501
|
|
502
|
Affiliation(s)
- Vardis Ntoukakis
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Selena Gimenez-Ibanez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, 28049 Madrid, Spain
| |
Collapse
|
503
|
Bektas Y, Rodriguez-Salus M, Schroeder M, Gomez A, Kaloshian I, Eulgem T. The Synthetic Elicitor DPMP (2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol) Triggers Strong Immunity in Arabidopsis thaliana and Tomato. Sci Rep 2016; 6:29554. [PMID: 27412821 PMCID: PMC4944173 DOI: 10.1038/srep29554] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/17/2016] [Indexed: 11/30/2022] Open
Abstract
Synthetic elicitors are drug-like compounds that are structurally distinct from natural defense elicitors. They can protect plants from diseases by activating host immune responses and can serve as tools for the dissection of the plant immune system as well as leads for the development of environmentally-safe pesticide alternatives. By high-throughput screening, we previously identified 114 synthetic elicitors that activate expression of the pathogen-responsive CaBP22−333::GUS reporter gene in Arabidopsis thaliana (Arabidopsis), 33 of which are [(phenylimino)methyl]phenol (PMP) derivatives or PMP-related compounds. Here we report on the characterization of one of these compounds, 2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol (DPMP). DPMP strongly triggers disease resistance of Arabidopsis against bacterial and oomycete pathogens. By mRNA-seq analysis we found transcriptional profiles triggered by DPMP to resemble typical defense-related responses.
Collapse
Affiliation(s)
- Yasemin Bektas
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California at Riverside, CA 92521, USA.,Department of Botany and Plant Sciences, University of California at Riverside, CA 92521, USA
| | - Melinda Rodriguez-Salus
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California at Riverside, CA 92521, USA.,Department of Botany and Plant Sciences, University of California at Riverside, CA 92521, USA.,ChemGen Intergrative Graduate Education and Research Traineeship program, program, University of California at Riverside, CA 92521, USA
| | - Mercedes Schroeder
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California at Riverside, CA 92521, USA.,Department of Botany and Plant Sciences, University of California at Riverside, CA 92521, USA.,ChemGen Intergrative Graduate Education and Research Traineeship program, program, University of California at Riverside, CA 92521, USA
| | - Adilene Gomez
- Department of Botany and Plant Sciences, University of California at Riverside, CA 92521, USA
| | - Isgouhi Kaloshian
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California at Riverside, CA 92521, USA.,Department of Nematology, University of California at Riverside, CA 92521, USA
| | - Thomas Eulgem
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California at Riverside, CA 92521, USA.,Department of Botany and Plant Sciences, University of California at Riverside, CA 92521, USA.,ChemGen Intergrative Graduate Education and Research Traineeship program, program, University of California at Riverside, CA 92521, USA
| |
Collapse
|
504
|
Using Genotyping by Sequencing to Map Two Novel Anthracnose Resistance Loci in Sorghum bicolor. G3-GENES GENOMES GENETICS 2016; 6:1935-46. [PMID: 27194807 PMCID: PMC4938647 DOI: 10.1534/g3.116.030510] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Colletotrichum sublineola is an aggressive fungal pathogen that causes anthracnose in sorghum [Sorghum bicolor (L.) Moench]. The obvious symptoms of anthracnose are leaf blight and stem rot. Sorghum, the fifth most widely grown cereal crop in the world, can be highly susceptible to the disease, most notably in hot and humid environments. In the southeastern United States the acreage of sorghum has been increasing steadily in recent years, spurred by growing interest in producing biofuels, bio-based products, and animal feed. Resistance to anthracnose is, therefore, of paramount importance for successful sorghum production in this region. To identify anthracnose resistance loci present in the highly resistant cultivar ‘Bk7’, a biparental mapping population of F3:4 and F4:5 sorghum lines was generated by crossing ‘Bk7’ with the susceptible inbred ‘Early Hegari-Sart’. Lines were phenotyped in three environments and in two different years following natural infection. The population was genotyped by sequencing. Following a stringent custom filtering protocol, totals of 5186 and 2759 informative SNP markers were identified in the two populations. Segregation data and association analysis identified resistance loci on chromosomes 7 and 9, with the resistance alleles derived from ‘Bk7’. Both loci contain multiple classes of defense-related genes based on sequence similarity and gene ontologies. Genetic analysis following an independent selection experiment of lines derived from a cross between ‘Bk7’ and sweet sorghum ‘Mer81-4’ narrowed the resistance locus on chromosome 9 substantially, validating this QTL. As observed in other species, sorghum appears to have regions of clustered resistance genes. Further characterization of these regions will facilitate the development of novel germplasm with resistance to anthracnose and other diseases.
Collapse
|
505
|
Bhat A, Ryu CM. Plant Perceptions of Extracellular DNA and RNA. MOLECULAR PLANT 2016; 9:956-8. [PMID: 27262607 DOI: 10.1016/j.molp.2016.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/13/2016] [Accepted: 05/22/2016] [Indexed: 05/20/2023]
Affiliation(s)
- Abhayprasad Bhat
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 305-806, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 305-806, South Korea.
| |
Collapse
|
506
|
Yoshinaga N. Physiological function and ecological aspects of fatty acid-amino acid conjugates in insects†. Biosci Biotechnol Biochem 2016; 80:1274-82. [DOI: 10.1080/09168451.2016.1153956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
In tritrophic interactions, plants recognize herbivore-produced elicitors and release a blend of volatile compounds (VOCs), which work as chemical cues for parasitoids or predators to locate their hosts. From detection of elicitors to VOC emissions, plants utilize sophisticated systems that resemble the plant–microbe interaction system. Fatty acid–amino acid conjugates (FACs), a class of insect elicitors, resemble compounds synthesized by microbes in nature. Recent evidence suggests that the recognition of insect elicitors by an ancestral microbe-associated defense system may be the origin of tritrophic interactions mediated by FACs. Here we discuss our findings in light of how plants have customized this defense to be effective against insect herbivores, and how some insects have successfully adapted to these defenses.
Collapse
Affiliation(s)
- Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
507
|
Teixeira MA, Wei L, Kaloshian I. Root-knot nematodes induce pattern-triggered immunity in Arabidopsis thaliana roots. THE NEW PHYTOLOGIST 2016; 211:276-87. [PMID: 26892116 DOI: 10.1111/nph.13893] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/10/2016] [Indexed: 05/08/2023]
Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.) are plant parasites with a broad host range causing great losses worldwide. To parasitize their hosts, RKNs establish feeding sites in roots known as giant cells. The majority of work studying plant-RKN interactions in susceptible hosts addresses establishment of the giant cells and there is limited information on the early defense responses. Here we characterized early defense or pattern-triggered immunity (PTI) against RKNs in Arabidopsis thaliana. To address PTI, we evaluated known canonical PTI signaling mutants with RKNs and investigated the expression of PTI marker genes after RKN infection using both quantitative PCR and β-glucuronidase reporter transgenic lines. We showed that PTI-compromised plants have enhanced susceptibility to RKNs, including the bak1-5 mutant. BAK1 is a common partner of distinct receptors of microbe- and damage-associated molecular patterns. Furthermore, our data indicated that nematode recognition leading to PTI responses involves camalexin and glucosinolate biosynthesis. While the RKN-induced glucosinolate biosynthetic pathway was BAK1-dependent, the camalexin biosynthetic pathway was only partially dependent on BAK1. Combined, our results indicate the presence of BAK1-dependent and -independent PTI against RKNs in A. thaliana, suggesting the existence of diverse nematode recognition mechanisms.
Collapse
Affiliation(s)
- Marcella A Teixeira
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, CA, 92521, USA
- Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| |
Collapse
|
508
|
Duxbury Z, Ma Y, Furzer OJ, Huh SU, Cevik V, Jones JDG, Sarris PF. Pathogen perception by NLRs in plants and animals: Parallel worlds. Bioessays 2016; 38:769-81. [PMID: 27339076 DOI: 10.1002/bies.201600046] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intracellular NLR (Nucleotide-binding domain and Leucine-rich Repeat-containing) receptors are sensitive monitors that detect pathogen invasion of both plant and animal cells. NLRs confer recognition of diverse molecules associated with pathogen invasion. NLRs must exhibit strict intramolecular controls to avoid harmful ectopic activation in the absence of pathogens. Recent discoveries have elucidated the assembly and structure of oligomeric NLR signalling complexes in animals, and provided insights into how these complexes act as scaffolds for signal transduction. In plants, recent advances have provided novel insights into signalling-competent NLRs, and into the myriad strategies that diverse plant NLRs use to recognise pathogens. Here, we review recent insights into the NLR biology of both animals and plants. By assessing commonalities and differences between kingdoms, we are able to develop a more complete understanding of NLR function.
