451
|
Craescu CT, Bouhss A, Mispelter J, Diesis E, Popescu A, Chiriac M, Bârzu O. Calmodulin binding of a peptide derived from the regulatory domain of Bordetella pertussis adenylate cyclase. J Biol Chem 1995; 270:7088-96. [PMID: 7706246 DOI: 10.1074/jbc.270.13.7088] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This paper reports the solution conformation and calmodulin binding of a 43-residue peptide from the calmodulin-binding domain of Bordetella pertussis adenylate cyclase. The peptide (P225-267) was synthesized and 15N-labeled at specific amino acids. It binds calmodulin with an equilibrium dissociation constant of 25 nM. Assignment of the NMR spectrum of the free peptide and analysis of the NOE connectivities and secondary shifts of C alpha protons allowed us to identify a 10-amino acid fragment (Arg237 to Arg246) which is in rapid equilibrium between alpha-helical and irregular structures. Titration experiments showed that at substoichiometric molar ratios the two molecules are in intermediate exchange between free and bound conformations. Using 15N-edited methods we assigned a large part of resonances of the labeled residues in the bound peptide. Analysis of the chemical shift differences between free and bound states shows that the fragment Leu240-Ala257 is the most affected by the interaction. The proton spectra of the calmodulin, in the free and complexed states were extensively assigned using homonuclear experiments. Medium- and long-range NOE patterns are consistent with a largely conserved secondary and tertiary structure. The main changes in chemical shift of calmodulin resonances are grouped in six structural regions both in NH2- and COOH-terminal domains. Intermolecular NOE connectivities indicate that the NH2-terminal of the bound peptide fragment is engulfed in the COOH-terminal domain of calmodulin. The interaction geometry appears to be similar to those previously described for myosin light chain kinase or calmodulin kinase II fragments.
Collapse
Affiliation(s)
- C T Craescu
- Institut National de la Santé et de la Recherche Médicale U350, Institut Curie, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
452
|
Gerendasy DD, Herron SR, Jennings PA, Sutcliffe JG. Calmodulin stabilizes an amphiphilic alpha-helix within RC3/neurogranin and GAP-43/neuromodulin only when Ca2+ is absent. J Biol Chem 1995; 270:6741-50. [PMID: 7896819 DOI: 10.1074/jbc.270.12.6741] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two neuronal protein kinase C substrates, RC3/neurogranin and GAP-43/neuromodulin, preferentially bind to calmodulin (CaM) when Ca2+ is absent. We examine RC3.CaM and GAP-43.CaM interactions by circular dichroism spectroscopy using purified, recombinant RC3 and GAP-43, sequence variants of RC3 displaying qualitative and quantitative differences in CaM binding affinities, and overlapping peptides that cumulatively span the entire amino acid sequence of RC3. We conclude that CaM stabilizes a basic, amphiphilic alpha-helix within RC3 and GAP-43 under physiological salt concentrations only when Ca2+ is absent. This provides structural confirmation for two binding modes and suggests that CaM regulates the biological activities of RC3 and GAP-43 through an allosteric, Ca(2+)-sensitive mechanism that can be uncoupled by protein kinase C-mediated phosphorylation. More generally, our observations imply an alternative allosteric regulatory role for the Ca(2+)-free form of CaM.
