451
|
Abstract
During apoptosis or activation, cells can release a subcellular structure, called a membrane microvesicle (also known as microparticle) into the extracellular environment. Microvesicles bud-off as a portion of cell membrane with its associated proteins and lipids surrounding a cytosolic core that contains intracellular proteins, lipids, and nucleic acids (DNA, RNA, siRNA, microRNA, lncRNA). Biologically active molecules on the microvesicle surface and encapsulated within can act on recipient cells as a novel mode of intercellular communication. Apoptosis has long been known to be involved in the development of diseases of autoimmunity. Abnormally persistent microvesicles, particularly apoptotic microvesicles, can accelerate autoimmune responses locally in specific organs and tissues as well as systemically. In this review, we focus on studies implicating microvesicles in the pathogenesis of autoimmune diseases and their complications.
Collapse
|
452
|
Campello E, Spiezia L, Radu CM, Simioni P. Microparticles as biomarkers of venous thromboembolic events. Biomark Med 2016; 10:743-55. [DOI: 10.2217/bmm-2015-0063] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microparticles (MPs) are small (0.1–1.0 μm) membrane vesicles constitutively released from the surface of cells after activation and apoptosis. The clinical research on MPs is hampered by the limitations of the currently available detection methods. A correlation between MPs and venous thromboembolism (VTE) has been observed. The effects of MPs on thrombogenesis involve the exposure of phosphatidylserine, the vehiculation of tissue factor, and MP-induced intercellular cross-talk between inflammation and coagulation. This review will focus on the potential role of plasma MPs as biomarkers in detecting acute unprovoked VTE, predicting VTE occurrence in high-risk situations (mainly cancer), and ultimately, we will discuss currently available studies on the prognostic role of MPs to guide primary and secondary VTE prevention protocols.
Collapse
Affiliation(s)
- Elena Campello
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Luca Spiezia
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Claudia M Radu
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Paolo Simioni
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| |
Collapse
|
453
|
Exosomes: novel implications in diagnosis and treatment of gastrointestinal cancer. Langenbecks Arch Surg 2016; 401:1097-1110. [PMID: 27342853 DOI: 10.1007/s00423-016-1468-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/16/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Amongst all cancer subtypes, gastrointestinal tumours are responsible for most cancer-related deaths. In most of the cases, the limitation of the prognosis of patients with malignant gastrointestinal tumours can be attributed to delayed diagnosis of the disease. In the last decade, secondary prevention strategies, in particular tumour screenings, have been identified to significantly improve the identification of patients with early-stage disease, leading to more effective therapeutic interventions. Therefore, new screening methods and further innovative treatment approaches may lead to an increase in progression-free and overall survival rates. PURPOSE Exosomes are small microvesicles with a size of 50-150 nm. They are formed in the endosomal system of many different cell types, where they are packed with nucleotides and proteins from the parental cell. After their release into the extracellular space, exosomes can deliver their cargo into recipient cells. By this mechanism, tumour cells can recruit and manipulate the adjacent and systemic microenvironment in order to support invasion and dissemination. Cancer-derived exosomes in the blood may provide detailed information about the tumour biology of each individual patient. Moreover, tumour-derived exosomes can be used as targetable factors and drug delivery agents in clinical practice. CONCLUSION In this review, we summarise new aspects about novel implications in the diagnosis and treatment of gastrointestinal cancer and show how circulating exosomes have come into the spotlight of research as a high potential source of 'liquid biopsies'.
Collapse
|
454
|
Sheller S, Papaconstantinou J, Urrabaz-Garza R, Richardson L, Saade G, Salomon C, Menon R. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress. PLoS One 2016; 11:e0157614. [PMID: 27333275 PMCID: PMC4917104 DOI: 10.1371/journal.pone.0157614] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
At term, the signals of fetal maturity and feto-placental tissue aging prompt uterine readiness for delivery by transitioning quiescent myometrium to an active stage. It is still unclear how the signals reach the distant myometrium. Exosomes are a specific type of extracellular vesicle (EVs) that transport molecular signals between cells, and are released from a wide range of cells, including the maternal and fetal cells. In this study, we hypothesize that i) exosomes act as carriers of signals in utero-placental compartments and ii) exosomes reflect the physiologic status of the origin cells. The primary aims of this study were to determine exosomal contents in exosomes derived from primary amnion epithelial cells (AEC). We also determined the effect of oxidative stress on AEC derived exosomal cargo contents. AEC were isolated from amniotic membrane obtained from normal, term, not in labor placentae at delivery, and culture under standard conditions. Oxidative stress was induced using cigarette smoke extract for 48 hours. AEC-conditioned media were collected and exosomes isolated by differential centrifugations. Both growth conditions (normal and oxidative stress induced) produced cup shaped exosomes of around 50 nm, expressed exosomes enriched markers, such as CD9, CD63, CD81 and HSC70, embryonic stem cell marker Nanog, and contained similar amounts of cell free AEC DNA. Using confocal microscopy, the colocalization of histone (H) 3, heat shock protein (HSP) 70 and activated form of pro-senescence and term parturition associated marker p38 mitogen activated protein kinase (MAPK) (P-p38 MAPK) co-localized with exosome enrich marker CD9. HSP70 and P-p38 MAPK were significantly higher in exosomes from AEC grown under oxidative stress conditions than standard conditions (p<0.05). Finally, mass spectrometry and bioinformatics analysis identified 221 different proteins involved in immunomodulatory response and cell-to-cell communication. This study determined AEC exosome characteristics and their cargo reflected the physiologic status of the cell of origin and suggests that AEC-derived exosomal p38 MAPK plays a major role in determining the fate of pregnancy. Understanding the propagation of fetal signals and their mechanisms in normal term pregnancies can provide insights into pathologic activation of such signals associated with spontaneous preterm parturitions.
Collapse
Affiliation(s)
- Samantha Sheller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - John Papaconstantinou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Rheanna Urrabaz-Garza
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Lauren Richardson
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - George Saade
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Faculty of Health Sciences, University of Queensland, Herston, Queensland, Australia
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
455
|
Tan L, Wu H, Liu Y, Zhao M, Li D, Lu Q. Recent advances of exosomes in immune modulation and autoimmune diseases. Autoimmunity 2016; 49:357-365. [PMID: 27259064 DOI: 10.1080/08916934.2016.1191477] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lina Tan
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, P.R. China,
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, P.R. China, and
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, P.R. China, and
| | - Ying Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, P.R. China, and
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, P.R. China, and
| | - Duo Li
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, P.R. China, and
| |
Collapse
|
456
|
Cheow ESH, Cheng WC, Lee CN, de Kleijn D, Sorokin V, Sze SK. Plasma-derived Extracellular Vesicles Contain Predictive Biomarkers and Potential Therapeutic Targets for Myocardial Ischemic (MI) Injury. Mol Cell Proteomics 2016; 15:2628-40. [PMID: 27234505 DOI: 10.1074/mcp.m115.055731] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 12/21/2022] Open
Abstract
Myocardial infarction (MI) triggers a potent inflammatory response via the release of circulatory mediators, including extracellular vesicles (EVs) by damaged cardiac cells, necessary for myocardial healing. Timely repression of inflammatory response are critical to prevent and minimize cardiac tissue injuries, nonetheless, progression in this aspect remains challenging. The ability of EVs to trigger a functional response upon delivery of carried bioactive cargos, have made them clinically attractive diagnostic biomarkers and vectors for therapeutic interventions. Using label-free quantitative proteomics approach, we compared the protein cargo of plasma EVs between patients with MI and from patients with stable angina (NMI). We report, for the first time, the proteomics profiling on 252 EV proteins that were modulated with >1.2-fold after MI. We identified six up-regulated biomarkers with potential for clinical applications; these reflected post-infarct pathways of complement activation (Complement C1q subcomponent subunit A (C1QA), 3.23-fold change, p = 0.012; Complement C5 (C5), 1.27-fold change, p = 0.087), lipoprotein metabolism (Apoliporotein D (APOD), 1.86-fold change, p = 0.033; Apolipoprotein C-III (APOCC3), 2.63-fold change, p = 0.029) and platelet activation (Platelet glycoprotein Ib alpha chain (GP1BA), 9.18-fold change, p < 0.0001; Platelet basic protein (PPBP), 4.72-fold change, p = 0.027). The data have been deposited to the ProteomeXchange with identifier PXD002950. This novel biomarker panel was validated in 43 patients using antibody-based assays (C1QA (p = 0.005); C5 (p = 0.0047), APOD (p = 0.0267); APOC3 (p = 0.0064); GP1BA (p = 0.0031); PPBP (p = 0.0465)). We further present that EV-derived fibrinogen components were paradoxically down-regulated in MI, suggesting that a compensatory mechanism may suppress post-infarct coagulation pathways, indicating potential for therapeutic targeting of this mechanism in MI. Taken together, these data demonstrated that plasma EVs contain novel diagnostic biomarkers and therapeutic targets that can be further developed for clinical use to benefit patients with coronary artery diseases (CADs).