Collapse
Affiliation(s)
- Zane Duxbury
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Yan Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Oliver J Furzer
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Sung Un Huh
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Volkan Cevik
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | | | - Panagiotis F Sarris
- Division of Plant and Microbial Sciences, School of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
509
|
Raaymakers TM, Van den Ackerveken G. Extracellular Recognition of Oomycetes during Biotrophic Infection of Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:906. [PMID: 27446136 PMCID: PMC4915311 DOI: 10.3389/fpls.2016.00906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/08/2016] [Indexed: 05/23/2023]
Abstract
Extracellular recognition of pathogens by plants constitutes an important early detection system in plant immunity. Microbe-derived molecules, also named patterns, can be recognized by pattern recognition receptors (PRRs) on the host cell membrane that trigger plant immune responses. Most knowledge on extracellular pathogen detection by plants comes from research on bacterial and fungal pathogens. For oomycetes, that comprise some of the most destructive plant pathogens, mechanisms of extracellular pattern recognition have only emerged recently. These include newly recognized patterns, e.g., cellulose-binding elicitor lectin, necrosis and ethylene-inducing peptide 1-like proteins (NLPs), and glycoside hydrolase 12, as well as their receptors, e.g., the putative elicitin PRR elicitin response and the NLP PRR receptor-like protein 23. Immunity can also be triggered by the release of endogenous host-derived patterns, as a result of oomycete enzymes or damage. In this review we will describe the types of patterns, both pathogen-derived exogenous and plant-derived endogenous ones, and what is known about their extracellular detection during (hemi-)biotrophic oomycete infection of plants.
Collapse
|
510
|
Reverchon S, Muskhelisvili G, Nasser W. Virulence Program of a Bacterial Plant Pathogen: The Dickeya Model. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:51-92. [PMID: 27571692 DOI: 10.1016/bs.pmbts.2016.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pectinolytic Dickeya spp. are Gram-negative bacteria causing severe disease in a wide range of plant species. Although the Dickeya genus was initially restricted to tropical and subtropical areas, two Dickeya species (D. dianthicola and D. solani) emerged recently in potato cultures in Europe. Soft-rot, the visible symptoms, is caused by plant cell wall degrading enzymes, mainly pectate lyases (Pels) that cleave the pectin polymer. However, an efficient colonization of the host requires many additional elements including early factors (eg, flagella, lipopolysaccharide, and exopolysaccharide) that allow adhesion of the bacteria and intermediate factors involved in adaptation to new growth conditions encountered in the host (eg, oxidative stress, iron starvation, and toxic compounds). To facilitate this adaptation, Dickeya have developed complex regulatory networks ensuring appropriate expression of virulence genes. This review presents recent advances in our understanding of the signals and genetic circuits impacting the expression of virulence determinants. Special attention is paid to integrated control of virulence functions by variations in the superhelical density of chromosomal DNA, and the global and specific regulators, making the regulation of Dickeya virulence an especially attractive model for those interested in relationships between the chromosomal dynamics and gene regulatory networks.
Collapse
Affiliation(s)
- S Reverchon
- Department of Biology, University of Lyon, INSA-Lyon, Villeurbanne, Lyon, France.
| | - G Muskhelisvili
- Department of Biology, University of Lyon, INSA-Lyon, Villeurbanne, Lyon, France
| | - W Nasser
- Department of Biology, University of Lyon, INSA-Lyon, Villeurbanne, Lyon, France
| |
Collapse
|
511
|
Yang J, Penfold CA, Grant MR, Rattray M. Inferring the perturbation time from biological time course data. Bioinformatics 2016; 32:2956-64. [PMID: 27288495 PMCID: PMC5039917 DOI: 10.1093/bioinformatics/btw329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION Time course data are often used to study the changes to a biological process after perturbation. Statistical methods have been developed to determine whether such a perturbation induces changes over time, e.g. comparing a perturbed and unperturbed time course dataset to uncover differences. However, existing methods do not provide a principled statistical approach to identify the specific time when the two time course datasets first begin to diverge after a perturbation; we call this the perturbation time. Estimation of the perturbation time for different variables in a biological process allows us to identify the sequence of events following a perturbation and therefore provides valuable insights into likely causal relationships. RESULTS We propose a Bayesian method to infer the perturbation time given time course data from a wild-type and perturbed system. We use a non-parametric approach based on Gaussian Process regression. We derive a probabilistic model of noise-corrupted and replicated time course data coming from the same profile before the perturbation time and diverging after the perturbation time. The likelihood function can be worked out exactly for this model and the posterior distribution of the perturbation time is obtained by a simple histogram approach, without recourse to complex approximate inference algorithms. We validate the method on simulated data and apply it to study the transcriptional change occurring in Arabidopsis following inoculation with Pseudomonas syringae pv. tomato DC3000 versus the disarmed strain DC3000hrpA AVAILABILITY AND IMPLEMENTATION: : An R package, DEtime, implementing the method is available at https://github.com/ManchesterBioinference/DEtime along with the data and code required to reproduce all the results. CONTACT Jing.Yang@manchester.ac.uk or Magnus.Rattray@manchester.ac.uk SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jing Yang
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | - Magnus Rattray
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
512
|
Affiliation(s)
- Stefanie Ranf
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, Germany
- * E-mail:
| |
Collapse
|
513
|
Helft L, Thompson M, Bent AF. Directed Evolution of FLS2 towards Novel Flagellin Peptide Recognition. PLoS One 2016; 11:e0157155. [PMID: 27270917 PMCID: PMC4894583 DOI: 10.1371/journal.pone.0157155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/25/2016] [Indexed: 12/20/2022] Open
Abstract
Microbe-associated molecular patterns (MAMPs) are molecules, or domains within molecules, that are conserved across microbial taxa and can be recognized by a plant or animal immune system. Although MAMP receptors have evolved to recognize conserved epitopes, the MAMPs in some microbial species or strains have diverged sufficiently to render them unrecognizable by some host immune systems. In this study, we carried out in vitro evolution of the Arabidopsis thaliana flagellin receptor FLAGELLIN-SENSING 2 (FLS2) to isolate derivatives that recognize one or more flagellin peptides from bacteria for which the wild-type Arabidopsis FLS2 confers little or no response. A targeted approach generated amino acid variation at FLS2 residues in a region previously implicated in flagellin recognition. The primary screen tested for elevated response to the canonical flagellin peptide from Pseudomonas aeruginosa, flg22. From this pool, we then identified five alleles of FLS2 that confer modest (quantitatively partial) recognition of an Erwinia amylovora flagellin peptide. Use of this Erwinia-based flagellin peptide to stimulate Arabidopsis plants expressing the resulting FLS2 alleles did not lead to a detectable reduction of virulent P. syringae pv. tomato growth. However, combination of two identified mutations into a single allele further increased FLS2-mediated responses to the E. amylovora flagellin peptide. These studies demonstrate the potential to raise the sensitivity of MAMP receptors toward particular targets.
Collapse
Affiliation(s)
- Laura Helft
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Cellular and Molecular Biology Program, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Mikayla Thompson
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Andrew F. Bent
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
514
|
Reimer-Michalski EM, Conrath U. Innate immune memory in plants. Semin Immunol 2016; 28:319-27. [PMID: 27264335 DOI: 10.1016/j.smim.2016.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
Abstract
The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates.
Collapse
Affiliation(s)
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen 52056, Germany.
| |
Collapse
|
515
|
Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs). G3-GENES GENOMES GENETICS 2016; 6:1585-95. [PMID: 27172188 PMCID: PMC4889655 DOI: 10.1534/g3.116.027987] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal-bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposing Fusarium graminearum to bacterial MAMPs led to increased fungal membrane hyperpolarization, a putative defense response, and a range of transcriptional responses. The fungus reacted with a different transcript profile to each of the three tested MAMPs, although a core set of genes related to energy generation, transport, amino acid production, secondary metabolism, and especially iron uptake were detected for all three. Half of the genes related to iron uptake were predicted MirA type transporters that potentially take up bacterial siderophores. These quick responses can be viewed as a preparation for further interactions with beneficial or pathogenic bacteria, and constitute a fungal innate immune response with similarities to those of plants and animals.
