501
|
Abnormal Glucose Metabolism in Alzheimer's Disease: Relation to Autophagy/Mitophagy and Therapeutic Approaches. Neurochem Res 2015; 40:2557-69. [PMID: 26077923 DOI: 10.1007/s11064-015-1631-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/09/2015] [Accepted: 05/29/2015] [Indexed: 12/19/2022]
Abstract
Diminished glucose metabolism accompanies many neurodegenerative diseases including Alzheimer's disease. An understanding of the relation of these metabolic changes to the disease will enable development of novel therapeutic strategies. Following a metabolic challenge, cells generally conserve energy to preserve viability. This requires activation of many cellular repair/regenerative processes such as mitophagy/autophagy and fusion/fission. These responses may diminish cell function in the long term. Prolonged fission induces mitophagy/autophagy which promotes repair but if prolonged progresses to mitochondrial degradation. Abnormal glucose metabolism alters protein signaling including the release of proteins from the mitochondria or migration of proteins from the cytosol to the mitochondria or nucleus. This overview provides an insight into the different mechanisms of autophagy/mitophagy and mitochondrial dynamics in response to the diminished metabolism that occurs with diseases, especially neurodegenerative diseases such as Alzheimer's disease. The review discusses multiple aspects of mitochondrial responses including different signaling proteins and pathways of mitophagy and mitochondrial biogenesis. Improving cellular bioenergetics and mitochondrial dynamics will alter protein signaling and improve cellular/mitochondrial repair and regeneration. An understanding of these changes will suggest new therapeutic strategies.
Collapse
|
502
|
Abstract
Mitochondrial quality is a crucial determinant of cell viability, and mitochondrial autophagy plays a central role in this control mechanism. Based on studies in yeast, numerous investigations of this process have been conducted, and the framework of mammalian mitochondrial autophagy is progressively appearing. However, many enigmas about the molecular mechanisms involved remain unsolved. Furthermore, the pathological significance of mitochondrial autophagy in the heart remains largely unclear. In this review, we discuss the current understanding of mitochondrial autophagy in mammals with reference to that in yeast. Regarding the process in yeast, some points of uncertainty have arisen. We also summarize recent advances in the research of autophagy and mitochondrial autophagy in the heart. This article is a part of a review series on Autophagy in Health and Disease.
Collapse
Affiliation(s)
- Toshiro Saito
- From the Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark
| | - Junichi Sadoshima
- From the Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark.
| |
Collapse
|
503
|
De Rosa P, Marini ES, Gelmetti V, Valente EM. Candidate genes for Parkinson disease: Lessons from pathogenesis. Clin Chim Acta 2015; 449:68-76. [PMID: 26048192 DOI: 10.1016/j.cca.2015.04.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 01/06/2023]
Abstract
Parkinson disease (PD) is a multifactorial neurodegenerative disease characterized by the progressive loss of specific neuronal populations and accumulation of Lewy bodies in the brain, leading to motor and non-motor symptoms. In a small subset of patients, PD is dominantly or recessively inherited, while a number of susceptibility genetic loci have been identified through genome wide association studies. The discovery of genes mutated in PD and functional studies on their protein products have provided new insights into the molecular events leading to neurodegeneration, suggesting that few interconnected molecular pathways may be deranged in all forms of PD, triggering neuronal loss. Here, we summarize the most relevant findings implicating the main PD-related proteins in biological processes such as mitochondrial dysfunction, misfolded protein damage, alteration of cellular clearance systems, abnormal calcium handling and altered inflammatory response, which represent key targets for neuroprotection.
Collapse
Affiliation(s)
- Priscilla De Rosa
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy
| | - Elettra Sara Marini
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy; Dept. of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - Vania Gelmetti
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy
| | - Enza Maria Valente
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy; Section of Neurosciences, Dept. of Medicine and Surgery, University of Salerno, Salerno, Italy.
| |
Collapse
|
504
|
Song M, Gong G, Burelle Y, Gustafsson ÅB, Kitsis RN, Matkovich SJ, Dorn GW. Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts. Circ Res 2015; 117:346-51. [PMID: 26038571 DOI: 10.1161/circresaha.117.306859] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/02/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE The role of Parkin in hearts is unclear. Germ-line Parkin knockout mice have normal hearts, but Parkin is protective in cardiac ischemia. Parkin-mediated mitophagy is reportedly either irrelevant, or a major factor, in the lethal cardiomyopathy evoked by cardiac myocyte-specific interruption of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. OBJECTIVE To understand the role of Parkin-mediated mitophagy in normal and mitochondrial fission-defective adult mouse hearts. METHODS AND RESULTS Parkin mRNA and protein were present at low levels in normal mouse hearts, but were upregulated after cardiac myocyte-directed Drp1 gene deletion in adult mice. Alone, forced cardiac myocyte Parkin overexpression activated mitophagy without adverse effects. Likewise, cardiac myocyte-specific Parkin deletion evoked no adult cardiac phenotype, revealing no essential function for, and tolerance of, Parkin-mediated mitophagy in normal hearts. Concomitant conditional Parkin deletion with Drp1 ablation in adult mouse hearts prevented Parkin upregulation in mitochondria of fission-defective hearts, also increasing 6-week survival, improving ventricular ejection performance, mitigating adverse cardiac remodeling, and decreasing cardiac myocyte necrosis and replacement fibrosis. Underlying the Parkin knockout rescue was suppression of Drp1-induced hyper-mitophagy, assessed as ubiquitination of mitochondrial proteins and mitochondrial association of autophagosomal p62/sequestosome 1 (SQSTM1) and processed microtubule-associated protein 1 light chain 3 (LC3-II). Consequently, mitochondrial content of Drp1-deficient hearts was preserved. Parkin deletion did not alter characteristic mitochondrial enlargement of Drp1-deficient cardiac myocytes. CONCLUSIONS Parkin is rare in normal hearts and dispensable for constitutive mitophagic quality control. Ablating Drp1 in adult mouse cardiac myocytes not only interrupts mitochondrial fission, but also markedly upregulates Parkin, thus provoking mitophagic mitochondrial depletion that contributes to the lethal cardiomyopathy.
Collapse
Affiliation(s)
- Moshi Song
- From the Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO (M.S., G.G., S.J.M., G.W.D.); Department of Biomedical Sciences, University of Montreal, Quebec, Canada (Y.B.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (A.B.G.); and Departments of Medicine (Cardiology) and Cell Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (R.N.K.)
| | - Guohua Gong
- From the Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO (M.S., G.G., S.J.M., G.W.D.); Department of Biomedical Sciences, University of Montreal, Quebec, Canada (Y.B.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (A.B.G.); and Departments of Medicine (Cardiology) and Cell Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (R.N.K.)
| | - Yan Burelle
- From the Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO (M.S., G.G., S.J.M., G.W.D.); Department of Biomedical Sciences, University of Montreal, Quebec, Canada (Y.B.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (A.B.G.); and Departments of Medicine (Cardiology) and Cell Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (R.N.K.)
| | - Åsa B Gustafsson
- From the Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO (M.S., G.G., S.J.M., G.W.D.); Department of Biomedical Sciences, University of Montreal, Quebec, Canada (Y.B.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (A.B.G.); and Departments of Medicine (Cardiology) and Cell Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (R.N.K.)
| | - Richard N Kitsis
- From the Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO (M.S., G.G., S.J.M., G.W.D.); Department of Biomedical Sciences, University of Montreal, Quebec, Canada (Y.B.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (A.B.G.); and Departments of Medicine (Cardiology) and Cell Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (R.N.K.)
| | - Scot J Matkovich
- From the Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO (M.S., G.G., S.J.M., G.W.D.); Department of Biomedical Sciences, University of Montreal, Quebec, Canada (Y.B.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (A.B.G.); and Departments of Medicine (Cardiology) and Cell Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (R.N.K.)
| | - Gerald W Dorn
- From the Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO (M.S., G.G., S.J.M., G.W.D.); Department of Biomedical Sciences, University of Montreal, Quebec, Canada (Y.B.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (A.B.G.); and Departments of Medicine (Cardiology) and Cell Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (R.N.K.).
| |
Collapse
|
505
|
Khang R, Park C, Shin JH. Dysregulation of parkin in the substantia nigra of db/db and high-fat diet mice. Neuroscience 2015; 294:182-92. [DOI: 10.1016/j.neuroscience.2015.03.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 01/28/2023]
|
506
|
Assessment of disease-related cognitive impairments using the novel object recognition (NOR) task in rodents. Behav Brain Res 2015; 285:176-93. [DOI: 10.1016/j.bbr.2014.10.025] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 12/11/2022]
|
507
|
Steer EK, Dail MK, Chu CT. Beyond mitophagy: cytosolic PINK1 as a messenger of mitochondrial health. Antioxid Redox Signal 2015; 22:1047-59. [PMID: 25557302 PMCID: PMC4390087 DOI: 10.1089/ars.2014.6206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Disruptions in mitochondrial homeostasis are implicated in human diseases across the lifespan. Recessive mutations in PINK1, which encodes the mitochondrially targeted PTEN-induced putative kinase 1 (PINK1), cause an autosomal recessive form of Parkinson's disease. As with all kinases, PINK1 participates in multiple functional pathways, and its dysregulation has been implicated in a growing number of diseases. RECENT ADVANCES In addition to its heavily studied role in mitophagy, PINK1 regulates mitochondrial respiratory function, reactive oxygen species generation, and mitochondrial transport. Moreover, recent studies implicate processed PINK1 in cytosolic signaling cascades that promote cell survival and neuron differentiation. Cytosolic PINK1 is also capable of suppressing autophagy and mitophagy. We propose a working hypothesis that PINK1 is released by functional mitochondria as a signal to coordinate cell growth and differentiation in response to mitochondrial status. CRITICAL ISSUES PINK1 biology needs to be better understood in primary neurons, as the stability and subcellular localization of PINK1 is differentially regulated in different cell types. Delineating factors that regulate its mitochondrial import/export, processing by different peptidases, kinase activity, subcellular localization, and degradation will be important for defining relevant downstream kinase targets. FUTURE DIRECTIONS It is becoming clear that different subcellular pools of PINK1 mediate distinct functions. Future studies will undoubtedly expand on the spectrum of cellular functions regulated by PINK1. Continued study of cytosolic PINK1 may offer novel insights into how functional mitochondria communicate their status with the rest of the cell.
