451
|
Deng R, Xu C, Chen X, Chen P, Wang Y, Zhou X, Jin J, Niu L, Ying M, Huang M, Bi H. Resveratrol Suppresses the Inducible Expression of CYP3A4 Through the Pregnane X Receptor. J Pharmacol Sci 2014; 126:146-54. [DOI: 10.1254/jphs.14132fp] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
452
|
Abstract
The intracellular nuclear receptor farnesoid X receptor and the transmembrane G protein-coupled receptor TGR5 respond to bile acids by activating transcriptional networks and/or signalling cascades. These cascades affect the expression of a great number of target genes relevant for bile acid, cholesterol, lipid and carbohydrate metabolism, as well as genes involved in inflammation, fibrosis and carcinogenesis. Pregnane X receptor, vitamin D receptor and constitutive androstane receptor are additional nuclear receptors that respond to bile acids, albeit to a more restricted set of species of bile acids. Recognition of dedicated bile acid receptors prompted the development of semi-synthetic bile acid analogues and nonsteroidal compounds that target these receptors. These agents hold promise to become a new class of drugs for the treatment of chronic liver disease, hepatocellular cancer and extrahepatic inflammatory and metabolic diseases. This Review discusses the relevant bile acid receptors, the new drugs that target bile acid signalling and their possible applications.
Collapse
Affiliation(s)
- Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition, Toxicology and Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, Netherlands
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Peter L M Jansen
- Department of Gastroenterology and Hepatology, Academic Medical Centre, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| |
Collapse
|
453
|
Solomonsterol A, a marine pregnane-X-receptor agonist, attenuates inflammation and immune dysfunction in a mouse model of arthritis. Mar Drugs 2013; 12:36-53. [PMID: 24368568 PMCID: PMC3917259 DOI: 10.3390/md12010036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 12/21/2022] Open
Abstract
In the present study we provide evidence that solomonsterol A, a selective pregnane X receptor (PXR) agonist isolated from the marine sponge Theonella swinhoei, exerts anti-inflammatory activity and attenuates systemic inflammation and immune dysfunction in a mouse model of rheumatoid arthritis. Solomonsterol A was effective in protecting against the development of arthritis induced by injecting transgenic mice harboring a humanized PXR, with anti-collagen antibodies (CAIA) with beneficial effects on joint histopathology and local inflammatory response reducing the expression of inflammatory markers (TNFα, IFNγ and IL-17 and chemokines MIP1α and RANTES) in draining lymph nodes. Solomonsterol A rescued mice from systemic inflammation were assessed by measuring arthritis score, CRP and cytokines in the blood. In summary, the present study provides a molecular basis for the regulation of systemic local and systemic immunity by PXR agonists.
Collapse
|
454
|
Spruiell K, Richardson RM, Cullen JM, Awumey EM, Gonzalez FJ, Gyamfi MA. Role of pregnane X receptor in obesity and glucose homeostasis in male mice. J Biol Chem 2013; 289:3244-61. [PMID: 24362030 DOI: 10.1074/jbc.m113.494575] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Clinical obesity is a complex metabolic disorder affecting one in three adults. Recent reports suggest that pregnane X receptor (PXR), a xenobiotic nuclear receptor important for defense against toxic agents and for eliminating drugs and other xenobiotics, may be involved in obesity. Noting differences in ligand specificities between human and mouse PXRs, the role of PXR in high fat diet (HFD)-induced obesity was examined using male PXR-humanized (hPXR) transgenic and PXR-knock-out (PXR-KO) mice in comparison to wild-type (WT) mice. After 16 weeks on either a control diet or HFD, WT mice showed greater weight gain, whereas PXR-KO mice gained less weight due to their resistance to HFD-induced decreases in adipose tissue peroxisome proliferator-activated receptor α and induction of hepatic carnitine palmitoyltransferase 1, suggesting increased energy metabolism. Interestingly, control-fed PXR-KO mice exhibited hepatomegaly, hyperinsulinemia, and hyperleptinemia but hypoadiponectinemia and lower adiponectin receptor R2 mRNA levels relative to WT mice. Evaluation of these biologic indicators in hPXR mice fed a control diet or HFD revealed further differences between the mouse and human receptors. Importantly, although HFD-fed hPXR mice were resistant to HFD-induced obesity, both PXR-KO and hPXR mice exhibited impaired induction of glucokinase involved in glucose utilization and displayed elevated fasting glucose levels and severely impaired glucose tolerance. Moreover, the basal hepatic levels of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase 1 were increased in hPXR mice compared with WT mice. Altogether, although the mouse PXR promotes HFD-induced obesity, the hPXR mouse carries a genetic predisposition for type 2 diabetes and thus provides a model for exploring the role of human PXR in the metabolic syndrome.
Collapse
Affiliation(s)
- Krisstonia Spruiell
- From the Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707
| | | | | | | | | | | |
Collapse
|
455
|
Zheng R, Rebolledo-Jaramillo B, Zong Y, Wang L, Russo P, Hancock W, Stanger BZ, Hardison RC, Blobel GA. Function of GATA factors in the adult mouse liver. PLoS One 2013; 8:e83723. [PMID: 24367609 PMCID: PMC3867416 DOI: 10.1371/journal.pone.0083723] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/06/2013] [Indexed: 11/24/2022] Open
Abstract
GATA transcription factors and their Friend of Gata (FOG) cofactors control the development of diverse tissues. GATA4 and GATA6 are essential for the expansion of the embryonic liver bud, but their expression patterns and functions in the adult liver are unclear. We characterized the expression of GATA and FOG factors in whole mouse liver and purified hepatocytes. GATA4, GATA6, and FOG1 are the most prominently expressed family members in whole liver and hepatocytes. GATA4 chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) identified 4409 occupied sites, associated with genes enriched in ontologies related to liver function, including lipid and glucose metabolism. However, hepatocyte-specific excision of Gata4 had little impact on gross liver architecture and function, even under conditions of regenerative stress, and, despite the large number of GATA4 occupied genes, resulted in relatively few changes in gene expression. To address possible redundancy between GATA4 and GATA6, both factors were conditionally excised. Surprisingly, combined Gata4,6 loss did not exacerbate the phenotype resulting from Gata4 loss alone. This points to the presence of an unusually robust transcriptional network in adult hepatocytes that ensures the maintenance of liver function.
Collapse
Affiliation(s)
- Rena Zheng
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Boris Rebolledo-Jaramillo
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yiwei Zong
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine and Biesecker Center for Pediatric Liver Disease, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Pierre Russo
- Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Wayne Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine and Biesecker Center for Pediatric Liver Disease, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Ben Z. Stanger
- Division of Gastroenterology, Department of Medicine, Department of Cell and Developmental Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ross C. Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gerd A. Blobel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
456
|
Sepe V, D'Amore C, Ummarino R, Renga B, D'Auria MV, Novellino E, Sinisi A, Taglialatela-Scafati O, Nakao Y, Limongelli V, Zampella A, Fiorucci S. Insights on pregnane-X-receptor modulation. Natural and semisynthetic steroids from Theonella marine sponges. Eur J Med Chem 2013; 73:126-34. [PMID: 24388834 DOI: 10.1016/j.ejmech.2013.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 12/31/2022]
Abstract
Pregnane-X-receptor (PXR) is a member of nuclear receptors superfamily that activates gene transcription by binding to responsive elements in the promoter of target genes. PXR is a master gene orchestrating the expression/activity of genes involved in the metabolism of endobiotics including bilirubin, bile acids, glucose and lipid. In addition PXR oversights the metabolism of the large majority of xenobiotics including a large amount of prescribing drugs. Thus, developing PXR ligands represents a great opportunity for a therapeutic intervention on human diseases including diabetes, obesity, dyslipidemias and liver disorders. To this end, natural compounds represent an arsenal of new chemical scaffolds useful for the identification of novel PXR ligands. Here, we report a series of 4-methylenesteroid derivatives isolated from Theonella marine sponges as novel PXR modulators. In addition, combining medicinal chemistry, pharmacological experiments and computational studies, we have investigated the effects of different modifications on ring A and on the side chain of 4-methylenesteroid derivatives toward PXR modulation. This study provides the molecular bases of ligand/PXR interaction useful for designing novel PXR modulators.