Collapse
|
516
|
Wang YJ, Wei XY, Jing XQ, Chang YL, Hu CH, Wang X, Chen KM. The Fundamental Role of NOX Family Proteins in Plant Immunity and Their Regulation. Int J Mol Sci 2016; 17:ijms17060805. [PMID: 27240354 PMCID: PMC4926339 DOI: 10.3390/ijms17060805] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/01/2023] Open
Abstract
NADPH oxidases (NOXs), also known as respiratory burst oxidase homologs (RBOHs), are the major source of reactive oxygen species (ROS), and are involved in many important processes in plants such as regulation of acclimatory signaling and programmed cell death (PCD). Increasing evidence shows that NOXs play crucial roles in plant immunity and their functions in plant immune responses are not as separate individuals but with other signal molecules such as kinases, Rac/Rop small GTPases and hormones, mediating a series of signal transmissions. In a similar way, NOX-mediated signaling also participates in abiotic stress response of plants. We summarized here the complex role and regulation mechanism of NOXs in mediating plant immune response, and the viewpoint that abiotic stress response of plants may be a kind of special plant immunity is also proposed.
Collapse
Affiliation(s)
- Ya-Jing Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xiao-Yong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xiu-Qing Jing
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Yan-Li Chang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xiang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
517
|
Claverie J, Teyssier L, Brulé D, Héloir MC, Connat JL, Lamotte O, Poinssot B. Lutter contre les infections bactériennes : le système immunitaire des plantes est aussi très efficace ! Med Sci (Paris) 2016; 32:335-9. [DOI: 10.1051/medsci/20163204008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
518
|
Pfeilmeier S, Saur IML, Rathjen JP, Zipfel C, Malone JG. High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity. MOLECULAR PLANT PATHOLOGY 2016; 17:521-31. [PMID: 26202381 PMCID: PMC4982027 DOI: 10.1111/mpp.12297] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant innate immune system employs plasma membrane-localized receptors that specifically perceive pathogen/microbe-associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern-triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant-associated bacteria. Here, we show that cyclic-di-GMP [bis-(3'-5')-cyclic di-guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic-di-GMP levels in the pathogen Pseudomonas syringae pv. tomato (Pto) DC3000, the opportunist P. aeruginosa PAO1 and the commensal P. protegens Pf-5 inhibit flagellin synthesis and help the bacteria to evade FLS2-mediated signalling in Nicotiana benthamiana and Arabidopsis thaliana. Despite this, high cellular cyclic-di-GMP concentrations were shown to drastically reduce the virulence of Pto DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic-di-GMP signalling on bacterial behaviour.
Collapse
Affiliation(s)
- Sebastian Pfeilmeier
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Isabel Marie-Luise Saur
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - John Paul Rathjen
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jacob George Malone
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
519
|
Bahar O, Mordukhovich G, Luu DD, Schwessinger B, Daudi A, Jehle AK, Felix G, Ronald PC. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:374-84. [PMID: 26926999 DOI: 10.1094/mpmi-12-15-0270-r] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions.
Collapse
Affiliation(s)
- Ofir Bahar
- 1 Department of Plant Pathology and Weed Science, Agricultural Research Organization, Volcani Center, POB 6, Bet-Dagan, 502500, Israel
| | - Gideon Mordukhovich
- 1 Department of Plant Pathology and Weed Science, Agricultural Research Organization, Volcani Center, POB 6, Bet-Dagan, 502500, Israel
- 2 The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dee Dee Luu
- 3 Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, U.S.A
| | - Benjamin Schwessinger
- 3 Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, U.S.A
- 4 Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, U.S.A.; and
| | - Arsalan Daudi
- 3 Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, U.S.A
| | | | - Georg Felix
- 5 University Tübingen, 72076 Tübingen, Germany
| | - Pamela C Ronald
- 3 Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, U.S.A
- 4 Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, U.S.A.; and
| |
Collapse
|
520
|
Segal AW. NADPH oxidases as electrochemical generators to produce ion fluxes and turgor in fungi, plants and humans. Open Biol 2016; 6:160028. [PMID: 27249799 PMCID: PMC4892433 DOI: 10.1098/rsob.160028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
The NOXs are a family of flavocytochromes whose basic structure has been largely conserved from algae to man. This is a very simple system. NADPH is generally available, in plants it is a direct product of photosynthesis, and oxygen is a largely ubiquitous electron acceptor, and the electron-transporting core of an FAD and two haems is the minimal required to pass electrons across the plasma membrane. These NOXs have been shown to be essential for diverse functions throughout the biological world and, lacking a clear mechanism of action, their effects have generally been attributed to free radical reactions. Investigation into the function of neutrophil leucocytes has demonstrated that electron transport through the prototype NOX2 is accompanied by the generation of a charge across the membrane that provides the driving force propelling protons and other ions across the plasma membrane. The contention is that the primary function of the NOXs is to supply the driving force to transport ions, the nature of which will depend upon the composition and characteristics of the local ion channels, to undertake a host of diverse functions. These include the generation of turgor in fungi and plants for the growth of filaments and invasion by appressoria in the former, and extension of pollen tubes and root hairs, and stomatal closure, in the latter. In neutrophils, they elevate the pH in the phagocytic vacuole coupled to other ion fluxes. In endothelial cells of blood vessels, they could alter luminal volume to regulate blood pressure and tissue perfusion.
Collapse
Affiliation(s)
- Anthony W Segal
- Division of Medicine, UCL, 5 University Street, London WC1E 6JJ, UK
| |
Collapse
|
521
|
Liu Y, He C. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. PLANT CELL REPORTS 2016; 35:995-1007. [PMID: 26883222 DOI: 10.1007/s00299-016-1950-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are constantly produced in plants, as the metabolic by-products or as the signaling components in stress responses. High levels of ROS are harmful to plants. In contrast, ROS play important roles in plant physiology, including abiotic and biotic tolerance, development, and cellular signaling. Therefore, ROS production needs to be tightly regulated to balance their function. Respiratory burst oxidase homologue (RBOH) proteins, also known as plant nicotinamide adenine dinucleotide phosphate oxidases, are well studied enzymatic ROS-generating systems in plants. The regulatory mechanisms of RBOH-dependent ROS production in stress responses have been intensively studied. This has greatly advanced our knowledge of the mechanisms that regulate plant ROS production. This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance. AtRBOHD-dependent ROS production could provide a valuable reference for studying ROS production in plant stress responses.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China.
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China.
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China
| |
Collapse
|
522
|
Mogga V, Delventhal R, Weidenbach D, Langer S, Bertram PM, Andresen K, Thines E, Kroj T, Schaffrath U. Magnaporthe oryzae effectors MoHEG13 and MoHEG16 interfere with host infection and MoHEG13 counteracts cell death caused by Magnaporthe-NLPs in tobacco. PLANT CELL REPORTS 2016; 35:1169-85. [PMID: 26883226 DOI: 10.1007/s00299-016-1943-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/24/2016] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE Adapted pathogens are able to modulate cell responses of their hosts most likely due to the activity of secreted effector molecules thereby enabling colonisation by ostensible nonhost pathogens. It is postulated that host and nonhost pathogens of a given plant species differ in their repertoire of secreted effector molecules that are able to suppress plant resistance. We pursued the strategy of identifying novel effectors of Magnaporthe oryzae, the causal agent of blast disease, by comparing the infection process of closely related host vs. nonhost Magnaporthe species on barley (Hordeum vulgare L.). When both types of pathogen simultaneously attacked the same cell, the nonhost isolate became a successful pathogen possibly due to potent effectors secreted by the host isolate. Microarray studies led to a set of M. oryzae Hypothetical Effector Genes (MoHEGs) which were classified as Early- and LateMoHEGs according to the maximal transcript abundance during colonization of barley. Interestingly, orthologs of these MoHEGs from a nonhost pathogen were similarly regulated when investigated in a host situation, suggesting evolutionary conserved functions. Knockout mutants of MoHEG16 from the group of EarlyMoHEGs were less virulent on barley and microscopic studies revealed an attenuated transition from epidermal to mesophyll colonization. MoHEG13, a LateMoHEG, was shown to antagonize cell death induced by M. oryzae Necrosis-and ethylene-inducing-protein-1 (Nep1)-like proteins in Nicotiana benthamiana. MoHEG13 has a virulence function as a knockout mutant showed attenuated disease progression when inoculated on barley.