Collapse
Affiliation(s)
- Esther Sok Hwee Cheow
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Woo Chin Cheng
- §Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, and Cardiovascular Research Institute, Singapore 119228
| | - Chuen Neng Lee
- §Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, and Cardiovascular Research Institute, Singapore 119228; ¶National University Heart Centre, Department of Cardiac, Thoracic & Vascular Surgery, Singapore 119228; ‖Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Dominique de Kleijn
- §Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, and Cardiovascular Research Institute, Singapore 119228; **Experimental Cardiology Laboratory, Cardiology, University Medical Center Utrecht, the Netherlands & Interuniversity Cardiovascular Institute of the Netherlands, Utrecht, the Netherlands
| | - Vitaly Sorokin
- §Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, and Cardiovascular Research Institute, Singapore 119228; ¶National University Heart Centre, Department of Cardiac, Thoracic & Vascular Surgery, Singapore 119228
| | - Siu Kwan Sze
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551;
| |
Collapse
|
457
|
Martínez-Zamora MA, Tàssies D, Reverter JC, Creus M, Casals G, Cívico S, Carmona F, Balasch J. Increased circulating cell-derived microparticle count is associated with recurrent implantation failure after IVF and embryo transfer. Reprod Biomed Online 2016; 33:168-73. [PMID: 27236712 DOI: 10.1016/j.rbmo.2016.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 11/18/2022]
Abstract
Cell-derived microparticles (cMPs) are small membrane vesicles that are released from many different cell types in response to cellular activation or apoptosis. Elevated cMP counts have been found in almost all thrombotic diseases and pregnancy wastage, such as recurrent spontaneous abortion and in a number of conditions associated with inflammation, cellular activation and angiogenesis. cMP count was investigated in patients experiencing unexplained recurrent implantation failure (RIF). The study group was composed of 30 women diagnosed with RIF (RIF group). The first control group (IVF group) (n = 30) comprised patients undergoing a first successful IVF cycle. The second control group (FER group) included 30 healthy women who had at least one child born at term and no history of infertility or obstetric complications. cMP count was significantly higher in the RIF group compared with the IVF and FER groups (P < 0.05 and P < 0.01, respectively) (RIF group: 15.8 ± 6.2 nM phosphatidylserine equivalent [PS eq]; IVF group: 10.9 ± 5.3 nM PS eq; FER group: 9.6 ± 4.0 nM PS eq). No statistical difference was found in cMP count between the IVF and FER groups. Increased cMP count is, therefore, associated with RIF after IVF and embryo transfer.
Collapse
Affiliation(s)
- M Angeles Martínez-Zamora
- Institut Clínic of Gynecology, Obstetrics and Neonatology, Faculty of Medicine - University of Barcelona, Hospital Clínic of Barcelona, Villarroel Street, 170, Barcelona 08036, Spain
| | - Dolors Tàssies
- Hemotherapy and Hemostasis Unit, Faculty of Medicine - University of Barcelona, Hospital Clínic of Barcelona, Villarroel Street, 170, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Carlos Reverter
- Hemotherapy and Hemostasis Unit, Faculty of Medicine - University of Barcelona, Hospital Clínic of Barcelona, Villarroel Street, 170, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Montserrat Creus
- Institut Clínic of Gynecology, Obstetrics and Neonatology, Faculty of Medicine - University of Barcelona, Hospital Clínic of Barcelona, Villarroel Street, 170, Barcelona 08036, Spain
| | - Gemma Casals
- Institut Clínic of Gynecology, Obstetrics and Neonatology, Faculty of Medicine - University of Barcelona, Hospital Clínic of Barcelona, Villarroel Street, 170, Barcelona 08036, Spain
| | - Salvadora Cívico
- Institut Clínic of Gynecology, Obstetrics and Neonatology, Faculty of Medicine - University of Barcelona, Hospital Clínic of Barcelona, Villarroel Street, 170, Barcelona 08036, Spain
| | - Francisco Carmona
- Institut Clínic of Gynecology, Obstetrics and Neonatology, Faculty of Medicine - University of Barcelona, Hospital Clínic of Barcelona, Villarroel Street, 170, Barcelona 08036, Spain
| | - Juan Balasch
- Institut Clínic of Gynecology, Obstetrics and Neonatology, Faculty of Medicine - University of Barcelona, Hospital Clínic of Barcelona, Villarroel Street, 170, Barcelona 08036, Spain.
| |
Collapse
|
458
|
McVey MJ, Spring CM, Semple JW, Maishan M, Kuebler WM. Microparticles as biomarkers of lung disease: enumeration in biological fluids using lipid bilayer microspheres. Am J Physiol Lung Cell Mol Physiol 2016; 310:L802-14. [DOI: 10.1152/ajplung.00369.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/03/2016] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles, specifically microparticles (MPs), are rapidly gaining attention for their capacity to act as biomarkers for diagnosis, prognosis, or responsiveness to therapy in lung disease, in keeping with the concept of precision medicine. However, MP analysis by high-sensitivity flow cytometry (FCM) is complicated by a lack of accurate means for MP enumeration. To address this gap, we report here an enhanced FCM MP gating and enumeration technique based on the use of novel engineered lipid bilayer microspheres (LBMs). By comparison of LBM-based MP enumeration with conventional bead- or fluorescent-based FCM enumeration techniques and a gravimetric consumption gold standard, we found LBMs to be superior to commercial bead preparations, showing the smallest fixed bias and limits of agreement in Bland Altman analyses. LBMs had simultaneous capacity to aid FCM enumeration of MPs in plasma, BAL, and cell culture supernatants. LBM enumeration detected differences in MP counts in mice exposed to intraperitoneal lipopolysaccharide or saline. LBMs provided for 1) higher sensitivity for gating MPs populations, 2) reduced background within MP gates, 3) more appropriate size, and 4) an inexpensive alternative amenable to different fluorescent tags. LBM-based MP enumeration was useful for a series of different FCM systems assessed, whereas LBM gating benefited high- but not low-sensitivity FCM systems compared with fluorescence gating. By offering exclusive advantages over current means of gating and enumerating MPs, LBMs are uniquely suited to realizing the potential of MPs as biomarkers in biological lung fluids and facilitating precision medicine in lung disease.
Collapse
Affiliation(s)
- Mark J. McVey
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Departments of
- Anesthesia,
- Physiology,
| | - Christopher M. Spring
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Departments of
| | - John W. Semple
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Departments of
- Laboratory Medicine and Pathobiology,
- Pharmacology,
- Medicine, and
| | - Mazharul Maishan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Departments of
- Physiology,
| | - Wolfgang M. Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Departments of
- Physiology,
- Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany; and
- German Heart Institute, Berlin, Germany
| |
Collapse
|
459
|
Magna M, Pisetsky DS. The Alarmin Properties of DNA and DNA-associated Nuclear Proteins. Clin Ther 2016; 38:1029-41. [DOI: 10.1016/j.clinthera.2016.02.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 02/07/2023]
|
460
|
Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep 2016; 6:24316. [PMID: 27087061 PMCID: PMC4834552 DOI: 10.1038/srep24316] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/21/2016] [Indexed: 12/11/2022] Open
Abstract
Circulating extracellular vesicles have emerged as potential new biomarkers in a wide variety of diseases. Despite the increasing interest, their isolation and purification from body fluids remains challenging. Here we studied human pre-prandial and 4 hours postprandial platelet-free blood plasma samples as well as human platelet concentrates. Using flow cytometry, we found that the majority of circulating particles within the size range of extracellular vesicles lacked common vesicular markers. We identified most of these particles as lipoproteins (predominantly low-density lipoprotein, LDL) which mimicked the characteristics of extracellular vesicles and also co-purified with them. Based on biophysical properties of LDL this finding was highly unexpected. Current state-of-the-art extracellular vesicle isolation and purification methods did not result in lipoprotein-free vesicle preparations from blood plasma or from platelet concentrates. Furthermore, transmission electron microscopy showed an association of LDL with isolated vesicles upon in vitro mixing. This is the first study to show co-purification and in vitro association of LDL with extracellular vesicles and its interference with vesicle analysis. Our data point to the importance of careful study design and data interpretation in studies using blood-derived extracellular vesicles with special focus on potentially co-purified LDL.
Collapse
|
461
|
Abstract
Platelets are megakaryocyte-derived cellular fragments, which lack a nucleus and are the smallest circulating cells and are classically known to have a major role in supporting hemostasis. Apart from this well-established role, it is now becoming evident that platelets are also capable of conveying other important functions, such as during infection and inflammation. This paper will outline these nonhemostatic functions in two major sections termed "Platelets versus pathogens" and "Platelet-target cell communication". Platelets actively contribute to protection against invading pathogens and are capable of regulating immune functions in various target cells, all through sophisticated and efficient mechanisms. These relatively novel features will be highlighted, illustrating the multifunctional role of platelets in inflammation.
Collapse
Affiliation(s)
- Rick Kapur
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael׳s Hospital, Canadian Blood Services, Toronto, Ontario, Canada
| | - John W Semple
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael׳s Hospital, Canadian Blood Services, Toronto, Ontario, Canada; Departments of Pharmacology, Medicine, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
462
|
Robbins PD, Dorronsoro A, Booker CN. Regulation of chronic inflammatory and immune processes by extracellular vesicles. J Clin Invest 2016; 126:1173-80. [PMID: 27035808 DOI: 10.1172/jci81131] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Almost all cell types release extracellular vesicles (EVs), which are derived either from multivesicular bodies or from the plasma membrane. EVs contain a subset of proteins, lipids, and nucleic acids from the cell from which they are derived. EV factors, particularly small RNAs such as miRNAs, likely play important roles in cell-to-cell communication both locally and systemically. Most of the functions associated with EVs are in the regulation of immune responses to pathogens and cancer, as well as in regulating autoimmunity. This Review will focus on the different modes of immune regulation, both direct and indirect, by EVs. The therapeutic utility of EVs for the regulation of immune responses will also be discussed.
Collapse
|
463
|
Osteikoetxea X, Németh A, Sódar BW, Vukman KV, Buzás EI. Extracellular vesicles in cardiovascular disease: are they Jedi or Sith? J Physiol 2016; 594:2881-94. [PMID: 26872404 DOI: 10.1113/jp271336] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
In the recent past, extracellular vesicles have become recognized as important players in cell biology and biomedicine. Extracellular vesicles, including exosomes, microvesicles and apoptotic bodies, are phospholipid bilayer-enclosed structures found to be secreted by most if not all cells. Extracellular vesicle secretion represents a universal and highly conserved active cellular function. Importantly, increasing evidence supports that extracellular vesicles may serve as biomarkers and therapeutic targets or tools in human diseases. Cardiovascular disease undoubtedly represents one of the most intensely studied and rapidly growing areas of the extracellular vesicle field. However, in different studies related to cardiovascular disease, extracellular vesicles have been shown to exert diverse and sometimes discordant biological effects. Therefore, it might seem a puzzle whether these vesicles are in fact beneficial or detrimental to cardiovascular health. In this review we provide a general introduction to extracellular vesicles and an overview of their biological roles in cardiovascular diseases. Furthermore, we aim to untangle the various reasons for the observed discrepancy in biological effects of extracellular vesicles in cardiovascular diseases. To this end, we provide several examples that demonstrate that the observed functional diversity is in fact due to inherent differences among various types of extracellular vesicles.