Collapse
Affiliation(s)
- D D Gerendasy
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | |
Collapse
|
453
|
Sowdhamini R, Srinivasan N, Guruprasad K, Rufino S, Dhanaraj V, Wood S, Emsley J, White H, Blundell T. Protein three-dimensional structure and molecular recognition: a story of soft locks and keys. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0031-6865(95)00002-q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
454
|
Medvedeva MV, Bushueva TL, Shirinsky VP, Lukas TJ, Watterson DM, Gusev NB. Interaction of smooth muscle caldesmon with calmodulin mutants. FEBS Lett 1995; 360:89-92. [PMID: 7875308 DOI: 10.1016/0014-5793(95)00058-h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The interaction of avian smooth muscle caldesmon with calmodulin (CaM) was investigated by studying the ability of selected mutant calmodulins to induce fluorescence changes in caldesmon. Different types of CaM mutants were used including point charge mutants, cluster mutations, and mutations which alter the calcium binding of CaM. The caldesmon binding properties were only slightly affected by E84K-CaM or by the double mutation E84Q/E120Q-CaM. Affinity of calmodulin to caldesmon was decreased 2-4 times by point mutation G33V-CaM, double mutation E84K/E120K-CaM, deletion of residues 82-84, and by cluster mutations DEE118-120-->KKK or EEE82-84-->KKK. Mutations of the first (E31A-CaM) and the second (E67A-CaM) calcium binding sites reduced the affinity of calmodulin to caldesmon by at least 5-fold; in addition these calmodulin mutants exhibited smaller changes in the fluorescence spectra of caldesmon. Simultaneous mutation of the two negatively charged clusters of calmodulin EEE82-84-->KKK and DEE118-120-->KKK resulted in a more than 15-fold decrease in the affinity of calmodulin for caldesmon. The data indicate that charged and uncharged amino acids in both halves of CaM play an important role in the binding of calmodulin to caldesmon, and that Ca2+ binding must be maintained in the amino-terminal sites for maximal interaction with caldesmon.
Collapse
Affiliation(s)
- M V Medvedeva
- Department of Biochemistry, School of Biology, Moscow State University, Russian Federation
| | | | | | | | | | | |
Collapse
|
455
|
Abstract
Proteins can interact with short peptide sequences in a variety of ways that can be sequence dependent or independent. The bound peptides are frequently in an extended conformation but may also adopt beta-turns or alpha-helices as motifs for recognition. The peptides can be completely buried in cavities, bound in grooves or pockets, or form beta-strand type interactions at the protein surface. These various recognition motifs are illustrated by peptide interactions with antibodies, calmodulin, OppA periplasmic binding protein, PapD chaperone, MHC class I and class II molecules, and Src homology (SH) domains 2 and 3.
Collapse
Affiliation(s)
- R L Stanfield
- Department of Molecular Biology MB13, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
456
|
Abstract
Recent high-resolution crystal and solution structures have answered many long-standing questions about calmodulin and its various conformational states. However, there is still much to learn.
Collapse
Affiliation(s)
- B E Finn
- Department of Physical Chemistry 2, Lund University, Sweden
| | | |
Collapse
|
457
|
Gnegy ME. Calmodulin: effects of cell stimuli and drugs on cellular activation. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1995; 45:33-65. [PMID: 8545541 DOI: 10.1007/978-3-0348-7164-8_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The activity, localization and cellular content of CaM can be regulated by drugs, hormones and neurotransmitters. Regulation of physiological responses of CaM can depend upon local Ca(2+)-entry domains in the cells and phosphorylation of CaM target proteins, which would either decrease responsiveness of CaM target enzymes or increase CaM availability for binding to other target proteins. Despite the abundance of CaM in many cells, persistent cellular activation by a variety of substances can lead to an increase in CaM, reflected both in the nucleus and other cellular compartments. Increases in CaM-binding proteins can accompany stimuli-induced increases in CaM. A role for CaM in vesicular or protein transport, cell morphology, secretion and other cytoskeletal processes is emerging through its binding to cytoskeletal proteins and myosins in addition to the more often investigated activation of target enzymes. More complete knowledge of the physiological regulation of CaM can lead to a greater understanding of its role in physiological processes and ways to alter its actions through pharmacology.