Collapse
Affiliation(s)
- Valerie Mogga
- Department of Plant Physiology, RWTH Aachen University, 52056, Aachen, Germany
| | - Rhoda Delventhal
- Department of Plant Physiology, RWTH Aachen University, 52056, Aachen, Germany
| | - Denise Weidenbach
- Department of Plant Physiology, RWTH Aachen University, 52056, Aachen, Germany
| | - Samantha Langer
- Department of Plant Physiology, RWTH Aachen University, 52056, Aachen, Germany
| | - Philipp M Bertram
- Department of Plant Physiology, RWTH Aachen University, 52056, Aachen, Germany
| | - Karsten Andresen
- Institute of Biotechnology and Drug Research, Erwin-Schrödinger-Strasse 56, 67663, Kaiserslautern, Germany
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research, Erwin-Schrödinger-Strasse 56, 67663, Kaiserslautern, Germany
- Biotechnology, Johannes Gutenberg-University, 55099, Mainz, Germany
| | - Thomas Kroj
- INRA, UMR BGPI, Campus International de Baillarguet, TA A-54/K, 34398, Montpellier Cedex 5, France
| | - Ulrich Schaffrath
- Department of Plant Physiology, RWTH Aachen University, 52056, Aachen, Germany.
| |
Collapse
|
523
|
Kaloshian I, Walling LL. Hemipteran and dipteran pests: Effectors and plant host immune regulators. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:350-61. [PMID: 26467026 DOI: 10.1111/jipb.12438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/09/2015] [Indexed: 05/08/2023]
Abstract
Hemipteran and dipteran insects have behavioral, cellular and chemical strategies for evading or coping with the host plant defenses making these insects particularly destructive pests worldwide. A critical component of a host plant's defense to herbivory is innate immunity. Here we review the status of our understanding of the receptors that contribute to perception of hemipteran and dipteran pests and highlight the gaps in our knowledge in these early events in immune signaling. We also highlight recent advances in identification of the effectors that activate pattern-triggered immunity and those involved in effector-triggered immunity.
Collapse
Affiliation(s)
- Isgouhi Kaloshian
- Institute of Integrative Genome Biology and Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
- Department of Nematology, University of California, Riverside, California 92521, USA
| | - Linda L Walling
- Institute of Integrative Genome Biology and Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| |
Collapse
|
524
|
Wang Y, Nsibo DL, Juhar HM, Govers F, Bouwmeester K. Ectopic expression of Arabidopsis L-type lectin receptor kinase genes LecRK-I.9 and LecRK-IX.1 in Nicotiana benthamiana confers Phytophthora resistance. PLANT CELL REPORTS 2016; 35:845-55. [PMID: 26795144 PMCID: PMC4799253 DOI: 10.1007/s00299-015-1926-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/08/2015] [Accepted: 12/29/2015] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Transgenic Nicotiana benthamiana lines with constitutive expression of an Arabidopsis lectin receptor kinase gene (LecRK - I.9 or LecRK - IX.1) show enhanced resistance to Phytophthora pathogens, demonstrating conserved gene functionality after interfamily transfer. In plants, cell surface receptors mediate the first layer of innate immunity against pathogenic microbes. In Arabidopsis several L-type lectin receptor kinases (LecRKs) were previously found to function as Phytophthora resistance components. In this study, we determined the functionality of Arabidopsis LecRK-I.9 or LecRK-IX.1 in Phytophthora resistance when transferred into the Solanaceous plant Nicotiana benthamiana. Multiple transgenic lines were generated for each LecRK gene and molecular analyses revealed variation in transgene copy number, transgene expression levels and LecRK protein accumulation. Infection assays showed that transgenic N. benthamiana plants expressing either Arabidopsis LecRK-I.9 or LecRK-IX.1 are more resistant to Phytophthora capsici and to Phytophthora infestans. These results demonstrate that Arabidopsis LecRK-I.9 and LecRK-IX.1 retained their Phytophthora resistance function when transferred into N. benthamiana. Therefore, these LecRKs have the potential to function as a complementary Phytophthora resistance resource in distantly related plant species next to the canonical Phytophthora resistance genes encoding nucleotide-binding leucine-rich repeat proteins.
Collapse
Affiliation(s)
- Yan Wang
- Laboratory of Phytopathology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - David L Nsibo
- Laboratory of Phytopathology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Hagos M Juhar
- Laboratory of Phytopathology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Laboratory of Phytopathology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands.
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
525
|
Takahashi T, Shibuya H, Ishikawa A. SOBIR1 contributes to non-host resistance to Magnaporthe oryzae in Arabidopsis. Biosci Biotechnol Biochem 2016; 80:1577-9. [PMID: 27023441 DOI: 10.1080/09168451.2016.1164586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rate of entry of Magnaporthe oryzae into Arabidopsis pen2 sobir1 plants was significantly higher than that into pen2 plants. The length of the infection hyphae in pen2 sobir1 plants was significantly longer than that in pen2 plants. These results suggest that SOBIR1 is involved in both penetration and post-penetration resistance to M. oryzae in Arabidopsis.
Collapse
Affiliation(s)
| | - Haruki Shibuya
- a Department of Bioscience , Fukui Prefectural University , Fukui , Japan
| | - Atsushi Ishikawa
- a Department of Bioscience , Fukui Prefectural University , Fukui , Japan
| |
Collapse
|
526
|
Choi HW, Manohar M, Manosalva P, Tian M, Moreau M, Klessig DF. Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid. PLoS Pathog 2016; 12:e1005518. [PMID: 27007252 PMCID: PMC4805298 DOI: 10.1371/journal.ppat.1005518] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/01/2016] [Indexed: 12/16/2022] Open
Abstract
Damage-associated molecular pattern molecules (DAMPs) signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3) is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i) MAPK activation, ii) defense-related gene expression, iii) callose deposition, and iv) enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast). Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA), which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Murli Manohar
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Patricia Manosalva
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Miaoying Tian
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Magali Moreau
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
527
|
A novel method of transcriptome interpretation reveals a quantitative suppressive effect on tomato immune signaling by two domains in a single pathogen effector protein. BMC Genomics 2016; 17:229. [PMID: 26976140 PMCID: PMC4790048 DOI: 10.1186/s12864-016-2534-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/25/2016] [Indexed: 11/21/2022] Open
Abstract
Background Effector proteins are translocated into host cells by plant-pathogens to undermine pattern-triggered immunity (PTI), the plant response to microbe-associated molecular patterns that interferes with the infection process. Individual effectors are found in variable repertoires where some constituents target the same pathways. The effector protein AvrPto from Pseudomonas syringae has a core domain (CD) and C-terminal domain (CTD) that each promotes bacterial growth and virulence in tomato. The individual contributions of each domain and whether they act redundantly is unknown. Results We use RNA-Seq to elucidate the contribution of the CD and CTD to the suppression of PTI in tomato leaves 6 h after inoculation. Unexpectedly, each domain alters transcript levels of essentially the same genes but to a different degree. This difference, when quantified, reveals that although targeting the same host genes, the two domains act synergistically. AvrPto has a relatively greater effect on genes whose expression is suppressed during PTI, and the effect on these genes appears to be diminished by saturation. Conclusions RNA-Seq profiles can be used to observe relative contributions of effector subdomains to PTI suppression. Our analysis shows the CD and CTD multiplicatively affect the same gene transcript levels with a greater relative impact on genes whose expression is suppressed during PTI. The higher degree of up-regulation versus down-regulation during PTI is plausibly an evolutionary adaptation against effectors that target immune signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2534-4) contains supplementary material, which is available to authorized users.
Collapse
|
528
|
Fei Q, Zhang Y, Xia R, Meyers BC. Small RNAs Add Zing to the Zig-Zag-Zig Model of Plant Defenses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:165-9. [PMID: 26867095 DOI: 10.1094/mpmi-09-15-0212-fi] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant small RNAs play important roles in transcriptional and posttranscriptional regulation, with ongoing work demonstrating their functions in diverse pathways. Their roles in defense responses are a topic of active investigation, particularly the rich set of micro (mi)RNAs that target disease resistance genes such as nucleotide binding/leucine-rich repeat (NB-LRR) genes. The miRNA-NB-LRR interactions result in the production of phased, secondary small interfering (phasi)RNAs, and phasiRNAs function in both cis and trans to propagate negative regulatory effects across additional members of the target gene family. Yet, while phasiRNAs have the capacity to trigger targeted decay of specific targets, both in cis and trans, their functional relevance in NB-LRR regulation remains largely a matter of speculation.