Collapse
Affiliation(s)
- Erin K Steer
- 1 Department of Pathology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
508
|
Cherry AD, Piantadosi CA. Regulation of mitochondrial biogenesis and its intersection with inflammatory responses. Antioxid Redox Signal 2015; 22:965-76. [PMID: 25556935 PMCID: PMC4390030 DOI: 10.1089/ars.2014.6200] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Mitochondria play a vital role in cellular homeostasis and are susceptible to damage from inflammatory mediators released by the host defense. Cellular recovery depends, in part, on mitochondrial quality control programs, including mitochondrial biogenesis. RECENT ADVANCES Early-phase inflammatory mediator proteins interact with PRRs to activate NF-κB-, MAPK-, and PKB/Akt-dependent pathways, resulting in increased expression or activity of coactivators and transcription factors (e.g., PGC-1α, NRF-1, NRF-2, and Nfe2l2) that regulate mitochondrial biogenesis. Inflammatory upregulation of NOS2-induced NO causes mitochondrial dysfunction, but NO is also a signaling molecule upregulating mitochondrial biogenesis via PGC-1α, participating in Nfe2l2-mediated antioxidant gene expression and modulating inflammation. NO and reactive oxygen species generated by the host inflammatory response induce the redox-sensitive HO-1/CO system, causing simultaneous induction of mitochondrial biogenesis and antioxidant gene expression. CRITICAL ISSUES Recent evidence suggests that mitochondrial biogenesis and mitophagy are coupled through redox pathways; for instance, parkin, which regulates mitophagy in chronic inflammation, may also modulate mitochondrial biogenesis and is upregulated through NF-κB. Further research on parkin in acute inflammation is ongoing. This highlights certain common features of the host response to acute and chronic inflammation, but caution is warranted in extrapolating findings across inflammatory conditions. FUTURE DIRECTIONS Inflammatory mitochondrial dysfunction and oxidative stress initiate further inflammatory responses through DAMP/PRR interactions and by inflammasome activation, stimulating mitophagy. A deeper understanding of mitochondrial quality control programs' impact on intracellular inflammatory signaling will improve our approach to the restoration of mitochondrial homeostasis in the resolution of acute inflammation.
Collapse
Affiliation(s)
- Anne D Cherry
- 1 Department of Anesthesiology, Duke University Medical Center , Durham, North Carolina
| | | |
Collapse
|
509
|
Autophagy in neurodegenerative diseases: From pathogenic dysfunction to therapeutic modulation. Semin Cell Dev Biol 2015; 40:115-26. [PMID: 25843774 DOI: 10.1016/j.semcdb.2015.03.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/12/2022]
Abstract
Neuronal homeostasis depends on the proper functioning of quality control systems like autophagy. This mechanism is responsible of the clearance of misfolded proteins, aggregates and the turnover of organelles within the neuron. Autophagic dysfunction has been described in many neurodegenerative diseases. It can occur at several steps of the autophagic machinery and can contribute to the formation of intracellular aggregates and ultimately to neuronal death. Accordingly restoring autophagy activity in affected neurons can be an attractive therapeutic approach to fight neurodegeneration. In this review we summarize the present encouraging strategies that have been achieved with pharmacological and genetic treatments aimed to induce neuronal autophagy in experimental models of neurodegenerative diseases.
Collapse
|
510
|
Wei H, Liu L, Chen Q. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2784-90. [PMID: 25840011 DOI: 10.1016/j.bbamcr.2015.03.013] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/17/2015] [Accepted: 03/25/2015] [Indexed: 11/29/2022]
Abstract
The efficient and selective elimination of damaged or excessive mitochondria in response to bioenergetic and environmental cues is critical for maintaining a healthy and appropriate population of mitochondria. Mitophagy is considered to be the central mechanism of mitochondrial quality and quantity control. Atg32, a mitophagy receptor in yeast, recruits mitochondria targeted for degradation into the isolation membrane via both direct and indirect interactions with Atg8. In mammals, different mitophagy effectors, including the mitophagy receptors NIX, BNIP3 and FUDNC1 and the PINK1/Parkin pathway, have been identified to participate in the selective clearance of mitochondria. One common feature of mitophagy receptors is that they harbor an LC3-interacting region (LIR) that interacts with LC3, thus promoting the sequestration of mitochondria into the isolation membrane. Additionally, both receptor- and Parkin/PINK1-mediated mitophagy have been found to be regulated by reversible phosphorylation. Here, we review the recent progress in the understanding of the molecular mechanisms involved in selective mitophagy at multiple levels. We also discuss different mitophagy receptors from an evolutionary perspective and highlight the specific functions of and possible cooperation between distinct mechanisms of mitophagy.
Collapse
Affiliation(s)
- Huifang Wei
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
511
|
Morató L, Ruiz M, Boada J, Calingasan NY, Galino J, Guilera C, Jové M, Naudí A, Ferrer I, Pamplona R, Serrano M, Portero-Otín M, Beal MF, Fourcade S, Pujol A. Activation of sirtuin 1 as therapy for the peroxisomal disease adrenoleukodystrophy. Cell Death Differ 2015; 22:1742-53. [PMID: 25822341 DOI: 10.1038/cdd.2015.20] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 12/16/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress and mitochondrial failure are prominent factors in the axonal degeneration process. In this study, we demonstrate that sirtuin 1 (SIRT1), a key regulator of the mitochondrial function, is impaired in the axonopathy and peroxisomal disease X-linked adrenoleukodystrophy (X-ALD). We have restored SIRT1 activity using a dual strategy of resveratrol treatment or by the moderate transgenic overexpression of SIRT1 in a X-ALD mouse model. Both strategies normalized redox homeostasis, mitochondrial respiration, bioenergetic failure, axonal degeneration and associated locomotor disabilities in the X-ALD mice. These results indicate that the reactivation of SIRT1 may be a valuable strategy to treat X-ALD and other axonopathies in which the control of redox and energetic homeostasis is impaired.
Collapse
Affiliation(s)
- L Morató
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER) ISCIII, Spain.,Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - M Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER) ISCIII, Spain.,Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - J Boada
- Experimental Medicine Department, University of Lleida-IRBLleida, 25008 Lleida, Spain
| | - N Y Calingasan
- Department of Neurology and Neuroscience, Weill Cornell Medical College, 1006 New York, USA
| | - J Galino
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER) ISCIII, Spain.,Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - C Guilera
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER) ISCIII, Spain.,Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - M Jové
- Experimental Medicine Department, University of Lleida-IRBLleida, 25008 Lleida, Spain
| | - A Naudí
- Experimental Medicine Department, University of Lleida-IRBLleida, 25008 Lleida, Spain
| | - I Ferrer
- Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED) ISCIII, Spain
| | - R Pamplona
- Experimental Medicine Department, University of Lleida-IRBLleida, 25008 Lleida, Spain
| | - M Serrano
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - M Portero-Otín
- Experimental Medicine Department, University of Lleida-IRBLleida, 25008 Lleida, Spain
| | - M F Beal
- Department of Neurology and Neuroscience, Weill Cornell Medical College, 1006 New York, USA
| | - S Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER) ISCIII, Spain.,Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - A Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER) ISCIII, Spain.,Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
512
|
Abstract
Mitophagy is a selective form of macro-autophagy in which mitochondria are selectively targeted for degradation in autophagolysosomes. Mitophagy can have the beneficial effect of eliminating old and/or damaged mitochondria, thus maintaining the integrity of the mitochondrial pool. However, mitophagy is not only limited to the turnover of dysfunctional mitochondria but also promotes reduction of overall mitochondrial mass in response to certain stresses, such as hypoxia and nutrient starvation. This prevents generation of reactive oxygen species and conserves valuable nutrients (such as oxygen) from being consumed inefficiently, thereby promoting cellular survival under conditions of energetic stress. The failure to properly modulate mitochondrial turnover in response to oncogenic stresses has been implicated both positively and negatively in tumorigenesis, while the potential of targeting mitophagy specifically as opposed to autophagy in general as a therapeutic strategy remains to be explored. The challenges and opportunities that come with our heightened understanding of the role of mitophagy in cancer are reviewed here.