Collapse
Affiliation(s)
- M E Gnegy
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor 48103-0632, USA
| |
Collapse
|
458
|
Schulman H, Heist K, Srinivasan M. Decoding Ca2+ signals to the nucleus by multifunctional CaM kinase. PROGRESS IN BRAIN RESEARCH 1995; 105:95-104. [PMID: 7568901 DOI: 10.1016/s0079-6123(08)63287-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) is one of the major protein kinases coordinating cellular responses to neurotransmitters and hormones. CaM kinase transduces changes in intracellular free Ca2+ into changes in the phosphorylation state and activity of target proteins involved in neurotransmitter synthesis and release, neuronal plasticity and gene expression. Structure/function analyses of the kinase reveal the kinase is kept inactive in its basal state by a regulatory domain that is displaced by the binding of Ca2+/calmodulin. Once activated by Ca2+/calmodulin, autophosphorylation occurs if a pair of proximate subunits of the decameric kinase have calmodulin bound. The frequency of Ca2+ oscillations or spikes may be decoded by CaM kinase via this autophosphorylation. Calmodulin is essentially trapped by autophosphorylation which converts CaM kinase into a high affinity calmodulin-binding protein. Repetitive stimulation of the kinase may promote recruitment of calmodulin to the kinase so that it becomes increasingly active with each stimulus in a frequency-dependent manner. The association domain at the C-terminal end of CaM kinase contains a variable region that targets isoforms of the kinase to the nucleus or cytoskeleton and assembles the kinase into a decameric structure. Alternative splicing introduces a short nuclear localization signal that targets transfected kinase to the nucleus where it may regulate nuclear functions. The regulatory properties of CaM kinase provide for molecular potentiation of Ca2+ signals and frequency detection whereas its association domain should enable it to decode such Ca2+ fluctuations in the nucleus.
Collapse
Affiliation(s)
- H Schulman
- Department of Neurobiology, Stanford University School of Medicine, CA 94305-5401, USA
| | | | | |
Collapse
|
459
|
VanBerkum MF, Goodman CS. Targeted disruption of Ca(2+)-calmodulin signaling in Drosophila growth cones leads to stalls in axon extension and errors in axon guidance. Neuron 1995; 14:43-56. [PMID: 7826640 DOI: 10.1016/0896-6273(95)90239-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ca(2+)-calmodulin (CaM) function was selectively disrupted in a specific subset of growth cones in transgenic Drosophila embryos in which a specific enhancer element drives the expression of the kinesin motor domain fused to a CaM antagonist peptide (kinesin-antagonist or KA, which blocks CaM binding to target proteins) or CaM itself (kinesin-CaM or KC, which acts as a Ca(2+)-binding protein). In both KA and KC mutant embryos, specific growth cones exhibit dosage-dependent stalls in axon extension and errors in axon guidance, including both defects in fasciculation and abnormal crossings of the midline. These results demonstrate an in vivo function for Ca(2+)-CaM signaling in growth cone extension and guidance and suggest that Ca(2+)-CaM may in part regulate specific growth cone decisions, including when to defasciculate and whether or not to cross the midline.
Collapse
Affiliation(s)
- M F VanBerkum
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
460
|
Abstract
The Ca(2+)-binding protein calmodulin binds to and activates several cellular enzymes in response to a rise in Ca2+ concentration. It binds certain basic amphiphilic helices within these enzymes, which also act as autoinhibitory domains. The modulation of the binding equilibrium of these helices between intramolecular (inhibition) and intermolecular (activation) sites forms a focal point for crosstalk between various signalling pathways.
Collapse
Affiliation(s)
- P James
- Department of Biology, Swiss Federal Institute of Technology, Zürich
| | | | | |
Collapse
|
461
|
Lin X, Krudy GA, Howarth J, Brito RM, Rosevear PR, Putkey JA. Assignment and calcium dependence of methionyl epsilon C and epsilon H resonances in cardiac troponin C. Biochemistry 1994; 33:14434-42. [PMID: 7981203 DOI: 10.1021/bi00252a009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 10 Met methyl groups in recombinant cardiac troponin (cTnC) were metabolically labeled with [13C-methyl]Met and detected as 10 individual cross-peaks using two-dimensional heteronuclear single- and multiple-quantum coherence (HSMQC) spectroscopy. The epsilon C and epsilon H chemical shifts for all 10 Met residues were sequence-specifically assigned using a combination of HSMQC and systematic conversion of the Met residues to Leu. The only negative functional consequence of these changes was seen when both Met 45 and 81 were mutated. Binding of Ca2+ to the high affinity C-terminal sites III and IV induced relatively large changes in the epsilon H and epsilon C chemical shifts of all Met residues in the C-terminal domain as well as small but significant changes in the chemical shifts of epsilon H Met 47 and Met 81 in the N-terminal half of cTnC. Binding of Ca2+ to the low affinity N-terminal site II induced large changes in the epsilon H and epsilon C chemical shifts of Met 45, Met 80, and Met 81. Binding of Ca2+ to site II had no effect on the chemical shifts of Met residues located in the C-terminal domain. The nature of the chemical shift changes of Met residues in the N- versus the C-terminal halves of cTnC were consistent with different Ca(2+)-induced conformational changes in these domains. Thus, the assigned methyl Met chemical shifts can serve as useful structural markers to study conformational transitional in free cTnC and potentially after association with small ligands, peptides, and other troponin subunits.