Collapse
Affiliation(s)
- Qili Fei
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, U.S.A
| | - Yu Zhang
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, U.S.A
| | - Rui Xia
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, U.S.A
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, U.S.A
| |
Collapse
|
529
|
Zhang SM, Loker ES, Sullivan JT. Pathogen-associated molecular patterns activate expression of genes involved in cell proliferation, immunity and detoxification in the amebocyte-producing organ of the snail Biomphalaria glabrata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 56:25-36. [PMID: 26592964 PMCID: PMC5335875 DOI: 10.1016/j.dci.2015.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 05/30/2023]
Abstract
The anterior pericardial wall of the snail Biomphalaria glabrata has been identified as a site of hemocyte production, hence has been named the amebocyte-producing organ (APO). A number of studies have shown that exogenous abiotic and biotic substances, including pathogen associated molecular patterns (PAMPs), are able to stimulate APO mitotic activity and/or enlarge its size, implying a role for the APO in innate immunity. The molecular mechanisms underlying such responses have not yet been explored, in part due to the difficulty in obtaining sufficient APO tissue for gene expression studies. By using a modified RNA extraction technique and microarray technology, we investigated transcriptomic responses of APOs dissected from snails at 24 h post-injection with two bacterial PAMPs, lipopolysaccharide (LPS) and peptidoglycan (PGN), or with fucoidan (FCN), which may mimic fucosyl-rich glycan PAMPs on sporocysts of Schistosoma mansoni. Based upon the number of genes differentially expressed, LPS exhibited the strongest activity, relative to saline-injected controls. A concurrent activation of genes involved in cell proliferation, immune response and detoxification metabolism was observed. A gene encoding checkpoint 1 kinase, a key regulator of mitosis, was highly expressed after stimulation by LPS. Also, seven different aminoacyl-tRNA synthetases that play an essential role in protein synthesis were found to be highly expressed. In addition to stimulating genes involved in cell proliferation, the injected substances, especially LPS, also induced expression of a number of immune-related genes including arginase, peptidoglycan recognition protein short form, tumor necrosis factor receptor, ficolin, calmodulin, bacterial permeability increasing proteins and E3 ubiquitin-protein ligase. Importantly, significant up-regulation was observed in four GiMAP (GTPase of immunity-associated protein) genes, a result which provides the first evidence suggesting an immune role of GiMAP in protostome animals. Moreover, altered expression of genes encoding cytochrome P450, glutathione-S-transferase, multiple drug resistance protein as well as a large number of genes encoding enzymes associated with degradation and detoxification metabolism was elicited in response to the injected substances.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Center for Evolutionarily and Theoretical Immunology, Department of Biology, The University of New Mexico, Albuquerque, NM 87131, USA.
| | - Eric S Loker
- Center for Evolutionarily and Theoretical Immunology, Department of Biology, The University of New Mexico, Albuquerque, NM 87131, USA; Parasite Division, Museum of Southwestern Biology, The University of New Mexico, Albuquerque, NM 87131, USA
| | - John T Sullivan
- Department of Biology, University of San Francisco, San Francisco, CA 94117, USA
| |
Collapse
|
530
|
Gramegna G, Modesti V, Savatin DV, Sicilia F, Cervone F, De Lorenzo G. GRP-3 and KAPP, encoding interactors of WAK1, negatively affect defense responses induced by oligogalacturonides and local response to wounding. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1715-29. [PMID: 26748394 PMCID: PMC4783359 DOI: 10.1093/jxb/erv563] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Conserved microbe-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs) act as danger signals to activate the plant immune response. These molecules are recognized by surface receptors that are referred to as pattern recognition receptors. Oligogalacturonides (OGs), DAMPs released from the plant cell wall homogalacturonan, have also been proposed to act as local signals in the response to wounding. The Arabidopsis Wall-Associated Kinase 1 (WAK1), a receptor of OGs, has been described to form a complex with a cytoplasmic plasma membrane-localized kinase-associated protein phosphatase (KAPP) and a glycine-rich protein (GRP-3) that we find localized mainly in the cell wall and, in a small part, on the plasma membrane. By using Arabidopsis plants overexpressing WAK1, and both grp-3 and kapp null insertional mutant and overexpressing plants, we demonstrate a positive function of WAK1 and a negative function of GRP-3 and KAPP in the OG-triggered expression of defence genes and the production of an oxidative burst. The three proteins also affect the local response to wounding and the basal resistance against the necrotrophic pathogen Botrytis cinerea. GRP-3 and KAPP are likely to function in the phasing out of the plant immune response.
Collapse
Affiliation(s)
- Giovanna Gramegna
- Istituto Pasteur-Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Vanessa Modesti
- Istituto Pasteur-Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Daniel V Savatin
- Istituto Pasteur-Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Sicilia
- Istituto Pasteur-Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Felice Cervone
- Istituto Pasteur-Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giulia De Lorenzo
- Istituto Pasteur-Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
531
|
Dessaux Y, Grandclément C, Faure D. Engineering the Rhizosphere. TRENDS IN PLANT SCIENCE 2016; 21:266-278. [PMID: 26818718 DOI: 10.1016/j.tplants.2016.01.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/14/2015] [Accepted: 01/04/2016] [Indexed: 05/25/2023]
Abstract
All components of the rhizosphere can be engineered to promote plant health and growth, two features that strongly depend upon the interactions of living organisms with their environment. This review describes the progress in plant and microbial molecular genetics and ecology that has led to a wealth of potential applications. Recent efforts especially deal with the plant defense machinery that is instrumental in engineering plant resistance to biotic stresses. Another approach involves microbial population engineering rather than single strain engineering. More generally, the plants (and the associated microbes) are no longer seen as 'individual' but rather as a holobiont, in other words a unit of selection in evolution, a concept that holds great promise for future plant breeding programs.
Collapse
Affiliation(s)
- Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France.
| | - Catherine Grandclément
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France
| |
Collapse
|
532
|
Morales J, Kadota Y, Zipfel C, Molina A, Torres MA. The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1663-76. [PMID: 26798024 DOI: 10.1093/jxb/erv558] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant NADPH oxidases, also known as respiratory burst oxidase homologues (RBOHs), produce reactive oxygen species (ROS) that perform a wide range of functions. RbohD and RbohF, two of the 10 Rboh genes present in Arabidopsis, are pleiotropic and mediate diverse physiological processes including the response to pathogens. We hypothesized that the spatio-temporal control of RbohD and RbohF gene expression might be critical in determining their multiplicity of functions. Transgenic Arabidopsis plants with RbohD and RbohF promoter fusions to β-glucuronidase and Luciferase reporter genes were generated. Analysis of these plants revealed a differential expression pattern for RbohD and RbohF throughout plant development and during immune responses. RbohD and RbohF gene expression was differentially modulated by pathogen-associated molecular patterns. Histochemical stains and in vivo expression analysis showed a correlation between the level of RbohD and RbohF promoter activity, H2O2 accumulation and the amount of cell death in response to the pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 and the necrotrophic fungus Plectosphaerella cucumerina. A promoter-swap strategy revealed that the promoter region of RbohD was required to drive production of ROS by this gene in response to pathogens. Moreover, RbohD promoter was activated during Arabidopsis interaction with a non-virulent P. cucumerina isolate, and susceptibility tests with the double mutant rbohD rbohF uncovered a new function for these oxidases in basal resistance. Altogether, our results suggest that differential spatio-temporal expression of the Rboh genes contributes to fine-tune RBOH/NADPH oxidase-dependent ROS production and signaling in Arabidopsis immunity.
Collapse
Affiliation(s)
- Jorge Morales
- Centro de Biotecnología y Genómica de Plantas (UPM, INIA), Escuela Superior Técnica de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus Montegancedo, Autopista M40 Km 38, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Yasuhiro Kadota
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK RIKEN Center for Sustainable Resource Science, Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama 230-0045, Japan
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas (UPM, INIA), Escuela Superior Técnica de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus Montegancedo, Autopista M40 Km 38, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Miguel-Angel Torres
- Centro de Biotecnología y Genómica de Plantas (UPM, INIA), Escuela Superior Técnica de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus Montegancedo, Autopista M40 Km 38, Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
533
|
Takahashi T, Shibuya H, Ishikawa A. ERECTA contributes to non-host resistance to Magnaporthe oryzae in Arabidopsis. Biosci Biotechnol Biochem 2016; 80:1390-2. [PMID: 26924213 DOI: 10.1080/09168451.2016.1151345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
ERECTA controls both developmental processes and disease resistance in Arabidopsis. We investigated the function of ERECTA in non-host resistance to Magnaporthe oryzae in Arabidopsis. In the pen2 er mutant, penetration resistance and post-penetration resistance to M. oryzae were compromised. These results suggest that ERECTA is involved in both penetration and post-penetration resistance to M. oryzae in Arabidopsis.