Collapse
Affiliation(s)
- Aparajita H Chourasia
- The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 USA ; The Committee on Cancer Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 USA
| | - Michelle L Boland
- The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 USA ; The Committee on Molecular Metabolism & Nutrition, 929 East 57th Street, Chicago, IL 60637 USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 USA ; The Committee on Cancer Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 USA ; The Committee on Molecular Metabolism & Nutrition, 929 East 57th Street, Chicago, IL 60637 USA ; The Ben May Department for Cancer Research, The University of Chicago Comprehensive Cancer Center, The Gordon Center for Integrative Sciences, W338 929 East 57th Street, Chicago, IL 60637 USA
| |
Collapse
|
513
|
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 2015; 85:257-73. [PMID: 25611507 DOI: 10.1016/j.neuron.2014.12.007] [Citation(s) in RCA: 1505] [Impact Index Per Article: 167.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the function of genes mutated in hereditary forms of Parkinson's disease yields insight into disease etiology and reveals new pathways in cell biology. Although mutations or variants in many genes increase the susceptibility to Parkinson's disease, only a handful of monogenic causes of parkinsonism have been identified. Biochemical and genetic studies reveal that the products of two genes that are mutated in autosomal recessive parkinsonism, PINK1 and Parkin, normally work together in the same pathway to govern mitochondrial quality control, bolstering previous evidence that mitochondrial damage is involved in Parkinson's disease. PINK1 accumulates on the outer membrane of damaged mitochondria, activates Parkin's E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins to trigger selective autophagy. This review covers the normal functions that PINK1 and Parkin play within cells, their molecular mechanisms of action, and the pathophysiological consequences of their loss.
Collapse
Affiliation(s)
- Alicia M Pickrell
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
514
|
A53T human α-synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J Neurosci 2015; 35:890-905. [PMID: 25609609 DOI: 10.1523/jneurosci.0089-14.2015] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In vitro evidence suggests that the inefficient removal of damaged mitochondria by macroautophagy contributes to Parkinson's disease (PD). Using a tissue-specific gene amplification strategy, we generated a transgenic mouse line with human α-synuclein A53T overexpression specifically in dopamine (DA) neurons. Transgenic mice showed profound early-onset mitochondria abnormalities, characterized by macroautophagy marker-positive cytoplasmic inclusions containing mainly mitochondrial remnants, which preceded the degeneration of DA neurons. Genetic deletion of either parkin or PINK1 in these transgenic mice significantly worsened mitochondrial pathologies, including drastically enlarged inclusions and loss of total mitochondria contents. These data suggest that mitochondria are the main targets of α-synuclein and their defective autophagic clearance plays a significant role during pathogenesis. Moreover, endogenous PINK1 or parkin is indispensable for the proper autophagic removal of damaged mitochondria. Our data for the first time establish an essential link between mitochondria macroautophagy impairments and DA neuron degeneration in an in vivo model based on known PD genetics. The model, its well-defined pathologies, and the demonstration of a main pathogenesis pathway in the present study have set the stage and direction of emphasis for future studies.
Collapse
|
515
|
Affiliation(s)
- Gerald W Dorn
- From the Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
516
|
Seirafi M, Kozlov G, Gehring K. Parkin structure and function. FEBS J 2015; 282:2076-88. [PMID: 25712550 PMCID: PMC4672691 DOI: 10.1111/febs.13249] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/05/2015] [Accepted: 02/24/2015] [Indexed: 02/06/2023]
Abstract
Mutations in the parkin or PINK1 genes are the leading cause of the autosomal recessive form of Parkinson’s disease. The gene products, the E3 ubiquitin ligase parkin and the serine/threonine kinase PINK1, are neuroprotective proteins, which act together in a mitochondrial quality control pathway. Here, we review the structure of parkin and mechanisms of its autoinhibition and function as a ubiquitin ligase. We present a model for the recruitment and activation of parkin as a key regulatory step in the clearance of depolarized or damaged mitochondria by autophagy (mitophagy). We conclude with a brief overview of other functions of parkin and considerations for drug discovery in the mitochondrial quality control pathway.
Collapse
Affiliation(s)
- Marjan Seirafi
- Department of Biochemistry and the Groupe de Recherche axé sur la Structure des Protéines, McGill University, Montréal, Québec, Canada
| | - Guennadi Kozlov
- Department of Biochemistry and the Groupe de Recherche axé sur la Structure des Protéines, McGill University, Montréal, Québec, Canada
| | - Kalle Gehring
- Department of Biochemistry and the Groupe de Recherche axé sur la Structure des Protéines, McGill University, Montréal, Québec, Canada
| |
Collapse
|
517
|
Besseiche A, Riveline JP, Gautier JF, Bréant B, Blondeau B. Metabolic roles of PGC-1α and its implications for type 2 diabetes. DIABETES & METABOLISM 2015; 41:347-57. [PMID: 25753246 DOI: 10.1016/j.diabet.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/07/2015] [Accepted: 02/01/2015] [Indexed: 12/25/2022]
Abstract
PGC-1α is a transcriptional coactivator expressed in brown adipose tissue, liver, pancreas, kidney, skeletal and cardiac muscles, and the brain. This review presents data illustrating how PGC-1α regulates metabolic adaptations and participates in the aetiology of type 2 diabetes (T2D). Studies in mice have shown that increased PGC-1α expression may be beneficial or deleterious, depending on the tissue: in adipose tissue, it promotes thermogenesis and thus protects against energy overload, such as seen in diabetes and obesity; in muscle, PGC-1α induces a change of phenotype towards oxidative metabolism. In contrast, its role is clearly deleterious in the liver and pancreas, where it induces hepatic glucose production and inhibits insulin secretion, changes that promote diabetes. Previous studies by our group have also demonstrated the role of PGC-1α in the fetal origins of T2D. Overexpression of PGC-1α in β cells during fetal life in mice is sufficient to induce β-cell dysfunction in adults, leading to glucose intolerance. PGC-1α also is associated with glucocorticoid receptors in repressing expression of Pdx1, a key β-cell transcription factor. In conclusion, PGC-1α participates in the onset of diabetes through regulation of major metabolic tissues. Yet, it may not represent a useful target for therapeutic strategies against diabetes as it exerts both beneficial and deleterious actions on glucose homoeostasis, and because PGC-1α modulation is involved in neurodegenerative diseases. However, its role in cellular adaptation shows that greater comprehension of PGC-1α actions is needed.
Collapse
Affiliation(s)
- A Besseiche
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France
| | - J-P Riveline
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France; University Center of Diabetes and Complications in Lariboisière hospital, Université Paris-Diderot Paris-7, Public Assistance-Paris Hospitals, 75010 Paris, France
| | - J-F Gautier
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France; University Center of Diabetes and Complications in Lariboisière hospital, Université Paris-Diderot Paris-7, Public Assistance-Paris Hospitals, 75010 Paris, France
| | - B Bréant
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France
| | - B Blondeau
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France.
| |
Collapse
|
518
|
Charan RA, LaVoie MJ. Pathologic and therapeutic implications for the cell biology of parkin. Mol Cell Neurosci 2015; 66:62-71. [PMID: 25697646 DOI: 10.1016/j.mcn.2015.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/07/2015] [Accepted: 02/15/2015] [Indexed: 01/07/2023] Open
Abstract
Mutations in the E3 ligase parkin are the most common cause of autosomal recessive Parkinson's disease (PD), but it is believed that parkin dysfunction may also contribute to idiopathic PD. Since its discovery, parkin has been implicated in supporting multiple neuroprotective pathways, many revolving around the maintenance of mitochondrial health quality control and governance of cell survival. Recent advances across the structure, biochemistry, and cell biology of parkin have provided great insights into the etiology of parkin-linked and idiopathic PD and may ultimately generate novel therapeutic strategies to slow or halt disease progression. This review describes the various pathways in which parkin acts and the mechanisms by which parkin may be targeted for therapeutic intervention. This article is part of a Special Issue entitled 'Neuronal Protein'.
Collapse
Affiliation(s)
- Rakshita A Charan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | - Matthew J LaVoie
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, USA; Harvard Medical School, Boston, USA
| |
Collapse
|
519
|
Vainshtein A, Tryon LD, Pauly M, Hood DA. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle. Am J Physiol Cell Physiol 2015; 308:C710-9. [PMID: 25673772 DOI: 10.1152/ajpcell.00380.2014] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/04/2015] [Indexed: 01/14/2023]
Abstract
Regular exercise leads to systemic metabolic benefits, which require remodeling of energy resources in skeletal muscle. During acute exercise, the increase in energy demands initiate mitochondrial biogenesis, orchestrated by the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Much less is known about the degradation of mitochondria following exercise, although new evidence implicates a cellular recycling mechanism, autophagy/mitophagy, in exercise-induced adaptations. How mitophagy is activated and what role PGC-1α plays in this process during exercise have yet to be evaluated. Thus we investigated autophagy/mitophagy in muscle immediately following an acute bout of exercise or 90 min following exercise in wild-type (WT) and PGC-1α knockout (KO) animals. Deletion of PGC-1α resulted in a 40% decrease in mitochondrial content, as well as a 25% decline in running performance, which was accompanied by severe acidosis in KO animals, indicating metabolic distress. Exercise induced significant increases in gene transcripts of various mitochondrial (e.g., cytochrome oxidase subunit IV and mitochondrial transcription factor A) and autophagy-related (e.g., p62 and light chain 3) genes in WT, but not KO, animals. Exercise also resulted in enhanced targeting of mitochondria for mitophagy, as well as increased autophagy and mitophagy flux, in WT animals. This effect was attenuated in the absence of PGC-1α. We also identified Niemann-Pick C1, a transmembrane protein involved in lysosomal lipid trafficking, as a target of PGC-1α that is induced with exercise. These results suggest that mitochondrial turnover is increased following exercise and that this effect is at least in part coordinated by PGC-1α.
