451
|
Seandel M, Eggan K. Stem Cells: Doing Some Heavy Lifting at ISSCR 2011. Cell Stem Cell 2011. [DOI: 10.1016/j.stem.2011.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
452
|
Han JW, Yoon YS. Induced pluripotent stem cells: emerging techniques for nuclear reprogramming. Antioxid Redox Signal 2011; 15:1799-820. [PMID: 21194386 PMCID: PMC3159104 DOI: 10.1089/ars.2010.3814] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc, can successfully reprogram somatic cells into embryonic stem (ES)-like cells. These cells, which are referred to as induced pluripotent stem (iPS) cells, closely resemble embryonic stem cells in genomic, cell biologic, and phenotypic characteristics, and the creation of these special cells was a major triumph in cell biology. In contrast to pluripotent stem cells generated by somatic cell nuclear-transfer (SCNT) or ES cells derived from the inner cell mass (ICM) of the blastocyst, direct reprogramming provides a convenient and reliable means of generating pluripotent stem cells. iPS cells have already shown incredible potential for research and for therapeutic applications in regenerative medicine within just a few years of their discovery. In this review, current techniques of generating iPS cells and mechanisms of nuclear reprogramming are reviewed, and the potential for therapeutic applications is discussed.
Collapse
Affiliation(s)
- Ji Woong Han
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA
| | | |
Collapse
|
453
|
Aalaoui-Jamali M, Bijian K, Batist G. Emerging drug discovery approaches for selective targeting of "precursor" metastatic breast cancer cells: highlights and perspectives. Am J Transl Res 2011; 3:434-444. [PMID: 22046485 PMCID: PMC3204890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 08/16/2011] [Indexed: 05/31/2023]
Abstract
Breast cancer is a prevalent disease and a major cause of morbidity and cancer-related deaths among women worldwide. A significant number of patients at the time of primary diagnosis present metastatic disease, at least to locoregional lymph nodes, which results in somewhat unpredictable prognosis that often prompts adjuvant systemic therapies of various kinds. The time course of distant recurrence is also unpredictable with some patients sustaining a recurrence within months after diagnosis, even during adjuvant treatments, while others can experience recurrence years or decades after initial diagnosis. To date, clinically approved therapeutics yielded marginal benefits for patients with systemic metastatic breast disease, since despite high clinical responses to various therapies, the patients virtually always become resistant and tumor relapses. Molecular profiling studies established that breast cancer is highly heterogeneous and encompasses diverse histological and molecular subtypes with distinct biological and clinical implications in particular in relation to the incidence of progression to metastasis. The latter has been recognized to result from late genetic events during the multistep progression proposed by the dominant theory of carcinogenesis. However, there is evidence that the dissemination of primary cancer can also be initiated at a very early stage of cancer development, originating from rare cell variants, possibly cancer stem-like cells (CSC), with invasive potential. These precursor metastatic cancer cells with stem-like properties are defined by their ability to self-renew and to regenerate cell variants, which have high plasticity and intrinsic invasive properties required for dissemination and tropism toward specific organs. Equally relevant to the CSC hypothesis for metastasis formation is the epithelial-mesenchymal transition (EMT) process, which is critical for the acquisition of cancer cell invasive behavior and for selection/gain of CSC properties. These exciting concepts have led to the formulation of various approaches for targeting precursor metastatic cells, and these have taken on greater priority in therapeutic drug discovery research by both academia and pharmaceuticals. In this review, we focus on current efforts in medicinal chemistry to develop small molecules able to target precursor metastatic cells via interference with the CSC/EMT differentiation program, self-renewal, and survival. It is not meant to be comprehensive and the reader is referred to selected reviews that provide coverage of related basic aspects. Rather, emphasis is given to promising molecules with CSC/EMT signaling at the preclinical stage and in clinical trials that are paving the way to new generations of anti-metastasis drugs.
Collapse
Affiliation(s)
- Moulay Aalaoui-Jamali
- Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, McGill University Montreal, Qc H3T1E2, Canada
| | | | | |
Collapse
|
454
|
Li YQ, Zeng A, Han XS, Wang C, Li G, Zhang ZC, Wang JY, Qin YW, Jing Q. Argonaute-2 regulates the proliferation of adult stem cells in planarian. Cell Res 2011; 21:1750-4. [PMID: 21894189 DOI: 10.1038/cr.2011.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
455
|
Abstract
Discovered in Caenorhabditis elegans in 1993, microRNAs (miRNAs) make up a novel class of tiny, ~21-24 nucleotide, non-coding RNA species. Since its identification as a key component of a broadly conserved mechanism that regulates gene expression post-transcriptionally, the miRNA pathway has emerged as one of the most extensively investigated pathways of the past decade. Because of their potential to regulate a large number of protein-encoding genes, miRNAs have been implicated in numerous biological processes, including development, stem cell regulation and human diseases. In this Commentary, we focus on miRNAs and their roles in mammalian stem cells. Following an introduction to the miRNA biogenesis pathway with an emphasis on its regulatory features, we then discuss what is currently known about the roles that miRNAs have in the differentiation and maintenance of embryonic and somatic stem cells of diverse origins. In particular, their roles in stem cell differentiation have been well documented. Insights from these studies provide a paradigm for the function of miRNAs in facilitating cellular transitions during differentiation. By contrast, the roles that miRNAs have in the maintenance of stem cells are less well understood. However, with recent advances, their role as a rheostat that fine-tunes stem cell self-renewal has begun to emerge. Finally, we discuss future studies that will hopefully lead to a comprehensive understanding of the miRNA pathway in stem cells.
Collapse
Affiliation(s)
- Rui Yi
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | | |
Collapse
|
456
|
Orkin SH, Hochedlinger K. Chromatin connections to pluripotency and cellular reprogramming. Cell 2011; 145:835-50. [PMID: 21663790 DOI: 10.1016/j.cell.2011.05.019] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Indexed: 12/15/2022]
Abstract
The pluripotent state of embryonic stem cells (ESCs) provides a unique perspective on regulatory programs that govern self-renewal and differentiation and somatic cell reprogramming. Here, we review the highly connected protein and transcriptional networks that maintain pluripotency and how they are intertwined with factors that affect chromatin structure and function. The complex interrelationships between pluripotency and chromatin factors are illustrated by X chromosome inactivation, regulatory control by noncoding RNAs, and environmental influences on cell states. Manipulation of cell state through the process of transdifferentiation suggests that environmental cues may direct transcriptional programs as cells enter a transiently "plastic" state during reprogramming.