Collapse
Affiliation(s)
- Valentina Sepe
- Dipartimento di Farmacia, Università di Napoli "Federico II", 80131 Napoli, Italy.
| | - Claudio D'Amore
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Perugia, 06132 Perugia, Italy
| | - Raffella Ummarino
- Dipartimento di Farmacia, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Barbara Renga
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Perugia, 06132 Perugia, Italy
| | | | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Annamaria Sinisi
- Dipartimento di Farmacia, Università di Napoli "Federico II", 80131 Napoli, Italy
| | | | - Yoichi Nakao
- Department of Chemistry and Biochemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Vittorio Limongelli
- Dipartimento di Farmacia, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Angela Zampella
- Dipartimento di Farmacia, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Stefano Fiorucci
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Perugia, 06132 Perugia, Italy
| |
Collapse
|
457
|
Baptissart M, Vega A, Martinot E, Baron S, Lobaccaro JMA, Volle DH. Farnesoid X receptor alpha: a molecular link between bile acids and steroid signaling? Cell Mol Life Sci 2013; 70:4511-26. [PMID: 23784309 PMCID: PMC11113643 DOI: 10.1007/s00018-013-1387-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/27/2013] [Accepted: 05/27/2013] [Indexed: 12/29/2022]
Abstract
Bile acids are cholesterol metabolites that have been extensively studied in recent decades. In addition to having ancestral roles in digestion and fat solubilization, bile acids have recently been described as signaling molecules involved in many physiological functions, such as glucose and energy metabolisms. These signaling pathways involve the activation of the nuclear receptor farnesoid X receptor (FXRα) or of the G protein-coupled receptor TGR5. In this review, we will focus on the emerging role of FXRα, suggesting important functions for the receptor in steroid metabolism. It has been described that FXRα is expressed in the adrenal glands and testes, where it seems to control steroid production. FXRα also participates in steroid catabolism in the liver and interferes with the steroid signaling pathways in target tissues via crosstalk with steroid receptors. In this review, we discuss the potential impacts of bile acid (BA), through its interactions with steroid metabolism, on glucose metabolism, sexual function, and prostate and breast cancers. Although several of the published reports rely on in vitro studies, they highlight the need to understand the interactions that may affect health. This effect is important because BA levels are increased in several pathophysiological conditions related to liver injuries. Additionally, BA receptors are targeted clinically using therapeutics to treat liver diseases, diabetes, and cancers.
Collapse
Affiliation(s)
- Marine Baptissart
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - Aurelie Vega
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - Emmanuelle Martinot
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - Silvère Baron
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - Jean-Marc A. Lobaccaro
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| | - David H. Volle
- INSERM U1103, Génétique Reproduction et Développement (GReD), Clermont Université, 24 avenue des Landais, BP 80026, 63177 Aubière Cedex, France
- CNRS Unité Mixte de Recherche 6293, GReD, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, BP 10448, 63000 Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d’Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
458
|
Abstract
The nuclear receptor superfamily includes many receptors, identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology, and the molecular pathology of disease. Here we provide a compendium of these so-called orphan receptors and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise.
Collapse
Affiliation(s)
- Shannon E Mullican
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
459
|
Abstract
Enterohepatic circulation is responsible for the capture of bile acids and other steroids produced or metabolized in the liver and secreted to the intestine, for reabsorption back into the circulation and transport back to the liver. Bile acids are secreted from the liver in the form of mixed micelles that also contain phosphatidylcholines and cholesterol that facilitate the uptake of fats and vitamins from the diet due to the surfactant properties of bile acids and lipids. Bile acids are synthesized in the liver from cholesterol by a cascade of enzymes that carry out oxidation and conjugation reactions, and transported to the bile duct and gall bladder where they are stored before being released into the intestine. Bile flow from the gall bladder to the small intestine is triggered by food intake in accordance with its role in lipid and vitamin absorption from the diet. Bile acids are further metabolized by gut bacteria and are transported back to the circulation. Metabolites produced in the liver are termed primary bile acids or primary conjugated bile salts, while the metabolites generated by bacterial are called secondary bile acids. About 95% of bile acids are reabsorbed in the proximal and distal ileum into the hepatic portal vein and then into the liver sinusoids, where they are efficiently transported into the liver with little remaining in circulation. Each bile acid is reabsorbed about 20 times on average before being eliminated. Enterohepatic circulation is under tight regulation by nuclear receptor signaling, notably by the farnesoid X receptor (FXR).
Collapse
Affiliation(s)
- Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
460
|
Fang ZZ, He RR, Cao YF, Tanaka N, Jiang C, Krausz KW, Qi Y, Dong PP, Ai CZ, Sun XY, Hong M, Ge GB, Gonzalez FJ, Ma XC, Sun HZ. A model of in vitro UDP-glucuronosyltransferase inhibition by bile acids predicts possible metabolic disorders. J Lipid Res 2013; 54:3334-44. [PMID: 24115227 DOI: 10.1194/jlr.m040519] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Increased levels of bile acids (BAs) due to the various hepatic diseases could interfere with the metabolism of xenobiotics, such as drugs, and endobiotics including steroid hormones. UDP-glucuronosyltransferases (UGTs) are involved in the conjugation and elimination of many xenobiotics and endogenous compounds. The present study sought to investigate the potential for inhibition of UGT enzymes by BAs. The results showed that taurolithocholic acid (TLCA) exhibited the strongest inhibition toward UGTs, followed by lithocholic acid. Structure-UGT inhibition relationships of BAs were examined and in vitro-in vivo extrapolation performed by using in vitro inhibition kinetic parameters (Ki) in combination with calculated in vivo levels of TLCA. Substitution of a hydrogen with a hydroxyl group in the R1, R3, R4, R5 sites of BAs significantly weakens their inhibition ability toward most UGTs. The in vivo inhibition by TLCA toward UGT forms was determined with following orders of potency: UGT1A4 > UGT2B7 > UGT1A3 > UGT1A1 ∼ UGT1A7 ∼ UGT1A10 ∼ UGT2B15. In conclusion, these studies suggest that disrupted homeostasis of BAs, notably taurolithocholic acid, found in various diseases such as cholestasis, could lead to altered metabolism of xenobiotics and endobiotics through inhibition of UGT enzymes.
Collapse
Affiliation(s)
- Zhong-Ze Fang
- First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
461
|
Roques BB, Leghait J, Lacroix MZ, Lasserre F, Pineau T, Viguié C, Martin PG. The nuclear receptors pregnane X receptor and constitutive androstane receptor contribute to the impact of fipronil on hepatic gene expression linked to thyroid hormone metabolism. Biochem Pharmacol 2013; 86:997-1039. [DOI: 10.1016/j.bcp.2013.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 01/01/2023]
|
462
|
Abstract
Accumulation of triacylglycerols within the cytoplasm of hepatocytes to the degree that lipid droplets are visible microscopically is called liver steatosis. Most commonly, it occurs when there is an imbalance between the delivery or synthesis of fatty acids in the liver and their disposal through oxidative pathways or secretion into the blood as a component of triacylglycerols in very low density lipoprotein. This disorder is called nonalcoholic fatty liver disease (NAFLD) in the absence of alcoholic abuse and viral hepatitis, and it is often associated with insulin resistance, obesity and type 2 diabetes. Also, liver steatosis can be induced by many other causes including excessive alcohol consumption, infection with genotype 3 hepatitis C virus and certain medications. Whereas hepatic triacylglycerol accumulation was once considered the ultimate effector of hepatic lipotoxicity, triacylglycerols per se are quite inert and do not induce insulin resistance or cellular injury. Rather, lipotoxic injury in the liver appears to be mediated by the global ongoing fatty acid enrichment in the liver, paralleling the development of insulin resistance. A considerable number of fatty acid metabolites may be responsible for hepatic lipotoxicity and liver injury. Additional key contributors include hepatic cytosolic lipases and the "lipophagy" of lipid droplets, as sources of hepatic fatty acids. The specific origin of the lipids, mainly triacylglycerols, accumulating in liver has been unraveled by recent kinetic studies, and identifying the origin of the accumulated triacylglycerols in the liver of patients with NAFLD may direct the prevention and treatment of this condition.