Collapse
Affiliation(s)
- Anna Vainshtein
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Liam D Tryon
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Marion Pauly
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
520
|
Aguileta MA, Korac J, Durcan TM, Trempe JF, Haber M, Gehring K, Elsasser S, Waidmann O, Fon EA, Husnjak K. The E3 ubiquitin ligase parkin is recruited to the 26 S proteasome via the proteasomal ubiquitin receptor Rpn13. J Biol Chem 2015; 290:7492-505. [PMID: 25666615 DOI: 10.1074/jbc.m114.614925] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in the Park2 gene, encoding the RING-HECT hybrid E3 ubiquitin ligase parkin, are responsible for a common familial form of Parkinson disease. By mono- and polyubiquitinating target proteins, parkin regulates various cellular processes, including degradation of proteins within the 26 S proteasome, a large multimeric degradation machine. In our attempt to further elucidate the function of parkin, we have identified the proteasomal ubiquitin receptor Rpn13/ADRM1 as a parkin-interacting protein. We show that the N-terminal ubiquitin-like (Ubl) domain of parkin binds directly to the pleckstrin-like receptor for ubiquitin (Pru) domain within Rpn13. Using mutational analysis and NMR, we find that Pru binding involves the hydrophobic patch surrounding Ile-44 in the parkin Ubl, a region that is highly conserved between ubiquitin and Ubl domains. However, compared with ubiquitin, the parkin Ubl exhibits greater than 10-fold higher affinity for the Pru domain. Moreover, knockdown of Rpn13 in cells increases parkin levels and abrogates parkin recruitment to the 26 S proteasome, establishing Rpn13 as the major proteasomal receptor for parkin. In contrast, silencing Rpn13 did not impair parkin recruitment to mitochondria or parkin-mediated mitophagy upon carbonyl cyanide m-chlorophenyl hydrazone-induced mitochondrial depolarization. However, it did delay the clearance of mitochondrial proteins (TIM23, TIM44, and TOM20) and enhance parkin autoubiquitination. Taken together, these findings implicate Rpn13 in linking parkin to the 26 S proteasome and regulating the clearance of mitochondrial proteins during mitophagy.
Collapse
Affiliation(s)
- Miguel A Aguileta
- From the McGill Parkinson Program and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jelena Korac
- the School of Medicine, University of Split, 21000 Split, Croatia
| | - Thomas M Durcan
- From the McGill Parkinson Program and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jean-François Trempe
- the Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Michael Haber
- From the McGill Parkinson Program and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Kalle Gehring
- the Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Suzanne Elsasser
- the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Oliver Waidmann
- Goethe University Medical School, D-60590 Frankfurt am Main, Germany
| | - Edward A Fon
- From the McGill Parkinson Program and Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Koraljka Husnjak
- Goethe University Medical School, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
521
|
Carelli V, Maresca A, Caporali L, Trifunov S, Zanna C, Rugolo M. Mitochondria: Biogenesis and mitophagy balance in segregation and clonal expansion of mitochondrial DNA mutations. Int J Biochem Cell Biol 2015; 63:21-4. [PMID: 25666555 DOI: 10.1016/j.biocel.2015.01.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/20/2015] [Accepted: 01/29/2015] [Indexed: 12/31/2022]
Abstract
Mitochondria are cytoplasmic organelles containing their own multi-copy genome. They are organized in a highly dynamic network, resulting from balance between fission and fusion, which maintains homeostasis of mitochondrial mass through mitochondrial biogenesis and mitophagy. Mitochondrial DNA (mtDNA) mutates much faster than nuclear DNA. In particular, mtDNA point mutations and deletions may occur somatically and accumulate with aging, coexisting with the wild type, a condition known as heteroplasmy. Under specific circumstances, clonal expansion of mutant mtDNA may occur within single cells, causing a wide range of severe human diseases when mutant overcomes wild type. Furthermore, mtDNA deletions accumulate and clonally expand as a consequence of deleterious mutations in nuclear genes involved in mtDNA replication and maintenance, as well as in mitochondrial fusion genes (mitofusin-2 and OPA1), possibly implicating mtDNA nucleoids segregation. We here discuss how the intricacies of mitochondrial homeostasis impinge on the intracellular propagation of mutant mtDNA. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.
Collapse
Affiliation(s)
- Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| | - Alessandra Maresca
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Selena Trifunov
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; Unit of Cellular Biochemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudia Zanna
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Unit of Cellular Biochemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michela Rugolo
- Unit of Cellular Biochemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
522
|
Dany M, Ogretmen B. Ceramide induced mitophagy and tumor suppression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2834-45. [PMID: 25634657 DOI: 10.1016/j.bbamcr.2014.12.039] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/09/2014] [Accepted: 12/25/2014] [Indexed: 12/11/2022]
Abstract
Sphingolipids are bioactive lipid effectors, which are involved in the regulation of various cellular signaling pathways. Sphingolipids play essential roles in controlling cell inflammation, proliferation, death, migration, senescence, metastasis and autophagy. Alterations in sphingolipid metabolism have been also implicated in many human cancers. Macroautophagy (referred to here as autophagy) is a form of nonselective sequestering of cytosolic materials by double membrane structures, autophagosomes, which can be either protective or lethal for cells. Ceramide, a central molecule of sphingolipid metabolism is involved in the regulation of autophagy at various levels, including the induction of lethal mitophagy, a selective autophagy process to target and eliminate damaged mitochondria. In this review, we focused on recent studies with regard to the regulation of autophagy, in particular lethal mitophagy, by ceramide, and aimed at providing discussion points for various context-dependent roles and mechanisms of action of ceramide in controlling mitophagy.
Collapse
Affiliation(s)
- Mohammed Dany
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
523
|
PGC-1α provides a transcriptional framework for synchronous neurotransmitter release from parvalbumin-positive interneurons. J Neurosci 2015; 34:14375-87. [PMID: 25339750 DOI: 10.1523/jneurosci.1222-14.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulating evidence strongly implicates the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in the pathophysiology of multiple neurological disorders, but the downstream gene targets of PGC-1α in the brain have remained enigmatic. Previous data demonstrate that PGC-1α is primarily concentrated in inhibitory neurons and that PGC-1α is required for the expression of the interneuron-specific Ca(2+)-binding protein parvalbumin (PV) throughout the cortex. To identify other possible transcriptional targets of PGC-1α in neural tissue, we conducted a microarray on neuroblastoma cells overexpressing PGC-1α, mined results for genes with physiological relevance to interneurons, and measured cortical gene and protein expression of these genes in mice with underexpression and overexpression of PGC-1α. We observed bidirectional regulation of novel PGC-1α-dependent transcripts spanning synaptic [synaptotagmin 2 (Syt2) and complexin 1 (Cplx1)], structural [neurofilament heavy chain (Nefh)], and metabolic [neutral cholesterol ester hydrolase 1 (Nceh1), adenylate kinase 1 (Ak1), inositol polyphosphate 5-phosphatase J (Inpp5j), ATP synthase mitochondrial F1 complex O subunit (Atp5o), phytanol-CoA-2hydroxylase (Phyh), and ATP synthase mitrochondrial F1 complex α subunit 1 (Atp5a1)] functions. The neuron-specific genes Syt2, Cplx1, and Nefh were developmentally upregulated in an expression pattern consistent with that of PGC-1α and were expressed in cortical interneurons. Conditional deletion of PGC-1α in PV-positive neurons significantly decreased cortical transcript expression of these genes, promoted asynchronous GABA release, and impaired long-term memory. Collectively, these data demonstrate that PGC-1α is required for normal PV-positive interneuron function and that loss of PGC-1α in this interneuron subpopulation could contribute to cortical dysfunction in disease states.
Collapse
|
524
|
Abstract
Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics-mitochondrial fission-in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate-putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons.
Collapse
|
525
|
Mitochondrial quality control: Easy come, easy go. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2802-11. [PMID: 25596427 DOI: 10.1016/j.bbamcr.2014.12.041] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/09/2014] [Accepted: 12/25/2014] [Indexed: 02/03/2023]
Abstract
"Friends come and go but enemies accumulate." - Arthur Bloch Mitochondrial networks in eukaryotic cells are maintained via regular cycles of degradation and biogenesis. These complex processes function in concert with one another to eliminate dysfunctional mitochondria in a specific and targeted manner and coordinate the biogenesis of new organelles. This review covers the two aspects of mitochondrial turnover, focusing on the main pathways and mechanisms involved. The review also summarizes the current methods and techniques for analyzing mitochondrial turnover in vivo and in vitro, from the whole animal proteome level to the level of single organelle.