Collapse
Affiliation(s)
- Stuart H Orkin
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
457
|
Prosser HM, Koike-Yusa H, Cooper JD, Law FC, Bradley A. A resource of vectors and ES cells for targeted deletion of microRNAs in mice. Nat Biotechnol 2011; 29:840-5. [PMID: 21822254 PMCID: PMC3242032 DOI: 10.1038/nbt.1929] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/05/2011] [Indexed: 02/01/2023]
Abstract
The 21-23 nucleotide, single-stranded RNAs classified as microRNAs (miRNA) perform fundamental roles in diverse cellular and developmental processes. In contrast to the situation for protein-coding genes, no public resource of miRNA mouse mutant alleles exists. Here we describe a collection of 428 miRNA targeting vectors covering 476 of the miRNA genes annotated in the miRBase registry. Using these vectors, we generated a library of highly germline-transmissible C57BL/6N mouse embryonic stem (ES) cell clones harboring targeted deletions for 392 miRNA genes. For most of these targeted clones, chimerism and germline transmission can be scored through a coat color marker. The targeted alleles have been designed to be adaptable research tools that can be efficiently altered by recombinase-mediated cassette exchange to create reporter, conditional and other allelic variants. This miRNA knockout (mirKO) resource can be searched electronically and is available from ES cell repositories for distribution to the scientific community.
Collapse
Affiliation(s)
- Haydn M Prosser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | | | | | | | |
Collapse
|
458
|
Abstract
Although induced pluripotent stem cells (iPSCs) hold great promise for customized regenerative medicine, the molecular basis of reprogramming is largely unknown. Overcoming barriers that maintain cell identities is a critical step in the reprogramming of differentiated cells. Since microRNAs (miRNAs) modulate target genes tissue-specifically, we reasoned that distinct mouse embryonic fibroblast (MEF)-enriched miRNAs post-transcriptionally modulate proteins that function as reprogramming barriers. Inhibiting these miRNAs should influence cell signaling to lower those barriers. Here we show that depleting miR-21 and miR-29a enhances reprogramming efficiency in MEFs. We also show that the p53 and ERK1/2 pathways are regulated by miR-21 and miR-29a and function in reprogramming. In addition, we provide the first evidence that c-Myc enhances reprogramming partly by repressing MEF-enriched miRNAs, such as miR-21 and miR-29a. Our results demonstrate the significance of miRNA function in regulating multiple signaling networks involved in iPSC generation. These studies should facilitate development of clinically applicable reprogramming strategies.
Collapse
Affiliation(s)
- Chao-Shun Yang
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Zhonghan Li
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Tariq M. Rana
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Corresponding author.E-mail .
| |
Collapse
|
459
|
Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA, Morrisey EE. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 2011; 8:376-88. [PMID: 21474102 DOI: 10.1016/j.stem.2011.03.001] [Citation(s) in RCA: 886] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 02/02/2011] [Accepted: 03/03/2011] [Indexed: 12/14/2022]
Abstract
Transcription factor-based cellular reprogramming has opened the way to converting somatic cells to a pluripotent state, but has faced limitations resulting from the requirement for transcription factors and the relative inefficiency of the process. We show here that expression of the miR302/367 cluster rapidly and efficiently reprograms mouse and human somatic cells to an iPSC state without a requirement for exogenous transcription factors. This miRNA-based reprogramming approach is two orders of magnitude more efficient than standard Oct4/Sox2/Klf4/Myc-mediated methods. Mouse and human miR302/367 iPSCs display similar characteristics to Oct4/Sox2/Klf4/Myc-iPSCs, including pluripotency marker expression, teratoma formation, and, for mouse cells, chimera contribution and germline contribution. We found that miR367 expression is required for miR302/367-mediated reprogramming and activates Oct4 gene expression, and that suppression of Hdac2 is also required. Thus, our data show that miRNA and Hdac-mediated pathways can cooperate in a powerful way to reprogram somatic cells to pluripotency.
Collapse
|
460
|
Pedrosa E, Sandler V, Shah A, Carroll R, Chang C, Rockowitz S, Guo X, Zheng D, Lachman HM. Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogenet 2011; 25:88-103. [PMID: 21797804 DOI: 10.3109/01677063.2011.597908] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Induced pluripotent stem cell (iPSC) technology has the potential to transform regenerative medicine. It also offers a powerful tool for establishing in vitro models of disease, in particular, for neuropsychiatric disorders where live human neurons are essentially impossible to procure. Using iPSCs derived from three schizophrenia (SZ) patients, one of whom has 22q11.2del (velocardiofacial syndrome; VCFS), the authors developed a culture system to study SZ on a molecular and cellular level. SZ iPSCs were differentiated into functional, primarily glutamatergic neurons that were able to fire action potentials after ∼8 weeks in culture. Early differentiating neurons expressed a number of transcription factors/chromatin remodeling proteins and synaptic proteins relevant to SZ pathogenesis, including ZNF804A, RELN, CNTNAP2, CTNNA2, SMARCA2, and NRXN1. Although a small number of lines were developed in this preliminary study, the SZ line containing 22q11.2del showed a significant delay in the reduction of endogenous OCT4 and NANOG expression that normally occurs during differentiation. Constitutive expression of OCT4 has been observed in Dgcr8-deficient mouse embryonic stem cells (mESCs); DGCR8 maps to the 22q11.2-deleted region. These findings demonstrate that the method of inducing neural differentiation employed is useful for disease modeling in SZ and that the transition of iPSCs with 22q11.2 deletions towards a differentiated state may be marked by subtle changes in expression of pluripotency-associated genes.
Collapse
Affiliation(s)
- Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York 10416, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
461
|
Izumiya M, Tsuchiya N, Okamoto K, Nakagama H. Systematic exploration of cancer-associated microRNA through functional screening assays. Cancer Sci 2011; 102:1615-21. [PMID: 21668585 DOI: 10.1111/j.1349-7006.2011.02007.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA), non-coding RNA of approximately 22 nucleotides, post-transcriptionally represses expression of its target genes. miRNA regulates a variety of biological processes such as cell proliferation, cell death, development, stemness and genomic stability, not only in physiological conditions but also in various pathological conditions such as cancers. More than 1000 mature miRNA have been experimentally identified in humans and mice, yet the functions of a vast majority of miRNA remain to be elucidated. Identification of novel cancer-associated miRNA seems promising considering their possible application in the development of novel cancer therapies and biomarkers. Currently, there are two major approaches to identify miRNA that are associated with cancer: expression profiling study and functional screening assay. The former approach is widely used, and a large number of studies have shown aberrant miRNA expression profiles in cancer tissues compared with their non-cancer counterparts. Although aberrantly expressed miRNA are potentially good biomarkers, in most cases a majority of them do not play causal roles in cancers when functional assays are performed. In contrast, the latter approach allows screening of 'driver' miRNA with cancer-associated phenotypes, such as cell proliferation and cell invasion. Thus, this approach might be suitable in finding crucial targets of novel cancer therapy. The combination of both types of approaches will contribute to further elucidation of the cancer pathophysiology and to the development of a novel class of cancer therapies and biomarkers.
