451
|
The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen Med 2021; 6:43. [PMID: 34376677 PMCID: PMC8355260 DOI: 10.1038/s41536-021-00153-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a pathologic process characterized by the replacement of parenchymal tissue by large amounts of extracellular matrix, which may lead to organ dysfunction and even death. Fibroblasts are classically associated to fibrosis and tissue repair, and seldom to regeneration. However, accumulating evidence supports a pro-regenerative role of fibroblasts in different organs. While some organs rely on fibroblasts for maintaining stem cell niches, others depend on fibroblast activity, particularly on secreted molecules that promote cell adhesion, migration, and proliferation, to guide the regenerative process. Herein we provide an up-to-date overview of fibroblast-derived regenerative signaling across different organs and discuss how this capacity may become compromised with aging. We further introduce a new paradigm for regenerative therapies based on reverting adult fibroblasts to a fetal/neonatal-like phenotype.
Collapse
|
452
|
Sugimoto H, Murahashi Y, Chijimatsu R, Miwa S, Yano F, Tanaka S, Saito T. Primary culture of mouse adipose and fibrous synovial fibroblasts under normoxic and hypoxic conditions. Biomed Res 2021; 41:43-51. [PMID: 32092739 DOI: 10.2220/biomedres.41.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Synovial fibroblasts have attracted considerable attention in studies of joint diseases. Although mice are useful and powerful in in vitro and in vivo experiments, primary cultures of mouse synovial fibroblasts are notoriously difficult because the mouse synovial tissues are much smaller and cell cycle arrests can be induced more easily in murine cells than in human cells. Here, we report a precise protocol for the isolation and culture of fibroblasts from mouse adipose and fibrous knee joint synovia. In both adipose and fibrous synovial fibroblasts, proliferation was decreased in addition to a higher rate of cellular senescence under normoxic conditions (20% O2); however, it was maintained over 20 days with low cellular senescence under hypoxic conditions (3% O2). The marker gene expression in adipose and fibrous synovial fibroblasts was not markedly altered after a 3-week culture. Both cells displayed similar potencies for chondrogenic, osteogenic, and adipogenic differentiation, and responses to a proinflammatory cytokine. The present method provides a sufficient amount of mouse synovial fibroblasts for in vitro and in vivo experiments in joint biology and the pathophysiology of osteoarthritis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Hikaru Sugimoto
- Faculty of Medicine, Graduate School of Medicine, The University of Tokyo
| | - Yasutaka Murahashi
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo
| | - Ryota Chijimatsu
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo
| | - Satoshi Miwa
- Faculty of Medicine, Graduate School of Medicine, The University of Tokyo
| | - Fumiko Yano
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo
| | - Sakae Tanaka
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo
| | - Taku Saito
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
453
|
Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 2021; 6:291. [PMID: 34344870 PMCID: PMC8333067 DOI: 10.1038/s41392-021-00687-0] [Citation(s) in RCA: 850] [Impact Index Per Article: 212.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/23/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Pattern recognition receptors (PRRs) are a class of receptors that can directly recognize the specific molecular structures on the surface of pathogens, apoptotic host cells, and damaged senescent cells. PRRs bridge nonspecific immunity and specific immunity. Through the recognition and binding of ligands, PRRs can produce nonspecific anti-infection, antitumor, and other immunoprotective effects. Most PRRs in the innate immune system of vertebrates can be classified into the following five types based on protein domain homology: Toll-like receptors (TLRs), nucleotide oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), C-type lectin receptors (CLRs), and absent in melanoma-2 (AIM2)-like receptors (ALRs). PRRs are basically composed of ligand recognition domains, intermediate domains, and effector domains. PRRs recognize and bind their respective ligands and recruit adaptor molecules with the same structure through their effector domains, initiating downstream signaling pathways to exert effects. In recent years, the increased researches on the recognition and binding of PRRs and their ligands have greatly promoted the understanding of different PRRs signaling pathways and provided ideas for the treatment of immune-related diseases and even tumors. This review describes in detail the history, the structural characteristics, ligand recognition mechanism, the signaling pathway, the related disease, new drugs in clinical trials and clinical therapy of different types of PRRs, and discusses the significance of the research on pattern recognition mechanism for the treatment of PRR-related diseases.
Collapse
Affiliation(s)
- Danyang Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
454
|
Krošel M, Gabathuler M, Maciukiewicz M, Moser L, Lee GI, Marks M, Tomšič M, Distler O, Ospelt C, Klein K. Individual functions of the histone acetyl transferases CBP and p300 in regulating the inflammatory response of synovial fibroblasts. J Autoimmun 2021; 123:102709. [PMID: 34304080 DOI: 10.1016/j.jaut.2021.102709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022]
Abstract
Chromatin remodeling, and a persistent histone 3 lysine 27 acetylation (H3K27ac) in particular, are associated with a sustained inflammatory response of synovial fibroblasts (SF) in rheumatoid arthritis (RA). Here we investigated individual functions of the writers of H3K27ac marks, the homologues histone acetyl transferases (HAT) CBP and p300, in controlling the constitutive and inflammatory gene expression in RA SF. We applied a silencing strategy, followed by RNA-sequencing and pathway analysis, complemented with the treatment of SF with inhibitors targeting the HAT (C646) or bromo domains (I-CBP) of CBP and p300. We showed that CBP and p300 undertook overlapping and, in particular at gene levels, distinct regulatory functions in SF. p300 is the major HAT for H3K27ac in SF and regulated more diverse pathways than CBP. Whereas both factors regulated genes associated with extracellular matrix remodeling, adhesion and proliferation, p300 specifically controlled developmental genes associated with limb development. Silencing of CBP specifically down regulated the TNF-induced expression of interferon-signature genes. In contrast, silencing of p300 resulted in anti- and pro-inflammatory effects. Integration of data sets derived from RNA-sequencing and chromatin immunoprecipitation sequencing for H3K27ac revealed that changes in gene expression after CBP or p300 silencing could be only partially explained by changes in levels of H3K27ac. Inhibition of CBP/p300 using HAT and bromo domain inhibitors strongly mirrored effects obtained by silencing of p300, including anti- and pro-inflammatory effects, indicating that such inhibitors are not sufficient to be used as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Monika Krošel
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland; Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Marcel Gabathuler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Malgorzata Maciukiewicz
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Larissa Moser
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Gideon Isaac Lee
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland.
| | | | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Caroline Ospelt
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland.
| | - Kerstin Klein
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland; Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland.
| |
Collapse
|
455
|
Williams DW, Greenwell-Wild T, Brenchley L, Dutzan N, Overmiller A, Sawaya AP, Webb S, Martin D, Hajishengallis G, Divaris K, Morasso M, Haniffa M, Moutsopoulos NM. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell 2021; 184:4090-4104.e15. [PMID: 34129837 PMCID: PMC8359928 DOI: 10.1016/j.cell.2021.05.013] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
The oral mucosa remains an understudied barrier tissue. This is a site of rich exposure to antigens and commensals, and a tissue susceptible to one of the most prevalent human inflammatory diseases, periodontitis. To aid in understanding tissue-specific pathophysiology, we compile a single-cell transcriptome atlas of human oral mucosa in healthy individuals and patients with periodontitis. We uncover the complex cellular landscape of oral mucosal tissues and identify epithelial and stromal cell populations with inflammatory signatures that promote antimicrobial defenses and neutrophil recruitment. Our findings link exaggerated stromal cell responsiveness with enhanced neutrophil and leukocyte infiltration in periodontitis. Our work provides a resource characterizing the role of tissue stroma in regulating mucosal tissue homeostasis and disease pathogenesis.
Collapse
Affiliation(s)
- Drake Winslow Williams
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Teresa Greenwell-Wild
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laurie Brenchley
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Dutzan
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Andrew Overmiller
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Andrew Phillip Sawaya
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Simone Webb
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - George Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, PA 19104, USA
| | - Kimon Divaris
- UNC Adams School of Dentistry and Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Maria Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Niki Maria Moutsopoulos
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
456
|
Cheng L, Wang Y, Wu R, Ding T, Xue H, Gao C, Li X, Wang C. New Insights From Single-Cell Sequencing Data: Synovial Fibroblasts and Synovial Macrophages in Rheumatoid Arthritis. Front Immunol 2021; 12:709178. [PMID: 34349767 PMCID: PMC8326910 DOI: 10.3389/fimmu.2021.709178] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technology can analyze the transcriptome expression level of cells with high-throughput from the single cell level, fully show the heterogeneity of cells, and provide a new way for the study of multicellular biological heterogeneity. Synovitis is the pathological basis of rheumatoid arthritis (RA). Synovial fibroblasts (SFs) and synovial macrophages are the core target cells of RA, which results in the destruction of articular cartilage, as well as bone. Recent scRNA-seq technology has made breakthroughs in the differentiation and development of two types of synovial cells, identification of subsets, functional analysis, and new therapeutic targets, which will bring remarkable changes in RA treatment.
Collapse
Affiliation(s)
- Liyun Cheng
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyan Wang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruihe Wu
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Tingting Ding
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Xue
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
457
|
Huang X, Khoong Y, Han C, Su D, Ma H, Gu S, Li Q, Zan T. Targeting Dermal Fibroblast Subtypes in Antifibrotic Therapy: Surface Marker as a Cellular Identity or a Functional Entity? Front Physiol 2021; 12:694605. [PMID: 34335301 PMCID: PMC8319956 DOI: 10.3389/fphys.2021.694605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 02/01/2023] Open
Abstract
Fibroblasts are the chief effector cells in fibrotic diseases and have been discovered to be highly heterogeneous. Recently, fibroblast heterogeneity in human skin has been studied extensively and several surface markers for dermal fibroblast subtypes have been identified, holding promise for future antifibrotic therapies. However, it has yet to be confirmed whether surface markers should be looked upon as merely lineage landmarks or as functional entities of fibroblast subtypes, which may further complicate the interpretation of cellular function of these fibroblast subtypes. This review aims to provide an update on current evidence on fibroblast surface markers in fibrotic disorders of skin as well as of other organ systems. Specifically, studies where surface markers were treated as lineage markers and manipulated as functional membrane proteins are both evaluated in parallel, hoping to reveal the underlying mechanism behind the pathogenesis of tissue fibrosis contributed by various fibroblast subtypes from multiple angles, shedding lights on future translational researches.
