Joanna Szkandera
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, 8036 Graz, Austria; E-Mails: (J.S.); (A.G.)
| | - Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria; E-Mail:
| | - Johannes Haybaeck
- Institute of Pathology, Medical University of Graz, 8036 Graz, Austria; E-Mail:
| | - Armin Gerger
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, 8036 Graz, Austria; E-Mails: (J.S.); (A.G.)
| | - Martin Pichler
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, 8036 Graz, Austria; E-Mails: (J.S.); (A.G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +43-316-385-81320; Fax: +43-316-385-13355
| |
Collapse
|
474
|
Efstathiou E, Karlou M, Wen S, Hoang A, Pettaway CA, Pisters LL, Maity S, Troncoso P, Logothetis CJ. Integrated Hedgehog signaling is induced following castration in human and murine prostate cancers. Prostate 2013; 73:153-61. [PMID: 22753310 PMCID: PMC3878994 DOI: 10.1002/pros.22550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 05/22/2012] [Indexed: 11/09/2022]
Abstract
BACKGROUND The interplay between androgen and Hedgehog (Hh) signaling pathways may be associated with prostate cancer progression and resistance to therapy. METHODS Tissue microarrays from prostatectomy specimens were derived from 53 patients treated preoperatively with androgen ablation (AA) with or without chemotherapy, and from 26 stage- and grade-matched controls. A previously characterized androgen-regulated human prostate cancer xenograft was used to conduct parallel murine studies. Expression of markers of interest was determined on both untreated and castrated tumors. RESULTS Four-month exposure to AA or AA with chemotherapy led to a uniform increase in Hh signaling as compared to controls, paired with an inverse trend of androgen receptor (AR) and CYP17 expression in clinically derived specimens. Changes in the expression profiles of Hh signaling were observed in the epithelium and stroma, in response to genotoxic stress of androgen ablation and chemotherapy. A reduced expression of KI67 and increased bcl2 expression was observed in the malignant epithelial compartment. CONCLUSION To our knowledge, this is the first clinical evidence that Hh signaling is induced by AA or the combination of AA and chemotherapy and, by inference, contributes to castrate-resistant progression of prostate cancer as supported by parallel human and murine studies. These data are in agreement with previous reports that implicate Hh signaling in castrate-resistant progression of prostate cancer. Based on these findings, we are pursuing parallel clinical and murine investigations to determine if Hh signaling inhibition combined with AA will be more effective than AA alone.
Collapse
Affiliation(s)
- Eleni Efstathiou
- Department of Clinical Therapeutics, University of Athens Medical School, Athens, Greece
- Department of Genitourinary Medical Oncology David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Maria Karlou
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Sijin Wen
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Anh Hoang
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Curtis A. Pettaway
- Department of Urology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Louis L. Pisters
- Department of Urology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Sankar Maity
- Department of Genitourinary Medical Oncology David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Patricia Troncoso
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
475
|
Teperino R, Amann S, Bayer M, McGee SL, Loipetzberger A, Connor T, Jaeger C, Kammerer B, Winter L, Wiche G, Dalgaard K, Selvaraj M, Gaster M, Lee-Young RS, Febbraio MA, Knauf C, Cani PD, Aberger F, Penninger JM, Pospisilik JA, Esterbauer H. Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat. Cell 2012; 151:414-26. [PMID: 23063129 DOI: 10.1016/j.cell.2012.09.021] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/18/2012] [Accepted: 09/17/2012] [Indexed: 02/04/2023]
Abstract
Diabetes, obesity, and cancer affect upward of 15% of the world's population. Interestingly, all three diseases juxtapose dysregulated intracellular signaling with altered metabolic state. Exactly which genetic factors define stable metabolic set points in vivo remains poorly understood. Here, we show that hedgehog signaling rewires cellular metabolism. We identify a cilium-dependent Smo-Ca(2+)-Ampk axis that triggers rapid Warburg-like metabolic reprogramming within minutes of activation and is required for proper metabolic selectivity and flexibility. We show that Smo modulators can uncouple the Smo-Ampk axis from canonical signaling and identify cyclopamine as one of a new class of "selective partial agonists," capable of concomitant inhibition of canonical and activation of noncanonical hedgehog signaling. Intriguingly, activation of the Smo-Ampk axis in vivo drives robust insulin-independent glucose uptake in muscle and brown adipose tissue. These data identify multiple noncanonical endpoints that are pivotal for rational design of hedgehog modulators and provide a new therapeutic avenue for obesity and diabetes.
Collapse
Affiliation(s)
- Raffaele Teperino
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, D-79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
476
|
Dirix L, Rutten A. Vismodegib: a promising drug in the treatment of basal cell carcinomas. Future Oncol 2012; 8:915-28. [PMID: 22894666 DOI: 10.2217/fon.12.82] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hedgehog pathway signaling is important for embryonic development; however, inappropriate reactivation of this pathway in adults has been linked to several forms of cancer. Vismodegib (Erivedge™), a first-in-class hedgehog pathway inhibitor, blocks the pathway by inhibiting the activity of the signaling protein SMO. Preclinical studies have provided promising indications of potential tumor-reducing activity in several cancers. Thus far, clinical pharmacology and Phase I studies have demonstrated the unique pharmacokinetic profile of vismodegib, its efficacy in certain types of tumors and a generally tolerable adverse-event profile. A pivotal Phase II clinical trial confirmed the favorable benefit:risk profile of vismodegib in advanced basal cell carcinoma.