Collapse
Affiliation(s)
- Masashi Izumiya
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | |
Collapse
|
462
|
Abstract
Pluripotency and self-renewal are the hallmarks of embryonic stem cells. This state is maintained by a network of transcription factors and is influenced by specific signalling pathways. Current evidence indicates that multiple pluripotent states can exist in vitro. Here we review the recent advances in studying the transcriptional regulatory networks that define pluripotency, and elaborate on how manipulation of signalling pathways can modulate pluripotent states to varying degrees.
Collapse
|
463
|
Choreographing pluripotency and cell fate with transcription factors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:337-49. [DOI: 10.1016/j.bbagrm.2011.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 01/12/2023]
|
464
|
Suh N, Blelloch R. Small RNAs in early mammalian development: from gametes to gastrulation. Development 2011; 138:1653-61. [PMID: 21486922 DOI: 10.1242/dev.056234] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Small non-coding RNAs, including microRNAs (miRNAs), endogenous small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs), play essential roles in mammalian development. The function and timing of expression of these three classes of small RNAs differ greatly. piRNAs are expressed and play a crucial role during male gametogenesis, whereas endo-siRNAs are essential for oocyte meiosis. By contrast, miRNAs are ubiquitously expressed in somatic tissues and function throughout post-implantation development. Surprisingly, however, miRNAs are non-essential during pre-implantation embryonic development and their function is suppressed during oocyte meiosis. Here, we review the roles of small non-coding RNAs during the early stages of mammalian development, from gamete maturation through to gastrulation.
Collapse
Affiliation(s)
- Nayoung Suh
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, and Department of Urology, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
465
|
Onder TT, Daley GQ. microRNAs become macro players in somatic cell reprogramming. Genome Med 2011; 3:40. [PMID: 21699744 PMCID: PMC3218814 DOI: 10.1186/gm256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cell specific microRNAs (miRNAs) have previously been shown to enhance the efficiency of transcription-factor-based reprogramming. However, whether reprogramming could be achieved entirely by miRNAs remained unclear. A recent report shows that the expression of the miR-302/367 cluster of miRNAs can directly reprogram somatic cells without the use of any transcription factors. This new method raises interesting questions about the mechanisms of reprogramming and is likely to facilitate the generation of induced pluripotent stem cells for potential future clinical use.
Collapse
Affiliation(s)
- Tamer T Onder
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Children's Hospital Boston and Dana Farber Cancer Institute, Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
466
|
Rizzo M, Mariani L, Pitto L, Rainaldi G, Simili M. miR-20a and miR-290, multi-faceted players with a role in tumourigenesis and senescence. J Cell Mol Med 2011; 14:2633-40. [PMID: 21114763 PMCID: PMC4373484 DOI: 10.1111/j.1582-4934.2010.01173.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Expression of microRNAs changes markedly in tumours and evidence indicates that they are causatively related to tumourigenesis, behaving as tumour suppressor microRNAs or onco microRNAs; in some cases they can behave as both depending on the type of cancer. Some tumour suppressor microRNAs appear to be an integral part of the p53 and Retinoblastoma (RB) network, the main regulatory pathways controlling senescence, a major tumour suppressor mechanism. The INK4a/ARF locus which codifies for two proteins, p19ARF and p16INK4a, plays a central role in senescence by controlling both p53 and RB. Recent evidence shows that the proto-oncogene leukaemia/lymphoma related factor, a p19ARF specific repressor, is controlled by miRNAs and that miRNAs, in particular miR-20a and miR-290, are causatively involved in mouse embryo fibroblasts (MEF) senescence in culture. Intriguingly, both miR-20a, member of the oncogenic miR-17–92 cluster, and miR-290, belonging to the miR-290–295 cluster, are highly expressed in embryonic stem (ES) cells. The pro-senescence role of miR-20a and miR-290 in MEF is apparently in contrast with their proliferative role in tumour and ES cells. We propose that miRNAs may exert opposing functions depending on the miRNAs repertoire as well as target/s level/s present in different cellular contexts, suggesting the importance of evaluating miRNAs activity in diverse genetic settings before their therapeutic use as tumour suppressors.
Collapse
Affiliation(s)
- Milena Rizzo
- Laboratory of Gene and Molecular Therapy, Institute of Clinical Physiology, CNR, Pisa, Italy
| | | | | | | | | |
Collapse
|
467
|
Schulz C, Paus M, Frey K, Schmid R, Kohl Z, Mennerich D, Winkler J, Gillardon F. Leucine-rich repeat kinase 2 modulates retinoic acid-induced neuronal differentiation of murine embryonic stem cells. PLoS One 2011; 6:e20820. [PMID: 21695257 PMCID: PMC3111438 DOI: 10.1371/journal.pone.0020820] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 05/13/2011] [Indexed: 11/25/2022] Open
Abstract
Background Dominant mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent cause of Parkinson's disease, however, little is known about the biological function of LRRK2 protein. LRRK2 is expressed in neural precursor cells suggesting a role in neurodevelopment. Methodology/Principal Findings In the present study, differential gene expression profiling revealed a faster silencing of pluripotency-associated genes, like Nanog, Oct4, and Lin28, during retinoic acid-induced neuronal differentiation of LRRK2-deficient mouse embryonic stem cells compared to wildtype cultures. By contrast, expression of neurotransmitter receptors and neurotransmitter release was increased in LRRK2+/− cultures indicating that LRRK2 promotes neuronal differentiation. Consistently, the number of neural progenitor cells was higher in the hippocampal dentate gyrus of adult LRRK2-deficient mice. Alterations in phosphorylation of the putative LRRK2 substrates, translation initiation factor 4E binding protein 1 and moesin, do not appear to be involved in altered differentiation, rather there is indirect evidence that a regulatory signaling network comprising retinoic acid receptors, let-7 miRNA and downstream target genes/mRNAs may be affected in LRRK2-deficient stem cells in culture. Conclusion/Significance Parkinson's disease-linked LRRK2 mutations that associated with enhanced kinase activity may affect retinoic acid receptor signaling during neurodevelopment and/or neuronal maintenance as has been shown in other mouse models of chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Cathrin Schulz
- Boehringer Ingelheim Pharma GmbH & Co KG, CNS Research, Biberach an der Riss, Germany
| | - Marie Paus
- Division of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Katharina Frey
- Boehringer Ingelheim Pharma GmbH & Co KG, CNS Research, Biberach an der Riss, Germany
| | - Ramona Schmid
- Boehringer Ingelheim Pharma GmbH & Co KG, CNS Research, Biberach an der Riss, Germany
| | - Zacharias Kohl
- Division of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Detlev Mennerich
- Boehringer Ingelheim Pharma GmbH & Co KG, CNS Research, Biberach an der Riss, Germany
| | - Jürgen Winkler
- Division of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Frank Gillardon
- Boehringer Ingelheim Pharma GmbH & Co KG, CNS Research, Biberach an der Riss, Germany
- * E-mail:
| |
Collapse
|
468
|
|
469
|
Young RA. Control of the embryonic stem cell state. Cell 2011; 144:940-54. [PMID: 21414485 DOI: 10.1016/j.cell.2011.01.032] [Citation(s) in RCA: 885] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/23/2010] [Accepted: 01/03/2011] [Indexed: 12/25/2022]
Abstract
Embryonic stem cells and induced pluripotent stem cells hold great promise for regenerative medicine. These cells can be propagated in culture in an undifferentiated state but can be induced to differentiate into specialized cell types. Moreover, these cells provide a powerful model system for studies of cellular identity and early mammalian development. Recent studies have provided insights into the transcriptional control of embryonic stem cell state, including the regulatory circuitry underlying pluripotency. These studies have, as a consequence, uncovered fundamental mechanisms that control mammalian gene expression, connect gene expression to chromosome structure, and contribute to human disease.