Collapse
Affiliation(s)
- Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengyao Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dai Su
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
458
|
Gunaydin G. CAFs Interacting With TAMs in Tumor Microenvironment to Enhance Tumorigenesis and Immune Evasion. Front Oncol 2021; 11:668349. [PMID: 34336660 PMCID: PMC8317617 DOI: 10.3389/fonc.2021.668349] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) and tumor associated macrophages (TAMs) are among the most important and abundant players of the tumor microenvironment. CAFs as well as TAMs are known to play pivotal supportive roles in tumor growth and progression. The number of CAF or TAM cells is mostly correlated with poor prognosis. Both CAFs and TAMs are in a reciprocal communication with the tumor cells in the tumor milieu. In addition to such interactions, CAFs and TAMs are also involved in a dynamic and reciprocal interrelationship with each other. Both CAFs and TAMs are capable of altering each other's functions. Here, the current understanding of the distinct mechanisms about the complex interplay between CAFs and TAMs are summarized. In addition, the consequences of such a mutual relationship especially for tumor progression and tumor immune evasion are highlighted, focusing on the synergistic pleiotropic effects. CAFs and TAMs are crucial components of the tumor microenvironment; thus, they may prove to be potential therapeutic targets. A better understanding of the tri-directional interactions of CAFs, TAMs and cancer cells in terms of tumor progression will pave the way for the identification of novel theranostic cues in order to better target the crucial mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
459
|
Iwata K, Mikami Y, Kato M, Yahagi N, Kanai T. Pathogenesis and management of gastrointestinal inflammation and fibrosis: from inflammatory bowel diseases to endoscopic surgery. Inflamm Regen 2021; 41:21. [PMID: 34261521 PMCID: PMC8278771 DOI: 10.1186/s41232-021-00174-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022] Open
Abstract
Gastrointestinal fibrosis is a state of accumulated biological entropy caused by a dysregulated tissue repair response. Acute or chronic inflammation in the gastrointestinal tract, including inflammatory bowel disease, particularly Crohn’s disease, induces fibrosis and strictures, which often require surgical or endoscopic intervention. Recent technical advances in endoscopic surgical techniques raise the possibility of gastrointestinal stricture after an extended resection. Compared to recent progress in controlling inflammation, our understanding of the pathogenesis of gastrointestinal fibrosis is limited, which requires the development of prevention and treatment strategies. Here, we focus on gastrointestinal fibrosis in Crohn’s disease and post-endoscopic submucosal dissection (ESD) stricture, and we review the relevant literature.
Collapse
Affiliation(s)
- Kentaro Iwata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Motohiko Kato
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Naohisa Yahagi
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
460
|
Anchang CG, Xu C, Raimondo MG, Atreya R, Maier A, Schett G, Zaburdaev V, Rauber S, Ramming A. The Potential of OMICs Technologies for the Treatment of Immune-Mediated Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22147506. [PMID: 34299122 PMCID: PMC8306614 DOI: 10.3390/ijms22147506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 01/08/2023] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs), such as inflammatory bowel diseases and inflammatory arthritis (e.g., rheumatoid arthritis, psoriatic arthritis), are marked by increasing worldwide incidence rates. Apart from irreversible damage of the affected tissue, the systemic nature of these diseases heightens the incidence of cardiovascular insults and colitis-associated neoplasia. Only 40–60% of patients respond to currently used standard-of-care immunotherapies. In addition to this limited long-term effectiveness, all current therapies have to be given on a lifelong basis as they are unable to specifically reprogram the inflammatory process and thus achieve a true cure of the disease. On the other hand, the development of various OMICs technologies is considered as “the great hope” for improving the treatment of IMIDs. This review sheds light on the progressive development and the numerous approaches from basic science that gradually lead to the transfer from “bench to bedside” and the implementation into general patient care procedures.
Collapse
Affiliation(s)
- Charles Gwellem Anchang
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum, 91054 Erlangen, Germany; (C.G.A.); (C.X.); (M.G.R.); (G.S.); (S.R.)
| | - Cong Xu
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum, 91054 Erlangen, Germany; (C.G.A.); (C.X.); (M.G.R.); (G.S.); (S.R.)
| | - Maria Gabriella Raimondo
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum, 91054 Erlangen, Germany; (C.G.A.); (C.X.); (M.G.R.); (G.S.); (S.R.)
| | - Raja Atreya
- Department of Internal Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum, 91054 Erlangen, Germany;
| | - Andreas Maier
- Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Georg Schett
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum, 91054 Erlangen, Germany; (C.G.A.); (C.X.); (M.G.R.); (G.S.); (S.R.)
| | - Vasily Zaburdaev
- Max-Planck-Zentrum für Physik und Medizin, 91054 Erlangen, Germany;
- Department of Biology, Mathematics in Life Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Simon Rauber
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum, 91054 Erlangen, Germany; (C.G.A.); (C.X.); (M.G.R.); (G.S.); (S.R.)
| | - Andreas Ramming
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum, 91054 Erlangen, Germany; (C.G.A.); (C.X.); (M.G.R.); (G.S.); (S.R.)
- Correspondence: ; Tel.: +49-9131-8543048; Fax: +49-9131-8536448
| |
Collapse
|
461
|
Dörner T, Schett G. [80 milestones in rheumatology from 80 years-IV. 2000-2020]. Z Rheumatol 2021; 80:528-538. [PMID: 34255165 DOI: 10.1007/s00393-021-01038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 10/20/2022]
Affiliation(s)
- T Dörner
- Medizinische Klinik mit Schwerpunkt Rheumatologie und klinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Deutschland.,Deutsches Rheuma Forschungszentrum Berlin, Berlin, Deutschland
| | - G Schett
- Medizinische Klinik 3, Friedrich-Alexander-Universität Erlangen-Nürnberg und Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Deutschland. .,Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg und Universitätsklinikum Erlangen, Erlangen, Deutschland.
| |
Collapse
|
462
|
Li L, Wu J, Abdi R, Jewell CM, Bromberg JS. Lymph node fibroblastic reticular cells steer immune responses. Trends Immunol 2021; 42:723-734. [PMID: 34256989 PMCID: PMC8324561 DOI: 10.1016/j.it.2021.06.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Lymph nodes (LNs), where immune responses are initiated, are organized into distinctive compartments by fibroblastic reticular cells (FRCs). FRCs imprint immune responses by supporting LN architecture, recruiting immune cells, coordinating immune cell crosstalk, and presenting antigens. Recent high-resolution transcriptional and histological analyses have enriched our knowledge of LN FRC genetic and spatial heterogeneities. Here, we summarize updated anatomic, phenotypic, and functional identities of FRC subsets, delve into topological and transcriptional remodeling of FRCs in inflammation, and illustrate the crosstalk between FRCs and immune cells. Discussing FRC functions in immunity and tolerance, we highlight state-of-the-art FRC-based therapeutic approaches for maintaining physiological homeostasis, steering protective immunity, inducing transplantation tolerance, and treating diverse immune-related diseases.
Collapse
Affiliation(s)
- Lushen Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jing Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
463
|
Increased uptake of 68Ga-DOTA-FAPI-04 in bones and joints: metastases and beyond. Eur J Nucl Med Mol Imaging 2021; 49:709-720. [PMID: 34241652 DOI: 10.1007/s00259-021-05472-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE To describe the uptake of 68Gallium-labelled fibroblast activation protein inhibitor (68Ga-FAPI) in the bones and joints for better understanding of the role of 68Ga-FAPI PET in benign and malignant bone lesions and joint diseases. METHODS All 129 68Ga-FAPI PET/MR or PET/CT scans from June 1, 2020, to February 20, 2021, performed at our PET center were retrospectively reviewed. Foci of elevated 68Ga-FAPI uptake in the bones and joints were identified. All lesions were divided into malignant and benign diseases. Benign lesions included osteofibrous dysplasia, periodontitis, degenerative bone diseases, arthritis, and other inflammatory or trauma-related abnormalities. The number, locations, and SUVmax of all lesions were recorded and analyzed. The detectability of 68Ga-FAPI PET and 18F-FDG PET in patients who had two scans was also compared. RESULTS Elevated uptake of 68Ga-FAPI in/around the bones and joints was found in 82 cases (63.57%). A total of 295 lesions were identified, including 94 (31.9%) malignant lesions (all were metastases) and 201 (68.1%) benign lesions. The benign lesions consisted of 13 osteofibrous dysplasia, 48 degenerative bone disease, 33 periodontitis, 56 arthritis, and 51 other inflammatory or trauma-related abnormalities. The spine, shoulder joint, alveolar ridge, and pelvis were the most commonly involved locations. Bone metastases were mainly distributed in the spine, pelvis, and ribs. Among benign diseases, periodontitis and arthritis are site-specific. The mean SUVmax of bone metastases was significantly higher than that of benign diseases (7.14 ± 4.33 vs. 3.57 ± 1.60, p < 0.001), but overlap existed. The differences in SUVmax among subgroups of benign diseases were statistically significant (p < 0.001), with much higher uptake in periodontitis (4.45 ± 1.17). 68Ga-FAPI PET identified much more lesions than 18F-FDG PET (104 vs. 48) with higher uptake value. CONCLUSION 68Ga-FAPI accumulated in both bone metastases and some benign diseases of the bones and joints. Although the uptake of 68Ga-FAPI was often higher in bone metastases, this finding cannot be used to distinguish between benign and malignant lesions. 68Ga-FAPI PET also has the potential to locate and evaluate the extent of both malignant tumor and benign diseases in bones and joints. TRIAL REGISTRATION NCT04554719, NCT04605939. Registered September 8, 2020 and October 25, 2020-retrospectively registered, http://clinicaltrails.gov/show/NCT04554719 ; http://clinicaltrails.gov/show/NCT04605939.