Collapse
Affiliation(s)
- X Lin
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77030
| | | | | | | | | | | |
Collapse
|
462
|
Edman CF, George SE, Means AR, Schulman H, Yaswen P. Selective activation and inhibition of calmodulin-dependent enzymes by a calmodulin-like protein found in human epithelial cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:725-30. [PMID: 7528142 DOI: 10.1111/j.1432-1033.1994.tb20101.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A calmodulin-like protein, which is identical in size and 85% identical to vertebrate calmodulin, was recently identified by 'subtractive hybridization' comparison of transcripts expressed in normal versus transformed human mammary epithelial cells. Unlike the ubiquitous distribution of calmodulin, calmodulin-like protein expression is restricted to certain epithelial cells, and appears to be modulated during differentiation. In addition, calmodulin-like protein levels are often significantly reduced in malignant tumor cells as compared to corresponding normal epithelial cells. The current studies compare calmodulin-like protein functions with those of calmodulin. We find that calmodulin-like protein activation of multifunctional Ca2+/calmodulin-dependent protein kinase II (calmodulin kinase II) is equivalent to activation by calmodulin, but that four other calmodulin-dependent enzymes, cGMP phosphodiesterase, calcineurin, nitric-oxide synthase, and myosin-light-chain kinase, display much weaker activation by calmodulin-like protein than by calmodulin. In the case of myosin-light-chain kinase, calmodulin-like protein competitively inhibits calmodulin activation of the enzyme with a Ki value of 170 nM. Thus, calmodulin-like protein may have evolved to function as a specific agonist of certain calmodulin-dependent enzymes, and/or as a specific competitive antagonist of other calmodulin-dependent enzymes.
Collapse
Affiliation(s)
- C F Edman
- Life Sciences Division, Lawrence Berkeley Laboratory, CA 94720
| | | | | | | | | |
Collapse
|
463
|
Wagenknecht T, Berkowitz J, Grassucci R, Timerman AP, Fleischer S. Localization of calmodulin binding sites on the ryanodine receptor from skeletal muscle by electron microscopy. Biophys J 1994; 67:2286-95. [PMID: 7696469 PMCID: PMC1225613 DOI: 10.1016/s0006-3495(94)80714-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Calmodulin (CaM) is a regulator of the calcium release channel (ryanodine receptor) of the sarcoplasmic reticulum of skeletal and cardiac muscle. The locations where CaM binds on the surface of the skeletal muscle ryanodine receptor were determined by electron microscopy. Wheat germ CaM was labeled specifically at Cys-27 with a maleimide derivative of a 1.4-nm-diameter gold cluster, and the gold-cluster-labeled CaM was bound to the purified ryanodine receptor. The complexes were imaged in the frozen-hydrated state by cryoelectron microscopy with no stains or fixatives present. In the micrographs, gold clusters were frequently observed near the corners of the square-shaped images of the ryanodine receptors. In some images, all four corners of the receptor were occupied by gold clusters. Image averaging allowed the site of CaM binding to be determined in two dimensions with an estimated precision of 4 nm. No changes were apparent in the quaternary structure of the ryanodine receptor upon binding CaM to the resolution attained, about 3 nm. Side views of the ryanodine receptor, in which the receptor is oriented approximately perpendicular to the much more frequent fourfold symmetric views, were occasionally observed, and showed that the CaM binding site is most likely on the surface of the receptor that faces the cytoplasm. We conclude that the CaM binding site is at least 10 nm from the transmembrane channel of the receptor and, consequently, that long-range conformational changes are involved in the modulation of the calcium channel activity of the receptor by CaM.