Collapse
Affiliation(s)
- Xabier Osteikoetxea
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Andrea Németh
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Barbara W Sódar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Krisztina V Vukman
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit Irén Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
464
|
Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 2016; 6:22519. [PMID: 26931825 PMCID: PMC4773763 DOI: 10.1038/srep22519] [Citation(s) in RCA: 674] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/11/2016] [Indexed: 12/16/2022] Open
Abstract
Cells release nano-sized membrane vesicles that are involved in intercellular communication by transferring biological information between cells. It is generally accepted that cells release at least three types of extracellular vesicles (EVs): apoptotic bodies, microvesicles and exosomes. While a wide range of putative biological functions have been attributed to exosomes, they are assumed to represent a homogenous population of EVs. We hypothesized the existence of subpopulations of exosomes with defined molecular compositions and biological properties. Density gradient centrifugation of isolated exosomes revealed the presence of two distinct subpopulations, differing in biophysical properties and their proteomic and RNA repertoires. Interestingly, the subpopulations mediated differential effects on the gene expression programmes in recipient cells. In conclusion, we demonstrate that cells release distinct exosome subpopulations with unique compositions that elicit differential effects on recipient cells. Further dissection of exosome heterogeneity will advance our understanding of exosomal biology in health and disease and accelerate the development of exosome-based diagnostics and therapeutics.
Collapse
|
465
|
Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Théry C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 2016; 113:E968-77. [PMID: 26858453 PMCID: PMC4776515 DOI: 10.1073/pnas.1521230113] [Citation(s) in RCA: 2392] [Impact Index Per Article: 299.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have become the focus of rising interest because of their numerous functions in physiology and pathology. Cells release heterogeneous vesicles of different sizes and intracellular origins, including small EVs formed inside endosomal compartments (i.e., exosomes) and EVs of various sizes budding from the plasma membrane. Specific markers for the analysis and isolation of different EV populations are missing, imposing important limitations to understanding EV functions. Here, EVs from human dendritic cells were first separated by their sedimentation speed, and then either by their behavior upon upward floatation into iodixanol gradients or by immuno-isolation. Extensive quantitative proteomic analysis allowing comparison of the isolated populations showed that several classically used exosome markers, like major histocompatibility complex, flotillin, and heat-shock 70-kDa proteins, are similarly present in all EVs. We identified proteins specifically enriched in small EVs, and define a set of five protein categories displaying different relative abundance in distinct EV populations. We demonstrate the presence of exosomal and nonexosomal subpopulations within small EVs, and propose their differential separation by immuno-isolation using either CD63, CD81, or CD9. Our work thus provides guidelines to define subtypes of EVs for future functional studies.
Collapse
Affiliation(s)
- Joanna Kowal
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Guillaume Arras
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de masse Protéomique, 75248 Paris, France
| | - Marina Colombo
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Mabel Jouve
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Jakob Paul Morath
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Bjarke Primdal-Bengtson
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de masse Protéomique, 75248 Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de masse Protéomique, 75248 Paris, France
| | - Mercedes Tkach
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Clotilde Théry
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France;
| |
Collapse
|
466
|
Huynh N, VonMoss L, Smith D, Rahman I, Felemban MF, Zuo J, Rody WJ, McHugh KP, Holliday LS. Characterization of Regulatory Extracellular Vesicles from Osteoclasts. J Dent Res 2016; 95:673-9. [PMID: 26908631 DOI: 10.1177/0022034516633189] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), which include exosomes and ectosomes/microvesicles, have emerged as important intercellular regulators. EVs can interact with surface receptors of target cells and can transport luminal components, including messenger RNAs (mRNAs), microRNAs, and enzymes, to the cytosol of the target cell. Here, we show that hematopoietic cells grown in culture shed exosome-like EVs as they differentiate from preosteoclasts into osteoclasts. These EVs were between 25 and 120 nm (mean, 40 nm) in diameter determined by transmission electron microscopy. The exosome-associated markers CD63 and EpCAM were enriched in the isolated EVs while markers of Golgi and endoplasmic reticulum were not detected. Treatment of isolated hematopoietic cells with EVs did not affect their receptor activator of nuclear factor κB-ligand (RANKL)-stimulated differentiation into osteoclasts. However, EVs from osteoclast precursors promoted 1,25-dihydroxyvitamin D3-dependent osteoclast formation in whole mouse marrow cultures, and EVs from osteoclast-enriched cultures inhibited osteoclastogenesis in the same cultures. These data suggested that osteoclast-derived EVs are paracrine regulators of osteoclastogenesis. EVs from mature osteoclasts contained receptor activator of nuclear factor κB (RANK). Immunogold labeling showed RANK was enriched in 1 in every 32 EVs isolated from osteoclast-enriched cultures. Depletion of RANK-rich EVs relieved the ability of osteoclast-derived EVs to inhibit osteoclast formation in 1,25-dihydroxyvitamin D3-stimulated marrow cultures. In summary, we show for the first time that EVs released by osteoclasts are novel regulators of osteoclastogenesis. Our data suggest that RANK in EVs may be mechanistically linked to the inhibition of osteoclast formation. RANK present in EVs may function by competitively inhibiting the stimulation of RANK on osteoclast surfaces by RANKL similar to osteoprotegerin. RANK-rich EVs may also take advantage of the RANK/RANKL interaction to target RANK-rich EVs to RANKL-bearing cells for the delivery of other regulatory molecules.
Collapse
Affiliation(s)
- N Huynh
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, USA
| | - L VonMoss
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, USA
| | - D Smith
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, USA
| | - I Rahman
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, USA
| | - M F Felemban
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, USA
| | - J Zuo
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, USA
| | - W J Rody
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, USA
| | - K P McHugh
- Department of Periodontics, University of Florida College of Dentistry, Gainesville, FL, USA
| | - L S Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, USA Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
467
|
Kaplan BLF, Li J, LaPres JJ, Pruett SB, Karmaus PWF. Contributions of nonhematopoietic cells and mediators to immune responses: implications for immunotoxicology. Toxicol Sci 2016; 145:214-32. [PMID: 26008184 DOI: 10.1093/toxsci/kfv060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotoxicology assessments have historically focused on the effects that xenobiotics exhibit directly on immune cells. These studies are invaluable as they identify immune cell targets and help characterize mechanisms and/or adverse outcome pathways of xenobiotics within the immune system. However, leukocytes can receive environmental cues by cell-cell contact or via released mediators from cells of organs outside of the immune system. These organs include, but are not limited to, the mucosal areas such as the lung and the gut, the liver, and the central nervous system. Homeostatic perturbation in these organs induced directly by toxicants can initiate and alter the outcome of local and systemic immunity. This review will highlight some of the identified nonimmune influences on immune homeostasis and provide summaries of how immunotoxic mechanisms of selected xenobiotics involve nonimmune cells or mediators. Thus, this review will identify data gaps and provide possible alternative mechanisms by which xenobiotics alter immune function that could be considered during immunotoxicology safety assessment.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Jinze Li
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - John J LaPres
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Stephen B Pruett
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Peer W F Karmaus
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
468
|
Kanada M, Bachmann MH, Contag CH. Signaling by Extracellular Vesicles Advances Cancer Hallmarks. Trends Cancer 2016; 2:84-94. [DOI: 10.1016/j.trecan.2015.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022]
|
469
|
Elevated Abundance, Size, and MicroRNA Content of Plasma Extracellular Vesicles in Viremic HIV-1+ Patients: Correlations With Known Markers of Disease Progression. J Acquir Immune Defic Syndr 2016; 70:219-27. [PMID: 26181817 PMCID: PMC4627170 DOI: 10.1097/qai.0000000000000756] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Because of factors only partly understood, the generalized elevated immune activation and inflammation characterizing HIV-1-infected patients are corrected incompletely with antiretroviral therapy (ART). Extracellular vesicles (EVs) including exosomes and microvesicles released by several cell types may contribute to immune activation and dysfunction. EV size, abundance, and content appear to differ according to infection phase, disease progression, and ART. METHODS We examined whether the size of EVs and the abundance of exosomes in plasma are associated with cell and tissue activation as well as with viral production. Acetylcholinesterase-bearing (AChE+) exosomes in plasma were quantified using an AChE assay. EV size was analyzed using dynamic light scattering. Proteins and microRNAs present in EVs were detected by Western blot and real-time polymerase chain reaction, respectively. RESULTS Exosomes were found more abundant in the plasma of ART-naive patients. EV size was larger in ART-naive than in ART-suppressed patients, elite controllers, or healthy control subjects. Both exosome abundance and EV sizes were inversely correlated with CD4/CD8 T-cell ratio and neutrophil, platelet, and CD4 T-cell counts and positively correlated with CD8 T-cell counts. A negative correlation was found between CD4 T-cell nadir and exosome abundance, but not EV size. Levels of miR-155 and miR-223 but not miR-92 were strongly correlated negatively with EV abundance and size in ART-naive patients. CONCLUSIONS Monitoring of circulating EVs and EV-borne microRNA is possible and may provide new insight into HIV-1 pathogenesis, disease progression, and the associated inflammatory state, as well as the efficacy of ART and the treatments intended to reduce immune activation.