Collapse
|
464
|
Hensvold A, Klareskog L. Towards prevention of autoimmune diseases: The example of rheumatoid arthritis. Eur J Immunol 2021; 51:1921-1933. [PMID: 34110013 DOI: 10.1002/eji.202048952] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/18/2021] [Indexed: 12/16/2022]
Abstract
Prevention is the ultimate aim for clinicians and scientists concerned with severe diseases, like many immune-mediated conditions. Here, we describe recent progress in the understanding of etiology and molecular pathogenesis of rheumatoid arthritis (RA), which make this disease a potential prototype for prevention that may include both public health measures and targeted and personalized approaches that we call "personalized prevention." Critical components of this knowledge are (i) better understanding of the dynamics of the RA-associated autoimmunity that may begin many years before onset of joint inflammation; (ii) insights into how this immunity may be triggered at mucosal surfaces after distinct environmental challenges; (iii) better understanding of which features of the pre-existing immunity may cause symptoms that precede joint inflammation and predict a high risk for imminent arthritis development; and (iv) how molecular events occurring before onset of inflammation might be targeted by existing or future therapies, ultimately by specific targeting of Major histocompatibility complex (MHC) class II restricted and RA-specific immunity. Our main conclusion is that studies and interventions in the phase of autoimmunity preceding RA offer new opportunities to prevent the disease and thereby also understand the molecular pathogenesis of its different variants.
Collapse
Affiliation(s)
- Aase Hensvold
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden.,Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden.,Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden.,Rheumatology Section, Theme inflammation and Infection, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
465
|
Worrell JC, MacLeod MKL. Stromal-immune cell crosstalk fundamentally alters the lung microenvironment following tissue insult. Immunology 2021; 163:239-249. [PMID: 33556186 PMCID: PMC8014587 DOI: 10.1111/imm.13319] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Communication between stromal and immune cells is essential to maintain tissue homeostasis, mount an effective immune response and promote tissue repair. This 'crosstalk' occurs in both the steady state and following a variety of insults, for example, in response to local injury, at sites of infection or cancer. What do we mean by crosstalk between cells? Reciprocal activation and/or regulation occurs between immune and stromal cells, by direct cell contact and indirect mechanisms, including the release of soluble cytokines. Moving beyond cell-to-cell contact, this review investigates the complexity of 'cross-space' cellular communication. We highlight different examples of cellular communication by a variety of lung stromal and immune cells following tissue insults. This review examines how the 'geography of the lung microenvironment' is altered in various disease states; more specifically, we investigate how this influences lung epithelial cells and fibroblasts via their communication with immune cells and each other.
Collapse
Affiliation(s)
- Julie C. Worrell
- Institute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| | - Megan K. L. MacLeod
- Institute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| |
Collapse
|
466
|
Khan AU, Khan A, Khan A, Shal B, Aziz A, Ahmed MN, Islam SU, Ali H, Shehzad A, Khan S. Inhibition of NF-κB signaling and HSP70/HSP90 proteins by newly synthesized hydrazide derivatives in arthritis model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1497-1519. [PMID: 33713158 DOI: 10.1007/s00210-021-02075-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/01/2021] [Indexed: 01/02/2023]
Abstract
In the current study, the N-benzylidene-4-((2-hydroxynaphthalene-1-yl) diazenyl) hydrazides (NCHDH and NTHDH) were evaluated against the Carrageenan- and CFA-induced models. During the preliminary investigation, the NCHDH and NTHDH treatment showed marked anti-inflammatory and analgesic activity against the Carrageenan-induced acute model. Once the anti-inflammatory activity was established against acute Carrageenan model, the NCHDH and NTHDH were evaluated against the chronic CFA-induced arthritis model. The NCHDH and NTHDH treatment markedly attenuated the inflammatory and analgesic parameters compared to CFA-treated group. Furthermore, the increase in the oxidative stress and attenuation of antioxidant enzymes has been reported following CFA administration. However, NCHDH and NTHDH treatment significantly induced the antioxidants and attenuated the oxidative stress markers. The CFA administration showed marked tailing of DNA; however, the NCHDH- and NTHDH-treated group preserved DNA integrity. Furthermore, the histological studies showed marked alteration in the CFA-treated group; however, the NCHDH and NTHDH treatment markedly improved the histological features. The Western blot, immunohistology, and ELISA assay revealed marked increase in the Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Jun N-terminal Kinase (JNK), TNF-α, and COX-2 levels; however, the NCHDH and NTHDH attenuated their expressions significantly. Similarly, the NCHDH and NTHDH significantly induced the mRNA expression levels of heat shock proteins. The computational analysis showed significant binding interaction with various protein targets via multiple hydrogens, and hydrophobic bonds. The in vivo pharmacokinetic study was also performed to assess the various pharmacokinetic parameters. In conclusion, the NCHDH and NTHDH treatment showed significant anti-arthritic activity against Carrageenan and CFA models.
Collapse
Affiliation(s)
- Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amna Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Aziz
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Hussain Ali
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adeeb Shehzad
- Department of Biomedical Engineering & Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
467
|
Marsh LJ, Kemble S, Reis Nisa P, Singh R, Croft AP. Fibroblast pathology in inflammatory joint disease. Immunol Rev 2021; 302:163-183. [PMID: 34096076 DOI: 10.1111/imr.12986] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis is an immune-mediated inflammatory disease in which fibroblasts contribute to both joint damage and inflammation. Fibroblasts are a major cell constituent of the lining of the joint cavity called the synovial membrane. Under resting conditions, fibroblasts have an important role in maintaining joint homeostasis, producing extracellular matrix and joint lubricants. In contrast, during joint inflammation, fibroblasts contribute to disease pathology by producing pathogenic levels of inflammatory mediators that drive the recruitment and retention of inflammatory cells within the joint. Recent advances in single-cell profiling techniques have transformed our ability to examine fibroblast biology, leading to the identification of specific fibroblast subsets, defining a previously underappreciated heterogeneity of disease-associated fibroblast populations. These studies are challenging the previously held dogma that fibroblasts are homogeneous and are providing unique insights into their role in inflammatory joint pathology. In this review, we discuss the recent advances in our understanding of how fibroblast heterogeneity contributes to joint pathology in rheumatoid arthritis. Finally, we address how these insights could lead to the development of novel therapies that directly target selective populations of fibroblasts in the future.
Collapse
Affiliation(s)
- Lucy-Jayne Marsh
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Samuel Kemble
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Patricia Reis Nisa
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Ruchir Singh
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Adam P Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| |
Collapse
|
468
|
Pradhan RN, Krishnamurty AT, Fletcher AL, Turley SJ, Müller S. A bird's eye view of fibroblast heterogeneity: A pan-disease, pan-cancer perspective. Immunol Rev 2021; 302:299-320. [PMID: 34164824 DOI: 10.1111/imr.12990] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts, custodians of tissue architecture and function, are no longer considered a monolithic entity across tissues and disease indications. Recent advances in single-cell technologies provide an unrestricted, high-resolution view of fibroblast heterogeneity that exists within and across tissues. In this review, we summarize a compendium of single-cell transcriptomic studies and provide a comprehensive accounting of fibroblast subsets, many of which have been described to occupy specific niches in tissues at homeostatic and pathologic states. Understanding this heterogeneity is particularly important in the context of cancer, as the diverse cancer-associated fibroblast (CAF) phenotypes in the tumor microenvironment (TME) are directly impacted by the expression phenotypes of their predecessors. Relationships between these heterogeneous populations often accompany and influence response to therapy in cancer and fibrosis. We further highlight the importance of integrating single-cell studies to deduce common fibroblast phenotypes across disease states, which will facilitate the identification of common signaling pathways, gene regulatory programs, and cell surface markers that are going to advance drug discovery and targeting.
Collapse
|
469
|
Lasp1 regulates adherens junction dynamics and fibroblast transformation in destructive arthritis. Nat Commun 2021; 12:3624. [PMID: 34131132 PMCID: PMC8206096 DOI: 10.1038/s41467-021-23706-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
The LIM and SH3 domain protein 1 (Lasp1) was originally cloned from metastatic breast cancer and characterised as an adaptor molecule associated with tumourigenesis and cancer cell invasion. However, the regulation of Lasp1 and its function in the aggressive transformation of cells is unclear. Here we use integrative epigenomic profiling of invasive fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and from mouse models of the disease, to identify Lasp1 as an epigenomically co-modified region in chronic inflammatory arthritis and a functionally important binding partner of the Cadherin-11/β-Catenin complex in zipper-like cell-to-cell contacts. In vitro, loss or blocking of Lasp1 alters pathological tissue formation, migratory behaviour and platelet-derived growth factor response of arthritic FLS. In arthritic human TNF transgenic mice, deletion of Lasp1 reduces arthritic joint destruction. Therefore, we show a function of Lasp1 in cellular junction formation and inflammatory tissue remodelling and identify Lasp1 as a potential target for treating inflammatory joint disorders associated with aggressive cellular transformation.