Collapse
|
526
|
STEP61 is a substrate of the E3 ligase parkin and is upregulated in Parkinson's disease. Proc Natl Acad Sci U S A 2015; 112:1202-7. [PMID: 25583483 DOI: 10.1073/pnas.1417423112] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). The loss of SNc dopaminergic neurons affects the plasticity of striatal neurons and leads to significant motor and cognitive disabilities during the progression of the disease. PARK2 encodes for the E3 ubiquitin ligase parkin and is implicated in genetic and sporadic PD. Mutations in PARK2 are a major contributing factor in the early onset of autosomal-recessive juvenile parkinsonism (AR-JP), although the mechanisms by which a disruption in parkin function contributes to the pathophysiology of PD remain unclear. Here we demonstrate that parkin is an E3 ligase for STEP61 (striatal-enriched protein tyrosine phosphatase), a protein tyrosine phosphatase implicated in several neuropsychiatric disorders. In cellular models, parkin ubiquitinates STEP61 and thereby regulates its level through the proteasome system, whereas clinically relevant parkin mutants fail to do so. STEP61 protein levels are elevated on acute down-regulation of parkin or in PARK2 KO rat striatum. Relevant to PD, STEP61 accumulates in the striatum of human sporadic PD and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mice. The increase in STEP61 is associated with a decrease in the phosphorylation of its substrate ERK1/2 and the downstream target of ERK1/2, pCREB [phospho-CREB (cAMP response element-binding protein)]. These results indicate that STEP61 is a novel substrate of parkin, although further studies are necessary to determine whether elevated STEP61 levels directly contribute to the pathophysiology of PD.
Collapse
|
527
|
Lucas EK, Reid CS, McMeekin LJ, Dougherty SE, Floyd CL, Cowell RM. Cerebellar transcriptional alterations with Purkinje cell dysfunction and loss in mice lacking PGC-1α. Front Cell Neurosci 2015; 8:441. [PMID: 25610371 PMCID: PMC4285109 DOI: 10.3389/fncel.2014.00441] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/08/2014] [Indexed: 11/17/2022] Open
Abstract
Alterations in the expression and activity of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (ppargc1a or PGC-1α) have been reported in multiple movement disorders, yet it is unclear how a lack of PGC-1α impacts transcription and function of the cerebellum, a region with high PGC-1α expression. We show here that mice lacking PGC-1α exhibit ataxia in addition to the previously described deficits in motor coordination. Using q-RT-PCR in cerebellar homogenates from PGC-1α−/− mice, we measured expression of 37 microarray-identified transcripts upregulated by PGC-1α in SH-SY5Y neuroblastoma cells with neuroanatomical overlap with PGC-1α or parvalbumin (PV), a calcium buffer highly expressed by Purkinje cells. We found significant reductions in transcripts with synaptic (complexin1, Cplx1; Pacsin2), structural (neurofilament heavy chain, Nefh), and metabolic (isocitrate dehydrogenase 3a, Idh3a; neutral cholesterol ester hydrolase 1, Nceh1; pyruvate dehydrogenase alpha 1, Pdha1; phytanoyl-CoA hydroxylase, Phyh; ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1, Uqcrfs1) functions. Using conditional deletion of PGC-1α in PV-positive neurons, we determined that 50% of PGC-1α expression and a reduction in a subset of these transcripts could be explained by its concentration in PV-positive neuronal populations in the cerbellum. To determine whether there were functional consequences associated with these changes, we conducted stereological counts and spike rate analysis in Purkinje cells, a cell type rich in PV, from PGC-1α−/− mice. We observed a significant loss of Purkinje cells by 6 weeks of age, and the remaining Purkinje cells exhibited a 50% reduction in spike rate. Together, these data highlight the complexity of PGC-1α's actions in the central nervous system and suggest that dysfunction in multiple cell types contribute to motor deficits in the context of PGC-1α deficiency.
Collapse
Affiliation(s)
- Elizabeth K Lucas
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Courtney S Reid
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Laura J McMeekin
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Sarah E Dougherty
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA ; Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Candace L Floyd
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham Birmingham, AL, USA
| | - Rita M Cowell
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
528
|
Amano S, Kegelmeyer D, Hong SL. Rethinking energy in parkinsonian motor symptoms: a potential role for neural metabolic deficits. Front Syst Neurosci 2015; 8:242. [PMID: 25610377 PMCID: PMC4285053 DOI: 10.3389/fnsys.2014.00242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 12/07/2014] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is characterized as a chronic and progressive neurodegenerative disorder that results in a variety of debilitating symptoms, including bradykinesia, resting tremor, rigidity, and postural instability. Research spanning several decades has emphasized basal ganglia dysfunction, predominantly resulting from dopaminergic (DA) cell loss, as the primarily cause of the aforementioned parkinsonian features. But, why those particular features manifest themselves remains an enigma. The goal of this paper is to develop a theoretical framework that parkinsonian motor features are behavioral consequence of a long-term adaptation to their inability (inflexibility or lack of capacity) to meet energetic demands, due to neural metabolic deficits arising from mitochondrial dysfunction associated with PD. Here, we discuss neurophysiological changes that are generally associated with PD, such as selective degeneration of DA neurons in the substantia nigra pars compacta (SNc), in conjunction with metabolic and mitochondrial dysfunction. We then characterize the cardinal motor symptoms of PD, bradykinesia, resting tremor, rigidity and gait disturbance, reviewing literature to demonstrate how these motor patterns are actually energy efficient from a metabolic perspective. We will also develop three testable hypotheses: (1) neural metabolic deficits precede the increased rate of neurodegeneration and onset of behavioral symptoms in PD; (2) motor behavior of persons with PD are more sensitive to changes in metabolic/bioenergetic state; and (3) improvement of metabolic function could lead to better motor performance in persons with PD. These hypotheses are designed to introduce a novel viewpoint that can elucidate the connections between metabolic, neural and motor function in PD.
Collapse
Affiliation(s)
- Shinichi Amano
- Department of Biomedical Sciences, Ohio University Athens, OH, USA ; Ohio Musculoskeletal and Neurological Institute, Ohio University Athens, OH, USA
| | - Deborah Kegelmeyer
- Division of Physical Therapy, College of Medicine, The Ohio State University Columbus, OH, USA
| | - S Lee Hong
- Department of Biomedical Sciences, Ohio University Athens, OH, USA ; Ohio Musculoskeletal and Neurological Institute, Ohio University Athens, OH, USA
| |
Collapse
|
529
|
Petrucci S, Arena G, Valente EM. Genetics and Molecular Biology of Parkinson Disease. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
530
|
Cebrián C, Loike JD, Sulzer D. Neuroinflammation in Parkinson's disease animal models: a cell stress response or a step in neurodegeneration? Curr Top Behav Neurosci 2015; 22:237-270. [PMID: 25293443 DOI: 10.1007/7854_2014_356] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The motor symptoms of Parkinson's disease are due to the progressive degeneration of dopaminergic neurons in the substantia nigra. Multiple neuroinflammatory processes are exacerbated in Parkinson's disease, including glial-mediated reactions, increased expression of proinflammatory substances, and lymphocytic infiltration, particularly in the substantia nigra. Neuroinflammation is also implicated in the neurodegeneration and consequent behavioral symptoms of many Parkinson's disease animal models, although it is not clear whether these features emulate pathogenic steps in the genuine disorder or if some inflammatory features provide protective stress responses. Here, we compare and summarize findings on neuroinflammatory responses and effects on behavior in a wide range of toxin-based, inflammatory and genetic Parkinson's disease animal models.
Collapse
Affiliation(s)
- Carolina Cebrián
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | | | | |
Collapse
|
531
|
Eschbach J, von Einem B, Müller K, Bayer H, Scheffold A, Morrison BE, Rudolph KL, Thal DR, Witting A, Weydt P, Otto M, Fauler M, Liss B, McLean PJ, Spada ARL, Ludolph AC, Weishaupt JH, Danzer KM. Mutual exacerbation of peroxisome proliferator-activated receptor γ coactivator 1α deregulation and α-synuclein oligomerization. Ann Neurol 2014; 77:15-32. [PMID: 25363075 DOI: 10.1002/ana.24294] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 09/29/2014] [Accepted: 10/05/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson disease (PD), with accumulating evidence that prefibrillar oligomers and protofibrils are the pathogenic species in PD and related synucleinopathies. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a key regulator of mitochondrial biogenesis and cellular energy metabolism, has recently been associated with the pathophysiology of PD. Despite extensive effort on studying the function of PGC-1α in mitochondria, no studies have addressed whether PGC-1α directly influences oligomerization of α-syn or whether α-syn oligomers impact PGC-1α expression. MATERIALS AND METHODS We tested whether pharmacological or genetic activation of PGC-1α or PGC-11α knockdown could modulate the oligomerization of α-syn in vitro by using an α-syn -fragment complementation assay. RESULTS In this study, we found that both PGC-1α reference gene (RG-PGC-1α) and the central nervous system (CNS)-specific PGC-1α (CNS-PGC-1α) are downregulated in human PD brain, in A30P α-syn transgenic animals, and in a cell culture model for α-syn oligomerization. Importantly, downregulation of both RG-PGC-1α and CNS-PGC-1α in cell culture or neurons from RG-PGC-1α-deficient mice leads to a strong induction of α-syn oligomerization and toxicity. In contrast, pharmacological activation or genetic overexpression of RG-PGC-1α reduced α-syn oligomerization and rescued α-syn-mediated toxicity. INTERPRETATION Based on our results, we propose that PGC-1α downregulation and α-syn oligomerization form a vicious circle, thereby influencing and/or potentiating each other. Our data indicate that restoration of PGC-1α is a promising approach for development of effective drugs for the treatment of PD and related synucleinopathies.