Collapse
Affiliation(s)
- David Q-H Wang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, Missouri
| | | | | |
Collapse
|
463
|
Tognolini M, Incerti M, Pala D, Russo S, Castelli R, Hassan-Mohamed I, Giorgio C, Lodola A. Target hopping as a useful tool for the identification of novel EphA2 protein-protein antagonists. ChemMedChem 2013; 9:67-72. [PMID: 24115725 DOI: 10.1002/cmdc.201300305] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Indexed: 11/08/2022]
Abstract
Lithocholic acid (LCA), a physiological ligand for the nuclear receptor FXR and the G-protein-coupled receptor TGR5, has been recently described as an antagonist of the EphA2 receptor, a key member of the ephrin signalling system involved in tumour growth. Given the ability of LCA to recognize FXR, TGR5, and EphA2 receptors, we hypothesized that the structural requirements for a small molecule to bind each of these receptors might be similar. We therefore selected a set of commercially available FXR or TGR5 ligands and tested them for their ability to inhibit EphA2 by targeting the EphA2-ephrin-A1 interface. Among the selected compounds, the stilbene carboxylic acid GW4064 was identified as an effective antagonist of EphA2, being able to block EphA2 activation in prostate carcinoma cells, in the micromolar range. This finding proposes the "target hopping" approach as a new effective strategy to discover new protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Massimiliano Tognolini
- Dipartimento di Farmacia, Università degli Studi di Parma, V. le delle Scienze 27 A, 43124 Parma (Italy)
| | | | | | | | | | | | | | | |
Collapse
|
464
|
Takigawa T, Miyazaki H, Kinoshita M, Kawarabayashi N, Nishiyama K, Hatsuse K, Ono S, Saitoh D, Seki S, Yamamoto J. Glucocorticoid receptor-dependent immunomodulatory effect of ursodeoxycholic acid on liver lymphocytes in mice. Am J Physiol Gastrointest Liver Physiol 2013; 305:G427-38. [PMID: 23868404 DOI: 10.1152/ajpgi.00205.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although ursodeoxycholic acid (UDCA) has long been used for patients with chronic cholestatic liver diseases, particularly primary biliary cirrhosis, it may modulate the host immune response. This study investigated the effect of UDCA feeding on experimental hepatitis, endotoxin shock, and bacterial infection in mice. C57BL/6 mice were fed a diet supplemented with or without 0.3% (wt/vol) UDCA for 4 wk. UDCA improved hepatocyte injury and survival in concanavalin-A (Con-A)-induced hepatitis by suppressing IFN-γ production by liver mononuclear cells (MNC), especially NK and NKT cells. UDCA also increased survival after lipopolysaccharide (LPS)-challenge; however, it increased mortality of mice following Escherichia coli infection due to the worsening of infection. UDCA-fed mice showed suppressed serum IL-18 levels and production of IL-18 from liver Kupffer cells, which together with IL-12 potently induce IFN-γ production. However, unlike normal mice, exogenous IL-18 pretreatment did not increase the serum IFN-γ levels after E. coli, LPS, or Con-A challenge in the UDCA-fed mice. Interestingly, however, glucocorticoid receptor (GR) expression was significantly upregulated in the liver MNC of the UDCA-fed mice but not in their whole liver tissue homogenates. Silencing GR in the liver MNC abrogated the suppressive effect of UDCA on LPS- or Con-A-induced IFN-γ production. Furthermore, RU486, a GR antagonist, restored the serum IFN-γ level in UDCA-fed mice after E. coli, LPS, or Con-A challenge. Taken together, these results suggest that IFN-γ-reducing immunomodulatory property of UDCA is mediated by elevated GR in the liver lymphocytes in an IL-12/18-independent manner.
Collapse
Affiliation(s)
- Toshimichi Takigawa
- Dept. of Immunology and Microbiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
465
|
Kodama S, Negishi M. Sulfotransferase genes: regulation by nuclear receptors in response to xeno/endo-biotics. Drug Metab Rev 2013; 45:441-9. [PMID: 24025090 DOI: 10.3109/03602532.2013.835630] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pregnane X receptor (PXR) and constitutive active/androstane receptor (CAR), members of the nuclear receptor superfamily, are two major xeno-sensing transcription factors. They can be activated by a broad range of lipophilic xenobiotics including therapeutics drugs. In addition to xenobiotics, endogenous compounds such as steroid hormones and bile acids can also activate PXR and/or CAR. These nuclear receptors regulate genes that encode enzymes and transporters that metabolize and excrete both xenobiotics and endobiotics. Sulfotransferases (SULTs) are a group of these enzymes and sulfate xenobiotics for detoxification. In general, inactivation by sulfation constitutes the mechanism to maintain homeostasis of endobiotics. Thus, deciphering the molecular mechanism by which PXR and CAR regulate SULT genes is critical for understanding the roles of SULTs in the alterations of physiological and pathophysiological processes caused by drug treatment or environmental exposures.
Collapse
Affiliation(s)
- Susumu Kodama
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan and
| | | |
Collapse
|
466
|
Kotta-Loizou I, Patsouris E, Theocharis S. Pregnane X receptor polymorphisms associated with human diseases. Expert Opin Ther Targets 2013; 17:1167-77. [DOI: 10.1517/14728222.2013.823403] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
467
|
Barrett KG, Fang H, Gargano MD, Markovich D, Kocarek TA, Runge-Morris M. Regulation of murine hepatic hydroxysteroid sulfotransferase expression in hyposulfatemic mice and in a cell model of 3'-phosphoadenosine-5'-phosphosulfate deficiency. Drug Metab Dispos 2013; 41:1505-13. [PMID: 23674610 PMCID: PMC3716305 DOI: 10.1124/dmd.113.051912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/14/2013] [Indexed: 01/07/2023] Open
Abstract
The cytosolic sulfotransferases (SULTs) catalyze the sulfate conjugation of nucleophilic substrates, and the cofactor for sulfonation, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), is biosynthesized from sulfate and ATP. The phenotype of male knockout mice for the NaS1 sodium sulfate cotransporter includes hyposulfatemia and increased hepatic expression of mouse cytoplasmic sulfotransferase Sult2a and Sult3a1. Here we report that in 8-week-old female NaS1-null mice, hepatic Sult2a1 mRNA levels were ∼51-fold higher than they were in a wild-type liver but expression of no other Sult was affected. To address whether hyposulfatemia-inducible Sult2a1 expression might be due to reduced PAPS levels, we stably knocked down PAPS synthases 1 and 2 in HepG2 cells (shPAPSS1/2 cells). When a reporter plasmid containing at least 233 nucleotides (nt) of Sult2a1 5'-flanking sequence was transfected into shPAPSS1/2 cells, reporter activity was significantly increased relative to the activity that was seen for reporters containing 179 or fewer nucleotides. Mutation of an IR0 (inverted repeat of AGGTCA, with 0 intervening bases) nuclear receptor motif at nt -191 to 180 significantly attenuated the PAPSS1/2 knockdown-mediated increase. PAPSS1/2 knockdown significantly activated farnesoid X receptor (FXR), retinoid-related orphan receptor, and pregnane X receptor responsive reporters, and treatment with the FXR agonist GW4064 [3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole] increased Sult2a1 promoter activity when the IR0 was intact. Transfection of shPAPSS1/2 cells with FXR small interfering RNA (siRNA) significantly reduced the Sult2a1 promoter activity. The impact of PAPSS1/2 knockdown on Sult2a1 promoter activity was recapitulated by knocking down endogenous SULT2A1 expression in HepG2 cells. We propose that hyposulfatemia leads to hepatic PAPS depletion, which causes loss of SULT2A1 activity and results in accumulation of nonsulfated bile acids and FXR activation.
Collapse
Affiliation(s)
- Kathleen G Barrett
- Institute of Environmental Health Sciences, 259 Mack Avenue, Room 4118, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
468
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-1530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 968] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
469
|
Kienhuis AS, Vitins AP, Pennings JL, Pronk TE, Speksnijder EN, Roodbergen M, van Delft JH, Luijten M, van der Ven LT. Cyclosporine A treated in vitro models induce cholestasis response through comparison of phenotype-directed gene expression analysis of in vivo Cyclosporine A-induced cholestasis. Toxicol Lett 2013; 221:225-36. [DOI: 10.1016/j.toxlet.2013.06.236] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 01/05/2023]
|
470
|
Abstract
Bile acids are signaling molecules that activate nuclear receptors, such as farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, and vitamin D receptor, and play a critical role in the regulation of lipid, glucose, energy, and drug metabolism. These xenobiotic/endobiotic-sensing nuclear receptors regulate phase I oxidation, phase II conjugation, and phase III transport in bile acid and drug metabolism in the digestive system. Integration of bile acid metabolism with drug metabolism controls absorption, transport, and metabolism of nutrients and drugs to maintain metabolic homeostasis and also protects against liver injury, inflammation, and related metabolic diseases, such as nonalcoholic fatty liver disease, diabetes, and obesity. Bile-acid-based drugs targeting nuclear receptors are in clinical trials for treating cholestatic liver diseases and fatty liver disease.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272, USA
| | | |
Collapse
|
471
|
Okazaki Y, Utama Z, Suidasari S, Zhang P, Yanaka N, Tomotake H, Sakaguchi E, Kato N. Consumption of vitamin B(6) reduces fecal ratio of lithocholic acid to deoxycholic acid, a risk factor for colon cancer, in rats fed a high-fat diet. J Nutr Sci Vitaminol (Tokyo) 2013; 58:366-70. [PMID: 23327973 DOI: 10.3177/jnsv.58.366] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To examine the effect of supplemental dietary vitamin B(6) on the colonic luminal environment, growing male rats were fed a high-fat diet containing 1, 7, or 35 mg pyridoxine HCl/kg diet for 6 wk. Food intake and growth were unaffected by the dietary treatment. Supplemental dietary vitamin B(6) significantly reduced the production of a fecal secondary bile acid, lithocholic acid (the most toxic secondary bile acid and a risk factor for colon cancer), and markedly reduced the ratio of lithocholic acid to deoxycholic acid (a less toxic secondary bile acid) in feces (p<0.05). Increasing dietary vitamin B(6) increased fecal mucin levels (a marker of intestinal barrier function) in a dose-dependent manner (p<0.05) but did not affect fecal immunoglobulin A levels (an index of intestinal immune function). Cecal levels of organic acids were not significantly affected by supplemental dietary vitamin B(6). These results suggest the possibility that dietary vitamin B(6) affects the colonic luminal environment by altering the production of secondary bile acids and mucins.