Collapse
|
470
|
MUW researcher of the month. Wien Klin Wochenschr 2021; 133:630-631. [PMID: 34115228 DOI: 10.1007/s00508-021-01905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
471
|
Maglaviceanu A, Wu B, Kapoor M. Fibroblast-like synoviocytes: Role in synovial fibrosis associated with osteoarthritis. Wound Repair Regen 2021; 29:642-649. [PMID: 34021514 DOI: 10.1111/wrr.12939] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
The synovial membrane undergoes a variety of structural changes throughout the pathogenesis of osteoarthritis (OA), including the development of fibrosis. Fibroblast-like synoviocytes (FLS) are a heterogenous cell population of the synovium that are suggested to drive the fibrotic response, but the exact mechanisms associated with their activation in OA remain unclear. Once activated, FLS are suggested to acquire a myofibroblast-like phenotype that drives fibrogenesis through excessive extracellular matrix (ECM) component deposition and an enhanced contractile function. In this review, we define FLS in the synovium, discuss how select extracellular or endogenous factors potentially induce their activation in OA, and describe how the activity of myofibroblast-like cells affects the structure of the synovial membrane.
Collapse
Affiliation(s)
- Anca Maglaviceanu
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Brian Wu
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
472
|
Angel PM, Rujchanarong D, Pippin S, Spruill L, Drake R. Mass Spectrometry Imaging of Fibroblasts: Promise and Challenge. Expert Rev Proteomics 2021; 18:423-436. [PMID: 34129411 PMCID: PMC8717608 DOI: 10.1080/14789450.2021.1941893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Fibroblasts maintain tissue and organ homeostasis through output of extracellular matrix that affects nearby cell signaling within the stroma. Altered fibroblast signaling contributes to many disease states and extracellular matrix secreted by fibroblasts has been used to stratify patient by outcome, recurrence, and therapeutic resistance. Recent advances in imaging mass spectrometry allow access to single cell fibroblasts and their ECM niche within clinically relevant tissue samples. AREAS COVERED We review biological and technical challenges as well as new solutions to proteomic access of fibroblast expression within the complex tissue microenvironment. Review topics cover conventional proteomic methods for single fibroblast analysis and current approaches to accessing single fibroblast proteomes by imaging mass spectrometry approaches. Strategies to target and evaluate the single cell stroma proteome on the basis of cell signaling are presented. EXPERT OPINION The promise of defining proteomic signatures from fibroblasts and their extracellular matrix niches is the discovery of new disease markers and the ability to refine therapeutic treatments. Several imaging mass spectrometry approaches exist to define the fibroblast in the setting of pathological changes from clinically acquired samples. Continued technology advances are needed to access and understand the stromal proteome and apply testing to the clinic.
Collapse
Affiliation(s)
- Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Sarah Pippin
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Richard Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston SC USA
| |
Collapse
|
473
|
Lung T, Sakem B, Hemmerle A, Nydegger M, Risch M, Risch L, Nydegger U. Autoimmune diseases - New insights into a troublesome field. J Transl Autoimmun 2021; 4:100108. [PMID: 34179743 PMCID: PMC8188057 DOI: 10.1016/j.jtauto.2021.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
Abstract
Recent updates in the diagnosis and management of chronic inflammatory conditions can be brought together to better understand autoimmune diseases (ADs). With organ-specific or organ-limited and systemic ADs, physicians often are faced with a dilemma when making a diagnosis and may feel a kind of embarrassment when a more distinct nosological entity cannot be found. ADs often overlap with other diseases and good diagnostic procedures for ADs only become evidence-based when refined histopathologic, immunopathologic, and general laboratory analyses are available. Immunofluorescence analyses, Western blotting, CUT & RUN technology allow localization of the site of autoantibody-reactivity on the relevant DNA sequence. The Polymerase chain reaction technology and CRISPR-Cas9, the new gene editor using pools of synthetic non-coding RNAs in screening experiments, are expected to lead to advances in the diagnosis of ADs. The current use of mRNA as a vaccine against COVID-19 has increased confidence in the use of mRNA or long non-coding RNAs in the treatment strategy for ADs. The integration of new knowledge about innate immunity, the complement system, vaccinology, and senescence into the care of patients with ADs expands the therapeutic arsenal of disease-modifying drugs and allows for the repurposing of anti-cytokine monoclonal/biosimilar antibodies, originally designed for chronic inflammatory diseases, for ADs. This review article brings together some of the most relevant ideas; a case report included in this review highlights the difficulty of distinguishing between ADs, chronic inflammation, and/or granular disease.
Collapse
Affiliation(s)
- Thomas Lung
- Center for Laboratory Medicine Dr Risch, Vaduz, Liechtenstein
| | - Benjamin Sakem
- Center for Laboratory Medicine Dr Risch, Vaduz, Liechtenstein
| | | | - Michèle Nydegger
- Institute of Anesthesiology and Intensive Care Medicine, Triemli City Hospital, Zurich, Switzerland
| | - Martin Risch
- Center for Laboratory Medicine Dr Risch, Vaduz, Liechtenstein
- Central Laboratory, Kantonsspital Graubünden, Chur, Switzerland
| | - Lorenz Risch
- Center for Laboratory Medicine Dr Risch, Vaduz, Liechtenstein
- University of Berne, Berne, Switzerland
| | - Urs Nydegger
- Center for Laboratory Medicine Dr Risch, Vaduz, Liechtenstein
- University of Berne, Berne, Switzerland
| |
Collapse
|
474
|
Hayer S, Vervoordeldonk MJ, Denis MC, Armaka M, Hoffmann M, Bäcklund J, Nandakumar KS, Niederreiter B, Geka C, Fischer A, Woodworth N, Blüml S, Kollias G, Holmdahl R, Apparailly F, Koenders MI. 'SMASH' recommendations for standardised microscopic arthritis scoring of histological sections from inflammatory arthritis animal models. Ann Rheum Dis 2021; 80:714-726. [PMID: 33602797 PMCID: PMC8142455 DOI: 10.1136/annrheumdis-2020-219247] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022]
Abstract
Animal models for inflammatory arthritides such as rheumatoid arthritis (RA) and psoriatic arthritis are widely accepted and frequently used to identify pathological mechanisms and validate novel therapeutic strategies. Unfortunately, many publications reporting on these animal studies lack detailed description and appropriate assessment of the distinct histopathological features of arthritis: joint inflammation, cartilage damage and bone erosion. Therefore, the European consortium BeTheCure, consisting of 38 academic and industrial partners from 15 countries, set as goal to standardise the histological evaluation of joint sections from animal models of inflammatory arthritis. The consensual approach of a task force including 16 academic and industrial scientists as well as laboratory technicians has resulted in the development of the Standardised Microscopic Arthritis Scoring of Histological sections ('SMASH') recommendations for a standardised processing and microscopic scoring of the characteristic histopathological features of arthritis, exemplified by four different rodent models for arthritis: murine collagen-induced arthritis, collagen-antibody-induced arthritis, human tumour necrosis factor transgenic Tg197 mice and rat pristane-induced arthritis, applicable to any other inflammatory arthritis model. Through standardisation, the SMASH recommendations are designed to improve and maximise the information derived from in vivo arthritis experiments and to promote reproducibility and transparent reporting on such studies. In this manuscript, we will discuss and provide recommendations for analysis of histological joint sections: identification of the regions of interest, sample preparation, staining procedures and quantitative scoring methods. In conclusion, awareness of the different features of the arthritis pathology in animal models of inflammatory arthritis is of utmost importance for reliable research outcome, and the standardised histological processing and scoring methods in these SMASH recommendations will help increase uniformity and reproducibility in preclinical research on inflammatory arthritis.
Collapse
Affiliation(s)
- Silvia Hayer
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria
| | | | | | - Marietta Armaka
- Department of Immunology, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, Greece
| | - Markus Hoffmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Johan Bäcklund
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Birgit Niederreiter
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria
| | | | - Anita Fischer
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | | | - Stephan Blüml
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria
| | - George Kollias
- Department of Immunology, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, Greece
- Department of Physiology, Medical School, University of Athens, Athens, Greece
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | | | - Marije I Koenders
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
475
|
Asam S, Nayar S, Gardner D, Barone F. Stromal cells in tertiary lymphoid structures: Architects of autoimmunity. Immunol Rev 2021; 302:184-195. [PMID: 34060101 DOI: 10.1111/imr.12987] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The molecular mediators present within the inflammatory microenvironment are able, in certain conditions, to favor the initiation of tertiary lymphoid structure (TLS) development. TLS is organized lymphocyte clusters able to support antigen-specific immune response in non-immune organs. Importantly, chronic inflammation does not always result in TLS formation; instead, TLS has been observed to develop specifically in permissive organs, suggesting the presence of tissue-specific cues that are able to imprint the immune responses and form TLS hubs. Fibroblasts are tissue-resident cells that define the anatomy and function of a specific tissue. Fibroblast plasticity and specialization in inflammatory conditions have recently been unraveled in both immune and non-immune organs revealing a critical role for these structural cells in human physiology. Here, we describe the role of fibroblasts in the context of TLS formation and its functional maintenance in the tissue, highlighting their potential role as therapeutic disease targets in TLS-associated diseases.
Collapse
Affiliation(s)
- Saba Asam
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Saba Nayar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,bNIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK
| | - David Gardner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Francesca Barone
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
476
|
Abstract
Cardiac injury remains a major cause of morbidity and mortality worldwide. Despite significant advances, a full understanding of why the heart fails to fully recover function after acute injury, and why progressive heart failure frequently ensues, remains elusive. No therapeutics, short of heart transplantation, have emerged to reliably halt or reverse the inexorable progression of heart failure in the majority of patients once it has become clinically evident. To date, most pharmacological interventions have focused on modifying hemodynamics (reducing afterload, controlling blood pressure and blood volume) or on modifying cardiac myocyte function. However, important contributions of the immune system to normal cardiac function and the response to injury have recently emerged as exciting areas of investigation. Therapeutic interventions aimed at harnessing the power of immune cells hold promise for new treatment avenues for cardiac disease. Here, we review the immune response to heart injury, its contribution to cardiac fibrosis, and the potential of immune modifying therapies to affect cardiac repair.