Collapse
Affiliation(s)
- T Wagenknecht
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509
| | | | | | | | | |
Collapse
|
464
|
Liu M, Chen TY, Ahamed B, Li J, Yau KW. Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel. Science 1994; 266:1348-54. [PMID: 7526466 DOI: 10.1126/science.266.5189.1348] [Citation(s) in RCA: 256] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although several ion channels have been reported to be directly modulated by calcium-calmodulin, they have not been conclusively shown to bind calmodulin, nor are the modulatory mechanisms understood. Study of the olfactory cyclic nucleotide-activated cation channel, which is modulated by calcium-calmodulin, indicates that calcium-calmodulin directly binds to a specific domain on the amino terminus of the channel. This binding reduces the effective affinity of the channel for cyclic nucleotides, apparently by acting on channel gating, which is tightly coupled to ligand binding. The data reveal a control mechanism that resembles those underlying the regulation of enzymes by calmodulin. The results also point to the amino-terminal part of the olfactory channel as an element for gating, which may have general significance in the operation of ion channels with similar overall structures.
Collapse
Affiliation(s)
- M Liu
- Howard Hughes Medical Institute, Baltimore, MD
| | | | | | | | | |
Collapse
|
465
|
Friedberg F, Rhoads AR. Calmodulin's warm embrace. Bioessays 1994; 16:853-5. [PMID: 7840763 DOI: 10.1002/bies.950161113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
466
|
Brickey DA, Bann JG, Fong YL, Perrino L, Brennan RG, Soderling TR. Mutational analysis of the autoinhibitory domain of calmodulin kinase II. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)62011-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
467
|
|
468
|
Bax A, Delaglio F, Grzesiek S, Vuister GW. Resonance assignment of methionine methyl groups and chi 3 angular information from long-range proton-carbon and carbon-carbon J correlation in a calmodulin-peptide complex. JOURNAL OF BIOMOLECULAR NMR 1994; 4:787-97. [PMID: 7812153 DOI: 10.1007/bf00398409] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Several simple 3D experiments are used to provide J correlations between methionine C epsilon methyl carbons and either the C gamma H2 protons or C beta and C gamma. The intensity of the J correlations provides information on the size of the three-bond J couplings and thereby on the chi 3 torsion angle. In addition, a simple 3D version of the HMBC experiment provides a sensitive link between the C epsilon H3 methyl protons and C gamma. The methods are demonstrated for a 20 kDa complex between calmodulin and a 26-residue peptide fragment of skeletal muscle myosin light chain kinase.
Collapse
Affiliation(s)
- A Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
469
|
Török K, Trentham DR. Mechanism of 2-chloro-(epsilon-amino-Lys75)-[6-[4-(N,N- diethylamino)phenyl]-1,3,5-triazin-4-yl]calmodulin interactions with smooth muscle myosin light chain kinase and derived peptides. Biochemistry 1994; 33:12807-20. [PMID: 7947686 DOI: 10.1021/bi00209a012] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mechanism of the interactions of 2-chloro-(epsilon-amino-Lys75)-[6-[4-(N,N-diethylamino)phenyl]- 1,3,5-triazin-4-yl]calmodulin (TA-calmodulin) with smooth muscle myosin light-chain kinase (MLCK) and two 17-residue peptides, Ac-R-R-K-W-Q-K-T-G-H-A-V-R-A-I-G-R-L-CONH2 (Trp peptide) and Tyr peptide, in which W is replaced by Y, were studied by measurements of equilibrium and transient fluorescence changes in the nanomolar range. Most reactions were carried out in 100 microM CaCl2 at ionic strength 0.15 M, pH 7.0, and 21 degrees C. In each case association of MLCK or peptide to TA-calmodulin could be described by a two-step process, a bimolecular step and an isomerization. In the case of the interaction between TA-calmodulin and Tyr peptide it was shown that the isomerization involved the binary complex of TA-calmodulin and Tyr peptide as opposed to an isomerization of either TA-calmodulin or Tyr peptide in isolation. These distinctions depended in part on development for transient kinetic experiments of a general theory to quantify relative phase amplitudes in two-step mechanisms. The kinetics for all three association reactions were then interpreted in terms of a bimolecular association (rate constants k+1 and k-1) followed by an isomerization of the binary complex (rate constants k+2 and k-2). For the interaction of TA-calmodulin and Tyr peptide, values of the rate constants are k+1, 8.8 x 10(8) M-1 