Collapse
Affiliation(s)
- Luc Dirix
- Sint-Augustinus Hospital, Oosterveldlaan 24, Antwerp, Belgium.
| | | |
Collapse
|
477
|
Chan IS, Guy CD, Chen Y, Lu J, Swiderska M, Michelotti GA, Karaca G, Xie G, Krüger L, Syn WK, Anderson BR, Pereira TA, Choi SS, Baldwin AS, Diehl AM. Paracrine Hedgehog signaling drives metabolic changes in hepatocellular carcinoma. Cancer Res 2012; 72:6344-50. [PMID: 23066040 PMCID: PMC3525764 DOI: 10.1158/0008-5472.can-12-1068] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hepatocellular carcinoma (HCC) typically develops in cirrhosis, a condition characterized by Hedgehog (Hh) pathway activation and accumulation of Hh-responsive myofibroblasts. Although Hh signaling generally regulates stromal-epithelial interactions that support epithelial viability, the role of Hh-dependent myofibroblasts in hepatocarcinogenesis is unknown. Here, we used human HCC samples, a mouse HCC model, and hepatoma cell/myofibroblast cocultures to examine the hypothesis that Hh signaling modulates myofibroblasts' metabolism to generate fuels for neighboring malignant hepatocytes. The results identify a novel paracrine mechanism whereby malignant hepatocytes produce Hh ligands to stimulate glycolysis in neighboring myofibroblasts, resulting in release of myofibroblast-derived lactate that the malignant hepatocytes use as an energy source. This discovery reveals new diagnostic and therapeutic targets that might be exploited to improve the outcomes of cirrhotic patients with HCCs.
Collapse
Affiliation(s)
- Isaac S. Chan
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Genetics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cynthia D. Guy
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yuping Chen
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Jiuyi Lu
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Marzena Swiderska
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Gregory A. Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Gamze Karaca
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Guanhua Xie
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Leandi Krüger
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Wing-Kin Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Centre for Liver Research and National Institute of Health Research Biomedical Research Unit, University of Birmingham, Edgbaston, Birmingham, UK
| | - Blair R. Anderson
- Center for Human Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - Thiago A. Pereira
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Steve S. Choi
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Albert S. Baldwin
- Department of Genetics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
478
|
Abstract
Vismodegib is the first Hedgehog pathway inhibitor to be approved in the US, where it is indicated for the treatment of adults with metastatic basal cell carcinoma (BCC), or with locally advanced BCC that has recurred following surgery or who are not candidates for surgery, and who are not candidates for radiation. Vismodegib selectively and potently inhibits the Hedgehog signalling pathway by binding to Smoothened, thereby inhibiting the activation of Hedgehog target genes. Oral vismodegib was effective in the treatment of patients with locally advanced (n = 63) or metastatic (n = 33) BCC, according to the results of an ongoing, noncomparative, multinational, pivotal, phase II trial (ERIVANCE BCC). In this trial (using a clinical cutoff date of 26 November 2010), the independent review facility overall response rate was 42.9% in patients with locally advanced BCC and 30.3% in patients with metastatic BCC. In both patients with locally advanced BCC and those with metastatic BCC, the median duration of response was 7.6 months and median progression-free survival was 9.5 months. Oral vismodegib had an acceptable tolerability profile in patients with advanced BCC.
Collapse
|
479
|
Abstract
Both genetic and environmental factors play critical roles in the development of diabetes. Epidemiological evidence and data from clinical studies suggest the persistence of a "metabolic memory" of past exposures to environmental factors or glycemic control. Epigenetic mechanisms are regarded as one of the likeliest candidates underlying these phenomena. On the other hand, owing to the recent elucidation of mechanisms that erase epigenetic marks, it has gradually become recognized that epigenetic regulation is a more dynamic process than previously thought. A technological breakthrough in epigenome research in the past decade was the development of high-throughput sequencing. This new technology lets us investigate the epigenome in a global and comprehensive manner, and provides previously unrecognized findings and insights. This review presents an overview of the recent progress in our understanding of epigenetic regulation in type 1 and type 2 diabetes research.