Collapse
Affiliation(s)
- Yukako Okazaki
- Faculty of Human Life Sciences, Fuji Women's University, Ishikari, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
472
|
Festa C, D’Amore C, Renga B, Lauro G, De Marino S, D’Auria MV, Bifulco G, Zampella A, Fiorucci S. Oxygenated polyketides from Plakinastrella mamillaris as a new chemotype of PXR agonists. Mar Drugs 2013; 11:2314-27. [PMID: 23820629 PMCID: PMC3736425 DOI: 10.3390/md11072314] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 11/16/2022] Open
Abstract
Further purification of the apolar extracts of the sponge Plakinastrella mamillaris, afforded a new oxygenated polyketide named gracilioether K, together with the previously isolated gracilioethers E-G and gracilioethers I and J. The structure of the new compound has been elucidated by extensive NMR (1H and 13C, COSY, HSQC, HMBC, and ROESY) and ESI-MS analysis. With the exception of gracilioether F, all compounds are endowed with potent pregnane-X-receptor (PXR) agonistic activity and therefore represent a new chemotype of potential anti-inflammatory leads. Docking calculations suggested theoretical binding modes of the identified compounds, compatible with an agonistic activity on hPXR, and clarified the molecular basis of their biological activities.
Collapse
Affiliation(s)
- Carmen Festa
- Department of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, Naples 80131, Italy; E-Mails: (C.F.); (S.D.M.); (M.V.D.)
| | - Claudio D’Amore
- Department of Clinical and Experimental Medicine, Faculty of Medicine, University of Perugia, via Gerardo Dottori 1, S. Andrea Delle Fratte, Perugia 06132, Italy; E-Mails: (C.D.); (B.R.); (S.F.)
| | - Barbara Renga
- Department of Clinical and Experimental Medicine, Faculty of Medicine, University of Perugia, via Gerardo Dottori 1, S. Andrea Delle Fratte, Perugia 06132, Italy; E-Mails: (C.D.); (B.R.); (S.F.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, via Ponte don Melillo, Fisciano (SA) 84084, Italy; E-Mails: (G.L.); (G.B.)
| | - Simona De Marino
- Department of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, Naples 80131, Italy; E-Mails: (C.F.); (S.D.M.); (M.V.D.)
| | - Maria Valeria D’Auria
- Department of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, Naples 80131, Italy; E-Mails: (C.F.); (S.D.M.); (M.V.D.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, via Ponte don Melillo, Fisciano (SA) 84084, Italy; E-Mails: (G.L.); (G.B.)
| | - Angela Zampella
- Department of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, Naples 80131, Italy; E-Mails: (C.F.); (S.D.M.); (M.V.D.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-081-678525; Fax: +39-081-678552
| | - Stefano Fiorucci
- Department of Clinical and Experimental Medicine, Faculty of Medicine, University of Perugia, via Gerardo Dottori 1, S. Andrea Delle Fratte, Perugia 06132, Italy; E-Mails: (C.D.); (B.R.); (S.F.)
| |
Collapse
|
473
|
Jensen DD, Godfrey CB, Niklas C, Canals M, Kocan M, Poole DP, Murphy JE, Alemi F, Cottrell GS, Korbmacher C, Lambert NA, Bunnett NW, Corvera CU. The bile acid receptor TGR5 does not interact with β-arrestins or traffic to endosomes but transmits sustained signals from plasma membrane rafts. J Biol Chem 2013; 288:22942-60. [PMID: 23818521 DOI: 10.1074/jbc.m113.455774] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion, and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid (DCA), taurolithocholic acid) and the selective agonists oleanolic acid and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, as assessed by confocal microscopy. DCA, taurolithocholic acid, and oleanolic acid did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, as determined by bioluminescence resonance energy transfer. 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated a low level of TGR5 interaction with β-arrestin 2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, as determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of ERK1/2. Bioluminescence resonance energy transfer analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, as localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize, or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists.
Collapse
Affiliation(s)
- Dane D Jensen
- Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
474
|
Sharma D, Lau AJ, Sherman MA, Chang TK. Agonism of human pregnane X receptor by rilpivirine and etravirine: Comparison with first generation non-nucleoside reverse transcriptase inhibitors. Biochem Pharmacol 2013; 85:1700-11. [DOI: 10.1016/j.bcp.2013.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 11/24/2022]
|
475
|
Avior Y, Bomze D, Ramon O, Nahmias Y. Flavonoids as dietary regulators of nuclear receptor activity. Food Funct 2013; 4:831-44. [PMID: 23598551 PMCID: PMC3781338 DOI: 10.1039/c3fo60063g] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolic diseases such as obesity, type II diabetes, and dyslipidemia are a rising cause of mortality worldwide. The progression of many metabolic diseases is fundamentally regulated on the transcriptional level by a family of ligand-activated transcription factors, called nuclear receptors, which detect and respond to metabolic changes. Their role in maintaining metabolic homeostasis makes nuclear receptors an important pharmaceutical and dietary target. This review will present the growing evidence that flavonoids, natural secondary plant metabolites, are important regulators of nuclear receptor activity. Structural similarities between flavonoids and cholesterol derivatives combined with the promiscuous nature of most nuclear receptors provide a wealth of possibilities for pharmaceutical and dietary modulation of metabolism. While the challenges of bringing flavonoid-derived therapeutics to the market are significant, we consider this rapidly growing field to be an essential aspect of the functional food initiative and an important mine for pharmaceutical compounds.
Collapse
Affiliation(s)
- Yishai Avior
- School of Computer Science and Engineering, Center for Bioengineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus (Givat Ram), Silberman 3-512, Jerusalem 91904, Israel.
| | - David Bomze
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ory Ramon
- School of Computer Science and Engineering, Center for Bioengineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus (Givat Ram), Silberman 3-512, Jerusalem 91904, Israel.
| | - Yaakov Nahmias
- School of Computer Science and Engineering, Center for Bioengineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus (Givat Ram), Silberman 3-512, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
476
|
Kodama S, Negishi M. PXR cross-talks with internal and external signals in physiological and pathophysiological responses. Drug Metab Rev 2013; 45:300-10. [DOI: 10.3109/03602532.2013.795585] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
477
|
Abstract
Enzymatic oxidation of cholesterol generates numerous distinct bile acids that function both as detergents that facilitate digestion and absorption of dietary lipids, and as hormones that activate four distinct receptors. Activation of these receptors alters gene expression in multiple tissues, leading to changes not only in bile acid metabolism but also in glucose homeostasis, lipid and lipoprotein metabolism, energy expenditure, intestinal motility and bacterial growth, inflammation, liver regeneration, and hepatocarcinogenesis. This review covers the roles of specific bile acids, synthetic agonists, and their cognate receptors in controlling these diverse functions, as well as their current use in treating human diseases.
Collapse
Affiliation(s)
- Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
478
|
Yu DD, Lin W, Chen T, Forman BM. Development of time resolved fluorescence resonance energy transfer-based assay for FXR antagonist discovery. Bioorg Med Chem 2013; 21:4266-78. [PMID: 23688559 DOI: 10.1016/j.bmc.2013.04.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/17/2013] [Accepted: 04/26/2013] [Indexed: 01/14/2023]
Abstract
FXR (farnesoid X receptor, NRIH4), a nuclear receptor, plays a major role in the control of cholesterol metabolism. FXR ligands have been investigated in preclinical studies for targeted therapy against metabolic diseases, but have shown limitations. Therefore, there is a need for new agonist or antagonist ligands of FXR, both for potential clinical applications, as well as to further elucidate its biological functions. Here we describe the use of the X-ray crystal structure of FXR complexed with the potent small molecule agonist GW4064 to design and synthesize a novel fluorescent, high-affinity probe (DY246) for time resolved fluorescence resonance energy transfer (TR-FRET) assays. We then used the TR-FRET assay for high throughput screening of a library of over 5000 bioactive compounds. From this library, we identified 13 compounds that act as putative FXR transcriptional antagonists.