Collapse
Affiliation(s)
- Joel G Rurik
- Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| |
Collapse
|
477
|
Honan AM, Chen Z. Stromal Cells Underlining the Paths From Autoimmunity, Inflammation to Cancer With Roles Beyond Structural and Nutritional Support. Front Cell Dev Biol 2021; 9:658984. [PMID: 34113615 PMCID: PMC8185233 DOI: 10.3389/fcell.2021.658984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Stromal cells provide structural support and nutrients in secondary lymphoid organs and non-lymphoid tissues. However, accumulating evidence suggests that a complex relationship exists between stromal cells and immune cells. Interactions between immune cells and stromal cells have been shown to influence the pathology of both autoimmunity and cancer. This review examines the heterogeneity of stromal cells within the lymph node and non-lymphoid tissues during both homeostatic and inflammatory conditions, in particular autoimmunity and cancer, with the goal of better understanding the complex and apparently paradoxical relationship between these two classes of diseases. The review surveys potential novel mechanisms involving the interactions between stromal cells and immune cells which may contribute to the development, pathology and underlying connection between autoimmunity and cancer, including potential pathways from autoimmune inflammation to either “hot” or “cold” tumors. These interactions may provide some insights to explain the rising incidence of both autoimmunity and cancer in young women in industrialized countries and have the potential to be exploited in the development of new interventions for preventions and treatments of both autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Amanda M Honan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Zhibin Chen
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
478
|
Sensitization of knee-innervating sensory neurons by tumor necrosis factor-α-activated fibroblast-like synoviocytes: an in vitro, coculture model of inflammatory pain. Pain 2021; 161:2129-2141. [PMID: 32332252 PMCID: PMC7431145 DOI: 10.1097/j.pain.0000000000001890] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
ABSTRACT Pain is a principal contributor to the global burden of arthritis with peripheral sensitization being a major cause of arthritis-related pain. Within the knee joint, distal endings of dorsal root ganglion neurons (knee neurons) interact with fibroblast-like synoviocytes (FLS) and the inflammatory mediators they secrete, which are thought to promote peripheral sensitization. Correspondingly, RNA sequencing has demonstrated detectable levels of proinflammatory genes in FLS derived from arthritis patients. This study confirms that stimulation with tumor necrosis factor (TNF-α) results in expression of proinflammatory genes in mouse and human FLS (derived from osteoarthritis and rheumatoid arthritis patients), as well as increased secretion of cytokines from mouse TNF-α-stimulated FLS (TNF-FLS). Electrophysiological recordings from retrograde labelled knee neurons cocultured with TNF-FLS, or supernatant derived from TNF-FLS, revealed a depolarized resting membrane potential, increased spontaneous action potential firing, and enhanced TRPV1 function, all consistent with a role for FLS in mediating the sensitization of pain-sensing nerves in arthritis. Therefore, data from this study demonstrate the ability of FLS activated by TNF-α to promote neuronal sensitization, results that highlight the importance of both nonneuronal and neuronal cells to the development of pain in arthritis.
Collapse
|
479
|
Schuster R, Rockel JS, Kapoor M, Hinz B. The inflammatory speech of fibroblasts. Immunol Rev 2021; 302:126-146. [PMID: 33987902 DOI: 10.1111/imr.12971] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Activation of fibroblasts is a key event during normal tissue repair after injury and the dysregulated repair processes that result in organ fibrosis. To most researchers, fibroblasts are rather unremarkable spindle-shaped cells embedded in the fibrous collagen matrix of connective tissues and/or deemed useful to perform mechanistic studies with adherent cells in culture. For more than a century, fibroblasts escaped thorough classification due to the lack of specific markers and were treated as the leftovers after all other cells have been identified from a tissue sample. With novel cell lineage tracing and single cell transcriptomics tools, bona fide fibroblasts emerge as only one heterogeneous sub-population of a much larger group of partly overlapping cell types, including mesenchymal stromal cells, fibro-adipogenic progenitor cells, pericytes, and/or perivascular cells. All these cells are activated to contribute to tissue repair after injury and/or chronic inflammation. "Activation" can entail various functions, such as enhanced proliferation, migration, instruction of inflammatory cells, secretion of extracellular matrix proteins and organizing enzymes, and acquisition of a contractile myofibroblast phenotype. We provide our view on the fibroblastic cell types and activation states playing a role during physiological and pathological repair and their crosstalk with inflammatory macrophages. Inflammation and fibrosis of the articular synovium during rheumatoid arthritis and osteoarthritis are used as specific examples to discuss inflammatory fibroblast phenotypes. Ultimately, delineating the precursors and functional roles of activated fibroblastic cells will contribute to better and more specific intervention strategies to treat fibroproliferative and fibrocontractive disorders.
Collapse
Affiliation(s)
- Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,PhenomicAI, MaRS Centre, Toronto, ON, Canada
| | - Jason S Rockel
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Mohit Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
480
|
Dietary Derived Propionate Regulates Pathogenic Fibroblast Function and Ameliorates Experimental Arthritis and Inflammatory Tissue Priming. Nutrients 2021; 13:nu13051643. [PMID: 34068191 PMCID: PMC8152983 DOI: 10.3390/nu13051643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Short-chain fatty acids are gut-bacteria-derived metabolites that execute important regulatory functions on adaptive immune responses, yet their influence on inflammation driven by innate immunity remains understudied. Here, we show that propionate treatment in drinking water or upon local application into the joint reduced experimental arthritis and lowered inflammatory tissue priming mediated by synovial fibroblasts. On a cellular level, incubation of synovial fibroblasts with propionate or a physiological mixture of short-chain fatty acids interfered with production of inflammatory mediators and migration and induced immune-regulatory fibroblast senescence. Our study suggests that propionate mediates its alleviating effect on arthritis by direct abrogation of local arthritogenic fibroblast function.
Collapse
|
481
|
|
482
|
Cross-tissue organization of the fibroblast lineage. Nature 2021; 593:575-579. [PMID: 33981032 DOI: 10.1038/s41586-021-03549-5] [Citation(s) in RCA: 583] [Impact Index Per Article: 145.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts are non-haematopoietic structural cells that define the architecture of organs, support the homeostasis of tissue-resident cells and have key roles in fibrosis, cancer, autoimmunity and wound healing1. Recent studies have described fibroblast heterogeneity within individual tissues1. However, the field lacks a characterization of fibroblasts at single-cell resolution across tissues in healthy and diseased organs. Here we constructed fibroblast atlases by integrating single-cell transcriptomic data from about 230,000 fibroblasts across 17 tissues, 50 datasets, 11 disease states and 2 species. Mouse fibroblast atlases and a DptIRESCreERT2 knock-in mouse identified two universal fibroblast transcriptional subtypes across tissues. Our analysis suggests that these cells can serve as a reservoir that can yield specialized fibroblasts across a broad range of steady-state tissues and activated fibroblasts in disease. Comparison to an atlas of human fibroblasts from perturbed states showed that fibroblast transcriptional states are conserved between mice and humans, including universal fibroblasts and activated phenotypes associated with pathogenicity in human cancer, fibrosis, arthritis and inflammation. In summary, a cross-species and pan-tissue approach to transcriptomics at single-cell resolution has identified key organizing principles of the fibroblast lineage in health and disease.
Collapse
|
483
|
Friščić J, Böttcher M, Reinwald C, Bruns H, Wirth B, Popp SJ, Walker KI, Ackermann JA, Chen X, Turner J, Zhu H, Seyler L, Euler M, Kirchner P, Krüger R, Ekici AB, Major T, Aust O, Weidner D, Fischer A, Andes FT, Stanojevic Z, Trajkovic V, Herrmann M, Korb-Pap A, Wank I, Hess A, Winter J, Wixler V, Distler J, Steiner G, Kiener HP, Frey B, Kling L, Raza K, Frey S, Kleyer A, Bäuerle T, Hughes TR, Grüneboom A, Steffen U, Krönke G, Croft AP, Filer A, Köhl J, Klein K, Buckley CD, Schett G, Mougiakakos D, Hoffmann MH. The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity 2021; 54:1002-1021.e10. [PMID: 33761330 DOI: 10.1016/j.immuni.2021.03.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/23/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
Abstract
Arthritis typically involves recurrence and progressive worsening at specific predilection sites, but the checkpoints between remission and persistence remain unknown. Here, we defined the molecular and cellular mechanisms of this inflammation-mediated tissue priming. Re-exposure to inflammatory stimuli caused aggravated arthritis in rodent models. Tissue priming developed locally and independently of adaptive immunity. Repeatedly stimulated primed synovial fibroblasts (SFs) exhibited enhanced metabolic activity inducing functional changes with intensified migration, invasiveness and osteoclastogenesis. Meanwhile, human SF from patients with established arthritis displayed a similar primed phenotype. Transcriptomic and epigenomic analyses as well as genetic and pharmacological targeting demonstrated that inflammatory tissue priming relies on intracellular complement C3- and C3a receptor-activation and downstream mammalian target of rapamycin- and hypoxia-inducible factor 1α-mediated metabolic SF invigoration that prevents activation-induced senescence, enhances NLRP3 inflammasome activity, and in consequence sensitizes tissue for inflammation. Our study suggests possibilities for therapeutic intervention abrogating tissue priming without immunosuppression.