Collapse
Affiliation(s)
- Judith Eschbach
- Department of Neurology, Ulm University, Ulm, Germany; Inoviem Scientific, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
532
|
Valadas JS, Vos M, Verstreken P. Therapeutic strategies in Parkinson's disease: what we have learned from animal models. Ann N Y Acad Sci 2014; 1338:16-37. [PMID: 25515068 DOI: 10.1111/nyas.12577] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by a loss of dopaminergic neurons in the substantia nigra, as well as in other brain areas. The currently available dopamine replacement therapy provides merely symptomatic benefit and is ineffective because habituation and side effects arise relatively quickly. Studying the genetic forms of PD in animal models provides novel insight that allows targeting of specific aspects of this heterogenic disease more specifically. Among others, two important cellular deficits are associated with PD; these deficits relate to (1) synaptic transmission and vesicle trafficking, and (2) mitochondrial function, relating respectively to the dominant and recessive mutations in PD-causing genes. With increased knowledge of PD, the possibility of identifying an efficient, long-lasting treatment is becoming more conceivable, but this can only be done with an increased knowledge of the specific affected cellular mechanisms. This review discusses how discoveries in animal models of PD have clarified the therapeutic potential of pathways disrupted in PD, with a specific focus on synaptic transmission, vesicle trafficking, and mitochondrial function.
Collapse
Affiliation(s)
- Jorge S Valadas
- VIB Center for the Biology of Disease; Department of Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
533
|
Han JY, Kim JS, Son JH. Mitochondrial homeostasis molecules: regulation by a trio of recessive Parkinson's disease genes. Exp Neurobiol 2014; 23:345-51. [PMID: 25548534 PMCID: PMC4276805 DOI: 10.5607/en.2014.23.4.345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 01/26/2023] Open
Abstract
Mitochondria are small organelles that produce the majority of cellular energy as ATP. Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD), and rare familial forms of PD provide valuable insight into the pathogenic mechanism underlying mitochondrial impairment, even though the majority of PD cases are sporadic. The regulation of mitochondria is crucial for the maintenance of energy-demanding neuronal functions in the brain. Mitochondrial biogenesis and mitophagic degradation are the major regulatory pathways that preserve optimal mitochondrial content, structure and function. In this mini-review, we provide an overview of the mitochondrial quality control mechanisms, emphasizing regulatory molecules in mitophagy and biogenesis that specifically interact with the protein products of three major recessive familial PD genes, PINK1, Parkin and DJ-1.
Collapse
Affiliation(s)
- Ji-Young Han
- Department of Brain and Cognitive Sciences, Brain Disease Research Institute, Ewha Womans University, Seoul 120-750, Korea
| | - Ji-Soo Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jin H Son
- Department of Brain and Cognitive Sciences, Brain Disease Research Institute, Ewha Womans University, Seoul 120-750, Korea. ; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
534
|
|
535
|
MitoTimer: a novel protein for monitoring mitochondrial turnover in the heart. J Mol Med (Berl) 2014; 93:271-8. [PMID: 25479961 PMCID: PMC4333239 DOI: 10.1007/s00109-014-1230-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/19/2014] [Accepted: 11/12/2014] [Indexed: 01/17/2023]
Abstract
Mitochondrial quality control refers to the coordinated cellular systems involved in maintaining a population of healthy mitochondria. In addition to mitochondrial protein chaperones (Hsp10, Hsp60, and others) and proteases (Lon, AAA proteases) needed for refolding or degrading individual proteins, mitochondrial integrity is maintained through the regulation of protein import via the TOM/TIM complex and protein redistribution across the network via fusion and fission and through mitophagy and biogenesis, key determinants of mitochondrial turnover. A growing number of studies point to the importance of mitochondrial dynamics (fusion/fission) and mitochondrial autophagy in the heart. Mitochondrial biogenesis must keep pace with mitophagy in order to maintain a stable number of mitochondria. In this review, we will discuss the use of MitoTimer as a tool to monitor mitochondrial turnover.
Collapse
|
536
|
Gleave JA, Perri PD, Nash JE. Mitochondrial dysfunction in Parkinson’s disease: a possible target for neuroprotection. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1337-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
537
|
Skerrett R, Malm T, Landreth G. Nuclear receptors in neurodegenerative diseases. Neurobiol Dis 2014; 72 Pt A:104-16. [PMID: 24874548 PMCID: PMC4246019 DOI: 10.1016/j.nbd.2014.05.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/14/2014] [Accepted: 05/17/2014] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors have generated substantial interest in the past decade as potential therapeutic targets for the treatment of neurodegenerative disorders. Despite years of effort, effective treatments for progressive neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and ALS remain elusive, making non-classical drug targets such as nuclear receptors an attractive alternative. A substantial literature in mouse models of disease and several clinical trials have investigated the role of nuclear receptors in various neurodegenerative disorders, most prominently AD. These studies have met with mixed results, yet the majority of studies in mouse models report positive outcomes. The mechanisms by which nuclear receptor agonists affect disease pathology remain unclear. Deciphering the complex signaling underlying nuclear receptor action in neurodegenerative diseases is essential for understanding this variability in preclinical studies, and for the successful translation of nuclear receptor agonists into clinical therapies.
Collapse
Affiliation(s)
- Rebecca Skerrett
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Tarja Malm
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; A.I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland.
| | - Gary Landreth
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
538
|
Kageyama Y, Hoshijima M, Seo K, Bedja D, Sysa-Shah P, Andrabi SA, Chen W, Höke A, Dawson VL, Dawson TM, Gabrielson K, Kass DA, Iijima M, Sesaki H. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J 2014; 33:2798-813. [PMID: 25349190 PMCID: PMC4282557 DOI: 10.15252/embj.201488658] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/18/2014] [Accepted: 09/19/2014] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial dynamics and mitophagy have been linked to cardiovascular and neurodegenerative diseases. Here, we demonstrate that the mitochondrial division dynamin Drp1 and the Parkinson's disease-associated E3 ubiquitin ligase parkin synergistically maintain the integrity of mitochondrial structure and function in mouse heart and brain. Mice lacking cardiac Drp1 exhibited lethal heart defects. In Drp1KO cardiomyocytes, mitochondria increased their connectivity, accumulated ubiquitinated proteins, and decreased their respiration. In contrast to the current views of the role of parkin in ubiquitination of mitochondrial proteins, mitochondrial ubiquitination was independent of parkin in Drp1KO hearts, and simultaneous loss of Drp1 and parkin worsened cardiac defects. Drp1 and parkin also play synergistic roles in neuronal mitochondrial homeostasis and survival. Mitochondrial degradation was further decreased by combination of Drp1 and parkin deficiency, compared with their single loss. Thus, the physiological importance of parkin in mitochondrial homeostasis is revealed in the absence of mitochondrial division in mammals.
Collapse
Affiliation(s)
- Yusuke Kageyama
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Masahiko Hoshijima
- Center for Research in Biological Systems and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kinya Seo
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shaida A Andrabi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD, USA Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Weiran Chen
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ahmet Höke
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD, USA Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD, USA Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
539
|
Xu D, Duan H, Zhang Z, Cui W, Wang L, Sun Y, Lang M, Hoi PM, Han Y, Wang Y, Lee SM. The novel tetramethylpyrazine bis-nitrone (TN-2) protects against MPTP/MPP+-induced neurotoxicity via inhibition of mitochondrial-dependent apoptosis. J Neuroimmune Pharmacol 2014; 9:245-58. [PMID: 24233519 DOI: 10.1007/s11481-013-9514-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/31/2013] [Indexed: 11/25/2022]
Abstract
Mitochondrial-dependent apoptosis plays an important role in the degeneration of dopaminergic neurons in Parkinson's disease (PD). Methyl-4-phenyl-1,2,3,6-tetra- hydropyridine (MPTP), the most widely used neurotoxin to simulate PD, is converted to 1-methyl-4-phenylpyridinium (MPP(+)) in vivo. MPP(+) induces excessive intracellular reactive oxygen species (ROS), leading to mitochondrial-dependent apoptosis via sequentially opening mitochondria permeability transition pore (mPTP) to release cytochrome c from mitochondria into cytoplasm and activate pro-apoptotic caspase proteins. We have previously synthesized 2,5-[[(1,1-dimethylethyl)oxidoimino]methyl]-3,6-trimethylpyrazine (TN-2), a novel derivative of the Chinese herb medicine tetramethylpyrazine (TMP). TN-2 is armed with two powerful free radical-scavenging nitrone moieties. TN-2 significantly reversed the loss of dopaminergic neurons in the substantia nigra and the decrease in dopamine level in the striatum induced by MPTP in mice. TN-2 ameliorated the MPTP-induced decrease of brain superoxide dismutase activity and glutathione concentration and increase of brain malondialdehyde. In addition, TN-2 inhibited MPP(+)-induced neuronal damage/apoptosis in primary cerebellum granular neurons (CGNs) and SH-SY5Y cells. TN-2 decreased excessive intracellular ROS, prevented the loss of mitochondrial membrane potential, blocked the release of mitochondrial cytochrome c and inhibited the activation of caspase-3 and caspase-9. Moreover, TN-2 treatment increased the mRNA expression of mitochondrial biogenesis factors peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 (PGC- 1α and β) and mitochondrial transcription factor A (Tfam) in SH-SY5Y cells and CGNs. These results suggest that TN-2 protects dopaminergic neurons against MPTP/MPP(+)-induced neurotoxicity via the inhibition of mitochondrial-dependent apoptosis and possibly via the activation of mitochondrial biogenesis, indicating that TN-2 is a potential new treatment for PD.