Collapse
Affiliation(s)
| | - Haruki Shibuya
- a Department of Bioscience , Fukui Prefectural University , Fukui , Japan
| | - Atsushi Ishikawa
- a Department of Bioscience , Fukui Prefectural University , Fukui , Japan
| |
Collapse
|
534
|
Chang HX, Brown PJ, Lipka AE, Domier LL, Hartman GL. Genome-wide association and genomic prediction identifies associated loci and predicts the sensitivity of Tobacco ringspot virus in soybean plant introductions. BMC Genomics 2016; 17:153. [PMID: 26924079 PMCID: PMC4770782 DOI: 10.1186/s12864-016-2487-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/17/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Genome-wide association study (GWAS) is a useful tool for detecting and characterizing traits of interest including those associated with disease resistance in soybean. The availability of 50,000 single nucleotide polymorphism (SNP) markers (SoySNP50K iSelect BeadChip; www.soybase.org ) on 19,652 soybean and wild soybean plant introductions (PIs) in the USDA Soybean Germplasm Collection allows for fast and robust identification of loci associated with a desired phenotype. By using a genome-wide marker set to predict phenotypic values, genomic prediction for phenotype-unknown but genotype-determined PIs has become possible. The goal of this study was to describe the genetic architecture associated with sensitivity to Tobacco ringspot virus (TRSV) infection in the USDA Soybean Germplasm Collection. RESULTS TRSV-induced disease sensitivities of the 697 soybean PIs were rated on a one to five scale with plants rated as one exhibiting mild symptoms and plants rated as five displaying terminal bud necrosis (i.e., bud blight). The GWAS identified a single locus on soybean chromosome 2 strongly associated with TRSV sensitivity. Cross-validation showed a correlation of 0.55 (P < 0.01) to TRSV sensitivity without including the most significant SNP marker from the GWAS as a covariate, which was a better estimation compared to the mean separation by using significant SNPs. The genomic estimated breeding values for the remaining 18,955 unscreened soybean PIs in the USDA Soybean Germplasm Collection were obtained using the GAPIT R package. To evaluate the prediction accuracy, an additional 55 soybean accessions were evaluated for sensitivity to TRSV, which resulted in a correlation of 0.67 (P < 0.01) between actual and predicted severities. CONCLUSION A single locus responsible for TRSV sensitivity in soybean was identified on chromosome 2. Two leucine-rich repeat receptor-like kinase genes were located near the locus and may control sensitivity of soybean to TRSV infection. Furthermore, a comprehensive genomic prediction for TRSV sensitivity for all accessions in the USDA Soybean Germplasm Collection was completed.
Collapse
Affiliation(s)
- Hao-Xun Chang
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| | - Patrick J Brown
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
- USDA-Agricultural Research Service, Urbana, IL, 61801, USA.
| | - Glen L Hartman
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
- USDA-Agricultural Research Service, Urbana, IL, 61801, USA.
- National Soybean Research Center, University of Illinois, 1101 W. Peabody Dr., Urbana, IL, 61801, USA.
| |
Collapse
|
535
|
Obersteiner A, Gilles S, Frank U, Beck I, Häring F, Ernst D, Rothballer M, Hartmann A, Traidl-Hoffmann C, Schmid M. Pollen-Associated Microbiome Correlates with Pollution Parameters and the Allergenicity of Pollen. PLoS One 2016; 11:e0149545. [PMID: 26910418 PMCID: PMC4765992 DOI: 10.1371/journal.pone.0149545] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/02/2016] [Indexed: 12/11/2022] Open
Abstract
Pollen allergies have been rapidly increasing over the last decades. Many allergenic proteins and non-allergenic adjuvant compounds of pollen are involved in the plant defense against environmental or microbial stress. The first aim of this study was to analyze and compare the colonizing microbes on allergenic pollen. The second aim was to investigate detectable correlations between pollen microbiota and parameters of air pollution or pollen allergenicity. To reach these aims, bacterial and fungal DNA was isolated from pollen samples of timothy grass (Phleum pratense, n = 20) and birch trees (Betula pendula, n = 55). With this isolated DNA, a terminal restriction fragment length polymorphism analysis was performed. One result was that the microbial diversity on birch tree and timothy grass pollen samples (Shannon/Simpson diversity indices) was partly significantly correlated to allergenicity parameters (Bet v 1/Phl p 5, pollen-associated lipid mediators). Furthermore, the microbial diversity on birch pollen samples was correlated to on-site air pollution (nitrogen dioxide (NO2), ammonia (NH3), and ozone (O3)). What is more, a significant negative correlation was observed between the microbial diversity on birch pollen and the measured NO2 concentrations on the corresponding trees. Our results showed that the microbial composition of pollen was correlated to environmental exposure parameters alongside with a differential expression of allergen and pollen-associated lipid mediators. This might translate into altered allergenicity of pollen due to environmental and microbial stress.
Collapse
Affiliation(s)
- Andrea Obersteiner
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München—German Research Centre for Environmental Health (GmbH), Neuherberg, Germany
| | - Stefanie Gilles
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Augsburg, Germany
- CK Care, Christine-Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München–German Research Centre for Environmental Health (GmbH), Neuherberg, Germany
| | - Isabelle Beck
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Augsburg, Germany
| | - Franziska Häring
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Augsburg, Germany
| | - Dietrich Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München–German Research Centre for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Rothballer
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München—German Research Centre for Environmental Health (GmbH), Neuherberg, Germany
| | - Anton Hartmann
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München—German Research Centre for Environmental Health (GmbH), Neuherberg, Germany
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Augsburg, Germany
- CK Care, Christine-Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Michael Schmid
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München—German Research Centre for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
536
|
Smakowska E, Kong J, Busch W, Belkhadir Y. Organ-specific regulation of growth-defense tradeoffs by plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:129-37. [PMID: 26802804 DOI: 10.1016/j.pbi.2015.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 05/22/2023]
Abstract
Plants grow while also defending themselves against phylogenetically unrelated pathogens. Because defense and growth are both costly programs, a plant's success in colonizing resource-scarce environments requires tradeoffs between the two. Here, we summarize efforts aimed at understanding how plants use iterative tradeoffs to modulate differential organ growth when defenses are elicited. First, we focus on shoots to illustrate how light, in conjunction with the growth hormone gibberellin (GA) and the defense hormone jasmonic acid (JA), act to finely regulate defense and growth programs in this organ. Second, we expand on the regulation of growth-defense trade-offs in the root, a less well-studied topic despite the critical role of this organ in acquiring resources in an environment deeply entrenched with disparate populations of microbes.
Collapse
Affiliation(s)
- Elwira Smakowska
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr Gasse 3, Vienna 1030, Austria
| | - Jixiang Kong
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr Gasse 3, Vienna 1030, Austria
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr Gasse 3, Vienna 1030, Austria
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr Gasse 3, Vienna 1030, Austria.
| |
Collapse
|
537
|
de Torres Zabala M, Zhai B, Jayaraman S, Eleftheriadou G, Winsbury R, Yang R, Truman W, Tang S, Smirnoff N, Grant M. Novel JAZ co-operativity and unexpected JA dynamics underpin Arabidopsis defence responses to Pseudomonas syringae infection. THE NEW PHYTOLOGIST 2016; 209:1120-34. [PMID: 26428397 PMCID: PMC4791170 DOI: 10.1111/nph.13683] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/19/2015] [Indexed: 05/21/2023]
Abstract
Pathogens target phytohormone signalling pathways to promote disease. Plants deploy salicylic acid (SA)-mediated defences against biotrophs. Pathogens antagonize SA immunity by activating jasmonate signalling, for example Pseudomonas syringae pv. tomato DC3000 produces coronatine (COR), a jasmonic acid (JA) mimic. This study found unexpected dynamics between SA, JA and COR and co-operation between JAZ jasmonate repressor proteins during DC3000 infection. We used a systems-based approach involving targeted hormone profiling, high-temporal-resolution micro-array analysis, reverse genetics and mRNA-seq. Unexpectedly, foliar JA did not accumulate until late in the infection process and was higher in leaves challenged with COR-deficient P. syringae or in the more resistant JA receptor mutant coi1. JAZ regulation was complex and COR alone was insufficient to sustainably induce JAZs. JAZs contribute to early basal and subsequent secondary plant defence responses. We showed that JAZ5 and JAZ10 specifically co-operate to restrict COR cytotoxicity and pathogen growth through a complex transcriptional reprogramming that does not involve the basic helix-loop-helix transcription factors MYC2 and related MYC3 and MYC4 previously shown to restrict pathogen growth. mRNA-seq predicts compromised SA signalling in a jaz5/10 mutant and rapid suppression of JA-related components on bacterial infection.