s-1; k-1, 5.7 s-1; k+2, 0.38 s-1; and k-2, 0.65 s-1. The fluorescence intensities (lambda ex 365 nm, lambda ex 365 nm, lambda em > 400 nm) of TA-calmodulin, the initial binary complex of TA-calmodulin and Tyr peptide, and the isomerized binary complex are in the ratio 1:2.8:1.3. Analogous mechanisms were found for TA-calmodulin binding to Trp peptide and to MLCK, but values for the rate constants and relative fluorescence intensities of the binary complexes were generally not so completely defined. Values for the Trp peptide and MLCK, respectively, are k+1, 8.8 x 10(8) M-1 s-1 and 1.1 x 10(8) M-1 s-1; (k+2 + k-2), 0.97 s-1 and 1.3 s-1; and k-1k-2/(k+2 + k-2), 0.0079 s-1 and 0.025-0.056 s-1. Equilibrium dissociation constants (Kd) for interactions of TA-calmodulin and targets determined from these data are Tyr peptide, 4.1 nM; Trp peptide, 0.011 nM; and MLCK, 0.23-0.51 nM.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Török
- National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | |
Collapse
|
470
|
Vandonselaar M, Hickie RA, Quail JW, Delbaere LT. Trifluoperazine-induced conformational change in Ca(2+)-calmodulin. NATURE STRUCTURAL BIOLOGY 1994; 1:795-801. [PMID: 7634090 DOI: 10.1038/nsb1194-795] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Here we show that, as a consequence of binding the drug trifluoperazine, a major conformational movement occurs in Ca(2+)-calmodulin (CaM). The tertiary structure changes from an elongated dumb-bell, with exposed hydrophobic surfaces, to a compact globular form which can no longer interact with its target enzymes. It is likely that inactivation of Ca(2+)-CaM by trifluoperazine is due to this major tertiary-structural alteration in Ca(2+)-CaM, which is initiated and stabilized by drug binding. This conformational change is similar to that which occurs on the binding of Ca(2+)-CaM to target peptides. Two hydrophobic binding pockets, created by amino acid residues adjacent to Ca(2+)-coordinating residues, form the key recognition sites on Ca(2+)-CaM for both inhibitors and target enzymes.
Collapse
Affiliation(s)
- M Vandonselaar
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
471
|
Olah GA, Trewhella J. A model structure of the muscle protein complex 4Ca2+.troponin C.troponin I derived from small-angle scattering data: implications for regulation. Biochemistry 1994; 33:12800-6. [PMID: 7947685 DOI: 10.1021/bi00209a011] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report here a model structure for 4Ca2+.troponin C.troponin I derived from small-angle X-ray and neutron scattering data using a Monte Carlo modeling method. In this model, troponin I appears as a spiral structure that wraps around 4Ca2+.troponin C which adopts an extended dumbbell conformation similar to that observed in the crystal structures of troponin C. The troponin I spiral has the approximate dimensions of an alpha-helix and winds through the hydrophobic "cups" in each globular domain of troponin C. The model is consistent with a body of previously published biochemical data on the interactions between troponin C and troponin I, and suggests the molecular mechanism for the Ca(2+)-sensitive switch that regulates the muscle contraction/relaxation cycle involves a signal transmitted via the central spiral region of troponin I.
Collapse
Affiliation(s)
- G A Olah
- Chemical Science and Technology Division, Los Alamos National Laboratory, New Mexico 87545
| | | |
Collapse
|
472
|
Takano E, Hatanaka M, Maki M. Real-time-analysis of the calcium-dependent interaction between calmodulin and a synthetic oligopeptide of calcineurin by a surface plasmon resonance biosensor. FEBS Lett 1994; 352:247-50. [PMID: 7925982 DOI: 10.1016/0014-5793(94)00965-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The calcium-dependent interaction between calmodulin (CaM) and the synthetic oligopeptide of a predicted CaM-binding region of human calcineurin A-2 was analysed with an automated surface plasmon resonance biosensor, BIAcore. The oligopeptide was immobilized to a biosensor chip via the amino-terminal cysteine residue by a thiol-disulphide exchange method. The biosensor chip was regenerated by an EGTA-containing buffer after each analysis. Kinetics experiments showed that CaM bound with a high affinity to the oligopeptide in a Ca(2+)-dependent manner. The estimated rate constants of association (kass) and dissociation (kdiss) were 2.3 x 10(5) M-1.s-1 and 3.9 x 10(-3)s-1, respectively. The ratio of kdiss/kass, 1.7 x 10(-8) M, was in good agreement with the dissociation constant (Kd) of 2.4 x 10(-8) M determined from the equilibrium phase.