Collapse
|
470
|
Exosomes derived from atorvastatin-modified bone marrow dendritic cells ameliorate experimental autoimmune myasthenia gravis by up-regulated levels of IDO/Treg and partly dependent on FasL/Fas pathway. J Neuroinflammation 2016; 13:8. [PMID: 26757900 PMCID: PMC4710023 DOI: 10.1186/s12974-016-0475-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 01/03/2016] [Indexed: 12/20/2022] Open
Abstract
Background Previously, we have demonstrated that spleen-derived dendritic cells (DCs) modified with atorvastatin suppressed immune responses of experimental autoimmune myasthenia gravis (EAMG). However, the effects of exosomes derived from atorvastatin-modified bone marrow DCs (BMDCs) (statin-Dex) on EAMG are still unknown. Methods Immunophenotypical characterization of exosomes from atorvastatin- and dimethylsulfoxide (DMSO)-modified BMDCs was performed by electron microscopy, flow cytometry, and western blotting. In order to investigate whether statin-DCs-derived exosomes (Dex) could induce immune tolerance in EAMG, we administrated statin-Dex, control-Dex, or phosphate-buffered saline (PBS) into EAMG rats via tail vein injection. The tracking of injected Dex and the effect of statin-Dex injection on endogenous DCs were performed by immunofluorescence and flow cytometry, respectively. The number of Foxp3+ cells in thymuses was examined using immunocytochemistry. Treg cells, cytokine secretion, lymphocyte proliferation, cell viability and apoptosis, and the levels of autoantibody were also carried out to evaluate the effect of statin-Dex on EAMG rats. To further investigate the involvement of FasL/Fas in statin-Dex-induced apoptosis, the underlying mechanisms were studied by FasL neutralization assays. Results Our data showed that the systemic injection of statin-Dex suppressed the clinical symptoms of EAMG rats. These statin-Dex had immune regulation functions in immune organs, such as the spleen, thymus, and popliteal and inguinal lymph nodes. Furthermore, statin-Dex exerted their immunomodulatory effects in vivo by decreasing the expression of CD80, CD86, and MHC class II on endogenous DCs. Importantly, the therapeutic effects of statin-Dex on EAMG rats were associated with up-regulated levels of indoleamine 2,3-dioxygenase (IDO)/Treg and partly dependent on FasL/Fas pathway, which finally resulted in decreased synthesis of anti-R97–116 IgG, IgG2a, and IgG2b antibodies. Conclusions Our data suggest that atorvastatin-induced immature BMDCs are able to secrete tolerogenic Dex, which are involved in the suppression of immune responses in EAMG rats. Importantly, our study provides a novel cell-free approach for the treatment of autoimmune diseases.
Collapse
|
471
|
Gregory CD, Ford CA, Voss JJLP. Microenvironmental Effects of Cell Death in Malignant Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 930:51-88. [PMID: 27558817 DOI: 10.1007/978-3-319-39406-0_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although apoptosis is well recognized as a cell death program with clear anticancer roles, accumulating evidence linking apoptosis with tissue repair and regeneration indicates that its relationship with malignant disease is more complex than previously thought. Here we review how the responses of neighboring cells in the microenvironment of apoptotic tumor cells may contribute to the cell birth/cell death disequilibrium that provides the basis for cancerous tissue emergence and growth. We describe the bioactive properties of apoptotic cells and consider, in particular, how apoptosis of tumor cells can engender a range of responses including pro-oncogenic signals having proliferative, angiogenic, reparatory, and immunosuppressive features. Drawing on the parallels between wound healing, tissue regeneration and cancer, we propose the concept of the "onco-regenerative niche," a cell death-driven generic network of tissue repair and regenerative mechanisms that are hijacked in cancer. Finally, we consider how the responses to cell death in tumors can be targeted to provide more effective and long-lasting therapies.
Collapse
Affiliation(s)
- Christopher D Gregory
- MRC Centre for Inflammation Research, University of Edinburgh Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK.
| | - Catriona A Ford
- MRC Centre for Inflammation Research, University of Edinburgh Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Jorine J L P Voss
- MRC Centre for Inflammation Research, University of Edinburgh Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
472
|
Abstract
Research on extracellular vesicles (EVs) is a new and emerging field that is rapidly growing. Many features of these structures still need to be described and discovered. This concerns their biogenesis, their release and cellular entrance mechanisms, as well as their functions, particularly in vivo. Hence our knowledge on EV is constantly evolving and sometimes changing. In our review we summarize the most important facts of our current knowledge about extracellular vesicles and described some of the assumed functions in the context of cancer and HIV infection.
Collapse
Affiliation(s)
- Florian Dreyer
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Hartmannstr. 14, 91054, Erlangen, Germany
| | - Andreas Baur
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Hartmannstr. 14, 91054, Erlangen, Germany.
| |
Collapse
|
473
|
Pocsfalvi G, Stanly C, Vilasi A, Fiume I, Capasso G, Turiák L, Buzas EI, Vékey K. Mass spectrometry of extracellular vesicles. MASS SPECTROMETRY REVIEWS 2016; 35:3-21. [PMID: 25705034 DOI: 10.1002/mas.21457] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
The review briefly summaries main features of extracellular vesicles, a joint terminology for exosomes, microvesicles, and apoptotic vesicles. These vesicles are in the center of interest in biology and medical sciences, and form a very active field of research. Mass spectrometry (MS), with its specificity and sensitivity, has the potential to identify and characterize molecular composition of these vesicles; but as yet there are only a limited, but fast-growing, number of publications that use MS workflows in this field. MS is the major tool to assess protein composition of extracellular vesicles: qualitative and quantitative proteomics approaches are both reviewed. Beside proteins, lipid and metabolite composition of vesicles might also be best assessed by MS techniques; however there are few applications as yet in this respect. The role of alternative analytical approaches, like gel-based proteomics and antibody-based immunoassays, are also mentioned. The objective of the review is to give an overview of this fast-growing field to help orient MS-based research on extracellular vesicles.
Collapse
Affiliation(s)
- Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Christopher Stanly
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Annalisa Vilasi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Immacolata Fiume
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Giovambattista Capasso
- Division of Nephrology, Department of Cardio-Vascular Sciences, Second University of Naples, Naples, Italy
| | - Lilla Turiák
- Mass Spectrometry Proteomics Group, Institute of Organic Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Edit I Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Károly Vékey
- Mass Spectrometry Proteomics Group, Institute of Organic Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
474
|
Brites D, Fernandes A. Neuroinflammation and Depression: Microglia Activation, Extracellular Microvesicles and microRNA Dysregulation. Front Cell Neurosci 2015; 9:476. [PMID: 26733805 PMCID: PMC4681811 DOI: 10.3389/fncel.2015.00476] [Citation(s) in RCA: 397] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022] Open
Abstract
Patients with chronic inflammation are often associated with the emergence of depression symptoms, while diagnosed depressed patients show increased levels of circulating cytokines. Further studies revealed the activation of the brain immune cell microglia in depressed patients with a greater magnitude in individuals that committed suicide, indicating a crucial role for neuroinflammation in depression brain pathogenesis. Rapid advances in the understanding of microglial and astrocytic neurobiology were obtained in the past 15–20 years. Indeed, recent data reveal that microglia play an important role in managing neuronal cell death, neurogenesis, and synaptic interactions, besides their involvement in immune-response generating cytokines. The communication between microglia and neurons is essential to synchronize these diverse functions with brain activity. Evidence is accumulating that secreted extracellular vesicles (EVs), comprising ectosomes and exosomes with a size ranging from 0.1–1 μm, are key players in intercellular signaling. These EVs may carry specific proteins, mRNAs and microRNAs (miRNAs). Transfer of exosomes to neurons was shown to be mediated by oligodendrocytes, microglia and astrocytes that may either be supportive to neurons, or instead disseminate the disease. Interestingly, several recent reports have identified changes in miRNAs in depressed patients, which target not only crucial pathways associated with synaptic plasticity, learning and memory but also the production of neurotrophic factors and immune cell modulation. In this article, we discuss the role of neuroinflammation in the emergence of depression, namely dynamic alterations in the status of microglia response to stimulation, and how their activation phenotypes may have an etiological role in neurodegeneneration, in particular in depressive-like behavior. We will overview the involvement of miRNAs, exosomes, ectosomes and microglia in regulating critical pathways associated with depression and how they may contribute to other brain disorders including amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD) and Parkinson’s disease (PD), which share several neuroinflammatory-associated processes. Specific reference will be made to EVs as potential biomarkers and disease monitoring approaches, focusing on their potentialities as drug delivery vehicles, and on putative therapeutic strategies using autologous exosome-based delivery systems to treat neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
475
|
Dieudé M, Bell C, Turgeon J, Beillevaire D, Pomerleau L, Yang B, Hamelin K, Qi S, Pallet N, Béland C, Dhahri W, Cailhier JF, Rousseau M, Duchez AC, Lévesque T, Lau A, Rondeau C, Gingras D, Muruve D, Rivard A, Cardinal H, Perreault C, Desjardins M, Boilard É, Thibault P, Hébert MJ. The 20
S
proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection. Sci Transl Med 2015; 7:318ra200. [DOI: 10.1126/scitranslmed.aac9816] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
476
|
Extracellular Vesicles: Evolving Factors in Stem Cell Biology. Stem Cells Int 2015; 2016:1073140. [PMID: 26649044 PMCID: PMC4663346 DOI: 10.1155/2016/1073140] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/09/2015] [Accepted: 07/16/2015] [Indexed: 12/18/2022] Open
Abstract
Stem cells are proposed to continuously secrete trophic factors that potentially serve as mediators of autocrine and paracrine activities, associated with reprogramming of the tumor microenvironment, tissue regeneration, and repair. Hitherto, significant efforts have been made to understand the level of underlying paracrine activities influenced by stem cell secreted trophic factors, as little is known about these interactions. Recent findings, however, elucidate this role by reporting the effects of stem cell derived extracellular vesicles (EVs) that mimic the phenotypes of the cells from which they originate. Exchange of genetic information utilizing persistent bidirectional communication mediated by stem cell-EVs could regulate stemness, self-renewal, and differentiation in stem cells and their subpopulations. This review therefore discusses stem cell-EVs as evolving communication factors in stem cell biology, focusing on how they regulate cell fates by inducing persistent and prolonged genetic reprogramming of resident cells in a paracrine fashion. In addition, we address the role of stem cell-secreted vesicles in shaping the tumor microenvironment and immunomodulation and in their ability to stimulate endogenous repair processes during tissue damage. Collectively, these functions ensure an enormous potential for future therapies.