Collapse
Affiliation(s)
- Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
470
|
Subramanyam D, Blelloch R. From microRNAs to targets: pathway discovery in cell fate transitions. Curr Opin Genet Dev 2011; 21:498-503. [PMID: 21636265 DOI: 10.1016/j.gde.2011.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 04/27/2011] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are 22 nt non-coding RNAs that regulate expression of downstream targets by messenger RNA (mRNA) destabilization and translational inhibition. A large number of eukaryotic mRNAs are targeted by miRNAs, with many individual mRNAs being targeted by multiple miRNAs. Further, a single miRNA can target hundreds of mRNAs, making these small RNAs powerful regulators of cell fate decisions. Such regulation by miRNAs has been observed in the maintenance of the embryonic stem cell (ESC) cell cycle and during ESC differentiation. MiRNAs can also promote the dedifferentiation of somatic cells to induced pluripotent stem cells. During this process they target multiple downstream genes, which represent important nodes of key cellular processes. Here, we review these findings and discuss how miRNAs may be used as tools to discover novel pathways that are involved in cell fate transitions using dedifferentiation of somatic cells to induced pluripotent stem cells as a case study.
Collapse
Affiliation(s)
- Deepa Subramanyam
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
471
|
|
472
|
Kopecky B, Fritzsch B. Regeneration of Hair Cells: Making Sense of All the Noise. Pharmaceuticals (Basel) 2011; 4:848-879. [PMID: 21966254 PMCID: PMC3180915 DOI: 10.3390/ph4060848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/04/2011] [Accepted: 06/08/2011] [Indexed: 12/17/2022] Open
Abstract
Hearing loss affects hundreds of millions of people worldwide by dampening or cutting off their auditory connection to the world. Current treatments for sensorineural hearing loss (SNHL) with cochlear implants are not perfect, leaving regenerative medicine as the logical avenue to a perfect cure. Multiple routes to regeneration of damaged hair cells have been proposed and are actively pursued. Each route not only requires a keen understanding of the molecular basis of ear development but also faces the practical limitations of stem cell regulation in the delicate inner ear where topology of cell distribution is essential. Improvements in our molecular understanding of the minimal essential genes necessary for hair cell formation and recent advances in stem cell manipulation, such as seen with inducible pluripotent stem cells (iPSCs) and epidermal neural crest stem cells (EPI-NCSCs), have opened new possibilities to advance research in translational stem cell therapies for individuals with hearing loss. Despite this, more detailed network maps of gene expression are needed, including an appreciation for the roles of microRNAs (miRs), key regulators of transcriptional gene networks. To harness the true potential of stem cells for hair cell regeneration, basic science and clinical medicine must work together to expedite the transition from bench to bedside by elucidating the full mechanisms of inner ear hair cell development, including a focus on the role of miRs, and adapting this knowledge safely and efficiently to stem cell technologies.
Collapse
Affiliation(s)
- Benjamin Kopecky
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
473
|
Sun Z, Wei Q, Zhang Y, He X, Ji W, Su B. MicroRNA profiling of rhesus macaque embryonic stem cells. BMC Genomics 2011; 12:276. [PMID: 21627802 PMCID: PMC3117859 DOI: 10.1186/1471-2164-12-276] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 05/31/2011] [Indexed: 12/11/2022] Open
Abstract
Background MicroRNAs (miRNAs) play important roles in embryonic stem cell (ESC) self-renewal and pluripotency. Numerous studies have revealed human and mouse ESC miRNA profiles. As a model for human-related study, the rhesus macaque is ideal for delineating the regulatory mechanisms of miRNAs in ESCs. However, studies on rhesus macaque (r)ESCs are lacking due to limited rESC availability and a need for systematic analyses of fundamental rESC characteristics. Results We established three rESC lines and profiled microRNA using Solexa sequencing resulting in 304 known and 66 novel miRNAs. MiRNA profiles were highly conserved between rESC lines and predicted target genes were significantly enriched in differentiation pathways. Further analysis of the miRNA-target network indicated that gene expression regulated by miRNAs was negatively correlated to their evolutionary rate in rESCs. Moreover, a cross-species comparison revealed an overall conservation of miRNA expression patterns between human, mouse and rhesus macaque ESCs. However, we identified three miRNA clusters (miR-467, the miRNA cluster in the imprinted Dlk1-Dio3 region and C19MC) that showed clear interspecies differences. Conclusions rESCs share a unique miRNA set that may play critical roles in self-renewal and pluripotency. MiRNA expression patterns are generally conserved between species. However, species and/or lineage specific miRNA regulation changed during evolution.
Collapse
Affiliation(s)
- Zhenghua Sun
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | | | | | | | | | | |
Collapse
|
474
|
RNA-binding protein LIN28 is a marker for testicular germ cell tumors. Hum Pathol 2011; 42:710-8. [PMID: 21288558 DOI: 10.1016/j.humpath.2010.09.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 11/22/2022]
|
475
|
Ambros V. MicroRNAs and developmental timing. Curr Opin Genet Dev 2011; 21:511-7. [PMID: 21530229 DOI: 10.1016/j.gde.2011.04.003] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 12/22/2022]
Abstract
MicroRNAs regulate temporal transitions in gene expression associated with cell fate progression and differentiation throughout animal development. Genetic analysis of developmental timing in the nematode Caenorhabditis elegans identified two evolutionarily conserved microRNAs, lin-4/mir-125 and let-7, that regulate cell fate progression and differentiation in C. elegans cell lineages. MicroRNAs perform analogous developmental timing functions in other animals, including mammals. By regulating cell fate choices and transitions between pluripotency and differentiation, microRNAs help to orchestrate developmental events throughout the developing animal, and to play tissue homeostasis roles important for disease, including cancer.