Collapse
Affiliation(s)
- E Takano
- Laboratory of Human Tumor Viruses, Kyoto University, Japan
| | | | | |
Collapse
|
473
|
Zhang M, Fabian H, Mantsch HH, Vogel HJ. Isotope-edited Fourier transform infrared spectroscopy studies of calmodulin's interaction with its target peptides. Biochemistry 1994; 33:10883-8. [PMID: 7522050 DOI: 10.1021/bi00202a006] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ubiquitous calcium-binding protein calmodulin (CaM) regulates a wide variety of cellular events by binding to and activating many distinct target enzymes. The CaM-binding domains of most of these enzymes are contained in a contiguous stretch of amino acids with a length of approximately 20 residues. In this work, we have used "isotope-edited" Fourier transform infrared spectroscopy to study the interaction of CaM with synthetic peptides resembling the CaM-binding domains of myosin light chain kinase (MLCK), constitutive nitric oxide synthase (cNOS), and caldesmon (CaD). Uniform labeling of CaM with carbon-13 causes the amide I band of the protein to shift approximately 55 cm-1 to lower frequency in D2O, leaving a clear window in the infrared spectrum for observing the amide I band of the unlabeled target peptides. Upon complex formation, the amide I bands of the CaM-binding domains of MLCK and cNOS shift 4 cm-1 toward higher frequency (to approximately 1648 cm-1), and have a narrower bandwidth compared to the peptide in aqueous solution. These spectral changes and the fact that the infrared spectra of these two peptides in their complex with CaM closely resemble those recorded in a mixture of D2O and the helix inducing solvent trifluoroethanol indicate that they bind to CaM in an alpha-helical conformation. The CaM-binding domain of CaD also showed similar, but less dramatic, spectral changes; this is in agreement with the fact that it binds to CaM with lower affinity and a shorter alpha-helix.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Zhang
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
474
|
Ma H, Yang H, Takano E, Hatanaka M, Maki M. Amino-terminal conserved region in proteinase inhibitor domain of calpastatin potentiates its calpain inhibitory activity by interacting with calmodulin-like domain of the proteinase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51102-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
475
|
Wu P, Brand L. Conformational flexibility in a staphylococcal nuclease mutant K45C from time-resolved resonance energy transfer measurements. Biochemistry 1994; 33:10457-62. [PMID: 8068683 DOI: 10.1021/bi00200a029] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Thermal fluctuations exist in native proteins and other macromolecules in solution. Some may play a role in ligand or receptor binding, control rates of enzymatic catalysis, or define a range of conformations a segment can adopt in solution. We apply the method of time-resolved resonance energy transfer to study the conformational flexibility of a staphylococcal nuclease mutant, K45C, where lysine 45 located at a flexible loop is replaced by a cysteine. We labeled the thiol group with DTNB (5,5'-dithiobis(2-nitrobenzoic acid)) and used the TNB group covalently attached to the protein as an energy acceptor from a single tryptophan at residue 140 as the donor. Conformational flexibility occurring on the time scale of nanoseconds or longer is dispersed as an apparent distance distribution in time-resolved resonance energy transfer measurements. Below room temperature the apparent distance distribution was fitted with a symmetric Lorentzian model with a full width at half maximum height of about 6 A, indicating substantial degrees of heterogeneity between residues 45 and 140. At room or higher temperature where the protein is in its native state, the apparent distance distribution is asymmetric, indicating the presence of static disorders. Segments in the protein that contribute to the static disorder can be converted to mobile ones with the addition of denaturing guanidinium chloride.