Collapse
|
540
|
α-Synuclein-induced dopaminergic neurodegeneration in a rat model of Parkinson's disease occurs independent of ATP13A2 (PARK9). Neurobiol Dis 2014; 73:229-43. [PMID: 25461191 DOI: 10.1016/j.nbd.2014.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 10/02/2014] [Accepted: 10/12/2014] [Indexed: 11/21/2022] Open
Abstract
Mutations in the ATP13A2 (PARK9) gene cause early-onset, autosomal recessive Parkinson's disease (PD) and Kufor-Rakeb syndrome. ATP13A2 mRNA is spliced into three distinct isoforms encoding a P5-type ATPase involved in regulating heavy metal transport across vesicular membranes. Here, we demonstrate that three ATP13A2 mRNA isoforms are expressed in the normal human brain and are modestly increased in the cingulate cortex of PD cases. ATP13A2 can mediate protection toward a number of stressors in mammalian cells and can protect against α-synuclein-induced toxicity in cellular and invertebrate models of PD. Using a primary cortical neuronal model combined with lentiviral-mediated gene transfer, we demonstrate that human ATP13A2 isoforms 1 and 2 display selective neuroprotective effects toward toxicity induced by manganese and hydrogen peroxide exposure through an ATPase-independent mechanism. The familial PD mutations, F182L and G504R, abolish the neuroprotective effects of ATP13A2 consistent with a loss-of-function mechanism. We further demonstrate that the AAV-mediated overexpression of human ATP13A2 is not sufficient to attenuate dopaminergic neurodegeneration, neuropathology, and striatal dopamine and motoric deficits induced by human α-synuclein expression in a rat model of PD. Intriguingly, the delivery of an ATPase-deficient form of ATP13A2 (D513N) to the substantia nigra is sufficient to induce dopaminergic neuronal degeneration and motor deficits in rats, potentially suggesting a dominant-negative mechanism of action. Collectively, our data demonstrate a distinct lack of ATP13A2-mediated protection against α-synuclein-induced neurotoxicity in the rat nigrostriatal dopaminergic pathway, and limited neuroprotective capacity overall, and raise doubts about the potential of ATP13A2 as a therapeutic target for PD.
Collapse
|
541
|
Andres AM, Stotland A, Queliconi BB, Gottlieb RA. A time to reap, a time to sow: mitophagy and biogenesis in cardiac pathophysiology. J Mol Cell Cardiol 2014; 78:62-72. [PMID: 25444712 DOI: 10.1016/j.yjmcc.2014.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Balancing mitophagy and mitochondrial biogenesis is essential for maintaining a healthy population of mitochondria and cellular homeostasis. Coordinated interplay between these two forces that govern mitochondrial turnover plays an important role as an adaptive response against various cellular stresses that can compromise cell survival. Failure to maintain the critical balance between mitophagy and mitochondrial biogenesis or homeostatic turnover of mitochondria results in a population of dysfunctional mitochondria that contribute to various disease processes. In this review we outline the mechanics and relationships between mitophagy and mitochondrial biogenesis, and discuss the implications of a disrupted balance between these two forces, with an emphasis on cardiac physiology. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".
Collapse
Affiliation(s)
- Allen M Andres
- Cedars-Sinai Heart Institute and Barbra Streisand Women's Heart Center
| | | | - Bruno B Queliconi
- Cedars-Sinai Heart Institute and Barbra Streisand Women's Heart Center
| | | |
Collapse
|
542
|
Kang H, Shin JH. Repression of rRNA transcription by PARIS contributes to Parkinson's disease. Neurobiol Dis 2014; 73:220-8. [PMID: 25315684 DOI: 10.1016/j.nbd.2014.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 11/26/2022] Open
Abstract
The nucleolus is a compartment for the transcription of ribosomal RNA (rRNA) and assembly of ribosome subunits. Dysregulation of the nucleolus is considered to be a cellular stress event associated with aging and neurodegenerative disease, including Parkinson's disease (PD). We previously demonstrated that PARIS (PARkin Interacting Substrate, ZNF746) transcriptionally suppresses peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1α (PGC-1α) in PD and its accumulation results in selective dopaminergic neuronal death. However, functional knowledge of PARIS is limited, and no other studies have been performed to elucidate its function. Here, we used tandem-affinity purification to identify the binding partners of PARIS, showing that PARIS interacts with 160-kDa Myb-binding protein 1α (MYBBP1A), which suppresses rRNA transcription and the rRNA editing process. Interestingly, PARIS was also found to interact with the components of RNA polymerase I, occupied the promoter of rDNA, and suppressed rDNA transcription in vivo. Accordingly, we observed a reduction of rRNA levels and increased expression of p53, a molecular marker of nucleolar stress, in the substantia nigra of conditional parkin knockout mice, AAV-mediated PARIS overexpression mice, and in patients with sporadic PD. Together, our results suggest that dysfunction of the Parkin-PARIS pathway may play a deleterious role in rRNA transcription and contribute to PD pathogenesis.
Collapse
Affiliation(s)
- Hojin Kang
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Joo-Ho Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Republic of Korea; Mass Spectrometry, Research Core Facility, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Republic of Korea.
| |
Collapse
|
543
|
Skliris A, Papadaki O, Kafasla P, Karakasiliotis I, Hazapis O, Reczko M, Grammenoudi S, Bauer J, Kontoyiannis DL. Neuroprotection requires the functions of the RNA-binding protein HuR. Cell Death Differ 2014; 22:703-18. [PMID: 25301069 DOI: 10.1038/cdd.2014.158] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/17/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
Alterations in the functions of neuronal RNA-binding proteins (RBPs) can contribute to neurodegenerative diseases. However, neurons also express a set of widely distributed RBPs that may have developed specialized functions. Here, we show that the ubiquitous member of the otherwise neuronal Elavl/Hu family of RNA-binding proteins, Elavl1/HuR, has a neuroprotective role. Mice engineered to lack exclusively HuR in the hippocampal neurons of the central nervous system (CNS), maintain physiologic levels of neuronal Elavls and develop a partially diminished seizure response following strong glutamatergic excitation; however, they display an exacerbated neurodegenerative response subsequent to the initial excitotoxic event. This response was phenocopied in hippocampal cells devoid of ionotropic glutamate receptors in which the loss of HuR results in enhanced mitochondrial dysfunction, oxidative damage and programmed necrosis solely after glutamate challenge. The molecular dissection of HuR and nElavl mRNA targets revealed the existence of a HuR-restricted posttranscriptional regulon that failed in HuR-deficient neurons and is involved in cellular energetics and oxidation defense. Thus, HuR acts as a specialized controller of oxidative metabolism in neurons to confer protection from neurodegeneration.
Collapse
Affiliation(s)
- A Skliris
- Biomedical Sciences Research Centre 'Alexander Fleming', 16672 Vari, Greece
| | - O Papadaki
- Biomedical Sciences Research Centre 'Alexander Fleming', 16672 Vari, Greece
| | - P Kafasla
- Biomedical Sciences Research Centre 'Alexander Fleming', 16672 Vari, Greece
| | - I Karakasiliotis
- Biomedical Sciences Research Centre 'Alexander Fleming', 16672 Vari, Greece
| | - O Hazapis
- Biomedical Sciences Research Centre 'Alexander Fleming', 16672 Vari, Greece
| | - M Reczko
- Biomedical Sciences Research Centre 'Alexander Fleming', 16672 Vari, Greece
| | - S Grammenoudi
- Biomedical Sciences Research Centre 'Alexander Fleming', 16672 Vari, Greece
| | - J Bauer
- Centre for Brain Research, Medical University of Vienna, A109 Vienna, Austria
| | - D L Kontoyiannis
- Biomedical Sciences Research Centre 'Alexander Fleming', 16672 Vari, Greece
| |
Collapse
|
544
|
Recent advances in Parkinson’s disease genetics. J Neurol 2014; 261:259-66. [PMID: 23798000 DOI: 10.1007/s00415-013-7003-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 12/15/2022]
Abstract
The last 5 years have seen rapid progress in Parkinson’s disease (PD) genetics, with the publication of a series of large-scale genome wide association studies for PD, and evaluation of the roles of the LRRK2 and GBA genes in the aetiology of PD. We are beginning to develop a coherent picture of the interplay of Mendelian and non-Mendelian factors in PD. Pathways involved in mitochondrial quality control (mitophagy), lysosomal function and immune function are emerging as important in the pathogenesis of PD. These pathways represent a target for therapeutic intervention and a way in which the heterogeneity of disease cause, as well as disease mechanism, can be established. In the future, there is likely to be an individualised basis for the treatment of PD, linked to the identification of specific genetic factors.