Collapse
|
477
|
Turpin D, Truchetet ME, Faustin B, Augusto JF, Contin-Bordes C, Brisson A, Blanco P, Duffau P. Role of extracellular vesicles in autoimmune diseases. Autoimmun Rev 2015; 15:174-83. [PMID: 26554931 DOI: 10.1016/j.autrev.2015.11.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023]
Abstract
Extracellular vesicles (EVs) consist of exosomes released upon fusion of multivesicular bodies with the cell plasma membrane and microparticles shed directly from the cell membrane of many cell types. EVs can mediate cell-cell communication and are involved in many processes including inflammation, immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. Accumulating evidence reveals that EVs act in the establishment, maintenance and modulation of autoimmune processes among several others involved in cancer and cardiovascular complications. EVs could also present biomedical applications, as disease biomarkers and therapeutic targets or agents for drug delivery.
Collapse
Affiliation(s)
- Delphine Turpin
- Immunology and Immunogenetic Department, Bordeaux Hospital, place Amélie Raba Léon, 33076 Bordeaux Cedex, France.
| | - Marie-Elise Truchetet
- Rheumatology Department, Bordeaux Hospital, place Amélie Raba Léon, 33076 Bordeaux Cedex, France; UMR-5164 CNRS, CIRID, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Benjamin Faustin
- UMR-5164 CNRS, CIRID, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Jean-François Augusto
- UMR-5164 CNRS, CIRID, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Cécile Contin-Bordes
- Immunology and Immunogenetic Department, Bordeaux Hospital, place Amélie Raba Léon, 33076 Bordeaux Cedex, France; UMR-5164 CNRS, CIRID, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Alain Brisson
- UMR-5248-CBMN CNRS University of Bordeaux-IBP, allée Geoffroy Saint-Hilaire, 33600 Pessac, France.
| | - Patrick Blanco
- Immunology and Immunogenetic Department, Bordeaux Hospital, place Amélie Raba Léon, 33076 Bordeaux Cedex, France; UMR-5164 CNRS, CIRID, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Pierre Duffau
- UMR-5164 CNRS, CIRID, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France; Internal Medicine and Clinical Immunology Department, Bordeaux Hospital, 1 rue Jean Burguet, 33075 Bordeaux Cedex, France.
| |
Collapse
|
478
|
Martínez-Zamora MA, Tàssies D, Creus M, Reverter JC, Puerto B, Monteagudo J, Carmona F, Balasch J. Higher levels of procoagulant microparticles in women with recurrent miscarriage are not associated with antiphospholipid antibodies. Hum Reprod 2015; 31:46-52. [PMID: 26534898 DOI: 10.1093/humrep/dev278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/14/2015] [Indexed: 12/28/2022] Open
Abstract
STUDY QUESTION Are the levels of circulating cell-derived microparticles (cMPs) in patients with recurrent miscarriage (RM) associated with the antiphospholipid syndrome (APS)? SUMMARY ANSWER cMPs in women with RM are not associated with antiphospholipid antibodies (aPLs). WHAT IS KNOWN ALREADY Previous studies have focused on cMP levels in RM patients. Most studies have shown higher levels of cMPs in RM patients whereas others have reported lower levels. Data regarding cMPs in patients with the APS are scanty in the literature. STUDY DESIGN, SIZE, DURATION A case-control study including three groups of patients. A total of 154 women were prospectively recruited from September 2009 to October 2013. Four patients refused to participate. The APS group consisted of 50 women that had been previously diagnosed with primary APS and had had ≥3 consecutive first trimester miscarriages. The uRM group included 52 couples with ≥3 consecutive first trimester miscarriages of unknown etiology. The fertile control (FER) group was composed of 52 healthy fertile women with no history of pregnancy losses. Miscarriage was defined as intrauterine pregnancy loss at <10 weeks' size on ultrasound. PARTICIPANTS/MATERIALS, SETTING, METHODS Venous blood samples for coagulation studies and cMP determinations were obtained. All patients underwent a thrombophilia study. MAIN RESULTS AND THE ROLE OF CHANCE cMP levels were significantly higher in the APS and uRM groups versus the FER group (P < 0.0001 and P = 0.009, respectively) (cMP number × 10(3)/ml plasma [mean ± SD]: APS: 18.5 ± 13.6; uRM: 16.3 ± 13.8; FER: 9.7 ± 4.6). There were no statistically significant differences in cMP levels between the APS and uRM groups. LIMITATIONS, REASONS FOR CAUTION The sample size was arbitrarily decided according to previous studies analyzing cMPs in RM patients. Different cMP subtypes were not investigated. WIDER IMPLICATIONS OF THE FINDINGS The present study adds further data on the subject showing that patients with RM, irrespective of testing positive for aPLs, have increased levels of cMPs compared with healthy fertile controls. The presence of elevated cMPs in RM women may reflect an ongoing systemic pathological, albeit asymptomatic, status that can become deleterious in the setting of pregnancy. STUDY FUNDING/COMPETING INTERESTS This study was supported in part by grant from FIS-PI11/01560 within the 'Plan Nacional de I+D+I' and co-funded by the 'ISCIII-Subdirección General de Evaluación' and the 'Fondo Europeo de Desarrollo Regional (FEDER)'. The authors have no competing interests to disclose. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- M A Martínez-Zamora
- Institut Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Institut d' Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - D Tàssies
- Hemotherapy and Hemostasis Unit, Hospital Clínic of Barcelona, Barcelona, Spain
| | - M Creus
- Institut Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Institut d' Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - J C Reverter
- Hemotherapy and Hemostasis Unit, Hospital Clínic of Barcelona, Barcelona, Spain
| | - B Puerto
- Institut Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Institut d' Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - J Monteagudo
- Hemotherapy and Hemostasis Unit, Hospital Clínic of Barcelona, Barcelona, Spain
| | - F Carmona
- Institut Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Institut d' Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - J Balasch
- Institut Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clínic of Barcelona, Faculty of Medicine, University of Barcelona, Institut d' Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
479
|
Exosome release following activation of the dendritic cell immunoreceptor: A potential role in HIV-1 pathogenesis. Virology 2015; 484:103-112. [DOI: 10.1016/j.virol.2015.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/27/2015] [Accepted: 05/13/2015] [Indexed: 01/26/2023]
|
480
|
Innate immune cells in the pathogenesis of primary systemic vasculitis. Rheumatol Int 2015; 36:169-82. [PMID: 26403285 DOI: 10.1007/s00296-015-3367-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022]
Abstract
Innate immune system forms the first line of defense against foreign substances. Neutrophils, eosinophils, erythrocytes, platelets, monocytes, macrophages, dendritic cells, γδ T cells, natural killer and natural killer T cells comprise the innate immune system. Genetic polymorphisms influencing the activation of innate immune cells predispose to development of vasculitis and influence its severity. Abnormally activated innate immune cells cross-talk with other cells of the innate immune system, present antigens more efficiently and activate T and B lymphocytes and cause tissue destruction via cell-mediated cytotoxicity and release of pro-inflammatory cytokines. These secreted cytokines further recruit other cells to the sites of vascular injury. They are involved in both the initiation as well as the perpetuation of vasculitis. Evidences suggest reversal of aberrant activation of immune cells in response to therapy. Understanding the role of innate immune cells in vasculitis helps understand the potential of therapeutic modulation of their activation to treat vasculitis.
Collapse
|
481
|
Fatima F, Nawaz M. Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. CHINESE JOURNAL OF CANCER 2015; 34:541-53. [PMID: 26369565 PMCID: PMC4593342 DOI: 10.1186/s40880-015-0051-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/27/2015] [Indexed: 12/18/2022]
Abstract
Stem cells are known to maintain stemness at least in part through secreted factors that promote stem-like phenotypes in resident cells. Accumulating evidence has clarified that stem cells release nano-vesicles, known as exosomes, which may serve as mediators of cell-to-cell communication and may potentially transmit stem cell phenotypes to recipient cells, facilitating stem cell maintenance, differentiation, self-renewal, and repair. It has become apparent that stem cell-derived exosomes mediate interactions among stromal elements, promote genetic instability in recipient cells, and induce malignant transformation. This review will therefore discuss the potential of stem cell-derived exosomes in the context of stromal remodeling and their ability to generate cancer-initiating cells in a tumor niche by inducing morphologic and functional differentiation of fibroblasts into tumor-initiating fibroblasts. In addition, the immunosuppressive potential of stem cell-derived exosomes in cancer immunotherapy and their prospective applications in cell-free therapies in future translational medicine is discussed.
Collapse
Affiliation(s)
- Farah Fatima
- Department of Pathology and Forensic Medicine, Faculty of Medicine Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, Sao Paulo, Brazil. .,Department of Rheumatology and Inflammation Research, University of Gothenburg, 480, 40530, Gothenburg, Sweden.
| | - Muhammad Nawaz
- Department of Pathology and Forensic Medicine, Faculty of Medicine Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, Sao Paulo, Brazil. .,Department of Rheumatology and Inflammation Research, University of Gothenburg, 480, 40530, Gothenburg, Sweden.
| |
Collapse
|
482
|
|
483
|
Essandoh K, Yang L, Wang X, Huang W, Qin D, Hao J, Wang Y, Zingarelli B, Peng T, Fan GC. Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2362-71. [PMID: 26300484 DOI: 10.1016/j.bbadis.2015.08.010] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 01/20/2023]
Abstract
Sepsis is an infection-induced severe inflammatory disorder that leads to multiple organ failure. Amongst organs affected, myocardial depression is believed to be a major contributor to septic death. While it has been identified that large amounts of circulating pro-inflammatory cytokines are culprit for triggering cardiac dysfunction in sepsis, the underlying mechanisms remain obscure. Additionally, recent studies have shown that exosomes released from bacteria-infected macrophages are pro-inflammatory. Hence, we examined in this study whether blocking the generation of exosomes would be protective against sepsis-induced inflammatory response and cardiac dysfunction. To this end, we pre-treated RAW264.7 macrophages with GW4869, an inhibitor of exosome biogenesis/release, followed by endotoxin (LPS) challenge. In vivo, we injected wild-type (WT) mice with GW4869 for 1h prior to endotoxin treatment or cecal ligation/puncture (CLP) surgery. We observed that pre-treatment with GW4869 significantly impaired release of both exosomes and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) in RAW264.7 macrophages. At 12h after LPS treatment or CLP surgery, WT mice pre-treated with GW4869 displayed lower amounts of exosomes and pro-inflammatory cytokines in the serum than control PBS-injected mice. Accordingly, GW4869 treatment diminished the sepsis-induced cardiac inflammation, attenuated myocardial depression and prolonged survival. Together, our findings indicate that blockade of exosome generation in sepsis dampens the sepsis-triggered inflammatory response and thereby, improves cardiac function and survival.