Collapse
Affiliation(s)
- Donna D Yu
- Department of Diabetes, Endocrinology and Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | | | | | | |
Collapse
|
479
|
Iwamoto J, Saito Y, Honda A, Miyazaki T, Ikegami T, Matsuzaki Y. Bile acid malabsorption deactivates pregnane X receptor in patients with Crohn's disease. Inflamm Bowel Dis 2013; 19:1278-84. [PMID: 23574760 DOI: 10.1097/mib.0b013e318281f423] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent studies have suggested that the downregulation of pregnane X receptor (PXR) may contribute to the susceptibility and exacerbation of Crohn's disease (CD). Because bile acid malabsorption is one of the features of CD and bile acids are potential activators of PXR, we explored the relationship between bile acid malabsorption and PXR activities in patients with CD. METHODS Twenty-one patients with CD (4 ileal-resected and 17 nonresected), 10 with ulcerative colitis (UC), and 26 healthy controls were studied. Serum biomarkers for the activity of CYP3A4, a target gene of PXR, and for cholesterol and bile acid metabolism were quantified by liquid chromatography-tandem mass spectrometry or enzyme-linked immunosorbent assay. RESULTS The concentrations of 4β-hydroxycholesterol (4β-HC), a known marker for CYP3A4 activity, and those of 25-hydroxycholesterol (25-HC), another metabolite by CYP3A4, were significantly reduced in all patients with CD, especially in those with the history of ileal resection. The concentration of 7α-hydroxy-4-cholesten-3-one (C4), a marker for hepatic bile acid biosynthesis, was significantly elevated, whereas the levels of fibroblast growth factor 19 (FGF19), a marker for intestinal bile acid flux, were reduced in patients with CD compared with patients with UC and controls. A significant negative correlation was observed between 4β-HC or 25-HC and C4 concentrations in all patients with CD. CONCLUSIONS The degree of bile acid malabsorption was closely associated with the deactivation of PXR in CD. Enterohepatic circulation of bile acids is a key factor for preservation of baseline activity of hepatointestinal PXR.
Collapse
Affiliation(s)
- Junichi Iwamoto
- Department of Gastroenterology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
480
|
Abstract
Cholestatic liver diseases encompass a wide spectrum of disorders with different causes, resulting in impaired bile flow and accumulation of bile acids and other potentially hepatotoxic cholephils. The understanding of the molecular mechanisms of bile formation and cholestasis has recently improved significantly through new insights into nuclear receptor (patho)biology. Nuclear receptors are ligand-activated transcription factors, which act as central players in the regulation of genes responsible for elimination and detoxification of biliary constituents accumulating in cholestasis. They also control other pathophysiologic processes such as inflammation, fibrogenesis, and carcinogenesis involved in the pathogenesis and disease progression of cholestasis liver diseases.
Collapse
Affiliation(s)
- Emina Halilbasic
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Anna Baghdasaryan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Corresponding author. Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Vienna, Austria.
| |
Collapse
|
481
|
Abstract
PURPOSE OF REVIEW TGR5 (Gpbar-1) is an emerging drug target for metabolic, intestinal and liver diseases. In liver, the highest expression of TGR5 is found in biliary epithelial cells. This review focusses on the function of TGR5 in cholangiocytes and the potential role of the receptor in biliary diseases. RECENT FINDINGS TGR5 is localized in the primary cilium and the apical membrane domain of cholangiocytes, where the receptor exerts secretory, proliferative and antiapoptotic effects. Recent human and animal studies using bile acid analogues suggest a therapeutic potential for TGR5 in primary biliary cirrhosis but not in primary sclerosing cholangitis. SUMMARY TGR5 has protective functions in cholangiocytes. Further studies are needed to determine the therapeutic potential of TGR5 agonists and antagonists in biliary diseases.
Collapse
|
482
|
Honda A, Ikegami T, Nakamuta M, Miyazaki T, Iwamoto J, Hirayama T, Saito Y, Takikawa H, Imawari M, Matsuzaki Y. Anticholestatic effects of bezafibrate in patients with primary biliary cirrhosis treated with ursodeoxycholic acid. Hepatology 2013; 57:1931-41. [PMID: 22911624 DOI: 10.1002/hep.26018] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/02/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Bezafibrate is a widely used hypolipidemic agent and is known as a ligand of the peroxisome proliferator-activated receptors (PPARs). Recently this agent has come to be recognized as a potential anticholestatic medicine for the treatment of primary biliary cirrhosis (PBC) that does not respond sufficiently to ursodeoxycholic acid (UDCA) monotherapy. The aim of this study was to explore the anticholestatic mechanisms of bezafibrate by analyzing serum lipid biomarkers in PBC patients and by cell-based enzymatic and gene expression assays. Nineteen patients with early-stage PBC and an incomplete biochemical response to UDCA (600 mg/day) monotherapy were treated with the same dose of UDCA plus bezafibrate (400 mg/day) for 3 months. In addition to the significant improvement of serum biliary enzymes, immunoglobulin M (IgM), cholesterol, and triglyceride concentrations in patients treated with bezafibrate, reduction of 7α-hydroxy-4-cholesten-3-one (C4), a marker of bile acid synthesis, and increase of 4β-hydroxycholesterol, a marker of CYP3A4/5 activity, were observed. In vitro experiments using human hepatoma cell lines demonstrated that bezafibrate controlled the target genes of PPARα, as well as those of the pregnane X receptor (PXR); down-regulating CYP7A1, CYP27A1, and sinusoidal Na(+) /taurocholate cotransporting polypeptide (NTCP), and up-regulating CYP3A4, canalicular multidrug resistance protein 3 (MDR3), MDR1, and multidrug resistance-associated protein 2 (MRP2). CONCLUSION Bezafibrate is a dual PPARs/PXR agonist with potent anticholestatic efficacy in early-stage PBC patients with an incomplete biochemical response to UDCA monotherapy.
Collapse
Affiliation(s)
- Akira Honda
- Department of Gastroenterology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
483
|
Salvador JAR, Carvalho JFS, Neves MAC, Silvestre SM, Leitão AJ, Silva MMC, Sá e Melo ML. Anticancer steroids: linking natural and semi-synthetic compounds. Nat Prod Rep 2013; 30:324-74. [PMID: 23151898 DOI: 10.1039/c2np20082a] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Steroids, a widespread class of natural organic compounds occurring in animals, plants and fungi, have shown great therapeutic value for a broad array of pathologies. The present overview is focused on the anticancer activity of steroids, which is very representative of a rich structural molecular diversity and ability to interact with various biological targets and pathways. This review encompasses the most relevant discoveries on steroid anticancer drugs and leads through the last decade and comprises 668 references.
Collapse
Affiliation(s)
- Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, 3000-508, Coimbra, Portugal.
| | | | | | | | | | | | | |
Collapse
|
484
|
Shizu R, Benoki S, Numakura Y, Kodama S, Miyata M, Yamazoe Y, Yoshinari K. Xenobiotic-induced hepatocyte proliferation associated with constitutive active/androstane receptor (CAR) or peroxisome proliferator-activated receptor α (PPARα) is enhanced by pregnane X receptor (PXR) activation in mice. PLoS One 2013; 8:e61802. [PMID: 23626729 PMCID: PMC3634023 DOI: 10.1371/journal.pone.0061802] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/13/2013] [Indexed: 11/24/2022] Open
Abstract
Xenobiotic-responsive nuclear receptors pregnane X receptor (PXR), constitutive active/androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα) play pivotal roles in the metabolic functions of the liver such as xenobiotics detoxification and energy metabolism. While CAR or PPARα activation induces hepatocyte proliferation and hepatocarcinogenesis in rodent models, it remains unclear whether PXR activation also shows such effects. In the present study, we have investigated the role of PXR in the xenobiotic-induced hepatocyte proliferation with or without CAR activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) and phenobarbital, or PPARα activation by Wy-14643 in mice. Treatment with TCPOBOP or phenobarbital increased the percentage of Ki-67-positive nuclei as well as mRNA levels of cell proliferation-related genes in livers as expected. On the other hand, treatment with the PXR activator pregnenolone 16α-carbonitrile (PCN) alone showed no such effects. Surprisingly, PCN co-treatment significantly augmented the hepatocyte proliferation induced by CAR activation with TCPOBOP or phenobarbital in wild-type mice but not in PXR-deficient mice. Intriguingly, PXR activation also augmented the hepatocyte proliferation induced by Wy-14643 treatment. Moreover, PCN treatment increased the RNA content of hepatocytes, suggesting the induction of G0/G1 transition, and reduced mRNA levels of Cdkn1b and Rbl2, encoding suppressors of cell cycle initiation. Our present findings indicate that xenobiotic-induced hepatocyte proliferation mediated by CAR or PPARα is enhanced by PXR co-activation despite that PXR activation alone does not cause the cell proliferation in mouse livers. Thus PXR may play a novel and unique role in the hepatocyte/liver hyperplasia upon exposure to xenobiotics.