Collapse
Affiliation(s)
- Victor Ambros
- UMass Medical School, Molecular Medicine, 373 Plantation St, Worcester, MA 01605, USA.
| |
Collapse
|
476
|
Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, Blelloch R. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 2011; 29:443-8. [PMID: 21490602 DOI: 10.1038/nbt.1862] [Citation(s) in RCA: 444] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/04/2011] [Indexed: 12/29/2022]
Abstract
The embryonic stem cell-specific cell cycle-regulating (ESCC) family of microRNAs (miRNAs) enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells. Here we show that the human ESCC miRNA orthologs hsa-miR-302b and hsa-miR-372 promote human somatic cell reprogramming. Furthermore, these miRNAs repress multiple target genes, with downregulation of individual targets only partially recapitulating the total miRNA effects. These targets regulate various cellular processes, including cell cycle, epithelial-mesenchymal transition (EMT), epigenetic regulation and vesicular transport. ESCC miRNAs have a known role in regulating the unique embryonic stem cell cycle. We show that they also increase the kinetics of mesenchymal-epithelial transition during reprogramming and block TGFβ-induced EMT of human epithelial cells. These results demonstrate that the ESCC miRNAs promote dedifferentiation by acting on multiple downstream pathways. We propose that individual miRNAs generally act through numerous pathways that synergize to regulate and enforce cell fate decisions.
Collapse
Affiliation(s)
- Deepa Subramanyam
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
477
|
Huang Y, Shen XJ, Zou Q, Zhao QL. Biological functions of microRNAs. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 36:747-52. [PMID: 21317939 DOI: 10.1134/s1068162010060026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The small regulatory non-coding RNA molecules, known as microRNAs (miRNAs), have been recognized as potential regulator of gene expression and modulate the gene function at the post-transcriptional level. It is now clear that miRNA biogenesis and function are related to the molecular mechanisms of various clinical diseases, which can potentially regulate every aspect of cellular activity, including differentiation and development, metabolism, proliferation, apoptotic cell death viral infection and tumorgenesis. Here, we review recent work and provide insight into the diverse roles of miRNAs.
Collapse
Affiliation(s)
- Yong Huang
- Jiang Su University of Science and Technology, Zhenjiang City, 212018, Jiangsu Province, PR China
| | | | | | | |
Collapse
|
478
|
Liu C, Li B, Cheng Y, Lin J, Hao J, Zhang S, Mitchel REJ, Sun D, Ni J, Zhao L, Gao F, Cai J. MiR-21 plays an important role in radiation induced carcinogenesis in BALB/c mice by directly targeting the tumor suppressor gene Big-h3. Int J Biol Sci 2011; 7:347-63. [PMID: 21494432 PMCID: PMC3076505 DOI: 10.7150/ijbs.7.347] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 03/29/2011] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of certain microRNAs (miRNAs) in cancer can promote tumorigenesis, metastasis and invasion. However, the functions and targets of only a few mammalian miRNAs are known. In particular, the miRNAs that participates in radiation induced carcinogenesis and the miRNAs that target the tumor suppressor gene Big-h3 remain undefined. Here in this study, using a radiation induced thymic lymphoma model in BALB/c mice, we found that the tumor suppressor gene Big-h3 is down-regulated and miR-21 is up-regulated in radiation induced thymic lymphoma tissue samples. We also found inverse correlations between Big-h3 protein and miR-21 expression level among different tissue samples. Furthermore, our data indicated that miR-21 could directly target Big-h3 in a 3′UTR dependent manner. Finally, we found that miR-21 could be induced by TGFβ, and miR-21 has both positive and negative effects in regulating TGFβ signaling. We conclude that miR-21 participates in radiation induced carcinogenesis and it regulates TGFβ signaling.
Collapse
Affiliation(s)
- Cong Liu
- Department of Radiation Medicine, Second Military Medical University, Xiangyin Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
479
|
|
480
|
Tong MH, Mitchell D, Evanoff R, Griswold MD. Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice. Biol Reprod 2011; 85:189-97. [PMID: 21430230 DOI: 10.1095/biolreprod.110.089458] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Spermatogonial differentiation is orchestrated by the precise control of gene expression involving retinoic acid signaling. MicroRNAs have emerged as important regulators of spermatogenesis, and here we show that the Mirlet7 family miRNAs are expressed in mouse spermatogonia and spermatocytes. Retinoic acid significantly leads to the induction of Mirlet7 miRNAs through suppression of Lin28. We further confirmed both in vitro and in vivo that expressions of Mycn, Ccnd1, and Col1a2, which are targets of Mirlet7, were downregulated during spermatogonial differentiation. These results suggest that Mirlet7 family miRNAs play a role in retinoic acid-induced spermatogonial differentiation.
Collapse
Affiliation(s)
- Ming-Han Tong
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | | | | | |
Collapse
|
481
|
Copy number variation and selection during reprogramming to pluripotency. Nature 2011; 471:58-62. [PMID: 21368824 DOI: 10.1038/nature09871] [Citation(s) in RCA: 692] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 01/27/2011] [Indexed: 11/08/2022]
Abstract
The mechanisms underlying the low efficiency of reprogramming somatic cells into induced pluripotent stem (iPS) cells are poorly understood. There is a clear need to study whether the reprogramming process itself compromises genomic integrity and, through this, the efficiency of iPS cell establishment. Using a high-resolution single nucleotide polymorphism array, we compared copy number variations (CNVs) of different passages of human iPS cells with their fibroblast cell origins and with human embryonic stem (ES) cells. Here we show that significantly more CNVs are present in early-passage human iPS cells than intermediate passage human iPS cells, fibroblasts or human ES cells. Most CNVs are formed de novo and generate genetic mosaicism in early-passage human iPS cells. Most of these novel CNVs rendered the affected cells at a selective disadvantage. Remarkably, expansion of human iPS cells in culture selects rapidly against mutated cells, driving the lines towards a genetic state resembling human ES cells.
Collapse
|
482
|
Neveu P, Kye MJ, Qi S, Buchholz DE, Clegg DO, Sahin M, Park IH, Kim KS, Daley GQ, Kornblum HI, Shraiman BI, Kosik KS. MicroRNA profiling reveals two distinct p53-related human pluripotent stem cell states. Cell Stem Cell 2011; 7:671-81. [PMID: 21112562 DOI: 10.1016/j.stem.2010.11.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 09/08/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
Abstract
Reprogramming methodologies have provided multiple routes for achieving pluripotency. However, pluripotency is generally considered to be an almost singular state, with subtle differences described between induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs). We profiled miRNA expression levels across 49 human cell lines, including ESCs, iPSCs, differentiated cells, and cancer cell lines. We found that the resulting miRNA profiles divided the iPSCs and hESCs examined into two distinct categories irrespective of the cell line origin. The miRNAs that defined these two pluripotency categories also distinguished cancer cells from differentiated cells. Transcriptome analysis suggested that several gene sets related to p53 distinguished these categories, and overexpression of the p53-targeting miRNAs miR-92 and miR-141 in iPSCs was sufficient to change their classification status. Thus, our results suggest a subdivision of pluripotent stem cell states that is independent of their origin but related to p53 network status.