Collapse
Affiliation(s)
- Hironori Waki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo, 113-8655, Japan
| | | | | |
Collapse
|
480
|
García-Zaragoza E, Pérez-Tavarez R, Ballester A, Lafarga V, Jiménez-Reinoso A, Ramírez Á, Murillas R, Gallego MI. Intraepithelial paracrine Hedgehog signaling induces the expansion of ciliated cells that express diverse progenitor cell markers in the basal epithelium of the mouse mammary gland. Dev Biol 2012; 372:28-44. [DOI: 10.1016/j.ydbio.2012.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 10/27/2022]
|
481
|
Kong X, Li L, Li Z, Xie K. Targeted destruction of the orchestration of the pancreatic stroma and tumor cells in pancreatic cancer cases: molecular basis for therapeutic implications. Cytokine Growth Factor Rev 2012; 23:343-56. [PMID: 22749856 PMCID: PMC3505269 DOI: 10.1016/j.cytogfr.2012.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/07/2012] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is one of the most lethal malignancies, with a prominent desmoplastic reaction as its defining hallmark. The past several decades have seen dramatic progress in understanding of pancreatic cancer pathogenesis, including identification of precursor lesions, sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and corresponding signature genetic events, and the biological impact of these events on malignant behavior. However, the currently used therapeutic strategies for epithelial tumor cells, which have exhibited potent antitumor activity in cell culture and animal models, have failed to produce significant effects in the clinic. The desmoplastic stroma surrounding pancreatic cancer cells, which accounts for about 90% of a tumor's mass, clearly is not a passive scaffold for cancer cells but an active contributor to carcinogenesis. Improved understanding of the dynamic interaction between cancer cells and the stroma will be important to designing effective therapeutic strategies for pancreatic cancer. This review focuses on the origin of stromal molecular and cellular components in pancreatic tumors, their biological effects on pancreatic cancer cells, and the orchestration of these two components.
Collapse
Affiliation(s)
- Xiangyu Kong
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, The People’s Republic of China
| | - Lei Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, The People’s Republic of China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, The People’s Republic of China
| | - Keping Xie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
482
|
The Cancer Stem-Cell Hypothesis: Its Emerging Role in Lung Cancer Biology and Its Relevance for Future Therapy. J Thorac Oncol 2012; 7:1880-1890. [DOI: 10.1097/jto.0b013e31826bfbc6] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
483
|
Fu J, Rodova M, Roy SK, Sharma J, Singh KP, Srivastava RK, Shankar S. GANT-61 inhibits pancreatic cancer stem cell growth in vitro and in NOD/SCID/IL2R gamma null mice xenograft. Cancer Lett 2012. [PMID: 23200667 DOI: 10.1016/j.canlet.2012.11.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiple lines of evidence suggest that the Sonic Hedgehog (Shh) signaling pathway is aberrantly reactivated in pancreatic cancer stem cells (CSCs). The objectives of this study were to examine the molecular mechanisms by which GANT-61 (Gli transcription factor inhibitor) regulates stem cell characteristics and tumor growth. Effects of GANT-61 on CSC's viability, spheroid formation, apoptosis, DNA-binding and transcriptional activities, and epithelial-mesenchymal transition (EMT) were measured. Humanized NOD/SCID/IL2R gamma(null) mice were used to examine the effects of GANT-61 on CSC's tumor growth. GANT-61 inhibited cell viability, spheroid formation, and Gli-DNA binding and transcriptional activities, and induced apoptosis by activation of caspase-3 and cleavage of Poly-ADP ribose Polymerase (PARP). GANT-61 increased the expression of TRAIL-R1/DR4, TRAIL-R2/DR5 and Fas, and decreased expression of PDGFRα and Bcl-2. GANT-61 also suppressed EMT by up-regulating E-cadherin and inhibiting N-cadherin and transcription factors Snail, Slug and Zeb1. In addition, GANT-61 inhibited pluripotency maintaining factors Nanog, Oct4, Sox-2 and cMyc. Suppression of both Gli1 plus Gli2 by shRNA mimicked the changes in cell viability, spheroid formation, apoptosis and gene expression observed in GANT-61-treated pancreatic CSCs. Furthermore, GANT-61 inhibited CSC tumor growth which was associated with up-regulation of DR4 and DR5 expression, and suppression of Gli1, Gli2, Bcl-2, CCND2 and Zeb1 expression in tumor tissues derived from NOD/SCID IL2Rγ null mice. Our data highlight the importance of Shh pathway for self-renewal and metastasis of pancreatic CSCs, and also suggest Gli as a therapeutic target for pancreatic cancer in eliminating CSCs.