Collapse
Affiliation(s)
- Kobina Essandoh
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Liwang Yang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Xiaohong Wang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dongze Qin
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; The First Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jiukuan Hao
- Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tianqing Peng
- Critical Illness Research, Lawson Health Research Institute, ON N6A 4G5, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
484
|
Kapur R, Zufferey A, Boilard E, Semple JW. Nouvelle cuisine: platelets served with inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:5579-87. [PMID: 26048965 DOI: 10.4049/jimmunol.1500259] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Platelets are small cellular fragments with the primary physiological role of maintaining hemostasis. In addition to this well-described classical function, it is becoming increasingly clear that platelets have an intimate connection with infection and inflammation. This stems from several platelet characteristics, including their ability to bind infectious agents and secrete many immunomodulatory cytokines and chemokines, as well as their expression of receptors for various immune effector and regulatory functions, such as TLRs, which allow them to sense pathogen-associated molecular patterns. Furthermore, platelets contain RNA that can be nascently translated under different environmental stresses, and they are able to release membrane microparticles that can transport inflammatory cargo to inflammatory cells. Interestingly, acute infections can also result in platelet breakdown and thrombocytopenia. This report highlights these relatively new aspects of platelets and, thus, their nonhemostatic nature in an inflammatory setting.
Collapse
Affiliation(s)
- Rick Kapur
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; Canadian Blood Services, Toronto, Ontario M5B 1W8, Canada
| | - Anne Zufferey
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| | - Eric Boilard
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - John W Semple
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; Canadian Blood Services, Toronto, Ontario M5B 1W8, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario M5B 1W8, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5B 1W8, Canada; and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
485
|
Selected Aspects in the Pathogenesis of Autoimmune Diseases. Mediators Inflamm 2015; 2015:351732. [PMID: 26300591 PMCID: PMC4537751 DOI: 10.1155/2015/351732] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/24/2015] [Indexed: 11/26/2022] Open
Abstract
Autoimmune processes can be found in physiological circumstances. However, they are quenched with properly functioning regulatory mechanisms and do not evolve into full-blown autoimmune diseases. Once developed, autoimmune diseases are characterized by signature clinical features, accompanied by sustained cellular and/or humoral immunological abnormalities. Genetic, environmental, and hormonal defects, as well as a quantitative and qualitative impairment of immunoregulatory functions, have been shown in parallel to the relative dominance of proinflammatory Th17 cells in many of these diseases. In this review we focus on the derailed balance between regulatory and Th17 cells in the pathogenesis of autoimmune diseases. Additionally, we depict a cytokine imbalance, which gives rise to a biased T-cell homeostasis. The assessment of Th17/Treg-cell ratio and the simultaneous quantitation of cytokines, may give a useful diagnostic tool in autoimmune diseases. We also depict the multifaceted role of dendritic cells, serving as antigen presenting cells, contributing to the development of the pathognomonic cytokine signature and promote cellular and humoral autoimmune responses. Finally we describe the function and role of extracellular vesicles in particular autoimmune diseases. Targeting these key players of disease progression in patients with autoimmune diseases by immunomodulating therapy may be beneficial in future therapeutic strategies.
Collapse
|
486
|
D'Ambrosio A, Pontecorvo S, Colasanti T, Zamboni S, Francia A, Margutti P. Peripheral blood biomarkers in multiple sclerosis. Autoimmun Rev 2015; 14:1097-110. [PMID: 26226413 DOI: 10.1016/j.autrev.2015.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis is the most common autoimmune disorder affecting the central nervous system. The heterogeneity of pathophysiological processes in MS contributes to the highly variable course of the disease and unpredictable response to therapies. The major focus of the research on MS is the identification of biomarkers in biological fluids, such as cerebrospinal fluid or blood, to guide patient management reliably. Because of the difficulties in obtaining spinal fluid samples and the necessity for lumbar puncture to make a diagnosis has reduced, the research of blood-based biomarkers may provide increasingly important tools for clinical practice. However, currently there are no clearly established MS blood-based biomarkers. The availability of reliable biomarkers could radically alter the management of MS at critical phases of the disease spectrum, allowing for intervention strategies that may prevent evolution to long-term neurological disability. This article provides an overview of this research field and focuses on recent advances in blood-based biomarker research.
Collapse
Affiliation(s)
- Antonella D'Ambrosio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Pontecorvo
- Multiple Sclerosis Center of Department of Neurology and Psychiatry of "Sapienza" University of Rome, Italy
| | - Tania Colasanti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Zamboni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Ada Francia
- Multiple Sclerosis Center of Department of Neurology and Psychiatry of "Sapienza" University of Rome, Italy
| | - Paola Margutti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
487
|
Pelizzo G, Avanzini MA, Icaro Cornaglia A, Osti M, Romano P, Avolio L, Maccario R, Dominici M, De Silvestri A, Andreatta E, Costanzo F, Mantelli M, Ingo D, Piccinno S, Calcaterra V. Mesenchymal stromal cells for cutaneous wound healing in a rabbit model: pre-clinical study applicable in the pediatric surgical setting. J Transl Med 2015; 13:219. [PMID: 26152232 PMCID: PMC4495634 DOI: 10.1186/s12967-015-0580-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/24/2015] [Indexed: 12/13/2022] Open
Abstract
Objective Mesenchymal stromal cells
(MSCs) expanded in vitro have been proposed as a potential therapy for congenital or acquired skin defects in pediatrics. The aim of this pre-clinical study was to investigate the effects of intradermal injections of MSC in experimental cutaneous wound repair comparing allogeneic and autologous adipose stem cells (ASCs) and autologous bone marrow-mesenchymal stromal cells (BM-MSCs). Methods Mesenchymal stromal cells were in vitro expanded from adipose and BM tissues of young female New Zealand rabbits. MSCs were characterized for plastic adhesion, surface markers, proliferation and differentiation capacity. When an adequate number of cells (ASCs 10 × 106 and BM-MSCs 3 × 106, because of their low rate of proliferation) was reached, two skin wounds were surgically induced in each animal. The first was topically treated with cell infusions, the second was used as a control. The intradermal inoculation included autologous or allogeneic ASCs or autologous BM-MSCs. For histological examination, animals were sacrificed and wounds were harvested after 11 and 21 days of treatment. Results Rabbit ASCs were isolated and expanded in vitro with relative abundance, cells expressed typical surface markers (CD49e, CD90 and CD29). Topically, ASC inoculation provided more rapid wound healing than BM-MSCs and controls. Improved re-epithelization, reduced inflammatory infiltration and increased collagen deposition were observed in biopsies from wounds treated with ASCs, with the best result in the autologous setting. ASCs also improved restoration of skin architecture during wound healing. Conclusion The use of ASCs may offer a promising solution to treat extended wounds. Pre-clinical studies are however necessary to validate the best skin regeneration technique, which could be used in pediatric surgical translational research.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Antonia Icaro Cornaglia
- Histology and Embryology Unit, Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy.
| | - Monica Osti
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Piero Romano
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Luigi Avolio
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Rita Maccario
- Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio, Emilia, Italy.
| | - Annalisa De Silvestri
- Biometry and Clinical Epidemiology Unit, Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Erika Andreatta
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Federico Costanzo
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Melissa Mantelli
- Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Daniela Ingo
- Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Serena Piccinno
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio, Emilia, Italy.
| | - Valeria Calcaterra
- Pediatric Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy.
| |
Collapse
|
488
|
Frühbeis C, Helmig S, Tug S, Simon P, Krämer-Albers EM. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles 2015; 4:28239. [PMID: 26142461 PMCID: PMC4491306 DOI: 10.3402/jev.v4.28239] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/06/2015] [Accepted: 06/10/2015] [Indexed: 01/18/2023] Open
Abstract
Cells secrete extracellular vesicles (EVs) by default and in response to diverse stimuli for the purpose of cell communication and tissue homeostasis. EVs are present in all body fluids including peripheral blood, and their appearance correlates with specific physiological and pathological conditions. Here, we show that physical activity is associated with the release of nano-sized EVs into the circulation. Healthy individuals were subjected to an incremental exercise protocol of cycling or running until exhaustion, and EVs were isolated from blood plasma samples taken before, immediately after and 90 min after exercise. Small EVs with the size of 100-130 nm, that carried proteins characteristic of exosomes, were significantly increased immediately after cycling exercise and declined again within 90 min at rest. In response to treadmill running, elevation of small EVs was moderate but appeared more sustained. To delineate EV release kinetics, plasma samples were additionally taken at the end of each increment of the cycling exercise protocol. Release of small EVs into the circulation was initiated in an early phase of exercise, before the individual anaerobic threshold, which is marked by the rise of lactate. Taken together, our study revealed that exercise triggers a rapid release of EVs with the characteristic size of exosomes into the circulation, initiated in the aerobic phase of exercise. We hypothesize that EVs released during physical activity may participate in cell communication during exercise-mediated adaptation processes that involve signalling across tissues and organs.
Collapse
Affiliation(s)
- Carsten Frühbeis
- Molecular Cell Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne Helmig
- Department of Sports Medicine, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Suzan Tug
- Department of Sports Medicine, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, Johannes Gutenberg-University Mainz, Mainz, Germany;
| | | |
Collapse
|
489
|
Grasso L, Wyss R, Weidenauer L, Thampi A, Demurtas D, Prudent M, Lion N, Vogel H. Molecular screening of cancer-derived exosomes by surface plasmon resonance spectroscopy. Anal Bioanal Chem 2015; 407:5425-32. [PMID: 25925862 PMCID: PMC4477949 DOI: 10.1007/s00216-015-8711-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/31/2015] [Accepted: 04/15/2015] [Indexed: 01/29/2023]
Abstract
We report on a generic method to detect and identify the molecular profile of exosomes either derived from cultured cell lines or isolated from biofluids. Exosomes are nanovesicles shed by cells into their microenvironment and carry the molecular identity of their mother cells. These vesicles are actively involved in intercellular communication under physiological conditions and ultimately in the spread of various diseases such as cancer. As they are accessible in most biofluids (e.g., blood, urine, or saliva), these biological entities are promising tools for cancer diagnostics, offering a non-invasive and remote access to the molecular state of the disease. The composition of exosomes derived from cancer cells depends on the sort and state of the tumor, requiring a screening of multiple antigens to fully characterize the disease. Here, we exploited the capacity of surface plasmon resonance biosensing to detect simultaneously multiple exosomal and cancer biomarkers on exosomes derived from breast cancer cells. We developed an immunosensor surface which provides efficient and specific capture of exosomes, together with their identification through their distinct molecular profiles. The successful analysis of blood samples demonstrated the suitability of our bioanalytical procedure for clinical use.