Collapse
Affiliation(s)
- Marta de Torres Zabala
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Bing Zhai
- College of Biological SciencesChina Agricultural UniversityBeijing100093China
| | - Siddharth Jayaraman
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Garoufalia Eleftheriadou
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Rebecca Winsbury
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Ron Yang
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - William Truman
- Department of Plant BiologyUniversity of MinnesotaSaint PaulMN55108USA
| | - Saijung Tang
- College of Biological SciencesChina Agricultural UniversityBeijing100093China
| | - Nicholas Smirnoff
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Murray Grant
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| |
Collapse
|
538
|
Sensing Gram-negative bacteria: a phylogenetic perspective. Curr Opin Immunol 2016; 38:8-17. [DOI: 10.1016/j.coi.2015.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022]
|
539
|
Delteil A, Gobbato E, Cayrol B, Estevan J, Michel-Romiti C, Dievart A, Kroj T, Morel JB. Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus. BMC PLANT BIOLOGY 2016; 16:17. [PMID: 26772971 PMCID: PMC4715279 DOI: 10.1186/s12870-016-0711-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/11/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Receptor-like kinases are well-known to play key roles in disease resistance. Among them, the Wall-associated kinases (WAKs) have been shown to be positive regulators of fungal disease resistance in several plant species. WAK genes are often transcriptionally regulated during infection but the pathways involved in this regulation are not known. In rice, the OsWAK gene family is significantly amplified compared to Arabidopsis. The possibility that several WAKs participate in different ways to basal defense has not been addressed. Moreover, the direct requirement of rice OSWAK genes in regulating defense has not been explored. RESULTS Here we show using rice (Oryza sativa) loss-of-function mutants of four selected OsWAK genes, that individual OsWAKs are required for quantitative resistance to the rice blast fungus, Magnaporthe oryzae. While OsWAK14, OsWAK91 and OsWAK92 positively regulate quantitative resistance, OsWAK112d is a negative regulator of blast resistance. In addition, we show that the very early transcriptional regulation of the rice OsWAK genes is triggered by chitin and is partially under the control of the chitin receptor CEBiP. Finally, we show that OsWAK91 is required for H2O2 production and sufficient to enhance defense gene expression during infection. CONCLUSIONS We conclude that the rice OsWAK genes studied are part of basal defense response, potentially mediated by chitin from fungal cell walls. This work also shows that some OsWAKs, like OsWAK112d, may act as negative regulators of disease resistance.
Collapse
Affiliation(s)
- Amandine Delteil
- CIRAD, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet, TA A 54/K, 34398, Montpellier, France.
- INRA, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet, TA A 54/K, 34398, Montpellier, France.
| | - Enrico Gobbato
- INRA, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet, TA A 54/K, 34398, Montpellier, France.
| | - Bastien Cayrol
- INRA, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet, TA A 54/K, 34398, Montpellier, France.
| | - Joan Estevan
- INRA, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet, TA A 54/K, 34398, Montpellier, France.
| | - Corinne Michel-Romiti
- INRA, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet, TA A 54/K, 34398, Montpellier, France.
| | - Anne Dievart
- CIRAD, UMR DAP INRA/CIRAD/SupAgro, Avenue Agropolis, 34398, Montpellier Cedex 5, France.
| | - Thomas Kroj
- INRA, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet, TA A 54/K, 34398, Montpellier, France.
| | - J-B Morel
- INRA, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet, TA A 54/K, 34398, Montpellier, France.
| |
Collapse
|
540
|
Miller JC, Chezem WR, Clay NK. Ternary WD40 Repeat-Containing Protein Complexes: Evolution, Composition and Roles in Plant Immunity. FRONTIERS IN PLANT SCIENCE 2016; 6:1108. [PMID: 26779203 PMCID: PMC4703829 DOI: 10.3389/fpls.2015.01108] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/23/2015] [Indexed: 05/18/2023]
Abstract
Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialog by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect "non-self," "damaged-self," and "altered-self"- associated molecular patterns and translate these "danger" signals into largely inducible chemical defenses. The WD40 repeat (WDR)-containing proteins Gβ and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. They are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.
Collapse
Affiliation(s)
- Jimi C. Miller
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT, USA
| | - William R. Chezem
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| | - Nicole K. Clay
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| |
Collapse
|
541
|
Cayrol B, Delteil A, Gobbato E, Kroj T, Morel JB. Three wall-associated kinases required for rice basal immunity form protein complexes in the plasma membrane. PLANT SIGNALING & BEHAVIOR 2016; 11:e1149676. [PMID: 26853099 PMCID: PMC4883937 DOI: 10.1080/15592324.2016.1149676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 05/18/2023]
Abstract
Receptor-like kinases (RLKs) play key roles in disease resistance, in particular basal immunity. They recognize patterns produced by the pathogen invasion and often work as complexes in the plasma membrane. Among these RLKs, there is increasing evidence in several plant species of the key role of Wall-associated kinases (WAKs) in disease resistance. We recently showed using rice (Oryza sativa) loss-of-function mutants of three transcriptionally co-regulated OsWAK genes that individual OsWAKs are positively required for quantitative resistance to the rice blast fungus, Magnaporthe oryzae. This finding was unexpected since WAK genes belong to large gene families where functional redundancy is expected. Here we provide evidence that this may be due to complex physical interaction between OsWAK proteins.
Collapse
Affiliation(s)
- Bastien Cayrol
- b INRA, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet , TA A 54/K, 34398 Montpellier , France
| | - Amandine Delteil
- a CIRAD, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet , TA A 54/K, 34398 Montpellier , France
- b INRA, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet , TA A 54/K, 34398 Montpellier , France
| | - Enrico Gobbato
- b INRA, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet , TA A 54/K, 34398 Montpellier , France
| | - Thomas Kroj
- b INRA, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet , TA A 54/K, 34398 Montpellier , France
| | - Jean-Benoit Morel
- b INRA, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet , TA A 54/K, 34398 Montpellier , France
| |
Collapse
|
542
|
Durian G, Rahikainen M, Alegre S, Brosché M, Kangasjärvi S. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:812. [PMID: 27375664 PMCID: PMC4901049 DOI: 10.3389/fpls.2016.00812] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/25/2016] [Indexed: 05/20/2023]
Abstract
Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants.
Collapse
Affiliation(s)
- Guido Durian
- Department of Biochemistry, Molecular Plant Biology, University of TurkuTurku, Finland
| | - Moona Rahikainen
- Department of Biochemistry, Molecular Plant Biology, University of TurkuTurku, Finland
| | - Sara Alegre
- Department of Biochemistry, Molecular Plant Biology, University of TurkuTurku, Finland
| | - Mikael Brosché
- Department of Biochemistry, Molecular Plant Biology, University of TurkuTurku, Finland
| | - Saijaliisa Kangasjärvi
- Department of Biochemistry, Molecular Plant Biology, University of TurkuTurku, Finland
- *Correspondence: Saijaliisa Kangasjärvi,
| |
Collapse
|
543
|
Affiliation(s)
- Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| |
Collapse
|
544
|
Zhang Y, Zhao J, Li Y, Yuan Z, He H, Yang H, Qu H, Ma C, Qu S. Transcriptome Analysis Highlights Defense and Signaling Pathways Mediated by Rice pi21 Gene with Partial Resistance to Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2016; 7:1834. [PMID: 28008334 PMCID: PMC5143348 DOI: 10.3389/fpls.2016.01834] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/21/2016] [Indexed: 05/05/2023]
Abstract
Rice blast disease is one of the most destructive rice diseases worldwide. The pi21 gene confers partial and durable resistance to Magnaporthe oryzae. However, little is known regarding the molecular mechanisms of resistance mediated by the loss-of-function of Pi21. In this study, comparative transcriptome profiling of the Pi21-RNAi transgenic rice line and Nipponbare with M. oryzae infection at different time points (0, 12, 24, 48, and 72 hpi) were investigated using RNA sequencing. The results generated 43,222 unique genes mapped to the rice genome. In total, 1109 differentially expressed genes (DEGs) were identified between the Pi21-RNAi line and Nipponbare with M. oryzae infection, with 103, 281, 209, 69, and 678 DEGs at 0, 12, 24, 48, and 72 hpi, respectively. Functional analysis showed that most of the DEGs were involved in metabolism, transport, signaling, and defense. Among the genes assigned to plant-pathogen interaction, we identified 43 receptor kinase genes associated with pathogen-associated molecular pattern recognition and calcium ion influx. The expression levels of brassinolide-insensitive 1, flagellin sensitive 2, and elongation factor Tu receptor, ethylene (ET) biosynthesis and signaling genes, were higher in the Pi21-RNAi line than Nipponbare. This suggested that there was a more robust PTI response in Pi21-RNAi plants and that ET signaling was important to rice blast resistance. We also identified 53 transcription factor genes, including WRKY, NAC, DOF, and ERF families that show differential expression between the two genotypes. This study highlights possible candidate genes that may serve a function in the partial rice blast resistance mediated by the loss-of-function of Pi21 and increase our understanding of the molecular mechanisms involved in partial resistance against M. oryzae.