Collapse
Affiliation(s)
- Junsheng Fu
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | | | | | | | |
Collapse
|
484
|
Zeng J, Aziz K, Chettiar ST, Aftab BT, Armour M, Gajula R, Gandhi N, Salih T, Herman JM, Wong J, Rudin CM, Tran PT, Hales RK. Hedgehog pathway inhibition radiosensitizes non-small cell lung cancers. Int J Radiat Oncol Biol Phys 2012. [PMID: 23182391 DOI: 10.1016/j.ijrobp.2012.10.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. METHODS AND MATERIALS We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras(G12D)-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. RESULTS In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. CONCLUSIONS Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231-2410, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
485
|
Cancer stem cells: potential target for bioactive food components. J Nutr Biochem 2012; 23:691-8. [PMID: 22704055 DOI: 10.1016/j.jnutbio.2012.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/21/2012] [Accepted: 03/09/2012] [Indexed: 12/14/2022]
Abstract
Cancer stem cells often have phenotypic and functional characteristics similar to normal stem cells including the properties of self-renewal and differentiation. Recent findings suggest that uncontrolled self-renewal may explain cancer relapses and may represent a critical target for cancer prevention. It is conceivable that the loss of regulatory molecules resulting from inappropriate consumption of specific foods and their constituents may foster the aberrant self-renewal of cancer stem cells. In fact, increasing evidence points to the network delivering signals for self-renewal from extracellular compartments to the nucleus including changes in stem cell environments, inducible expression of microRNAs, hyperplastic nuclear chromatin structures, and the on/off of differentiation process as possible sites of action for bioactive food components. Diverse dietary constituents such as vitamins A and D, genistein, (-)-epigallocatechin-3-gallate (EGCG), sulforaphane, curcumin, piperine, theanine and choline have been shown to modify self-renewal properties of cancer stem cells. The ability of these bioactive food components to influence the balance between proliferative and quiescent cells by regulating critical feedback molecules in the network including dickkopf 1 (DKK-1), secreted frizzled-related protein 2 (sFRP2), B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) and cyclin-dependent kinase 6 (CDK6) may account for their biological response. Overall, the response to food components does not appear to be tissue or organ specific, suggesting there may be common cellular mechanisms. Unquestionably, additional studies are needed to clarify the physiological role of these dietary components in preventing the resistance of tumor cells to traditional drugs and cancer recurrence.
Collapse
|
486
|
Abstract
Studies of cell lines and of animal models of pancreatic cancer have raised a number of provocative questions about the nature and origins of human pancreatic cancer and have provided several leads into exciting new approaches for the treatment of this deadly cancer. In addition, clinicians with little or no contact with human pathology have challenged the way that pancreatic pathology is practiced, suggesting that "genetic signals" may be more accurate than today's multimodal approach to diagnoses. In this review, we consider 8 provocative issues in pancreas pathology, with an emphasis on "the evidence derived from man."
Collapse
|
487
|
Ohlig S, Pickhinke U, Sirko S, Bandari S, Hoffmann D, Dreier R, Farshi P, Götz M, Grobe K. An emerging role of Sonic hedgehog shedding as a modulator of heparan sulfate interactions. J Biol Chem 2012; 287:43708-19. [PMID: 23118222 DOI: 10.1074/jbc.m112.356667] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Major developmental morphogens of the Hedgehog (Hh) family act at short range and long range to direct cell fate decisions in vertebrate and invertebrate tissues. To this end, Hhs are released from local sources and act at a distance on target cells that express the Hh receptor Patched. However, morphogen secretion and spreading are not passive processes because all Hhs are synthesized as dually (N- and C-terminal) lipidated proteins that firmly tether to the surface of producing cells. On the cell surface, Hhs associate with each other and with heparan sulfate (HS) proteoglycans. This raises the question of how Hh solubilization and spreading is achieved. We recently discovered that Sonic hedgehog (Shh) is solubilized by proteolytic processing (shedding) of lipidated peptide termini in vitro. Because unprocessed N termini block Patched receptor binding sites in the cluster, we further suggested that their proteolytic removal is required for simultaneous Shh activation. In this work we confirm inactivity of unprocessed protein clusters and demonstrate restored biological Shh function upon distortion or removal of N-terminal amino acids and peptides. We further show that N-terminal Shh processing targets and inactivates the HS binding Cardin-Weintraub (CW) motif, resulting in soluble Shh clusters with their HS binding capacities strongly reduced. This may explain the ability of Shh to diffuse through the HS-containing extracellular matrix, whereas other HS-binding proteins are quickly immobilized. Our in vitro findings are supported by the presence of CW-processed Shh in murine brain samples, providing the first in vivo evidence for Shh shedding and subsequent solubilization of N-terminal-truncated proteins.
Collapse
Affiliation(s)
- Stefanie Ohlig
- Institute for Physiological Chemistry and Pathobiochemistry, University Hospital Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
488
|
Marsh T, Pietras K, McAllister SS. Fibroblasts as architects of cancer pathogenesis. Biochim Biophys Acta Mol Basis Dis 2012; 1832:1070-8. [PMID: 23123598 DOI: 10.1016/j.bbadis.2012.10.013] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 12/19/2022]
Abstract
Studies of epithelial cancers (i.e., carcinomas) traditionally focused on transformation of the epithelium (i.e., the cancer cells) and how aberrant signaling within the cancer cells modulates the surrounding tissue of origin. In more recent decades, the normal cells, blood vessels, molecules, and extracellular components that surround the tumor cells, collectively known as the "tumor microenvironment" or "stroma", have received increasing attention and are now thought to be key regulators of tumor initiation and progression. Of particular relevance to the work reviewed herein are the fibroblasts, which make up the major cell type within the microenvironment of most carcinomas. Due to their inherent heterogeneity, plasticity, and function, it is perhaps not surprising that fibroblasts are ideal modulators of normal and cancerous epithelium; however, these aspects also present challenges if we are to interrupt their tumor-supportive functions. Here, we review the current body of knowledge and the many questions that still remain about the special entity known as the cancer-associated fibroblast. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Timothy Marsh
- Hematology Division, Brigham & Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
489
|
Cohen DJ. Targeting the hedgehog pathway: role in cancer and clinical implications of its inhibition. Hematol Oncol Clin North Am 2012; 26:565-88, viii. [PMID: 22520980 DOI: 10.1016/j.hoc.2012.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Hedgehog (Hh) pathway is a signaling cascade that is evolutionally highly conserved and plays an important role in embryonic pattern formation and stem cell response to tissue damage. Given the pivotal role the Hh pathway plays in embryonic development in terms of proliferation and differentiation, it is not surprising that it has also been implicated in tumorigenesis and tumor growth acceleration in a vast variety of malignancies. This article summarizes the mechanism of Hh pathway signal transduction, discusses the models of pathway activation, reviews the clinical data using Hh inhibitors, and discusses challenges to the development of pathway inhibitors.