Collapse
Affiliation(s)
- Ryota Shizu
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Satoshi Benoki
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Yuki Numakura
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Susumu Kodama
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Masaaki Miyata
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Kouichi Yoshinari
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
- * E-mail:
| |
Collapse
|
485
|
Transport and biological activities of bile acids. Int J Biochem Cell Biol 2013; 45:1389-98. [PMID: 23603607 DOI: 10.1016/j.biocel.2013.04.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/30/2013] [Accepted: 04/09/2013] [Indexed: 12/29/2022]
Abstract
Bile acids have emerged as important biological molecules that support the solubilization of various lipids and lipid-soluble compounds in the gut, and the regulation of gene expression and cellular function. Bile acids are synthesized from cholesterol in the liver and eventually released into the small intestine. The majority of bile acids are recovered in the distal end of the small intestine and then returned to the liver for reuse. The components of the mechanism responsible for the recycling of bile acids within the enterohepatic circulation have been identified whereas the mechanism for intracellular transport is less understood. Recently, the ileal lipid binding protein (ILBP; human gene symbol FABP6) was shown to be needed for the efficient transport of bile acids from the apical side to the basolateral side of enterocytes in the distal intestine. This review presents an overview of the transport of bile acids between the liver and the gut as well as within hepatocytes and enterocytes. A variety of pathologies is associated with the malfunction of the bile acid transport system.
Collapse
|
486
|
Abu-Hayyeh S, Papacleovoulou G, Williamson C. Nuclear receptors, bile acids and cholesterol homeostasis series - bile acids and pregnancy. Mol Cell Endocrinol 2013; 368:120-8. [PMID: 23159988 DOI: 10.1016/j.mce.2012.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/28/2012] [Accepted: 10/26/2012] [Indexed: 12/19/2022]
Abstract
Bile acids have been traditionally thought of as having an important role in fat emulsification. It is now emerging that they act as important signalling molecules that not only autoregulate their own synthesis but also influence lipid and glucose metabolism. Although, the mechanisms that underlie the regulation of bile acid homeostasis have been well characterised in normal physiology, the impact of pregnancy on bile acid regulation is still poorly understood. This review summarises the main regulatory mechanisms underlying bile acid homeostasis and discusses how pregnancy, a unique physiological state, can modify them. The fetoplacental adaptations that protect against fetal bile acid toxicity are reviewed. We highlight the importance of bile acid regulation during gestation by discussing the liver disease of pregnancy, intrahepatic cholestasis of pregnancy (ICP) and how genetic, endocrine and environmental factors contribute to the disease aetiology at a cellular and molecular level.
Collapse
Affiliation(s)
- Shadi Abu-Hayyeh
- Institute of Reproductive and Developmental Biology, Dept. of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | | | | |
Collapse
|
487
|
Imai Y, Youn MY, Inoue K, Takada I, Kouzmenko A, Kato S. Nuclear receptors in bone physiology and diseases. Physiol Rev 2013; 93:481-523. [PMID: 23589826 PMCID: PMC3768103 DOI: 10.1152/physrev.00008.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During the last decade, our view on the skeleton as a mere solid physical support structure has been transformed, as bone emerged as a dynamic, constantly remodeling tissue with systemic regulatory functions including those of an endocrine organ. Reflecting this remarkable functional complexity, distinct classes of humoral and intracellular regulatory factors have been shown to control vital processes in the bone. Among these regulators, nuclear receptors (NRs) play fundamental roles in bone development, growth, and maintenance. NRs are DNA-binding transcription factors that act as intracellular transducers of the respective ligand signaling pathways through modulation of expression of specific sets of cognate target genes. Aberrant NR signaling caused by receptor or ligand deficiency may profoundly affect bone health and compromise skeletal functions. Ligand dependency of NR action underlies a major strategy of therapeutic intervention to correct aberrant NR signaling, and significant efforts have been made to design novel synthetic NR ligands with enhanced beneficial properties and reduced potential negative side effects. As an example, estrogen deficiency causes bone loss and leads to development of osteoporosis, the most prevalent skeletal disorder in postmenopausal women. Since administration of natural estrogens for the treatment of osteoporosis often associates with undesirable side effects, several synthetic estrogen receptor ligands have been developed with higher therapeutic efficacy and specificity. This review presents current progress in our understanding of the roles of various nuclear receptor-mediated signaling pathways in bone physiology and disease, and in development of advanced NR ligands for treatment of common skeletal disorders.
Collapse
Affiliation(s)
- Yuuki Imai
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
488
|
Azuma K, Ouchi Y, Inoue S. Vitamin K: novel molecular mechanisms of action and its roles in osteoporosis. Geriatr Gerontol Int 2013; 14:1-7. [PMID: 23530597 DOI: 10.1111/ggi.12060] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2013] [Indexed: 12/31/2022]
Abstract
Vitamin K is a fat-soluble vitamin, which is involved in blood coagulation mediated by maintaining the activity of coagulation factors in the liver. Vitamin K also has extrahepatic actions and has been shown to prevent bone fractures in clinical studies. In addition, epidemiological studies suggest that a lack of vitamin K is associated with several geriatric diseases, including osteoporosis, osteoarthritis, dementia and arteriosclerosis. It has also been shown that vitamin K contributes to the prevention and treatment of some kinds of malignancies. Recently, we discovered a novel role for vitamin K as a ligand of the nuclear receptor, steroid and xenobiotic receptor (SXR), and its murine ortholog, pregnane X receptor (PXR). In addition to its established roles as a cofactor of γ-glutamyl carboxylase (GGCX) in mediating post-transcriptional modifications, vitamin K has a different mode of action mediated by transcriptional regulation of SXR/PXR target genes. Analysis of bone tissue from PXR-deficient mice showed that the bone protective effects of vitamin K are partially mediated by SXR/PXR-dependent signaling. The discoveries of a novel mode of vitamin K action have opened up new possibilities that vitamin K might be useful for prevention or treatment of a variety of diseases that affect the geriatric population.
Collapse
Affiliation(s)
- Kotaro Azuma
- Department of Geriatric Medicine, The University of Tokyo, Tokyo, Japan; Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
489
|
Human PXR modulates hepatotoxicity associated with rifampicin and isoniazid co-therapy. Nat Med 2013; 19:418-20. [PMID: 23475203 PMCID: PMC3618537 DOI: 10.1038/nm.3104] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/24/2013] [Indexed: 01/28/2023]
Abstract
Rifampicin and isoniazid co–therapy frequently causes liver injury in humans. A pregnane X receptor–humanized mouse model revealed that rifampicin and isoniazid co–treatment causes accumulation of protoporphyrin IX, an endogenous hepatotoxin, in the liver via a pregnane X receptor–mediated alteration of heme biosynthesis pathway. These results provide novel insight into the mechanism of rifampicin and isoniazid–induced liver injury that may be applied to clinical management of the hepatotoxicity associated with tuberculosis chemotherapy.
Collapse
|
490
|
Rana R, Coulter S, Kinyamu H, Goldstein JA. RBCK1, an E3 ubiquitin ligase, interacts with and ubiquinates the human pregnane X receptor. Drug Metab Dispos 2013; 41:398-405. [PMID: 23160820 PMCID: PMC3558864 DOI: 10.1124/dmd.112.048728] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/13/2012] [Indexed: 12/13/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) plays a pivotal role in the disposition and detoxification of numerous foreign and endogenous chemicals by increasing transcription of numerous target genes, including phase I and II drug-metabolizing enzymes and transporters. In the present study, yeast two-hybrid screening identified an E3 ubiquitin ligase, RBCK1 (Ring-B-box-coiled-coil protein interacting with protein kinase C-1), as a human pregnane X receptor (hPXR)-interacting protein. Coimmunoprecipitation studies confirmed the interaction between RBCK1 and hPXR when both were ectopically expressed in AD-293 cells. Domain mapping studies showed that the interaction between RBCK1 and hPXR involves all RBCK1 domains. We further demonstrate that RBCK1 ubiquitinates hPXR, and this may target hPXR for degradation by the ubiquitin-proteasome pathway. Simultaneous ectopic overexpression of RBCK1 and PXR decreased PXR levels in AD-293 cells, and this decrease was inhibited by the proteasomal inhibitor MG-132 (carbobenzoxy-Leu-Leu-leucinal). Furthermore, overexpression of RBCK1 decreased endogenous levels of PXR in HepG2 cells. Of importance, ectopic overexpression and silencing of endogenous RBCK1 in primary human hepatocytes resulted in a decrease and increase, respectively, in endogenous PXR protein levels and in the induction of PXR target genes by rifampicin. These results suggest that RBCK1 is important for the ubiquitination of PXR and may play a role in its proteasomal degradation.