Collapse
|
545
|
Potential roles of PINK1 for increased PGC-1α-mediated mitochondrial fatty acid oxidation and their associations with Alzheimer disease and diabetes. Mitochondrion 2014; 18:41-8. [PMID: 25260493 DOI: 10.1016/j.mito.2014.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/12/2014] [Accepted: 09/15/2014] [Indexed: 11/21/2022]
Abstract
Down-regulation of PINK1 and PGC-1α proteins is implicated in both mitochondrial dysfunction and oxidative stress potentially linking metabolic abnormality and neurodegeneration. Here, we report that PGC-1α and PINK1 expression is markedly decreased in Alzheimer disease (AD) and diabetic brains. We observed a significant down-regulation of PGC-1α and PINK1 protein expression in H2O2-treated cells but not in those cells treated with N-acetyl cysteine. The protein levels of two key enzymes of the mitochondrial β-oxidation machinery, acyl-coenzyme A dehydrogenase, very long chain (ACADVL) and mitochondrial trifunctional enzyme subunit α are significantly decreased in AD and diabetic brains. Moreover, we observed a positive relationship between ACADVL and 64 kDa PINK1 protein levels in AD and diabetic brains. Overexpression of PGC-1α decreases lipid-droplet accumulation and increases mitochondrial fatty acid oxidation; down-regulation of PINK1 abolishes these effects. Together, these results provide new insights into potential cooperative roles of PINK1 and PGC-1α in mitochondrial fatty acid oxidation, suggesting possible regulatory roles for mitochondrial function in the pathogenesis of AD and diabetes.
Collapse
|
546
|
Carta AR, Simuni T. Thiazolidinediones under preclinical and early clinical development for the treatment of Parkinson's disease. Expert Opin Investig Drugs 2014; 24:219-27. [PMID: 25227476 DOI: 10.1517/13543784.2015.963195] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Current treatment of Parkinson's disease (PD) is limited to symptomatic dopaminergic therapy, while no interventions have been shown to slow down disease progression. AREAS COVERED The following article highlights a group of PPAR-γ agonists called thiazolidinediones (TZDs), which are currently being tested for a putative disease-modifying benefit in PD, using pioglitazone as a prototypic compound. PPAR-γ is highly expressed in neurons of the substantia nigra and CNS immune cells. Preclinical data in rodent and primate support an effect of TZDs in preventing and/or arresting neurodegeneration and development of motor symptoms. Although no data on the neuroprotective effect of TZDs is currently available, a clinical trial is ongoing where the primary objective is to assess pioglitazone's impact on the progression of PD. The trial is also evaluating the drug's safety concerns. EXPERT OPINION The efficacy data from clinical trials must be carefully weighed against the safety concerns. However, given the solid preclinical data, and since the safety data are not yet fully conclusive and limited to the diabetic population, PPAR-γ research in PD can continue with caution. Ideally, drug discovery and development efforts will lead to the identification of new compounds with reduced risk of peripheral side effects.
Collapse
Affiliation(s)
- Anna R Carta
- University of Cagliari, Department of Biomedical Sciences , via Ospedale 72, 09124, Cagliari , Italy +39 0706758662 ; +39 0706758665 ;
| | | |
Collapse
|
547
|
Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder. Nat Commun 2014; 5:4930. [PMID: 25222142 DOI: 10.1038/ncomms5930] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/07/2014] [Indexed: 12/23/2022] Open
Abstract
Mitophagy is a specialized form of autophagy that selectively disposes of dysfunctional mitochondria. Delineating the molecular regulation of mitophagy is of great importance because defects in this process lead to a variety of mitochondrial diseases. Here we report that mice deficient for the mitochondrial protein, phosphoglycerate mutase family member 5 (PGAM5), displayed a Parkinson's-like movement phenotype. We determined biochemically that PGAM5 is required for the stabilization of the mitophagy-inducing protein PINK1 on damaged mitochondria. Loss of PGAM5 disables PINK1-mediated mitophagy in vitro and leads to dopaminergic neurodegeneration and mild dopamine loss in vivo. Our data indicate that PGAM5 is a regulator of mitophagy essential for mitochondrial turnover and serves a cytoprotective function in dopaminergic neurons in vivo. Moreover, PGAM5 may provide a molecular link to study mitochondrial homeostasis and the pathogenesis of a movement disorder similar to Parkinson's disease.
Collapse
|
548
|
The protease Omi regulates mitochondrial biogenesis through the GSK3β/PGC-1α pathway. Cell Death Dis 2014; 5:e1373. [PMID: 25118933 PMCID: PMC4454303 DOI: 10.1038/cddis.2014.328] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 02/06/2023]
Abstract
Loss of the mitochondrial protease activity of Omi causes mitochondrial dysfunction, neurodegeneration with parkinsonian features and premature death in mnd2 (motor neuron degeneration 2) mice. However, the detailed mechanisms underlying this pathology remain largely unknown. Here, we report that Omi participates in the process of mitochondrial biogenesis, which has been linked to several neurodegenerative diseases. The mitochondrial biogenesis is deficit in mnd2 mice, evidenced by severe decreases of mitochondrial components, mitochondrial DNA and mitochondrial density. Omi cleaves glycogen synthase kinase 3β (GSK3β), a kinase promoting PPARγ coactivator-1α (PGC-1α) degradation, to regulate PGC-1α, a factor important for the mitochondrial biogenesis. In mnd2 mice, GSK3β abundance is increased and PGC-1α abundance is decreased significantly. Inhibition of GSK3β by SB216763 or overexpression of PGC-1α can restore mitochondrial biogenesis in mnd2 mice or Omi-knockdown N2a cells. Furthermore, there is a significant improvement of the movement ability of mnd2 mice after SB216763 treatment. Thus, our study identified Omi as a novel regulator of mitochondrial biogenesis, involving in Omi protease-deficient-induced neurodegeneration.
Collapse
|
549
|
Cui S, Sun H, Gu X, Lv E, Zhang Y, Dong P, Fu C, Zhu C. RETRACTED ARTICLE: Gene expression profiling analysis of locus coeruleus in idiopathic Parkinson’s disease by bioinformatics. Neurol Sci 2014; 36:97-102. [DOI: 10.1007/s10072-014-1889-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/14/2014] [Indexed: 01/18/2023]
|
550
|
Yun N, Lee YM, Kim C, Shibayama H, Tanimura A, Hamanaka Y, Kanakura Y, Park IS, Jo A, Shin JH, Ju C, Kim WK, Oh YJ. Anamorsin, a novel caspase-3 substrate in neurodegeneration. J Biol Chem 2014; 289:22183-95. [PMID: 24973211 PMCID: PMC4139231 DOI: 10.1074/jbc.m114.552679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/24/2014] [Indexed: 11/06/2022] Open
Abstract
Activated caspases play a central role in the execution of apoptosis by cleaving endogenous substrates. Here, we developed a high throughput screening method to identify novel substrates for caspase-3 in a neuronal cell line. Critical steps in our strategy consist of two-dimensional electrophoresis-based protein separation and in vitro caspase-3 incubation of immobilized proteins to sort out direct substrates. Among 46 putative substrates identified in MN9D neuronal cells, we further evaluated whether caspase-3-mediated cleavage of anamorsin, a recently recognized cell death-defying factor in hematopoiesis, is a general feature of apoptosis. In vitro and cell-based cleavage assays indicated that anamorsin was specifically cleaved by caspase-3 but not by other caspases, generating 25- and 10-kDa fragments. Thus, in apoptosis of neuronal and non-neuronal cells induced by various stimuli including staurosporine, etoposide, or 6-hydroxydopamine, the cleavage of anamorsin was found to be blocked in the presence of caspase inhibitor. Among four tetrapeptide consensus DXXD motifs existing in anamorsin, we mapped a specific cleavage site for caspase-3 at DSVD(209)↓L. Intriguingly, the 25-kDa cleaved fragment of anamorsin was also detected in post-mortem brains of Alzheimer and Parkinson disease patients. Although the RNA interference-mediated knockdown of anamorsin rendered neuronal cells more vulnerable to staurosporine treatment, reintroduction of full-length anamorsin into an anamorsin knock-out stromal cell line made cells resistant to staurosporine-induced caspase activation, indicating the antiapoptotic function of anamorsin. Taken together, our approach seems to be effective to identify novel substrates for caspases and has the potential to provide meaningful insights into newly identified substrates involved in neurodegenerative processes.
Collapse
Affiliation(s)
- Nuri Yun
- From the Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - Young Mook Lee
- From the Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - Chiho Kim
- From the Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - Hirohiko Shibayama
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Akira Tanimura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yuri Hamanaka
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Il-Seon Park
- Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju 501-759, Korea
| | - Areum Jo
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Gyeonggi-do, Korea, and
| | - Joo-Ho Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Gyeonggi-do, Korea, and
| | - Chung Ju
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, Korea
| | - Won-Ki Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, Korea
| | - Young J Oh
- From the Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea,
| |
Collapse
|