Collapse
Affiliation(s)
- Deirdre J Cohen
- Division of GI Oncology, NYU Cancer Institute, 160 East 34th Street, New York, NY 10016, USA.
| |
Collapse
|
490
|
Desmoplasia in pancreatic cancer. Can we fight it? Gastroenterol Res Pract 2012; 2012:781765. [PMID: 23125850 PMCID: PMC3485537 DOI: 10.1155/2012/781765] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/17/2012] [Indexed: 01/10/2023] Open
Abstract
The hallmark of pancreatic tumours, the desmoplastic reaction, provides a unique microenvironment that affects pancreatic tumour behaviour, its ability to grow and metastasize as well as resist the effects of chemotherapy. Complex molecular interactions and pathways give rise to the desmoplastic reaction. Breakdown or penetration of the desmoplastic reaction may hold the key to overcoming the limits of delivery of efficacious chemotherapy or the development of new targeted treatments. Herein we discuss such new developments to fight the desmoplastic reaction, including inhibitors of the epidermal growth factor, fibroblast growth factor, the hedgehog pathway, as well as new molecular targets like CD40 agonist and its effects on T cells, extracellular matrix modifying enzymes such as LOXL2 inhibitor and novel tumour penetrating peptides for delivery of drugs.
Collapse
|
491
|
Berlin J, Bendell JC, Hart LL, Firdaus I, Gore I, Hermann RC, Mulcahy MF, Zalupski MM, Mackey HM, Yauch RL, Graham RA, Bray GL, Low JA. A randomized phase II trial of vismodegib versus placebo with FOLFOX or FOLFIRI and bevacizumab in patients with previously untreated metastatic colorectal cancer. Clin Cancer Res 2012; 19:258-67. [PMID: 23082002 DOI: 10.1158/1078-0432.ccr-12-1800] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Vismodegib, a Hedgehog pathway inhibitor, has preclinical activity in colorectal cancer (CRC) models. This trial assessed the efficacy, safety, and pharmacokinetics of adding vismodegib to first-line treatment for metastatic CRC (mCRC). EXPERIMENTAL DESIGN Patients were randomized to receive vismodegib (150 mg/day orally) or placebo, in combination with FOLFOX or FOLFIRI chemotherapy plus bevacizumab (5 mg/kg) every 2 weeks until disease progression or intolerable toxicity. The primary endpoint was progression-free survival (PFS). Key secondary objectives included evaluation of predictive biomarkers and pharmacokinetic drug interactions. RESULTS A total of 199 patients with mCRC were treated on protocol (124 FOLFOX, 75 FOLFIRI). The median PFS hazard ratio (HR) for vismodegib treatment compared with placebo was 1.25 (90% CI: 0.89-1.76; P = 0.28). The overall response rates for placebo-treated and vismodegib-treated patients were 51% (90% CI: 43-60) and 46% (90% CI: 37-55), respectively. No vismodegib-associated benefit was observed in combination with either FOLFOX or FOLFIRI. Increased tumor tissue Hedgehog expression did not predict clinical benefit. Grade 3 to 5 adverse events reported for more than 5% of patients that occurred more frequently in the vismodegib-treated group were fatigue, nausea, asthenia, mucositis, peripheral sensory neuropathy, weight loss, decreased appetite, and dehydration. Vismodegib did not alter the pharmacokinetics of FOLFOX, FOLFIRI, or bevacizumab. CONCLUSIONS Vismodegib does not add to the efficacy of standard therapy for mCRC. Compared with placebo, treatment intensity was lower for all regimen components in vismodegib-treated patients, suggesting that combined toxicity may have contributed to lack of efficacy.