Collapse
Affiliation(s)
- Luigino Grasso
- />Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Station 6, 1015 Lausanne, Switzerland
| | - Romain Wyss
- />Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Station 6, 1015 Lausanne, Switzerland
| | - Lorenz Weidenauer
- />Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Station 6, 1015 Lausanne, Switzerland
| | - Ashwin Thampi
- />Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Station 6, 1015 Lausanne, Switzerland
| | - Davide Demurtas
- />Interdisciplinary Center for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Michel Prudent
- />Transfusion Interrégionale CRS, Laboratoire de Recherche sur les Produits Sanguins, Rte de la Corniche 2, 1066 Epalinges, Switzerland
| | - Niels Lion
- />Transfusion Interrégionale CRS, Laboratoire de Recherche sur les Produits Sanguins, Rte de la Corniche 2, 1066 Epalinges, Switzerland
| | - Horst Vogel
- />Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne, Station 6, 1015 Lausanne, Switzerland
| |
Collapse
|
490
|
Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA. Proc Natl Acad Sci U S A 2015; 112:E3564-73. [PMID: 26106157 DOI: 10.1073/pnas.1507905112] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Platelets are anucleated blood elements highly potent at generating extracellular vesicles (EVs) called microparticles (MPs). Whereas EVs are accepted as an important means of intercellular communication, the mechanisms underlying platelet MP internalization in recipient cells are poorly understood. Our lipidomic analyses identified 12(S)-hydroxyeicosatetranoic acid [12(S)-HETE] as the predominant eicosanoid generated by MPs. Mechanistically, 12(S)-HETE is produced through the concerted activity of secreted phospholipase A2 IIA (sPLA2-IIA), present in inflammatory fluids, and platelet-type 12-lipoxygenase (12-LO), expressed by platelet MPs. Platelet MPs convey an elaborate set of transcription factors and nucleic acids, and contain mitochondria. We observed that MPs and their cargo are internalized by activated neutrophils in the endomembrane system via 12(S)-HETE. Platelet MPs are found inside neutrophils isolated from the joints of arthritic patients, and are found in neutrophils only in the presence of sPLA2-IIA and 12-LO in an in vivo model of autoimmune inflammatory arthritis. Using a combination of genetically modified mice, we show that the coordinated action of sPLA2-IIA and 12-LO promotes inflammatory arthritis. These findings identify 12(S)-HETE as a trigger of platelet MP internalization by neutrophils, a mechanism highly relevant to inflammatory processes. Because sPLA2-IIA is induced during inflammation, and 12-LO expression is restricted mainly to platelets, these observations demonstrate that platelet MPs promote their internalization in recipient cells through highly regulated mechanisms.
Collapse
|
491
|
Hoefer IE, Steffens S, Ala-Korpela M, Bäck M, Badimon L, Bochaton-Piallat ML, Boulanger CM, Caligiuri G, Dimmeler S, Egido J, Evans PC, Guzik T, Kwak BR, Landmesser U, Mayr M, Monaco C, Pasterkamp G, Tuñón J, Weber C. Novel methodologies for biomarker discovery in atherosclerosis. Eur Heart J 2015; 36:2635-42. [DOI: 10.1093/eurheartj/ehv236] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/18/2015] [Indexed: 01/21/2023] Open
|
492
|
Fuhrmann G, Herrmann IK, Stevens MM. Cell-derived vesicles for drug therapy and diagnostics: opportunities and challenges. NANO TODAY 2015; 10:397-409. [PMID: 28458718 PMCID: PMC5409525 DOI: 10.1016/j.nantod.2015.04.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Extracellular vesicles are small lipid-based membrane-bound entities shed by cells under both physiological and pathological conditions. Their discovery as intercellular communicators through transfer of nucleic acid- and protein-based cargos between cells locally and at distance in a highly specific manner has created recent excitement. The information they transport and their composition may vary depending on the cell of origin as well as the eliciting stimulus. Such sensitive changes in vesicle characteristics hold significant promise for the improved diagnosis of pathological conditions, including infections and neoplastic lesions in a minimally invasive way. Similarly, these cell-derived vesicles exhibit promising characteristics that could enhance drug targeting efficiencies. Recent developments in the field have aimed at studying EVs as novel drug carriers due to their natural composition, biological function and selective cell interaction. In this review, we discuss new research avenues in diagnostics and drug therapy based on extracellular vesicles. We show how cell-derived vesicles can be harvested and engineered to meet application-specific design requirements. We finally discuss potential risks encountered when translating extracellular vesicle based approaches into (pre)clinical applications.
Collapse
Affiliation(s)
- Gregor Fuhrmann
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| | - Inge K. Herrmann
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| |
Collapse
|
493
|
Pocsfalvi G, Raj DAA, Fiume I, Vilasi A, Trepiccione F, Capasso G. Urinary extracellular vesicles as reservoirs of altered proteins during the pathogenesis of polycystic kidney disease. Proteomics Clin Appl 2015; 9:552-67. [PMID: 25755179 DOI: 10.1002/prca.201400199] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/05/2015] [Accepted: 03/02/2015] [Indexed: 01/05/2023]
Abstract
PURPOSE Recent findings indicate that urinary extracellular vesicles (EVs) might reflect the pathophysiological state of urinary system; and that EVs-induced ciliary signaling is a possible mechanism of intercellular communication within the tract. Here, we aimed to analyze the protein expression of urinary EVs during autosomal dominant polycystic kidney disease (ADPKD). EXPERIMENTAL DESIGN EVs were isolated from pooled urine samples of healthy control and ADPKD patients at two different stages of the disease and under tolvaptan treatment using the double-cushion ultracentrifugation method. Proteins were identified and quantified by iTRAQ and multidimensional protein identification technology (MudPIT)-based quantitative proteomics. RESULTS Quantitative analyses identified 83 differentially expressed EV proteins. Many of these have apical membrane origin and are involved in signal transduction pathways of primary cilia, Ca(2+) -activated signaling, cell-cycle regulation, and cell differentiation. CONCLUSIONS AND CLINICAL RELEVANCE The reduced AQP-2 and the increased APO-A1 levels observed in all ADPKD-affected groups may reflects the impaired renal concentrating capability of these patients and correlated with estimated glomerular filtration rate decline. The levels of some upregulated proteins involved in Ca(2+) -activated signaling declined upon tolvaptan treatment. The results obtained suggest that the quantitative proteomics of urinary EVs might be useful to monitor proteins difficult to access noninvasively, and thus advance our understanding of urinary tract physiology and pathology.
Collapse
Affiliation(s)
- Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Delfin A A Raj
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Immacolata Fiume
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Annalisa Vilasi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Francesco Trepiccione
- Division of Nephrology, Department of Cardio-Vascular Sciences, Second University of Naples, Naples, Italy
| | - Giovambattista Capasso
- Division of Nephrology, Department of Cardio-Vascular Sciences, Second University of Naples, Naples, Italy
| |
Collapse
|
494
|
Gustafson CM, Shepherd AJ, Miller VM, Jayachandran M. Age- and sex-specific differences in blood-borne microvesicles from apparently healthy humans. Biol Sex Differ 2015; 6:10. [PMID: 25964851 PMCID: PMC4426551 DOI: 10.1186/s13293-015-0028-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/19/2015] [Indexed: 01/04/2023] Open
Abstract
Background Sex differences in incidence of cardiovascular disease may reflect age-associated intravascular cellular activation resulting in shedding of cell membrane-derived bioactive microvesicles (MV or microparticles) into the blood. Concentrations of cell-specific MV in blood have the potential to be a diagnostic/prognostic marker of pathology, but ranges of MV must first be established in healthy individuals. This study identified cellular origin of blood-borne MV >0.2 μm in blood of apparently healthy women and men aged from 20–70 years. Methods Venous blood from apparently healthy participants in the Mayo Clinic Biobank was collected into tubes containing protease inhibitors as the anticoagulant. MV were isolated by standardized differential centrifugation and characterized by digital flow cytometer. Each cellular origin of MV was verified by two different antibodies with strong correlation between the two distinct antibodies (e.g., for platelet-derived MV, r2 = 0.97). Results MV derived from platelets were the most abundant type of MV in blood from women and men in all age groups. Total numbers of phosphatidylserine, P-selectin, and platelet- and endothelium-derived MV were significantly (P < 0.05) greater in women than men. Numbers of MV from erythrocytes and stem/progenitor cells were significantly lower in premenopausal women than age-matched men. Number of tissue factor pathway inhibitor positive MV were significantly (P < 0.05) lower whereas erythrocyte-derived MV were significantly higher in postmenopausal women compared to premenopausal women. In women, there was a positive relationship between age and erythrocyte-derived MV (ρ = 0.28; P = 0.009), while in men adipocyte-derived MV increased with age (ρ = 0.33; P = 0.01). Conclusions This study provides ranges for cellular origin of blood-borne MV in age-matched, apparently healthy women and men from which to compare diagnostic and prognostic uses of blood-borne MV in larger studies and patient population. In addition, sex- and age-specific differences in phosphatidylserine, platelet-, endothelium-, erythrocyte-, and adipocyte-derived blood-borne MV may contribute to differential progression of cardiovascular disease in women compared to men.