Collapse
Affiliation(s)
- Jasna Friščić
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Böttcher
- Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christiane Reinwald
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Heiko Bruns
- Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Benjamin Wirth
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Samantha-Josefine Popp
- Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kellie Irene Walker
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Jochen A Ackermann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Xi Chen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jason Turner
- Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, B15 2TT Birmingham, United Kingdom
| | - Honglin Zhu
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Lisa Seyler
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) ands Universitäts-klinikum Erlangen, 91054, Erlangen, Germany
| | - Maximilien Euler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - René Krüger
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Triin Major
- Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, B15 2TT Birmingham, United Kingdom
| | - Oliver Aust
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Daniela Weidner
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Anita Fischer
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, 1090 Vienna, Austria
| | - Fabian T Andes
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Zeljka Stanojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Adelheid Korb-Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, D3, 48149 Muenster, Germany
| | - Isabel Wank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Johnathan Winter
- Division of Infection and Immunity, School of Medicine, Cardiff University, CF10 3AT, Cardiff, UK
| | - Viktor Wixler
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University Muenster, 48149 Muenster, Germany
| | - Jörg Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Günter Steiner
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, 1090 Vienna, Austria
| | - Hans P Kiener
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090 Vienna, Austria
| | - Benjamin Frey
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Lasse Kling
- Innovations-Institut für Nanotechnologie und korrelative Mikroskopie, 91301 Forchheim, Germany
| | - Karim Raza
- Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, B15 2TT Birmingham, United Kingdom; Department of Rheumatology, City Hospital, Sandwell and West Birmingham, B18 7QH Birmingham, UK
| | - Silke Frey
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Tobias Bäuerle
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) ands Universitäts-klinikum Erlangen, 91054, Erlangen, Germany
| | - Timothy R Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University, CF10 3AT, Cardiff, UK
| | - Anika Grüneboom
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Adam P Croft
- Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, B15 2TT Birmingham, United Kingdom
| | - Andrew Filer
- Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, B15 2TT Birmingham, United Kingdom
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; Division of Immunobiology, Cincinnati Childrens Hospital Medical Center and University of Cincinnati College of Medicine, 45229-3026 Cincinnati, OH, USA
| | - Kerstin Klein
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Christopher D Buckley
- Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, B15 2TT Birmingham, United Kingdom; Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, UK
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Dimitrios Mougiakakos
- Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus H Hoffmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum fuer Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| |
Collapse
|
484
|
Tan Q, Link PA, Meridew JA, Pham TX, Caporarello N, Ligresti G, Tschumperlin DJ. Spontaneous Lung Fibrosis Resolution Reveals Novel Antifibrotic Regulators. Am J Respir Cell Mol Biol 2021; 64:453-464. [PMID: 33493091 DOI: 10.1165/rcmb.2020-0396oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fibroblast activation is transient in successful wound repair but persistent in fibrotic pathologies. Understanding fibroblast deactivation during successful wound healing may provide new approaches to therapeutically reverse fibroblast activation. To characterize the gene programs that accompany fibroblast activation and reversal during lung fibrosis resolution, we used RNA sequencing analysis of flow sorted Col1α1-GFP-positive and CD45-, CD31-, and CD326-negative cells isolated from the lungs of young mice exposed to bleomycin. We compared fibroblasts isolated from control mice with those isolated at Days 14 and 30 after bleomycin exposure, representing the peak of extracellular matrix deposition and an early stage of fibrosis resolution, respectively. Bleomycin exposure dramatically altered fibroblast gene programs at Day 14. Principal component and differential gene expression analyses demonstrated the predominant reversal of these trends at Day 30. Upstream regulator and pathway analyses of reversing "resolution" genes identified novel candidate antifibrotic genes and pathways. Two genes from these analyses that were decreased in expression at Day 14 and reversed at Day 30, Aldh2 and Nr3c1, were selected for further analysis. Enhancement of endogenous expression of either gene by CRISPR activation in cultured human idiopathic pulmonary fibrosis fibroblasts was sufficient to reduce profibrotic gene expression, fibronectin deposition, and collagen gel compaction, consistent with roles for these genes in fibroblast deactivation. This combination of RNA sequencing analysis of freshly sorted fibroblasts and hypothesis testing in cultured idiopathic pulmonary fibrosis fibroblasts offers a path toward identification of novel regulators of lung fibroblast deactivation, with potential relevance to understanding fibrosis resolution and its failure in human disease.
Collapse
Affiliation(s)
- Qi Tan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Patrick A Link
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Jeffrey A Meridew
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Tho X Pham
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nunzia Caporarello
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Giovanni Ligresti
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and.,Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
485
|
Arai H, Sato Y, Yanagita M. Fibroblast heterogeneity and tertiary lymphoid tissues in the kidney. Immunol Rev 2021; 302:196-210. [PMID: 33951198 PMCID: PMC8360208 DOI: 10.1111/imr.12969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts reside in various organs and support tissue structure and homeostasis under physiological conditions. Phenotypic alterations of fibroblasts underlie the development of diverse pathological conditions, including organ fibrosis. Recent advances in single‐cell biology have revealed that fibroblasts comprise heterogeneous subpopulations with distinct phenotypes, which exert both beneficial and detrimental effects on the host organs in a context‐dependent manner. In the kidney, phenotypic alterations of resident fibroblasts provoke common pathological conditions of chronic kidney disease (CKD), such as renal anemia and peritubular capillary loss. Additionally, in aged injured kidneys, fibroblasts provide functional and structural supports for tertiary lymphoid tissues (TLTs), which serve as the ectopic site of acquired immune reactions in various clinical contexts. TLTs are closely associated with aging and CKD progression, and the developmental stages of TLTs reflect the severity of renal injury. In this review, we describe the current understanding of fibroblast heterogeneity both under physiological and pathological conditions, with special emphasis on fibroblast contribution to TLT formation in the kidney. Dissecting the heterogeneous characteristics of fibroblasts will provide a promising therapeutic option for fibroblast‐related pathological conditions, including TLT formation.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Medical Innovation Center, TMK Project, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
486
|
Buechler MB, Fu W, Turley SJ. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 2021; 54:903-915. [PMID: 33979587 DOI: 10.1016/j.immuni.2021.04.021] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts and macrophages are present in all tissues, and mounting evidence supports that these cells engage in direct communication to influence the overall tissue microenvironment and affect disease outcomes. Here, we review the current understanding of the molecular mechanisms that underlie fibroblast-macrophage interactions in health, fibrosis, and cancer. We present an integrated view of fibroblast-macrophage interactions that is centered on the CSF1-CSF1R axis and discuss how additional molecular programs linking these cell types can underpin disease onset, progression, and resolution. These programs may be tissue and context dependent, affected also by macrophage and fibroblast origin and state, as seen most clearly in cancer. Continued efforts to understand these cells and the means by which they interact may provide therapeutic approaches for the treatment of fibrosis and cancer.
Collapse
Affiliation(s)
- Matthew B Buechler
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| | - Wenxian Fu
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
487
|
Song D, Li JJ. PseudotimeDE: inference of differential gene expression along cell pseudotime with well-calibrated p-values from single-cell RNA sequencing data. Genome Biol 2021; 22:124. [PMID: 33926517 PMCID: PMC8082818 DOI: 10.1186/s13059-021-02341-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/08/2021] [Indexed: 01/22/2023] Open
Abstract
To investigate molecular mechanisms underlying cell state changes, a crucial analysis is to identify differentially expressed (DE) genes along the pseudotime inferred from single-cell RNA-sequencing data. However, existing methods do not account for pseudotime inference uncertainty, and they have either ill-posed p-values or restrictive models. Here we propose PseudotimeDE, a DE gene identification method that adapts to various pseudotime inference methods, accounts for pseudotime inference uncertainty, and outputs well-calibrated p-values. Comprehensive simulations and real-data applications verify that PseudotimeDE outperforms existing methods in false discovery rate control and power.
Collapse
Affiliation(s)
- Dongyuan Song
- Bioinformatics Interdepartmental Ph.D. Program, University of California, Los Angeles, CA, 90095-7246, USA
| | - Jingyi Jessica Li
- Department of Statistics, University of California, Los Angeles, CA, 90095-1554, USA.
- Department of Human Genetics, University of California, Los Angeles, CA, 90095-7088, USA.
- Department of Computational Medicine, University of California, Los Angeles, CA, 90095-1766, USA.
- Department of Biostatistics, University of California, Los Angeles, 90095-1772, CA, USA.
| |
Collapse
|
488
|
Clayton SA, MacDonald L, Kurowska-Stolarska M, Clark AR. Mitochondria as Key Players in the Pathogenesis and Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:673916. [PMID: 33995417 PMCID: PMC8118696 DOI: 10.3389/fimmu.2021.673916] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are major energy-producing organelles that have central roles in cellular metabolism. They also act as important signalling hubs, and their dynamic regulation in response to stress signals helps to dictate the stress response of the cell. Rheumatoid arthritis is an inflammatory and autoimmune disease with high prevalence and complex aetiology. Mitochondrial activity affects differentiation, activation and survival of immune and non-immune cells that contribute to the pathogenesis of this disease. This review outlines what is known about the role of mitochondria in rheumatoid arthritis pathogenesis, and how current and future therapeutic strategies can function through modulation of mitochondrial activity. We also highlight areas of this topic that warrant further study. As producers of energy and of metabolites such as succinate and citrate, mitochondria help to shape the inflammatory phenotype of leukocytes during disease. Mitochondrial components can directly stimulate immune receptors by acting as damage-associated molecular patterns, which could represent an initiating factor for the development of sterile inflammation. Mitochondria are also an important source of intracellular reactive oxygen species, and facilitate the activation of the NLRP3 inflammasome, which produces cytokines linked to disease symptoms in rheumatoid arthritis. The fact that mitochondria contain their own genetic material renders them susceptible to mutation, which can propagate their dysfunction and immunostimulatory potential. Several drugs currently used for the treatment of rheumatoid arthritis regulate mitochondrial function either directly or indirectly. These actions contribute to their immunomodulatory functions, but can also lead to adverse effects. Metabolic and mitochondrial pathways are attractive targets for future anti-rheumatic drugs, however many questions still remain about the precise role of mitochondrial activity in different cell types in rheumatoid arthritis.