Collapse
Affiliation(s)
- Jordan Berlin
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
492
|
Dockendorff C, Nagiec MM, Weïwer M, Buhrlage S, Ting A, Nag PP, Germain A, Kim HJ, Youngsaye W, Scherer C, Bennion M, Xue L, Stanton BZ, Lewis TA, MacPherson L, Palmer M, Foley MA, Perez JR, Schreiber SL. Macrocyclic Hedgehog Pathway Inhibitors: Optimization of Cellular Activity and Mode of Action Studies. ACS Med Chem Lett 2012; 3:808-813. [PMID: 23074541 PMCID: PMC3469069 DOI: 10.1021/ml300172p] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/18/2012] [Indexed: 12/16/2022] Open
Abstract
![]()
Macrocyclic Hedgehog (Hh) pathway inhibitors have been
discovered
with improved potency and maximal inhibition relative to the previously
reported macrocycle robotnikinin. Analogues were prepared using a
modular and efficient build-couple-pair (BCP) approach, with a ring-closing
metathesis step to form the macrocyclic ring. Varying the position
of the macrocycle nitrogen and oxygen atoms provided inhibitors with
improved activity in cellular assays; the most potent analogue was 29 (BRD-6851), with an IC50 of 0.4 μM against
C3H10T1/2 cells undergoing Hh-induced activation, as measured by Gli1 transcription and alkaline phosphatase induction. Studies
with Patched knockout (Ptch–/–) cells and competition studies with the Smoothened (Smo) agonists
SAG and purmorphamine demonstrate that in contrast to robotnikinin,
select analogues are Smo antagonists.
Collapse
Affiliation(s)
- Chris Dockendorff
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Marek M. Nagiec
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Michel Weïwer
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Sara Buhrlage
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Amal Ting
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Partha P. Nag
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Andrew Germain
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Han-Je Kim
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Willmen Youngsaye
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Christina Scherer
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Melissa Bennion
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Linlong Xue
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Benjamin Z. Stanton
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Timothy A. Lewis
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Lawrence MacPherson
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Michelle Palmer
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Michael A. Foley
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - José R. Perez
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Stuart L. Schreiber
- Chemical
Biology Platform and Probe Development Center and ‡Howard Hughes Medical Institute, Broad Institute of Harvard and MIT,
7 Cambridge Center, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
493
|
Identification of Hedgehog pathway responsive glioblastomas by isocitrate dehydrogenase mutation. Cancer Lett 2012; 328:297-306. [PMID: 23063752 DOI: 10.1016/j.canlet.2012.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/30/2012] [Accepted: 10/02/2012] [Indexed: 12/21/2022]
Abstract
The Hedgehog (Hh) pathway regulates the growth of a subset of adult gliomas and better definition of Hh-responsive subtypes could enhance the clinical utility of monitoring and targeting this pathway in patients. Somatic mutations of the isocitrate dehydrogenase (IDH) genes occur frequently in WHO grades II and III gliomas and WHO grade IV secondary glioblastomas. Hh pathway activation in WHO grades II and III gliomas suggests that it might also be operational in glioblastomas that developed from lower-grade lesions. To evaluate this possibility and to better define the molecular and histopathological glioma subtypes that are Hh-responsive, IDH genes were sequenced in adult glioma specimens assayed for an operant Hh pathway. The proportions of grades II-IV specimens with IDH mutations correlated with the proportions that expressed elevated levels of the Hh gene target PTCH1. Indices of an operational Hh pathway were measured in all primary cultures and xenografts derived from IDH-mutant glioma specimens, including IDH-mutant glioblastomas. In contrast, the Hh pathway was not operational in glioblastomas that lacked IDH mutation or history of antecedent lower-grade disease. IDH mutation is not required for an operant pathway however, as significant Hh pathway modulation was also measured in grade III gliomas with wild-type IDH sequences. These results indicate that the Hh pathway is operational in grades II and III gliomas and glioblastomas with molecular or histopathological evidence for evolvement from lower-grade gliomas. Lastly, these findings suggest that gliomas sharing this molecularly defined route of progression arise in Hh-responsive cell types.
Collapse
|
494
|
Co-administration of vismodegib with rosiglitazone or combined oral contraceptive in patients with locally advanced or metastatic solid tumors: a pharmacokinetic assessment of drug-drug interaction potential. Cancer Chemother Pharmacol 2012; 71:193-202. [PMID: 23064958 DOI: 10.1007/s00280-012-1996-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/29/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Vismodegib, a first-in-class oral hedgehog pathway inhibitor, is an effective treatment for advanced basal cell carcinoma. Based on in vitro data, a clinical drug-drug interaction (DDI) assessment of cytochrome P450 (CYP) 2C8 was necessary; vismodegib's teratogenic potential warranted a DDI study with oral contraceptives (OCs). METHODS This single-arm, open-label study included two cohorts of patients with locally advanced or metastatic solid malignancies [Cohort 1: rosiglitazone 4 mg (selective CYP2C8 probe); Cohort 2: OC (norethindrone 1 mg/ethinyl estradiol 35 μg; CYP3A4 substrate)]. On Day 1, patients received rosiglitazone or OC. On Days 2-7, patients received vismodegib 150 mg/day. On Day 8, patients received vismodegib plus rosiglitazone or OC. The effect of vismodegib on rosiglitazone and OC pharmacokinetic parameters (primary objective) was evaluated through pharmacokinetic sampling over a 24-h period (Days 1 and 8). RESULTS The mean ± SD vismodegib steady-state plasma concentration (Day 8, N = 51) was 20.6 ± 9.72 μM (range 7.93-62.4 μM). Rosiglitazone AUC(0-inf) and C(max) were similar with concomitant vismodegib [≤8% change in geometric mean ratios (GMRs); N = 24]. Concomitant vismodegib with OC did not affect ethinyl estradiol AUC(0-inf) and C(max) (≤5% change in GMRs; N = 27); norethindrone C(max) and AUC(0-inf) GMRs were higher (12 and 23%, respectively) with concomitant vismodegib. CONCLUSIONS This DDI study in patients with cancer demonstrated that systemic exposure of rosiglitazone (a CYP2C8 substrate) or OC (ethinyl estradiol/norethindrone) is not altered with concomitant vismodegib. Overall, there appears to be a low potential for DDIs when vismodegib is co-administered with other medications.