Collapse
Affiliation(s)
- Pierre Neveu
- Neuroscience Research Institute, University of California at Santa Barbara, 93106, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
483
|
Elefanty AG, Blelloch R, Passegué E, Wernig M, Mummery CL. On the streets of San Francisco: highlights from the ISSCR Annual Meeting 2010. Cell Stem Cell 2011; 7:443-50. [PMID: 20887950 DOI: 10.1016/j.stem.2010.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The 2010 Annual Meeting of the International Society for Stem Cell Research (ISSCR) was held in San Francisco in June with an exciting program covering a wealth of stem cell research from basic science to clinical research.
Collapse
Affiliation(s)
- Andrew G Elefanty
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, 3800, Australia.
| | | | | | | | | |
Collapse
|
484
|
Kawahara H, Okada Y, Imai T, Iwanami A, Mischel PS, Okano H. Musashi1 cooperates in abnormal cell lineage protein 28 (Lin28)-mediated let-7 family microRNA biogenesis in early neural differentiation. J Biol Chem 2011; 286:16121-30. [PMID: 21378162 DOI: 10.1074/jbc.m110.199166] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Musashi1 (Msi1) is an RNA-binding protein that is highly expressed in neural stem/progenitor cells (NS/PCs) as well as in other tissue stem cells. Msi1 binds to the 3'-UTR of its target mRNAs in NS/PCs, prevents their translation, and interferes with NS/PC differentiation. We previously showed that Msi1 competes with eIF4G to bind poly(A)-binding protein and inhibits assembly of the 80 S ribosome. Here we show that Msi1 works in concert with Lin28 to regulate post-transcriptional microRNA (miRNA) biogenesis in the cropping step, which occurs in the nucleus. Lin28 and its binding partner terminal uridylyltransferase 4 (TUT4) are known to maintain embryonic stem cell pluripotency by blocking let-7 miRNA biogenesis at the dicing step. Interestingly, we found that during early neural differentiation of embryonic stem cells, Msi1 enhanced the localization of Lin28 to the nucleus and also inhibited the nuclear cropping step of another let-7 family miRNA, miR98. These results suggest that Msi1 can influence stem cell maintenance and differentiation by controlling the subcellular localization of proteins involved in miRNA biogenesis, as well as by regulating the translation of its target mRNA.
Collapse
Affiliation(s)
- Hironori Kawahara
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
485
|
Smith K, Dalton S. Myc transcription factors: key regulators behind establishment and maintenance of pluripotency. Regen Med 2011; 5:947-59. [PMID: 21082893 DOI: 10.2217/rme.10.79] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interplay between transcription factors, epigenetic modifiers, chromatin remodelers and miRNAs form the foundation of a complex regulatory network required for establishment and maintenance of the pluripotent state. Recent work indicates that Myc transcription factors are essential elements of this regulatory system. However, despite numerous studies, aspects of how Myc controls self-renewal and pluripotency remain obscure. This article reviews evidence supporting the placement of Myc as a central regulator of the pluripotent state and discusses possible mechanisms of action.
Collapse
Affiliation(s)
- Keriayn Smith
- Paul D Coverdell Center for Biomedical & Health Sciences, Department of Biochemistry & Molecular Biology, University of Georgia, 500 DW Brooks Drive, Athens, GA 30602, USA
| | | |
Collapse
|
486
|
Tiscornia G, Izpisúa Belmonte JC. MicroRNAs in embryonic stem cell function and fate. Genes Dev 2011; 24:2732-41. [PMID: 21159814 DOI: 10.1101/gad.1982910] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Since their discovery in the early 1990s, microRNAs (miRs) have gone from initially being considered an oddity to being recognized as a level of gene expression regulation that is integral to the normal function of cells and organisms. They are implicated in many if not all biological processes in animals, from apoptosis and cell signaling to organogenesis and development. Our understanding of cell regulatory states, as determined primarily by transcription factor (TF) profiles, is incomplete without consideration of the corresponding miR profile. The miR complement of a cell provides robust and redundant control over the output of hundreds of possible targets for each miR. miRs are common components of regulatory pathways, and in some cases can constitute on-off switches that regulate crucial fate decisions. In this review, we summarize our current knowledge about the biogenesis and regulation of miRs and describe their involvement in the pathways that regulate cell division, pluripotency, and reprogramming to the pluripotent state.
Collapse
Affiliation(s)
- Gustavo Tiscornia
- Centre of Regenerative Medicine in Barcelona, Barcelona 08003, Spain
| | | |
Collapse
|
487
|
Abstract
Non-coding RNAs (ncRNAs) are emerging as key regulators of embryogenesis. They control embryonic gene expression by several means, ranging from microRNA-induced degradation of mRNAs to long ncRNA-mediated modification of chromatin. Many aspects of embryogenesis seem to be controlled by ncRNAs, including the maternal-zygotic transition, the maintenance of pluripotency, the patterning of the body axes, the specification and differentiation of cell types and the morphogenesis of organs. Drawing from several animal model systems, we describe two emerging themes for ncRNA function: promoting developmental transitions and maintaining developmental states. These examples also highlight the roles of ncRNAs in ensuring a robust commitment to one of two possible cell fates.
Collapse
Affiliation(s)
- Andrea Pauli
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
488
|
Neff AW, King MW, Mescher AL. Dedifferentiation and the role of sall4 in reprogramming and patterning during amphibian limb regeneration. Dev Dyn 2011; 240:979-89. [DOI: 10.1002/dvdy.22554] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2010] [Indexed: 01/12/2023] Open
|
489
|
Guo L, Zhao RCH, Wu Y. The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp Hematol 2011; 39:608-16. [PMID: 21288479 DOI: 10.1016/j.exphem.2011.01.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/18/2011] [Accepted: 01/25/2011] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs involved in post-trascriptional regulation of gene expression and diverse biological activities. They are crucial for self-renewal and behavior of embryonic stem cells, but their role in mesenchymal stem cells has been poorly understood. Recently emerging evidence suggests that miRNAs are closely involved in controlling key steps of mesenchymal stem cell differentiation into certain cell lineages. This review focuses on miRNAs identified recently that regulate mesenchymal stem cell differentiation and other activities.