Collapse
Affiliation(s)
- Sally A Clayton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Birmingham, United Kingdom
| | - Lucy MacDonald
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom.,Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Mariola Kurowska-Stolarska
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom.,Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Andrew R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Birmingham, United Kingdom
| |
Collapse
|
489
|
Danac JMC, Uy AGG, Garcia RL. Exosomal microRNAs in colorectal cancer: Overcoming barriers of the metastatic cascade (Review). Int J Mol Med 2021; 47:112. [PMID: 33907829 PMCID: PMC8075282 DOI: 10.3892/ijmm.2021.4945] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
The journey of cancer cells from a primary tumor to distant sites is a multi-step process that involves cellular reprogramming, the breaking or breaching of physical barriers and the preparation of a pre-metastatic niche for colonization. The loss of adhesion between cells, cytoskeletal remodeling, the reduction in size and change in cell shape, the destruction of the extracellular matrix, and the modification of the tumor microenvironment facilitate migration and invasion into surrounding tissues. The promotion of vascular leakiness enables intra- and extravasation, while angiogenesis and immune suppression help metastasizing cells become established in the new site. Tumor-derived exosomes have long been known to harbor microRNAs (miRNAs or miRs) that help prepare secondary sites for metastasis; however, their roles in the early and intermediate steps of the metastatic cascade are only beginning to be characterized. The present review article presents a summary and discussion of the miRNAs that form part of colorectal cancer (CRC)-derived exosomal cargoes and which play distinct roles in epithelial to mesenchymal plasticity and metastatic organotropism. First, an overview of epithelial-to-mesenchymal transition (EMT), metastatic organotropism, as well as exosome biogenesis, cargo sorting and uptake by recipient cells is presented. Lastly, the potential of these exosomal miRNAs as prognostic biomarkers for metastatic CRC, and the blocking of these as a possible therapeutic intervention is discussed.
Collapse
Affiliation(s)
- Joshua Miguel C Danac
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Aileen Geobee G Uy
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Reynaldo L Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| |
Collapse
|
490
|
Wang Y, Khan A, Antonopoulos A, Bouché L, Buckley CD, Filer A, Raza K, Li KP, Tolusso B, Gremese E, Kurowska-Stolarska M, Alivernini S, Dell A, Haslam SM, Pineda MA. Loss of α2-6 sialylation promotes the transformation of synovial fibroblasts into a pro-inflammatory phenotype in arthritis. Nat Commun 2021; 12:2343. [PMID: 33879788 PMCID: PMC8058094 DOI: 10.1038/s41467-021-22365-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/26/2021] [Indexed: 02/02/2023] Open
Abstract
In healthy joints, synovial fibroblasts (SFs) provide the microenvironment required to mediate homeostasis, but these cells adopt a pathological function in rheumatoid arthritis (RA). Carbohydrates (glycans) on cell surfaces are fundamental regulators of the interactions between stromal and immune cells, but little is known about the role of the SF glycome in joint inflammation. Here we study stromal guided pathophysiology by mapping SFs glycosylation pathways. Combining transcriptomic and glycomic analysis, we show that transformation of fibroblasts into pro-inflammatory cells is associated with glycan remodeling, a process that involves TNF-dependent inhibition of the glycosyltransferase ST6Gal1 and α2-6 sialylation. SF sialylation correlates with distinct functional subsets in murine experimental arthritis and remission stages in human RA. We propose that pro-inflammatory cytokines remodel the SF-glycome, converting the synovium into an under-sialylated and highly pro-inflammatory microenvironment. These results highlight the importance of glycosylation in stromal immunology and joint inflammation.
Collapse
Affiliation(s)
- Yilin Wang
- grid.8756.c0000 0001 2193 314XInstitute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Aneesah Khan
- grid.8756.c0000 0001 2193 314XInstitute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | - Laura Bouché
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Christopher D. Buckley
- grid.6572.60000 0004 1936 7486Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK ,grid.4991.50000 0004 1936 8948The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK ,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, Birmingham, Newcastle Oxford, UK
| | - Andrew Filer
- grid.6572.60000 0004 1936 7486Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK ,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, Birmingham, Newcastle Oxford, UK
| | - Karim Raza
- grid.6572.60000 0004 1936 7486Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK ,grid.412919.6Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Kun-Ping Li
- grid.411847.f0000 0004 1804 4300Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Barbara Tolusso
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, Birmingham, Newcastle Oxford, UK ,grid.414603.4Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elisa Gremese
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, Birmingham, Newcastle Oxford, UK ,grid.414603.4Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Mariola Kurowska-Stolarska
- grid.8756.c0000 0001 2193 314XInstitute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK ,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, Birmingham, Newcastle Oxford, UK
| | - Stefano Alivernini
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, Birmingham, Newcastle Oxford, UK ,grid.414603.4Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Division of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anne Dell
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Stuart M. Haslam
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Miguel A. Pineda
- grid.8756.c0000 0001 2193 314XInstitute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK ,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, Birmingham, Newcastle Oxford, UK
| |
Collapse
|
491
|
Zhu X, Lee CW, Xu H, Wang YF, Yung PSH, Jiang Y, Lee OK. Phenotypic alteration of macrophages during osteoarthritis: a systematic review. Arthritis Res Ther 2021; 23:110. [PMID: 33838669 PMCID: PMC8035781 DOI: 10.1186/s13075-021-02457-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) has long been regarded as a disease of cartilage degeneration, whereas mounting evidence implies that low-grade inflammation contributes to OA. Among inflammatory cells involved, macrophages play a crucial role and are mediated by the local microenvironment to exhibit different phenotypes and polarization states. Therefore, we conducted a systematic review to uncover the phenotypic alterations of macrophages during OA and summarized the potential therapeutic interventions via modulating macrophages. METHODS A systematic review of multiple databases (PubMed, Web of Science, ScienceDirect, Medline) was performed up to February 29, 2020. Included articles were discussed and evaluated by two independent reviewers. Relevant information was analyzed with a standardized and well-designed template. RESULTS A total of 28 studies were included. Results were subcategorized into two sections depending on sources from human tissue/cell-based studies (12 studies) and animal experiments (16 studies). The overall observation indicated that M1 macrophages elevated in both synovium and circulation during OA development, along with lower numbers of M2 macrophages. The detailed alterations of macrophages in both synovium and circulation were listed and analyzed. Furthermore, interventions against OA via regulating macrophages in animal models were highlighted. CONCLUSION This study emphasized the importance of the phenotypic alterations of macrophages in OA development. The classical phenotypic subcategory of M1 and M2 macrophages was questionable due to controversial and conflicting results. Therefore, further efforts are needed to categorize macrophages in an exhaustive manner and to use advanced technologies to identify the individual roles of each subtype of macrophages in OA.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chien-Wei Lee
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongtao Xu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Fan Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick S H Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Oscar K Lee
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China. .,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China. .,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China. .,Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
492
|
Hannemann N, Apparailly F, Courties G. Synovial macrophages: from ordinary eaters to extraordinary multitaskers. Trends Immunol 2021; 42:368-371. [PMID: 33832864 DOI: 10.1016/j.it.2021.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
Like other tissues, joints contain resident macrophages, and their diversity is only beginning to be characterized. Based on the highlights of recent studies, we discuss where current challenges lie and propose new avenues for future research in the osteoarticular field.
Collapse
Affiliation(s)
- Nicole Hannemann
- Institute for Regenerative Medicine and Biotherapy, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Montpellier, Montpellier, France
| | - Florence Apparailly
- Institute for Regenerative Medicine and Biotherapy, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Montpellier, Montpellier, France; Clinical Department for Osteoarticular Diseases, University Hospital of Montpellier, Montpellier, France.
| | - Gabriel Courties
- Institute for Regenerative Medicine and Biotherapy, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Montpellier, Montpellier, France
| |
Collapse
|
493
|
Immunological memory in rheumatic inflammation - a roadblock to tolerance induction. Nat Rev Rheumatol 2021; 17:291-305. [PMID: 33824526 DOI: 10.1038/s41584-021-00601-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Why do we still have no cure for chronic inflammatory diseases? One reason could be that current therapies are based on the assumption that chronic inflammation is driven by persistent 'acute' immune reactions. Here we discuss a paradigm shift by suggesting that beyond these reactions, chronic inflammation is driven by imprinted, pathogenic 'memory' cells of the immune system. This rationale is based on the observation that in patients with chronic inflammatory rheumatic diseases refractory to conventional immunosuppressive therapies, therapy-free remission can be achieved by resetting the immune system; that is, by ablating immune cells and regenerating the immune system from stem cells. The success of this approach identifies antigen-experienced and imprinted immune cells as essential and sufficient drivers of inflammation. The 'dark side' of immunological memory primarily involves memory plasma cells secreting pathogenic antibodies and memory T lymphocytes secreting pathogenic cytokines and chemokines, but can also involve cells of innate immunity. New therapeutic strategies should address the persistence of these memory cells. Selective targeting of pathogenic immune memory cells could be based on their specificity, which is challenging, or on their lifestyle, which differs from that of protective immune memory cells, in particular for pathogenic T lymphocytes. The adaptations of such pathogenic memory cells to chronic inflammation offers entirely new therapeutic options for their selective ablation and the regeneration of immunological tolerance.