Collapse
|
495
|
McKee CM, Xu D, Cao Y, Kabraji S, Allen D, Kersemans V, Beech J, Smart S, Hamdy F, Ishkanian A, Sykes J, Pintile M, Milosevic M, van der Kwast T, Zafarana G, Ramnarine VR, Jurisica I, Mallof C, Lam W, Bristow RG, Muschel RJ. Protease nexin 1 inhibits hedgehog signaling in prostate adenocarcinoma. J Clin Invest 2012; 122:4025-36. [PMID: 23041623 DOI: 10.1172/jci59348] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/14/2012] [Indexed: 01/08/2023] Open
Abstract
Prostate adenocarcinoma (CaP) patients are classified into low-, intermediate-, and high-risk groups that reflect relative survival categories. While there are accepted treatment regimens for low- and high-risk patients, intermediate-risk patients pose a clinical dilemma, as treatment outcomes are highly variable for these individuals. A better understanding of the factors that regulate the progression of CaP is required to delineate risk. For example, aberrant activation of the Hedgehog (Hh) pathway is implicated in CaP progression. Here, we identify the serine protease inhibitor protease nexin 1 (PN1) as a negative regulator of Hh signaling in prostate. Using human CaP cell lines and a mouse xenograft model of CaP, we demonstrate that PN1 regulates Hh signaling by decreasing protein levels of the Hh ligand Sonic (SHH) and its downstream effectors. Furthermore, we show that SHH expression enhanced tumor growth while overexpression of PN1 inhibited tumor growth and angiogenesis in mice. Finally, using comparative genome hybridization, we found that genetic alterations in Hh pathway genes correlated with worse clinical outcomes in intermediate-risk CaP patients, indicating the importance of this pathway in CaP.
Collapse
Affiliation(s)
- Chad M McKee
- Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
496
|
Kaye SB, Fehrenbacher L, Holloway R, Amit A, Karlan B, Slomovitz B, Sabbatini P, Fu L, Yauch RL, Chang I, Reddy JC. A phase II, randomized, placebo-controlled study of vismodegib as maintenance therapy in patients with ovarian cancer in second or third complete remission. Clin Cancer Res 2012; 18:6509-18. [PMID: 23032746 DOI: 10.1158/1078-0432.ccr-12-1796] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Hedgehog pathway inhibition has been suggested as a potential maintenance treatment approach in ovarian cancer through disruption of tumor-stromal interactions. Vismodegib is an orally available Hedgehog pathway inhibitor with clinical activity in advanced basal cell carcinoma and medulloblastoma. This phase II, randomized, double-blind, placebo-controlled trial was designed to provide a preliminary estimate of efficacy in patients with ovarian cancer in second or third complete remission (CR). EXPERIMENTAL DESIGN Patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer in second or third CR were randomized 1:1 to vismodegib (GDC-0449; 150 mg daily) or placebo three to 14 weeks after completing chemotherapy. Treatment continued until radiographic progression or toxicity. The primary endpoint was investigator-assessed progression-free survival (PFS). RESULTS One hundred four patients were randomized to vismodegib (n = 52) or placebo (n = 52); median PFS was 7.5 months and 5.8 months, respectively [HR 0.79; 95% confidence interval (CI), 0.46-1.35]. The HR was 0.66 (95% CI, 0.36-1.20) for second CR patients (n = 84) and 1.79 (95% CI, 0.50-6.48) for third CR patients (n = 20). The most common adverse events in the vismodegib arm were dysgeusia/ageusia, muscle spasms, and alopecia. Grade 3/4 adverse events occurred in 12 patients (23.1%) with vismodegib and six (11.5%) with placebo. Hedgehog expression was detected in 13.5% of archival tissues. CONCLUSIONS In this study, the sought magnitude of increase in PFS was not achieved for vismodegib maintenance versus placebo in patients with ovarian cancer in second or third CR. The frequency of Hedgehog ligand expression was lower than expected.