Collapse
Affiliation(s)
- P Wu
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
476
|
Falke JJ, Drake SK, Hazard AL, Peersen OB. Molecular tuning of ion binding to calcium signaling proteins. Q Rev Biophys 1994; 27:219-90. [PMID: 7899550 DOI: 10.1017/s0033583500003012] [Citation(s) in RCA: 296] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Intracellular calcium plays an essential role in the transduction of most hormonal, neuronal, visual, and muscle stimuli. (Recent reviews include Putney, 1993; Berridge, 1993a,b; Tsunoda, 1993; Gnegy, 1993; Bachset al.1992; Hanson & Schulman, 1992; Villereal & Byron, 1992; Premack & Gardner, 1992; Meanset al.1991).
Collapse
Affiliation(s)
- J J Falke
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215
| | | | | | | |
Collapse
|
477
|
Abstract
Calcium and its ubiquitous intracellular receptor calmodulin are required for cell proliferation. Studies in a variety of model systems are beginning to identify components of the calcium/calmodulin cascade required for movement of quiescent cells into the cell cycle as well as for proliferating cells to move from G1 to S, G2 to M and through mitosis. Two calcium/calmodulin-dependent enzymes, the multifunctional calcium/calmodulin-dependent protein kinase and the protein phosphatase 2B (calcineurin) as well as a spindle pole body protein that binds calmodulin in the absence of calcium have been shown to be essential at specific phases of the cell cycle. In addition, the status of the intracellular calcium pools is critical for normal traverse of the cell cycle.
Collapse
Affiliation(s)
- A R Means
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
478
|
Abstract
We survey all the known instances of domain movements in proteins for which there is crystallographic evidence for the movement. We explain these domain movements in terms of the repertoire of low-energy conformation changes that are known to occur in proteins. We first describe the basic elements of this repertoire, hinge and shear motions, and then show how the elements of the repertoire can be combined to produce domain movements. We emphasize that the elements used in particular proteins are determined mainly by the structure of the interfaces between the domains.
Collapse
Affiliation(s)
- M Gerstein
- Department of Haematology, Cambridge University, U.K
| | | | | |
Collapse
|
479
|
Zhang M, Li M, Wang J, Vogel H. The effect of Met–>Leu mutations on calmodulin's ability to activate cyclic nucleotide phosphodiesterase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40714-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
480
|
|
481
|
Quadroni M, James P, Carafoli E. Isolation of phosphorylated calmodulin from rat liver and identification of the in vivo phosphorylation sites. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)33980-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
482
|
Affiliation(s)
- K Török
- Department of Physiology, University College London, UK
| | | |
Collapse
|
483
|
Lakowicz JR, Gryczynski I, Laczko G, Wiczk W, Johnson ML. Distribution of distances between the tryptophan and the N-terminal residue of melittin in its complex with calmodulin, troponin C, and phospholipids. Protein Sci 1994; 3:628-37. [PMID: 8003981 PMCID: PMC2142859 DOI: 10.1002/pro.5560030411] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We used frequency-domain measurements of fluorescence resonance energy transfer to measure the distribution of distances between Trp-19 of melittin and a 1-dimethylamino-5-sulfonylnaphthalene (dansyl) residue on the N-terminal-alpha-amino group. Distance distributions were obtained for melittin free in solution and when complexed with calmodulin (CaM), troponin C (TnC), or palmitoyloleoyl-L-alpha-phosphatidylcholine (POPC) vesicles. A wide range of donor (Trp-19)-to-acceptor (dansyl) distances was found for free melittin, which is consistent with that expected for the random coil state, characterized by a Gaussian width (full width at half maxima) of 28.2 A. In contrast, narrow distance distributions were found for melittin complexed with CaM, 8.2 A, or with POPC vesicles, 4.9 A. A somewhat wider distribution was found for the melittin complex with TnC, 12.8 A, suggesting the presence of heterogeneity in the mode of binding between melittin and TnC. For all the complexes the mean Trp-19 to dansyl distance was near 20 A. This value is somewhat smaller than expected for the free alpha-helical state of melittin, suggesting that binding with CaM or TnC results in a modest decrease in the length of the melittin molecule.
Collapse
Affiliation(s)
- J R Lakowicz
- Department of Biological Chemistry, School of Medicine, University of Maryland, Baltimore 21201
| | | | | | | | | |
Collapse
|