Collapse
|
494
|
Qiu J, Wu B, Goodman SB, Berry GJ, Goronzy JJ, Weyand CM. Metabolic Control of Autoimmunity and Tissue Inflammation in Rheumatoid Arthritis. Front Immunol 2021; 12:652771. [PMID: 33868292 PMCID: PMC8050350 DOI: 10.3389/fimmu.2021.652771] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Like other autoimmune diseases, rheumatoid arthritis (RA) develops in distinct stages, with each phase of disease linked to immune cell dysfunction. HLA class II genes confer the strongest genetic risk to develop RA. They encode for molecules essential in the activation and differentiation of T cells, placing T cells upstream in the immunopathology. In Phase 1 of the RA disease process, T cells lose a fundamental function, their ability to be self-tolerant, and provide help for autoantibody-producing B cells. Phase 2 begins many years later, when mis-differentiated T cells gain tissue-invasive effector functions, enter the joint, promote non-resolving inflammation, and give rise to clinically relevant arthritis. In Phase 3 of the RA disease process, abnormal innate immune functions are added to adaptive autoimmunity, converting synovial inflammation into a tissue-destructive process that erodes cartilage and bone. Emerging data have implicated metabolic mis-regulation as a fundamental pathogenic pathway in all phases of RA. Early in their life cycle, RA T cells fail to repair mitochondrial DNA, resulting in a malfunctioning metabolic machinery. Mitochondrial insufficiency is aggravated by the mis-trafficking of the energy sensor AMPK away from the lysosomal surface. The metabolic signature of RA T cells is characterized by the shunting of glucose toward the pentose phosphate pathway and toward biosynthetic activity. During the intermediate and terminal phase of RA-imposed tissue inflammation, tissue-residing macrophages, T cells, B cells and stromal cells are chronically activated and under high metabolic stress, creating a microenvironment poor in oxygen and glucose, but rich in metabolic intermediates, such as lactate. By sensing tissue lactate, synovial T cells lose their mobility and are trapped in the tissue niche. The linkage of defective DNA repair, misbalanced metabolic pathways, autoimmunity, and tissue inflammation in RA encourages metabolic interference as a novel treatment strategy during both the early stages of tolerance breakdown and the late stages of tissue inflammation. Defining and targeting metabolic abnormalities provides a new paradigm to treat, or even prevent, the cellular defects underlying autoimmune disease.
Collapse
Affiliation(s)
- Jingtao Qiu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Bowen Wu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Stuart B Goodman
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Jorg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
495
|
Rai MF, Wu CL, Capellini TD, Guilak F, Dicks AR, Muthuirulan P, Grandi F, Bhutani N, Westendorf JJ. Single Cell Omics for Musculoskeletal Research. Curr Osteoporos Rep 2021; 19:131-140. [PMID: 33559841 PMCID: PMC8743139 DOI: 10.1007/s11914-021-00662-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW The ability to analyze the molecular events occurring within individual cells as opposed to populations of cells is revolutionizing our understanding of musculoskeletal tissue development and disease. Single cell studies have the great potential of identifying cellular subpopulations that work in a synchronized fashion to regenerate and repair damaged tissues during normal homeostasis. In addition, such studies can elucidate how these processes break down in disease as well as identify cellular subpopulations that drive the disease. This review highlights three emerging technologies: single cell RNA sequencing (scRNA-seq), Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq), and Cytometry by Time-Of-Flight (CyTOF) mass cytometry. RECENT FINDINGS Technological and bioinformatic tools to analyze the transcriptome, epigenome, and proteome at the individual cell level have advanced rapidly making data collection relatively easy; however, understanding how to access and interpret the data remains a challenge for many scientists. It is, therefore, of paramount significance to educate the musculoskeletal community on how single cell technologies can be used to answer research questions and advance translation. This article summarizes talks given during a workshop on "Single Cell Omics" at the 2020 annual meeting of the Orthopedic Research Society. Studies that applied scRNA-seq, ATAC-seq, and CyTOF mass cytometry to cartilage development and osteoarthritis are reviewed. This body of work shows how these cutting-edge tools can advance our understanding of the cellular heterogeneity and trajectories of lineage specification during development and disease.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University and Shriners Hospitals for Children, St. Louis, MO, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University and Shriners Hospitals for Children, St. Louis, MO, USA
| | - Amanda R Dicks
- Department of Orthopaedic Surgery, Washington University and Shriners Hospitals for Children, St. Louis, MO, USA
| | | | - Fiorella Grandi
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - Nidhi Bhutani
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
496
|
Affiliation(s)
- Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK. .,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
497
|
Location, location, location: how the tissue microenvironment affects inflammation in RA. Nat Rev Rheumatol 2021; 17:195-212. [PMID: 33526927 DOI: 10.1038/s41584-020-00570-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Current treatments for rheumatoid arthritis (RA) do not work well for a large proportion of patients, or at all in some individuals, and cannot cure or prevent this disease. One major obstacle to developing better drugs is a lack of complete understanding of how inflammatory joint disease arises and progresses. Emerging evidence indicates an important role for the tissue microenvironment in the pathogenesis of RA. Each tissue is made up of cells surrounded and supported by a unique extracellular matrix (ECM). These complex molecular networks define tissue architecture and provide environmental signals that programme site-specific cell behaviour. In the synovium, a main site of disease activity in RA, positional and disease stage-specific cellular diversity exist. Improved understanding of the architecture of the synovium from gross anatomy to the single-cell level, in parallel with evidence demonstrating how the synovial ECM is vital for synovial homeostasis and how dysregulated signals from the ECM promote chronic inflammation and tissue destruction in the RA joint, has opened up new ways of thinking about the pathogenesis of RA. These new ideas provide novel therapeutic approaches for patients with difficult-to-treat disease and could also be used in disease prevention.
Collapse
|
498
|
Abstract
Researchers need in vitro models that mirror the biology of organisms. Primary fibroblasts play essential roles in wound healing and are present in many tissues. They are widely used in studies of cell cycle control, reprogramming, and aging. Though extraction protocols exist, alternatives that maximize use of available resources are useful. Here, we present our protocol for extracting primary fibroblasts from adult mouse ear pinnae, an often-discarded source of primary cells, which consistently yield large, pure numbers of primary fibroblasts. Primary fibroblasts are isolated from adult mouse ear pinnae, an often-unused tissue Fibroblasts can be isolated from mice of varying sex, age, and genotype Fibroblast cultures are highly pure, with >90% THY1.2 or PDGFRα staining
Collapse
Affiliation(s)
- Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
- Corresponding author
| | - Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
- Corresponding author
| |
Collapse
|
499
|
Cai M, Ni WJ, Han L, Chen WD, Peng DY. Research Progress of Therapeutic Enzymes and Their Derivatives: Based on Herbal Medicinal Products in Rheumatoid Arthritis. Front Pharmacol 2021; 12:626342. [PMID: 33796022 PMCID: PMC8008143 DOI: 10.3389/fphar.2021.626342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) acts as one of the most common, agnogenic and chronic inflammatory-autoimmune disorder which is characterized by persistent synovitis, cartilage destruction, and joint deformities, leads to a wide range of disabilities, and increased mortality, thus imposing enormous burdens. Several drugs with anti-inflammatory and immunomodulatory properties such as celecoxib, diclofenac and methotrexate are being selected as conventional drugs in the allopathic system of medicine for the treatment of RA in clinic. However, there are some serious side effects more or less when using these drugs because of their short poor bioavailability and biological half-life for a long time. These shortcomings greatly promote the exploration and application of new low- or no-toxicity drugs for treating the RA. Meanwhile, a growing number of studies demonstrate that several herbs present certain anti-inflammatory and anti-arthritic activities through different enzymes and their derivatives, which indicate that they are promising therapeutic strategies when targeting these mediators based on herbal medicinal products in RA research. This review article summarizes the roles of the main enzymes and their derivatives during the pathogenesis of RA, and clearly clarifies the explicit and potential targeted actions of herbal medicinal products that have anti-RA activity. Our review provides timely and critical reference for the scientific rationale use of herbal medicinal products, with the increasing basic research and clinical application of herbal medicinal products by patients with RA.
Collapse
Affiliation(s)
- Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| | - Wei-Jian Ni
- School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Lan Han
- Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| | - Wei-Dong Chen
- Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| | - Dai-Yin Peng
- Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
500
|
Komatsu N, Win S, Yan M, Huynh NCN, Sawa S, Tsukasaki M, Terashima A, Pluemsakunthai W, Kollias G, Nakashima T, Takayanagi H. Plasma cells promote osteoclastogenesis and periarticular bone loss in autoimmune arthritis. J Clin Invest 2021; 131:143060. [PMID: 33720039 PMCID: PMC7954598 DOI: 10.1172/jci143060] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/27/2021] [Indexed: 12/29/2022] Open
Abstract
In rheumatoid arthritis (RA), osteoclastic bone resorption causes structural joint damage as well as periarticular and systemic bone loss. Periarticular bone loss is one of the earliest indices of RA, often preceding the onset of clinical symptoms via largely unknown mechanisms. Excessive osteoclastogenesis induced by receptor activator of NF-κB ligand (RANKL) expressed by synovial fibroblasts causes joint erosion, whereas the role of RANKL expressed by lymphocytes in various types of bone damage has yet to be elucidated. In the bone marrow of arthritic mice, we found an increase in the number of RANKL-expressing plasma cells, which displayed an ability to induce osteoclastogenesis in vitro. Genetic ablation of RANKL in B-lineage cells resulted in amelioration of periarticular bone loss, but not of articular erosion or systemic bone loss, in autoimmune arthritis. We also show conclusive evidence for the critical contribution of synovial fibroblast RANKL to joint erosion in collagen-induced arthritis on the arthritogenic DBA/1J background. This study highlights the importance of plasma-cell RANKL in periarticular bone loss in arthritis and provides mechanistic insight into the early manifestation of bone lesion induced by autoimmunity.
Collapse
Affiliation(s)
- Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Stephanie Win
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Minglu Yan
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nam Cong-Nhat Huynh
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichiro Sawa
- Division of Mucosal Immunology, Research Center for Systems Immunology, Kyushu University, Fukuoka, Japan
| | - Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Asuka Terashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Warunee Pluemsakunthai
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - George Kollias
- Biomedical Sciences Research Centre “Alexander Fleming,” Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|