Collapse
Affiliation(s)
- Callie M Gustafson
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| | - Alex J Shepherd
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| | - Virginia M Miller
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA ; Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| | - Muthuvel Jayachandran
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA ; Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| |
Collapse
|
495
|
Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods 2015; 87:11-25. [PMID: 25890246 DOI: 10.1016/j.ymeth.2015.04.008] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 12/20/2022] Open
Abstract
Secretion and exchange of extracellular vesicles (EVs) by most cell types is emerging as a fundamental biological process. Although much is known about EVs, there is still a lack of definition as to how many naturally occurring EV subtypes there are and how their properties and functionalities might differ. This vexing issue is critical if EVs are to be fully harnessed for therapeutic applications. To address this question we have developed and describe here a sequential centrifugal ultrafiltration (SCUF) method to examine, in an unbiased manner, what EV subtypes are released in vitro into cell culture medium using the human colon carcinoma cell line LIM1863 as a model system. Using the culture medium from ∼7.2×10(9) LIM1863 cells, SCUF was performed using hydrophilic PVDF membranes with low protein binding properties (Millipore Durapore™ Ultrafree-CL filters with 0.1, 0.22, 0.45 and 0.65 μm pore size). EV particle sizing was measured using both dynamic light scattering and cryo-electron microscopy. Comparative proteome profiling was performed by GeLC-MS/MS and qualitative protein differences between EV subtypes determined by label-free spectral counting. The results showed essentially two EV subtypes; one subtype (fraction Fn1) comprised heterogeneous EVs with particle diameters of 30-1300 nm, the other (fraction Fn5) being homogeneous EVs of 30-100 nm diameter; based on cryo-EM both EV subtypes were round shaped. Western blot analysis showed Fn5 (SCUF-Exos) contained traditional exosome marker proteins (Alix(+), TSG101(+), CD81(+), CD63(+)), while Fn1 (SCUF-sMVs) lacked these protein markers. These findings were consistent with sMVs isolated by differential centrifugation (10,000 g, DC-sMVs) and exosomes (100,000 g EVs depleted of 10,000 g material). The buoyant density of sMVs determined by OptiPrep™ density gradient centrifugation was 1.18-1.19 g/mL and exosomes 1.10-1.11 g/mL. Comparative protein profiling of SCUF-Exos/-sMVs revealed 354 and 606 unambiguous protein identifications, respectively, with 256 proteins in common. A salient finding was the first report of 350 proteins uniquely identified in sMVs may of which have the potential to enable discrimination of this EV subtype from exosomes (notably, members of the septin family, kinesin-like protein (KIF23), exportin-2/chromosome segregation like-1 protein (CSE1L), and Rac GTPase-activating protein 1 (RACGAP1)). We report for the first time that both SCUF-Exos and SCUF-sMVs isolated from LIM1863 colon cancer cells induce invasion of recipient NIH3T3 cells. Interestingly, the SCUF-sMVs promote invasion to a significantly greater extent (3-fold) than SCUF-Exos. This analytical SCUF method for fractionating EVs is potentially scalable using tangential flow filtration, thereby providing a solid foundation for future in-depth functional studies of EV subtypes using diverse cell types and functional assays.
Collapse
|
496
|
Affiliation(s)
- L. H. Boudreau
- Centre de Recherche en Rhumatologie et Immunologie; Centre de Recherche du Centre Hospitalier Universitaire de Québec; Faculté de Médecine de l'Université Laval; Québec QC Canada
| | - G. Marcoux
- Centre de Recherche en Rhumatologie et Immunologie; Centre de Recherche du Centre Hospitalier Universitaire de Québec; Faculté de Médecine de l'Université Laval; Québec QC Canada
| | - E. Boilard
- Centre de Recherche en Rhumatologie et Immunologie; Centre de Recherche du Centre Hospitalier Universitaire de Québec; Faculté de Médecine de l'Université Laval; Québec QC Canada
| |
Collapse
|
497
|
Tran TH, Mattheolabakis G, Aldawsari H, Amiji M. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases. Clin Immunol 2015; 160:46-58. [PMID: 25842185 DOI: 10.1016/j.clim.2015.03.021] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022]
Abstract
Cell secreted exosomes (30-100nm vesicles) play a major role in intercellular communication due to their ability to transfer proteins and nucleic acids from one cell to another. Depending on the originating cell type and the cargo, exosomes can have immunosuppressive or immunostimulatory effects, which have potential application as immunotherapies for cancer and autoimmune diseases. Cellular components shed from tumor cells or antigen presenting cells (APCs), such as dendritic cells, macrophages and B cells, have been shown to be efficiently packaged in exosomes. In this review, we focus on the application of exosomes as nanocarriers and immunological agents for cancer and autoimmune immunotherapy. APC-derived exosomes demonstrate effective therapeutic efficacy for the treatment of cancer and experimental autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. In addition to their intrinsic immunomodulating activity, exosomes have many advantages over conventional nanocarriers for drug and gene delivery.
Collapse
Affiliation(s)
- Thanh-Huyen Tran
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - George Mattheolabakis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Hibah Aldawsari
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA; Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
498
|
Osteikoetxea X, Balogh A, Szabó-Taylor K, Németh A, Szabó TG, Pálóczi K, Sódar B, Kittel Á, György B, Pállinger É, Matkó J, Buzás EI. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties. PLoS One 2015; 10:e0121184. [PMID: 25798862 PMCID: PMC4370721 DOI: 10.1371/journal.pone.0121184] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/28/2015] [Indexed: 12/15/2022] Open
Abstract
In recent years the study of extracellular vesicles has gathered much scientific and clinical interest. As the field is expanding, it is becoming clear that better methods for characterization and quantification of extracellular vesicles as well as better standards to compare studies are warranted. The goal of the present work was to find improved parameters to characterize extracellular vesicle preparations. Here we introduce a simple 96 well plate-based total lipid assay for determination of lipid content and protein to lipid ratios of extracellular vesicle preparations from various myeloid and lymphoid cell lines as well as blood plasma. These preparations included apoptotic bodies, microvesicles/microparticles, and exosomes isolated by size-based fractionation. We also investigated lipid bilayer order of extracellular vesicle subpopulations using Di-4-ANEPPDHQ lipid probe, and lipid composition using affinity reagents to clustered cholesterol (monoclonal anti-cholesterol antibody) and ganglioside GM1 (cholera toxin subunit B). We have consistently found different protein to lipid ratios characteristic for the investigated extracellular vesicle subpopulations which were substantially altered in the case of vesicular damage or protein contamination. Spectral ratiometric imaging and flow cytometric analysis also revealed marked differences between the various vesicle populations in their lipid order and their clustered membrane cholesterol and GM1 content. Our study introduces for the first time a simple and readily available lipid assay to complement the widely used protein assays in order to better characterize extracellular vesicle preparations. Besides differentiating extracellular vesicle subpopulations, the novel parameters introduced in this work (protein to lipid ratio, lipid bilayer order, and lipid composition), may prove useful for quality control of extracellular vesicle related basic and clinical studies.
Collapse
Affiliation(s)
- Xabier Osteikoetxea
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Andrea Balogh
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Katalin Szabó-Taylor
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Andrea Németh
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Tamás Géza Szabó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Krisztina Pálóczi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Barbara Sódar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Ágnes Kittel
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Bence György
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - János Matkó
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Edit Irén Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
499
|
Shao Y, Yu Y, Zhou Q, Li C, Yang L, Pei CG. Inhibition of miR-134 Protects Against Hydrogen Peroxide-Induced Apoptosis in Retinal Ganglion Cells. J Mol Neurosci 2015; 56:461-71. [PMID: 25744098 DOI: 10.1007/s12031-015-0522-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) have been suggested to play an important role in neurological diseases. Particularly, miR-134 is reportedly involved in regulating neuron survival. However, the association between miR-134 and retinal ganglion cell (RGC) survival under adverse stimulus has not been extensively investigated. In this study, we aimed to explore the role and underlying mechanism of miR-134 in regulating RGC apoptosis in response to hydrogen peroxide (H2O2) treatment. Results showed that the expression of miR-134 dose- and time-dependently increased in RGC after H2O2 treatment. H2O2-induced RGC apoptosis was significantly attenuated by the inhibition of miR-134 expression by antagomiR-134 and was enhanced by miR-134 overexpression. Luciferase reporter assay revealed a direct interaction between miR-134 and the 3'-untranslated region of cyclic AMP-response element-binding protein (CREB), a critical transcription factor for neuronal protection. In H2O2-treated RGCs, the inhibition of miR-134 significantly elevated the expression of CREB and its downstream genes, including brain-derived neurotrophic factor (BDNF) and Bcl-2. Furthermore, the inhibition of miR-134 also increased the expression of miR-132, a rapid response gene downstream of CREB. In addition, the target gene of miR-132, acetylcholinesterase was expectedly decreased by miR-134 inhibition. However, the overexpression of miR-134 exerted an opposite effect. The knockdown of CREB apparently abolished the protective effect of miR-134 inhibition against H2O2-induced RGC apoptosis. The increased expression of BDNF and Bcl-2 induced by miR-134 inhibition was also abrogated by CREB knockdown. Overall, our results suggested that the downregulation of miR-134 can effectively protect against H2O2-induced RGC apoptosis by negatively modulating CREB expression.
Collapse
Affiliation(s)
- Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang, 330006, China
| | | | | | | | | | | |
Collapse
|
500
|
Oxidative and other posttranslational modifications in extracellular vesicle biology. Semin Cell Dev Biol 2015; 40:8-16. [PMID: 25721811 DOI: 10.1016/j.semcdb.2015.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles including exosomes, microvesicles and apoptotic vesicles, are phospholipid bilayer surrounded structures secreted by cells universally, in an evolutionarily conserved fashion. Posttranslational modifications such as oxidation, citrullination, phosphorylation and glycosylation play diverse roles in extracellular vesicle biology. Posttranslational modifications orchestrate the biogenesis of extracellular vesicles. The signals extracellular vesicles transmit between cells also often function via modulating posttranslational modifications of target molecules, given that extracellular vesicles are carriers of several active enzymes catalysing posttranslational modifications. Posttranslational modifications of extracellular vesicles can also contribute to disease pathology by e.g. amplifying inflammation, generating neoepitopes or carrying neoepitopes themselves.
Collapse
|