Collapse
Affiliation(s)
- Ritu Rana
- Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
491
|
Zhang P, Jia K, Fang C, Zhou X, Ding X, Zhang QY. Dietary regulation of mouse intestinal P450 expression and drug metabolism. Drug Metab Dispos 2013; 41:529-35. [PMID: 23160819 PMCID: PMC3558856 DOI: 10.1124/dmd.112.049403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/16/2012] [Indexed: 12/17/2022] Open
Abstract
The study was originally designed to test the hypothesis that the compensatory increase in intestinal P450 (cytochrome P450) expression in the intestinal epithelium-specific P450 reductase (CPR) knockout (IE-Cpr-null) mice was attributable to decreased metabolism of putative P450 inducers present in the diet. Thus, we determined the impact of a dietary change from regular rodent chow to a synthetic diet devoid of phytochemicals on the expression of P450 enzymes in the small intestine (SI) and liver of wild-type (WT) and IE-Cpr-null mice. The dietary change diminished expression of CYP1A, 2B, 2C, and 3A in SI and CYP2B, 2C, and 3A in liver of both WT and IE-Cpr-null mice. However, the compensatory increase in SI P450 expression still occurred in IE-Cpr-null, compared with WT, mice, on the synthetic diet. The diet change-induced decrease in P450 expression was accompanied by decreases in microsomal midazolam-hydroxylase activity in vitro and first-pass clearance of midazolam in vivo in WT mice. Further studies showed that the dietary change, but not Cpr deletion, caused large decreases in bile acid (BA) levels in plasma, liver, SI, and intestinal content and that treatment of WT mice on the synthetic diet with GW4064, a farnesoid-X-receptor agonist, restored the levels of CYP3A expression in both liver and SI to those seen in mice fed with regular chow. Taken together, these results highlight the vital role of diet in maintaining adequate expression of major drug-metabolizing P450s and their associated drug-metabolizing activities in the digestive tract and suggest potential involvement of BA signaling in the regulatory mechanisms.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Molecular, State University of New York at Albany, NY, USA.
| | | | | | | | | | | |
Collapse
|
492
|
Abstract
The cytosolic sulfotransferases (SULTs) are a multigene family of enzymes that catalyze the transfer of a sulfonate group from the physiologic sulfate donor, 3'-phosphoadenosine-5'-phosphosulfate, to a nucleophilic substrate to generate a polar product that is more amenable to elimination from the body. As catalysts of both xenobiotic and endogenous metabolism, the SULTs are major points of contact between the external and physiological environments, and modulation of SULT-catalyzed metabolism can not only affect xenobiotic disposition, but it can also alter endogenous metabolic processes. Therefore, it is not surprising that SULT expression is regulated by numerous members of the nuclear receptor (NR) superfamily that function as sensors of xenobiotics as well as endogenous molecules, such as fatty acids, bile acids, and oxysterols. These NRs include the peroxisome proliferator-activated receptors, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, liver X receptors, farnesoid X receptor, retinoid-related orphan receptors, and estrogen-related receptors. This review summarizes current information about NR regulation of SULT expression. Because species differences in SULT subfamily composition and tissue-, sex-, development-, and inducer-dependent regulation are prominent, these differences will be emphasized throughout the review. In addition, because of the central role of the SULTs in cellular physiology, the effect of NR-mediated SULT regulation on physiological and pathophysiological processes will be discussed. Gaps in current knowledge that require further investigation are also highlighted.
Collapse
Affiliation(s)
- Melissa Runge-Morris
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
493
|
Qiao E, Ji M, Wu J, Ma R, Zhang X, He Y, Zha Q, Song X, Zhu LW, Tang J. Expression of the PXR gene in various types of cancer and drug resistance. Oncol Lett 2013; 5:1093-1100. [PMID: 23599746 PMCID: PMC3628904 DOI: 10.3892/ol.2013.1149] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/02/2013] [Indexed: 01/13/2023] Open
Abstract
Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. PXR is a key xenobiotic receptor that regulates the expression of genes implicated in drug metabolism, detoxification and clearance, including drug metabolizing enzymes and transporters, suggesting that it is significant in the drug resistance of cancer cells. PXR is expressed in a wide range of tissues in the human body. Studies have demonstrated that PXR is expressed in a variety of tumor types, correlating not only with drug resistance but also with the cell proliferation, apoptosis and prognosis of cancer. The purpose of the present review is to provide a comprehensive review of PXR and its potential roles in multidrug resistance and the biological characteristics of PXR-positive tumors.
Collapse
Affiliation(s)
- Enqi Qiao
- Department of General Surgery, Jiangsu Cancer Hospital, Affiliated to Nanjing Medical University, Nanjing 210009
| | | | | | | | | | | | | | | | | | | |
Collapse
|
494
|
Chai X, Zeng S, Xie W. Nuclear receptors PXR and CAR: implications for drug metabolism regulation, pharmacogenomics and beyond. Expert Opin Drug Metab Toxicol 2013; 9:253-66. [PMID: 23327618 DOI: 10.1517/17425255.2013.754010] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION 'Orphan' nuclear receptors belong to the nuclear receptor (NR) superfamily of transcriptional factors. Binding of ligands to these receptors results in the recruitment of the co-activators, thereby regulating the expression of cognate target genes. AREAS COVERED This review discusses the transcriptional regulation of P450 genes by two major xenobiotic nuclear receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR). Additional PXR and CAR target genes include those encoded for UDP-glucuronosyltransferases, glutathione S-transferases, sulfotransferases and drug transporters. The authors discuss the involvement of PXR and CAR in endobiotic metabolism. They also review the polymorphisms of PXR and CAR. EXPERT OPINION PXR and CAR are both xenobiotic and endobiotic receptors. A remarkably diverse set of chemicals can activate PXR and CAR. There is significant cross-talk among xenobiotic receptors. Future studies are needed to focus on the polymorphisms of the nuclear receptors and the complex regulatory networks among nuclear receptors. Considerations should be given while designing PXR- or CAR-targeting pharmaceutics to avoid adverse drug effects. In the meantime, due to the diverse functions of PXR and CAR, agonists or antagonists for these receptors may have therapeutic potentials in managing certain diseases and enhancing therapeutic indexes.
Collapse
Affiliation(s)
- Xiaojuan Chai
- Zhejiang University, College of Pharmaceutical Sciences, Department of Pharmaceutical Analysis and Drug Metabolism, Hangzhou 310058, China
| | | | | |
Collapse
|
495
|
Zhou T, Cong S, Sun S, Sun H, Zou R, Wang S, Wang C, Jiao J, Goto K, Nawata H, Yanase T, Zhao Y. Identification of endocrine disrupting chemicals activating SXR-mediated transactivation of CYP3A and CYP7A1. Mol Cell Endocrinol 2013; 365:36-43. [PMID: 22975079 DOI: 10.1016/j.mce.2012.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 09/03/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
Abstract
Endocrine disrupting chemicals (EDCs) have emerged as a major public health issue because of their potentially disruptive effects on physiological hormonal actions. SXR (steroid xenobiotic receptor), also known as NR1I2, regulates CYP3A expression in response to exogenous chemicals, such as EDCs, after binding to SXRE (SXR response element). In our study, luciferase assay showed that 14 out of 55 EDCs could enhance SXR-mediated rat or human CYP3A gene transcription nearly evenly, and could also activate rat CYP7A1 gene transcription by cross-interaction of SXR and LXRE (LXRα response element). SXR diffused in the nucleus without ligand, whereas intranuclear foci of liganded SXR were produced. Furthermore, endogenous mRNA expression of CYP3A4 gene was enhanced by the 14 positive EDCs. Our results suggested a probable mechanism of EDCs disrupting the steroid or xenobiotic metabolism homeostasis via SXR.
Collapse
Affiliation(s)
- Tingting Zhou
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
496
|
Abstract
Sepsis-induced cholestasis is a complication of infection. Infections cause systemic and intrahepatic increase in proinflammatory cytokines which result in impaired bile flow ie. cholestasis. Several other mediators of impairment in bile flow have been identified under conditions of sepsis such as increased nitric oxide production and decreased aquaporin channels. The development of cholestasis may also further worsen inflammation. The molecular basis of normal bile flow and mechanisms of impairment in sepsis are discussed.