Collapse
|
497
|
Gao S, Wang Q, Wang G, Lomenick B, Liu J, Fan CW, Deng LW, Huang J, Lum L, Chen C. The Chemistry and Biology of Nakiterpiosin - C-nor-D-Homosteroids. Synlett 2012; 16:2298-2310. [PMID: 23226922 PMCID: PMC3515072 DOI: 10.1055/s-0031-1290460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Isolated from the sponge Terpios hoshinota that causes coral black disease, nakiterpiosin was the first C-nor-D-homosteroid discovered from a marine source. We provide in this account an overview of the chemistry and biology of this natural product. We also include a short history of the synthesis of C-nor-D-homosteroids and the results of some unpublished biological studies of nakiterpiosin.
Collapse
Affiliation(s)
- Shuanhu Gao
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Qiaoling Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Gelin Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brett Lomenick
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| | - Jie Liu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chih-Wei Fan
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA, Fax +1(214)6480320
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jing Huang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| | - Lawrence Lum
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA, Fax +1(214)6480320
| | - Chuo Chen
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
498
|
Rodova M, Fu J, Watkins DN, Srivastava RK, Shankar S. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal. PLoS One 2012; 7:e46083. [PMID: 23029396 PMCID: PMC3461003 DOI: 10.1371/journal.pone.0046083] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of the sonic hedgehog (Shh) signaling pathway has been associated with cancer stem cells (CSC) and implicated in the initiation of pancreatic cancer. Pancreatic CSCs are rare tumor cells characterized by their ability to self-renew, and are responsible for tumor recurrence accompanied by resistance to current therapies. The lethality of these incurable, aggressive and invasive pancreatic tumors remains a daunting clinical challenge. Thus, the objective of this study was to investigate the role of Shh pathway in pancreatic cancer and to examine the molecular mechanisms by which sulforaphane (SFN), an active compound in cruciferous vegetables, inhibits self-renewal capacity of human pancreatic CSCs. Interestingly, we demonstrate here that Shh pathway is highly activated in pancreatic CSCs and plays important role in maintaining stemness by regulating the expression of stemness genes. Given the requirement for Hedgehog in pancreatic cancer, we investigated whether hedgehog blockade by SFN could target the stem cell population in pancreatic cancer. In an in vitro model, human pancreatic CSCs derived spheres were significantly inhibited on treatment with SFN, suggesting the clonogenic depletion of the CSCs. Interestingly, SFN inhibited the components of Shh pathway and Gli transcriptional activity. Interference of Shh-Gli signaling significantly blocked SFN-induced inhibitory effects demonstrating the requirement of an active pathway for the growth of pancreatic CSCs. SFN also inhibited downstream targets of Gli transcription by suppressing the expression of pluripotency maintaining factors (Nanog and Oct-4) as well as PDGFRα and Cyclin D1. Furthermore, SFN induced apoptosis by inhibition of BCL-2 and activation of caspases. Our data reveal the essential role of Shh-Gli signaling in controlling the characteristics of pancreatic CSCs. We propose that pancreatic cancer preventative effects of SFN may result from inhibition of the Shh pathway. Thus Sulforaphane potentially represents an inexpensive, safe and effective alternative for the management of pancreatic cancer.
Collapse
Affiliation(s)
- Mariana Rodova
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Junsheng Fu
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Dara Nall Watkins
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Rakesh K. Srivastava
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Sharmila Shankar
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
499
|
Fábián Á, Vereb G, Szöllősi J. The hitchhikers guide to cancer stem cell theory: Markers, pathways and therapy. Cytometry A 2012; 83:62-71. [DOI: 10.1002/cyto.a.22206] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 12/25/2022]
|
500
|
Pratap A, Singh S, Mundra V, Yang N, Panakanti R, Eason JD, Mahato RI. Attenuation of early liver fibrosis by pharmacological inhibition of smoothened receptor signaling. J Drug Target 2012; 20:770-82. [PMID: 22994359 DOI: 10.3109/1061186x.2012.719900] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hedgehog (Hh) signaling is involved in the pathogenesis of liver fibrosis. It has been previously shown that Hh-inhibitor cyclopamine (CYA) can reduce liver fibrosis in rats. However, CYA is not stable in vivo, which limits its clinical application. This study compares the antifibrotic potential of two known Hh antagonists, vismodegib (GDC-0449, abbreviated to GDC) and CYA. GDC is a synthetic molecule presently in clinical cancer trials and has been reported to be safe and efficacious. These drugs attenuated early liver fibrosis in common bile duct ligated rats, improved liver function, and prevented hepatic stellate cell (HSC) activation, thereby suppressing epithelial to mesenchymal transition (EMT). While both CYA and GDC increased the number of proliferating cell nuclear antigen positive liver cells in vivo, only CYA increased Caspase-3 expression in HSCs in rat livers, suggesting that while GDC and CYA effectively attenuate early liver fibrosis, their hepatoprotective effects may be mediated through different modes of action. Thus, GDC has the potential to serve as a new therapeutic agent for treating early liver fibrosis.
Collapse
Affiliation(s)
- Akshay Pratap
- Division of Solid Organ Transplantation, Methodist University Hospital, Memphis, TN, USA
| | | | | | | | | | | | | |
Collapse
|