Collapse
|
545
|
Ye W, Murata Y. Microbe Associated Molecular Pattern Signaling in Guard Cells. FRONTIERS IN PLANT SCIENCE 2016; 7:583. [PMID: 27200056 PMCID: PMC4855242 DOI: 10.3389/fpls.2016.00583] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/15/2016] [Indexed: 05/04/2023]
Abstract
Stomata, formed by pairs of guard cells in the epidermis of terrestrial plants, regulate gas exchange, thus playing a critical role in plant growth and stress responses. As natural openings, stomata are exploited by microbes as an entry route. Recent studies reveal that plants close stomata upon guard cell perception of molecular signatures from microbes, microbe associated molecular patterns (MAMPs), to prevent microbe invasion. The perception of MAMPs induces signal transduction including recruitment of second messengers, such as Ca(2+) and H2O2, phosphorylation events, and change of transporter activity, leading to stomatal movement. In the present review, we summarize recent findings in signaling underlying MAMP-induced stomatal movement by comparing with other signalings.
Collapse
|
546
|
Jordá L, Sopeña-Torres S, Escudero V, Nuñez-Corcuera B, Delgado-Cerezo M, Torii KU, Molina A. ERECTA and BAK1 Receptor Like Kinases Interact to Regulate Immune Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:897. [PMID: 27446127 PMCID: PMC4923796 DOI: 10.3389/fpls.2016.00897] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/07/2016] [Indexed: 05/19/2023]
Abstract
ERECTA (ER) receptor-like kinase (RLK) regulates Arabidopsis thaliana organ growth, and inflorescence and stomatal development by interacting with the ERECTA-family genes (ERf) paralogs, ER-like 1 (ERL1) and ERL2, and the receptor-like protein (RLP) TOO MANY MOUTHS (TMM). ER also controls immune responses and resistance to pathogens such as the bacterium Pseudomonas syringae pv. tomato DC3000 (Pto) and the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM). We found that er null-mutant plants overexpressing an ER dominant-negative version lacking the cytoplasmic kinase domain (ERΔK) showed an enhanced susceptibility to PcBMM, suggesting that ERΔK associates and forms inactive complexes with additional RLKs/RLPs required for PcBMM resistance. Genetic analyses demonstrated that ER acts in a combinatorial specific manner with ERL1, ERL2, and TMM to control PcBMM resistance. Moreover, BAK1 (BRASSINOSTEROID INSENSITIVE 1-associated kinase 1) RLK, which together with ERf/TMM regulates stomatal patterning and resistance to Pto, was also found to have an unequal contribution with ER in regulating immune responses and resistance to PcBMM. Co-immunoprecipitation experiments in Nicotiana benthamiana further demonstrated BAK1-ER protein interaction. The secreted epidermal pattern factor peptides (EPF1 and EPF2), which are perceived by ERf members to specify stomatal patterning, do not seem to regulate ER-mediated immunity to PcBMM, since their inducible overexpression in A. thaliana did not impact on PcBMM resistance. Our results indicate that the multiproteic receptorsome formed by ERf, TMM and BAK1 modulates A. thaliana resistance to PcBMM, and suggest that the cues underlying ERf/TMM/BAK1-mediated immune responses are distinct from those regulating stomatal pattering.
Collapse
Affiliation(s)
- Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
- *Correspondence: Lucía Jordá,
| | - Sara Sopeña-Torres
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
| | - Beatriz Nuñez-Corcuera
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
| | - Magdalena Delgado-Cerezo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
| | - Keiko U. Torii
- Department of Biology, University of Washington, SeattleWA, USA
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
| |
Collapse
|
547
|
Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins. Methods Mol Biol 2016; 1363:133-44. [PMID: 26577786 DOI: 10.1007/978-1-4939-3115-6_11] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Membrane proteins are difficult to study for numerous reasons. The surface of membrane proteins is relatively hydrophobic and sometimes very unstable, additionally requiring detergents for their extraction from the membrane. This leads to challenges at all levels, including expression, solubilization, purification, identification of associated proteins, and the identification of post-translational modifications. However, recent advances in immunoprecipitation technology allow to isolate membrane proteins efficiently, facilitating the study of protein-protein interactions, the identification of novel associated proteins, and to identify post-translational modifications, such as phosphorylation. Here, we describe an optimized immunoprecipitation protocol for plant plasma membrane receptor-like kinases.
Collapse
|
548
|
Guo M, Kim P, Li G, Elowsky C, Alfano J. A Bacterial Effector Co-opts Calmodulin to Target the Plant Microtubule Network. Cell Host Microbe 2016; 19:67-78. [DOI: 10.1016/j.chom.2015.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/03/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022]
|
549
|
Espinas NA, Saze H, Saijo Y. Epigenetic Control of Defense Signaling and Priming in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1201. [PMID: 27563304 PMCID: PMC4980392 DOI: 10.3389/fpls.2016.01201] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/28/2016] [Indexed: 05/20/2023]
Abstract
Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR). These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. Transgenerational inheritance of defense-related priming in plants indicates the stability of such primed states. Recent studies have revealed the importance and dynamic engagement of epigenetic mechanisms, such as DNA methylation and histone modifications that are closely linked to chromatin reconfiguration, in plant adaptation to different biotic stresses. Herein we review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants. We also argue for the importance of host transposable elements as critical regulators of interactions in the evolutionary "arms race" between plants and pathogens.
Collapse
Affiliation(s)
- Nino A. Espinas
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan
- *Correspondence: Nino A. Espinas, Yusuke Saijo,
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan
| | - Yusuke Saijo
- Nara Institute of Science and TechnologyIkoma, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and TechnologyKawaguchi, Japan
- *Correspondence: Nino A. Espinas, Yusuke Saijo,
| |
Collapse
|
550
|
Guiguet A, Dubreuil G, Harris MO, Appel HM, Schultz JC, Pereira MH, Giron D. Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:4-21. [PMID: 26705897 DOI: 10.1016/j.jinsphys.2015.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 05/04/2023]
Abstract
Insects that reprogram host plants during colonization remind us that the insect side of plant-insect story is just as interesting as the plant side. Insect effectors secreted by the salivary glands play an important role in plant reprogramming. Recent discoveries point to large numbers of salivary effectors being produced by a single herbivore species. Since genetic and functional characterization of effectors is an arduous task, narrowing the field of candidates is useful. We present ideas about types and functions of effectors from research on blood-feeding parasites and their mammalian hosts. Because of their importance for human health, blood-feeding parasites have more tools from genomics and other - omics than plant-feeding parasites. Four themes have emerged: (1) mechanical damage resulting from attack by blood-feeding parasites triggers "early danger signals" in mammalian hosts, which are mediated by eATP, calcium, and hydrogen peroxide, (2) mammalian hosts need to modulate their immune responses to the three "early danger signals" and use apyrases, calreticulins, and peroxiredoxins, respectively, to achieve this, (3) blood-feeding parasites, like their mammalian hosts, rely on some of the same "early danger signals" and modulate their immune responses using the same proteins, and (4) blood-feeding parasites deploy apyrases, calreticulins, and peroxiredoxins in their saliva to manipulate the "danger signals" of their mammalian hosts. We review emerging evidence that plant-feeding insects also interfere with "early danger signals" of their hosts by deploying apyrases, calreticulins and peroxiredoxins in saliva. Given emerging links between these molecules, and plant growth and defense, we propose that these effectors interfere with phytohormone signaling, and therefore have a special importance for gall-inducing and leaf-mining insects, which manipulate host-plants to create better food and shelter.
Collapse
Affiliation(s)
- Antoine Guiguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France; Département de Biologie, École Normale Supérieure de Lyon, 69007 Lyon, France
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France
| | - Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND 58105, USA; Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France
| | - Heidi M Appel
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Jack C Schultz
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Marcos H Pereira
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France; Laboratório de Fisiologia de Insectos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France.
| |
Collapse
|