Collapse
Affiliation(s)
- Ling Guo
- Life Science Division, Tsinghua University Graduate School at Shenzhen, Shenzhen, China
| | | | | |
Collapse
|
490
|
Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat Struct Mol Biol 2011; 18:237-44. [PMID: 21258322 PMCID: PMC3078052 DOI: 10.1038/nsmb.1991] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 11/29/2010] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are 19-22-nucleotide noncoding RNAs that post-transcriptionally regulate mRNA targets. We have identified endogenous miRNA binding sites in mouse embryonic stem cells (mESCs), by performing photo-cross-linking immunoprecipitation using antibodies to Argonaute (Ago2) followed by deep sequencing of RNAs (CLIP-seq). We also performed CLIP-seq in Dicer⁻/⁻ mESCs that lack mature miRNAs, allowing us to define whether the association of Ago2 with the identified sites was miRNA dependent. A significantly enriched motif, GCACUU, was identified only in wild-type mESCs in 3' untranslated and coding regions. This motif matches the seed of a miRNA family that constitutes ~68% of the mESC miRNA population. Unexpectedly, a G-rich motif was enriched in sequences cross-linked to Ago2 in both the presence and absence of miRNAs. Expression analysis and reporter assays confirmed that the seed-related motif confers miRNA-directed regulation on host mRNAs and that the G-rich motif can modulate this regulation.
Collapse
|
491
|
Osada H, Takahashi T. let-7 and miR-17-92: small-sized major players in lung cancer development. Cancer Sci 2011; 102:9-17. [PMID: 20735434 DOI: 10.1111/j.1349-7006.2010.01707.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA)-encoding small non-coding RNA have been recognized as important regulators of a number of biological processes that inhibit the expression of hundreds of genes. Accumulating evidence also indicates the involvement of miRNA alterations in various types of human cancer, including lung cancer, which has long been the leading cause of cancer death in economically well-developed countries, including Japan. We previously found that downregulation of members of the tumor-suppressive let-7 miRNA family and overexpression of the oncogenic miR-17-92 miRNA cluster frequently occur in lung cancers, and molecular insight into how these miRNA alterations may contribute to tumor development has been rapidly accumulating. The present review summarizes recent advances in elucidation of the molecular functions of these miRNA in relation to their roles in the pathogenesis of lung cancer. Given the crucial roles of miRNA alterations, additional studies are expected to provide a better understanding of the underlying molecular mechanisms of disease development, as well as a foundation for novel strategies for cancer diagnosis and treatment of this devastating disease.
Collapse
Affiliation(s)
- Hirotaka Osada
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | |
Collapse
|
492
|
The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011; 17:211-5. [PMID: 21240262 PMCID: PMC3076220 DOI: 10.1038/nm.2284] [Citation(s) in RCA: 1120] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 11/30/2010] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) or tumor progenitor cells are involved in tumor progression and metastasis1. MicroRNAs (miRNAs) regulate both normal stem cells and CSCs2–5 and miRNA dysregulation has been implicated in tumorigenesis6. CSCs in many tumors, including cancers of the breast7, pancreas8, head and neck9, colon10,11, small intestine12, liver13, stomach14, bladder15, and ovary16 have been identified using adhesion molecule CD44, either individually or in combination with other marker(s). Prostate cancer (PCa) stem/progenitor cells with enhanced clonogenic17 and tumor-initiating and metastatic18,19 capacities are also enriched in the CD44+ cell population, but whether miRNAs regulate the CD44+ PCa cells and PCa metastasis remains unclear. Here we show, through expression analysis, that miR-34a, a p53 target20–24, was under-expressed in CD44+ PCa cells purified from xenograft and primary tumors. Enforced expression of miR-34a in bulk PCa cells inhibited clonogenic expansion and tumor development. miR-34a re-expression in CD44+ PCa cells blocked whereas miR-34a antagomirs in CD44− PCa cells promoted tumor regeneration and metastasis. Systemically delivered miR-34a inhibited PCa metastasis and extended animal survival. Of significance, CD44 was identified and validated as a direct and functional target of miR-34a and CD44 knockdown phenocopied miR-34a over-expression in inhibiting PCa regeneration and metastasis. Our study reveals miR-34a as a critical negative regulator of CD44+ PCa cells and establishes a strong rationale for developing miR-34a as a novel therapeutic against prostate CSCs.
Collapse
|
493
|
Abstract
PURPOSE OF REVIEW The identification of transcriptional activators and repressors of hair cell fates has recently been augmented by the discovery of microRNAs (miRNAs) that can function as post-transcriptional repressors in sensory hair cells. RECENT FINDINGS miRNAs are approximately 21-nucleotide single-stranded ribonucleic acids that can each repress protein synthesis of many target genes by interacting with messenger RNA transcripts. A triplet of these miRNAs, the miR-183 family, is highly expressed in vertebrate hair cells, as well as a variety of other peripheral neurosensory cells. Point mutations in one member of this family, miR-96, underlie DFNA50 autosomal deafness in humans and lead to abnormal hair cell development and survival in mice. In zebrafish, overexpression of the miR-183 family induces extra and ectopic hair cells, whereas knockdown reduces hair cell numbers. Genetically engineered mice with a block in miRNA biosynthesis during early ear development, or during hair cell differentiation, reveal the necessity of miRNAs at these crucial time points. SUMMARY Because miRNAs can simultaneously down-regulate dozens to perhaps hundreds of transcripts, they will soon be explored as potential therapeutic agents to repair or regenerate hair cells in animal models.
Collapse
|
494
|
Davis N, Mor E, Ashery-Padan R. Roles for Dicer1 in the patterning and differentiation of the optic cup neuroepithelium. Development 2011; 138:127-38. [DOI: 10.1242/dev.053637] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The embryonic ocular neuroepithilium generates a myriad of cell types, including the neuroretina, the pigmented epithelium, the ciliary and iris epithelia, and the iris smooth muscles. As in other regions of the developing nervous system, the generation of these various cell types requires a coordinated sequence of patterning, specification and differentiation events. We investigated the roles of microRNAs (miRNAs) in the development of optic cup (OC)-derived structures. We inactivated Dicer1, a key mediator of miRNA biosynthesis, within the OC in overlapping yet distinct spatiotemporal patterns. Ablation of Dicer1 in the inner layer of the OC resulted in patterning alteration, particularly at the most distal margins. Following loss of Dicer1, this region generated a cryptic population of cells with a mixed phenotype of neuronal and ciliary body (CB) progenitors. Notably, inactivation of Dicer1 in the retinal progenitors further resulted in abrogated neurogenesis, with prolongation of ganglion cell birth and arrested differentiation of other neuronal subtypes, including amacrine and photoreceptor cells. These alterations were accompanied by changes in the expression of Notch and Hedgehog signaling components, indicating the sensitivity of the pathways to miRNA activity. Moreover, this study revealed the requirement of miRNAs for morphogenesis of the iris and for the regulation of CB cell type proliferation and differentiation. Together, analysis of the three genetic models revealed novel, stage-dependent roles for miRNAs in the development of the ocular sub-organs, which are all essential for normal vision.