Collapse
Affiliation(s)
- Harjit K. Bhogal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Arun J. Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA
| |
Collapse
|
497
|
Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol 2013; 58:155-68. [PMID: 22885388 PMCID: PMC3526785 DOI: 10.1016/j.jhep.2012.08.002] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 08/01/2012] [Accepted: 08/03/2012] [Indexed: 02/06/2023]
Abstract
Bile acid (BA) transporters are critical for maintenance of the enterohepatic BA circulation where BAs exert their multiple physiological functions including stimulation of bile flow, intestinal absorption of lipophilic nutrients, solubilization and excretion of cholesterol, as well as antimicrobial and metabolic effects. Tight regulation of BA transporters via nuclear receptors is necessary to maintain proper BA homeostasis. Hereditary and acquired defects of BA transporters are involved in the pathogenesis of several hepatobiliary disorders including cholestasis, gallstones, fatty liver disease and liver cancer, but also play a role in intestinal and metabolic disorders beyond the liver. Thus, pharmacological modification of BA transporters and their regulatory nuclear receptors opens novel treatment strategies for a wide range of disorders.
Collapse
Key Words
- bile acids, cholestasis, fatty liver disease, gallstones, liver regeneration, liver cancer
- 6-ecdca, 6-ethylchenodeoxycholic acid
- ae2, anion exchanger 2
- abcg5/8, cholesterol efflux pump, atp-binding cassette, subfamily g, member 5/8
- ba, bile acid
- ampk, amp activated protein kinase
- bcrp (abcg2), breast cancer resistance protein, atp-binding cassette, subfamily g, member 2
- bric, benign recurrent intrahepatic cholestasis
- bsep (abcb11), bile salt export pump
- car (nr1i3), constitutive androstane receptor
- egfr, epidermal growth factor receptor
- fgf15/19, fibroblast growth factor 15/19
- fxr (nr1h4), farnesoid x receptor/bile acid receptor
- glp-1, glucagon like peptide 1
- gr (nr3c1), glucocorticoid receptor
- hcc, hepatocellular carcinoma
- hnf1α, hepatocyte nuclear factor 1 alpha
- hnf4α (nr2a1), hepatocyte nuclear factor 4 alpha
- ibabp (fabp6, ilbp), intestinal bile acid-binding protein, fatty acid-binding protein 6
- icp, intrahepatic cholestasis of pregnancy
- il6, interleukin 6
- lca, lithocholic acid
- lrh-1 (nr5a2), liver receptor homolog-1
- lxrα (nr1h3), liver x receptor alpha
- mdr1 (abcb1), p-glycoprotein, atp-binding cassette, subfamily b, member 1
- mdr2/mdr3 (abcb4), multidrug resistance protein 2 (rodents)/3 (human)
- mrp2 (abcc2), multidrug resistance-associated protein 2, atp-binding cassette, subfamily c, member 2
- mrp3 (abcc3), multidrug resistance-associated protein 3, atp-binding cassette, subfamily c, member 3
- mrp4 (abcc4), multidrug resistance-associated protein 4, atp-binding cassette, subfamily c, member 4
- nafld, non-alcoholic fatty liver disease
- nash, non-alcoholic steatohepatitis
- norudca, norursodeoxycholic acid
- nr, nuclear receptor
- ntcp (slc10a1), sodium/taurocholate cotransporting polypeptide, solute carrier family 10, member 1
- oatp1a2 (slco1a2, oatp1, oatp-a, slc21a3), solute carrier organic anion transporter family, member 1a2
- oatp1b1 (slco1b1, oatp2, oatp-c, slc21a6), solute carrier organic anion transporter family, member 1b1
- oatp1b3 (slco1b3, oatp8, slc21a8), solute carrier organic anion transporter family, member 1b3
- ostαβ, organic solute transporter alpha/beta
- pbc, primary biliary cirrhosis
- pfic, progressive familial intrahepatic cholestasis
- ph, partial hepatectomy
- pparα (nr1c1), peroxisome proliferator-activated receptor alpha
- pparγ (nr1c3), peroxisome proliferator-activated receptor gamma
- psc, primary sclerosing cholangitis
- pxr (nr1i2), pregnane x receptor
- rarα (nr1b1), retinoic acid receptor alpha
- rxrα (nr2b1), retinoid x receptor alpha
- shp (nr0b2), short heterodimer partner
- src2, p160 steroid receptor coactivator
- tgr5, g protein-coupled bile acid receptor
- tnfα, tumor necrosis factor α
- tpn, total parenteral nutrition
- udca, ursodeoxycholic acid
- vdr (nr1i1), vitamin d receptor. please note that for the convenience of better readability and clarity, abbreviations for transporters and nuclear receptors were capitalized throughout this article when symbols were identical for human and rodents
Collapse
Affiliation(s)
| | | | - Michael Trauner
- Corresponding author. Address: Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Waehringer Guertel 18-20, A-1090 Vienna, Austria. Tel.: +43 01 40400 4741; fax: +43 01 40400 4735.
| |
Collapse
|
498
|
Macchiarulo A, Carotti A, Cellanetti M, Sardella R, Gioiello A. Navigations of chemical space to further the understanding of polypharmacology in human nuclear receptors. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20157g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The article analyses properties featuring the binding site of human nuclear receptors and cognate ligands, investigating aspects of polypharmacology.
Collapse
Affiliation(s)
- Antonio Macchiarulo
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università di Perugia
- 06123 Perugia
- Italy
| | - Andrea Carotti
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università di Perugia
- 06123 Perugia
- Italy
| | - Marco Cellanetti
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università di Perugia
- 06123 Perugia
- Italy
| | - Roccaldo Sardella
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università di Perugia
- 06123 Perugia
- Italy
| | - Antimo Gioiello
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università di Perugia
- 06123 Perugia
- Italy
| |
Collapse
|
499
|
Tajima M, Ikarashi N, Igeta S, Toda T, Ishii M, Tanaka Y, Machida Y, Ochiai W, Yamada H, Sugiyama K. Different Diets Cause Alterations in the Enteric Environment and Trigger Changes in the Expression of Hepatic Cytochrome P450 3A, a Drug-Metabolizing Enzyme. Biol Pharm Bull 2013; 36:624-34. [DOI: 10.1248/bpb.b12-01005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masataka Tajima
- Department of Clinical Pharmacokinetics, Hoshi University
- Department of Pharmaceutical Sciences, International University of Health and Welfare
| | | | - Shintaro Igeta
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Takahiro Toda
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Makoto Ishii
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Yoshikazu Tanaka
- Division of Applied Pharmaceutical Education and Research, Hoshi University
| | - Yoshiaki Machida
- Division of Applied Pharmaceutical Education and Research, Hoshi University
| | - Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Harumi Yamada
- Department of Pharmaceutical Sciences, International University of Health and Welfare
| | | |
Collapse
|
500
|
Coordinated roles of pregnane X receptor and constitutive androstane receptor in autoinduction of voriconazole metabolism in mice. Antimicrob Agents Chemother 2012; 57:1332-8. [PMID: 23274663 DOI: 10.1128/aac.01900-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antifungal efficacy of voriconazole (VRC) differs among host species, with potent efficacy in humans but less in rodents. We investigated the possible involvement of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) in the species-specific efficacy of VRC through pharmacokinetic analyses using genetically modified mice and primary human hepatocytes. VRC (30 mg/kg) was orally administered to wild-type, Pxr-null, Car-null, and Pxr- and Car-null (Pxr/Car-null) mice for 7 days. Hepatic VRC metabolism was significantly increased by VRC administration, and the elimination rates of plasma VRC were much higher on day 7 than on day 1 in wild-type mice. This autoinduction was also observed in Pxr-null and Car-null mice but not in Pxr/Car-null mice, suggesting coordinated roles of PXR and CAR in the autoinduction of VRC metabolism in mice. Hepatic Cyp3a11 mRNA levels were increased by VRC administration, hepatic metabolic activities for VRC were correlated with CYP3A activities, and the induced VRC metabolism was inhibited by ketoconazole (a CYP3A inhibitor). In primary human hepatocytes, VRC barely increased mRNA levels of CYP3A4 and CYP2B6 (human PXR/CAR target genes) at its therapeutic concentrations. In conclusion, these results suggest that VRC is metabolized mainly by CYP3A11 in mouse livers and that PXR- and CAR-mediated CYP3A11 induction, namely, autoinduction of VRC metabolism, is a primary reason for the ineffectiveness of VRC in mice. A limited ability of VRC to activate human PXR/CAR at its clinical concentration might explain the VRC efficacy in humans. Therefore, the ability to activate PXR/CAR might determine the VRC efficacy in different mammalian species.
Collapse
|