Collapse
Affiliation(s)
- Noa Davis
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eyal Mor
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ruth Ashery-Padan
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
495
|
Abstract
The ability to self-renew and to differentiate into at least one-cell lineage defines a stem cell. Self-renewal is a process by which stem cells proliferate without differentiation. Proliferation is achieved through a series of highly regulated events of the cell cycle. MicroRNAs (miRNAs) are a class of short noncoding RNAs whose importance in these events is becoming increasingly appreciated. In this chapter, we discuss the role of miRNAs in regulating the cell cycle in various stem cells with a focus on embryonic stem cells. We also present the evidence indicating that cell cycle-regulating miRNAs are incorporated into a large regulatory network to control the self-renewal of stem cells by inducing or inhibiting differentiation. In addition, we discuss the function of cell cycle-regulating miRNAs in cancer.
Collapse
|
496
|
Ohtani K, Dimmeler S. Control of cardiovascular differentiation by microRNAs. Basic Res Cardiol 2011; 106:5-11. [PMID: 21184089 DOI: 10.1007/s00395-010-0139-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/09/2010] [Accepted: 11/30/2010] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRs) are small non-coding RNAs, which control gene expression either by inducing mRNA degradation or by blocking translation, and play a crucial role in tissue homeostasis. In the cardiovascular system, miRs were shown to control cardiac hypertrophy, fibrosis and apoptosis, angiogenesis, and vessel remodeling. In addition, miRs regulate stem cell maintenance and some miRs induced cell fate decisions. This review summarizes the current insights into the control of stem cells and lineage commitment by miRs focusing specifically to the regulation of endothelial, smooth muscle, and cardiac lineage.
Collapse
Affiliation(s)
- Kisho Ohtani
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, University of Frankfurt, Theodor-Stern-Kai 7, Frankfurt, Germany
| | | |
Collapse
|
497
|
Wilbert ML, Yeo GW. Genome-wide approaches in the study of microRNA biology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:491-512. [PMID: 21197653 DOI: 10.1002/wsbm.128] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs), a class of ∼21-23 nucleotide long non-coding RNAs (ncRNAs), have critical roles in diverse biological processes that encompass development, proliferation, apoptosis, stress response, and fat metabolism. miRNAs recognize their target mRNA transcripts by partial sequence complementarity and collectively have been estimated to regulate the majority of human genes. Consequently, misregulation of miRNAs or disruption of their target sites in genes has been implicated in a variety of human diseases ranging from cancer metastasis to neurological disorders. With the development and availability of genomic technologies and computational approaches, the field of miRNA biology has advanced tremendously over the last decade. Here we review the genome-wide approaches that have allowed for the discovery of new miRNAs, the characterization of their targets, and a systems-level view of their impact.
Collapse
Affiliation(s)
- Melissa L Wilbert
- Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
498
|
Abstract
Stem cell transplantation has emerged as a novel treatment option for ischemic heart disease. Different cell types have been utilized and the recent development of induced pluripotent stem cells has generated tremendous excitement in the regenerative field. Bone marrow-derived multipotent progenitor cell transplantation in preclinical large animal models of postinfarction left ventricular remodeling has demonstrated long-term functional and bioenergetic improvement. These beneficial effects are observed despite no significant engraftment of bone marrow cells in the myocardium and even lower differentiation of these cells into cardiomyocytes. It is thought to be related to the paracrine effect of these stem cells, which secrete factors that lead to long-term gene expression changes in the host myocardium, thereby promoting neovascularization, inhibiting apoptosis, and stimulating resident cardiac progenitor cells. Future studies are warranted to examine the changes in the recipient myocardium after stem cell transplantation and to investigate the signaling pathways involved in these effects.
Collapse
|
499
|
Haider KH, Buccini S, Ahmed RPH, Ashraf M. De novo myocardial regeneration: advances and pitfalls. Antioxid Redox Signal 2010; 13:1867-77. [PMID: 20695792 PMCID: PMC2971636 DOI: 10.1089/ars.2010.3388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The capability of adult tissue-derived stem cells for cardiogenesis has been extensively studied in experimental animals and clinical studies for treatment of postischemic cardiomyopathy. The less-than-anticipated improvement in the heart function in most clinical studies with skeletal myoblasts and bone marrow cells has warranted a search for alternative sources of stem cells. Despite their multilineage differentiation potential, ethical issues, teratogenicity, and tissue rejection are main obstacles in developing clinically feasible methods for embryonic stem cell transplantation into patients. A decade-long research on embryonic stem cells has paved the way for discovery of alternative approaches for generating pluripotent stem cells. Genetic manipulation of somatic cells for pluripotency genes reprograms the cells to pluripotent status. Efforts are currently focused to make reprogramming protocols safer for clinical applications of the reprogrammed cells. We summarize the advancements and complicating features of stem cell therapy and discuss the decade-and-a-half-long efforts made by stem cell researchers for moving the field from bench to the bedside as an adjunct therapy or as an alternative to the contemporary therapeutic modalities for routine clinical application. The review also provides a special focus on the advancements made in the field of somatic cell reprogramming.
Collapse
|
500
|
Li Y, Geng YJ. A potential role for insulin-like growth factor signaling in induction of pluripotent stem cell formation. Growth Horm IGF Res 2010; 20:391-398. [PMID: 20956084 DOI: 10.1016/j.ghir.2010.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 12/11/2022]
Abstract
Recent success in reprogramming somatic cells into induced pluripotent stem cells (iPS cells) with a cluster of nuclear transcription factors, such as Oct4, Sox2, Klf4, and c-myc, opens up a new era in regenerative medicine. However, reportedly poor efficiency and slow kinetics of the reprogramming process by viral transfection of the nuclear factors may create an obstacle that hampers clinical application of the iPS cell technology. Furthermore, the viral transfection may induce mutagenesis and raises the risk for cancer development. Hence, generation of iPS cells using a non-viral approach appears to be an important prerequisite for iPS cell-based regenerative medicine. Through its receptor/phosphoinositide 3-kinase (PI3-K) signaling pathway, insulin-like growth factor (IGF) plays a critical role in promotion of survival and proliferation in a diversity of cell types, including both embryonic and adult stem cells. In addition, IGF may enhance expression of reprogramming or surviving factors in reprogramming somatic cells. This review summarizes recent advances in IGF research and discusses the potential for IGF to act as a co-stimulatory factor for somatic cell reprogramming and iPS cell development. Currently available evidence from experimental animal and human studies highly suggests that IGF may contribute to reprogramming of somatic cells into iPS cell generation, and enhancement of iPS cell survival and growth, which will be instrumental in regenerative medicine.
Collapse
Affiliation(s)
- Yangxin Li
- Texas Heart Institute, Houston, TX 77030, USA.
| | | |
Collapse
|