501
|
Flynt AS, Thatcher EJ, Burkewitz K, Li N, Liu Y, Patton JG. miR-8 microRNAs regulate the response to osmotic stress in zebrafish embryos. ACTA ACUST UNITED AC 2009; 185:115-27. [PMID: 19332888 PMCID: PMC2700511 DOI: 10.1083/jcb.200807026] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are highly conserved small RNAs that act as translational regulators of gene expression, exerting their influence by selectively targeting mRNAs bearing complementary sequence elements. These RNAs function in diverse aspects of animal development and physiology. Because of an ability to act as rapid responders at the level of translation, miRNAs may also influence stress response. In this study, we show that the miR-8 family of miRNAs regulates osmoregulation in zebrafish embryos. Ionocytes, which are a specialized cell type scattered throughout the epidermis, are responsible for pH and ion homeostasis during early development before gill formation. The highly conserved miR-8 family is expressed in ionocytes and enables precise control of ion transport by modulating the expression of Nherf1, which is a regulator of apical trafficking of transmembrane ion transporters. Ultimately, disruption of miR-8 family member function leads to an inability to respond to osmotic stress and blocks the ability to properly traffic and/or cluster transmembrane glycoproteins at the apical surface of ionocytes.
Collapse
Affiliation(s)
- Alex S Flynt
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | |
Collapse
|
502
|
Abstract
MicroRNAs play an essential role in diverse cellular processes, such as proliferation, differentiation, apoptosis, and stress response. Recent studies demonstrate that miRNAs are important for timing developmental decisions and fine-tuning cellular determination in vertebrate heart development. In an elegant set of experiments reported in this issue of Genes & Development, Liu et al. (3242-3254) demonstrate that miR-133a functions as an inhibitor of cardiomyocyte proliferation and a modifier of serum response factor (SRF)-dependent transcriptional signaling in the murine heart. Both targeted deletion and transgenic overexpression of miR-133a can result in the same cardiac phenotype, ventricular septal defect (VSD) and heart failure. The new data add another piece to the puzzle of regulatory networks that are implicated in cardiac disease. It will be interesting to see, if miR-133a is also involved in human heart diseases, especially VSD and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Benjamin Meder
- Department of Medicine III, University of Heidelberg, Heidelberg 69120, Germany
| | | | | |
Collapse
|
503
|
Hou YY, Ying XM, Li WJ. [Computational approaches to microRNA discovery]. YI CHUAN = HEREDITAS 2009; 30:687-96. [PMID: 18550489 DOI: 10.3724/sp.j.1005.2008.00687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
microRNAs (miRNAs) are endogenous non-coding RNAs of ~21 nucleotides in length discovered in recent years. They are involved in diverse pathways and play an important role in gene regulation in plants and animals. There are two main groups of approaches to miRNA discovery, which are cDNA cloning and computational identification. Since some miRNAs are expressed at a low level and the expression of many miRNAs has spatio-temporal specificity, it is difficult to find them through cDNA cloning. However, computational approaches can predict the miRNAs specifically expressed or with low abundance, which is complement to cDNA cloning. Computational approaches have hence gained wide attention. In this review, the computational approaches to miRNA discovery were summarized. According to their intrinsic characteristics, computational approaches were categorized into five classes: (1) homology search; (2) prediction based on comparative genomics; (3) scoring candidates using the sequence and structure characteristics; (4) prediction combined with targets; and (5) prediction with machine learning. The principles of each class of the approaches and their advantages and limitations in miRNA discovery were discussed. Finally, the future direction in miRNA discovery was pointed out.
Collapse
Affiliation(s)
- Yan-Yan Hou
- Center of Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | | | | |
Collapse
|
504
|
MicroRNA in cell differentiation and development. ACTA ACUST UNITED AC 2009; 52:205-11. [PMID: 19294345 DOI: 10.1007/s11427-009-0040-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 11/28/2008] [Indexed: 12/21/2022]
Abstract
The regulation of gene expression by microRNAs (miRNAs) is a recently discovered pattern of gene regulation in animals and plants. MiRNAs have been implicated in various aspects of animal development and cell differentiation, such as early embryonic development, neuronal development, muscle development, and lymphocyte development, by the analysis of genetic deletions of individual miRNAs in mammals. These studies show that miRNAs are key regulators in animal development and are potential causes of human diseases. Here we review some recent discoveries about the functions of miRNAs in cell differentiation and development.
Collapse
|
505
|
Zhang Y, Zhou X, Ge X, Jiang J, Li M, Jia S, Yang X, Kan Y, Miao X, Zhao G, Li F, Huang Y. Insect-Specific microRNA Involved in the Development of the Silkworm Bombyx mori. PLoS One 2009; 4:e4677. [PMID: 19262741 PMCID: PMC2650705 DOI: 10.1371/journal.pone.0004677] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 01/05/2009] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding genes that participate in post-transcription regulation by either degrading mRNA or blocking its translation. It is considered to be very important in regulating insect development and metamorphosis. We conducted a large-scale screening for miRNA genes in the silkworm Bombyx mori using sequence-by-synthesis (SBS) deep sequencing of mixed RNAs from egg, larval, pupal, and adult stages. Of 2,227,930 SBS tags, 1,144,485 ranged from 17 to 25 nt, corresponding to 256,604 unique tags. Among these non-redundant tags, 95,184 were matched to the silkworm genome. We identified 3,750 miRNA candidate genes using a computational pipeline combining RNAfold and TripletSVM algorithms. We confirmed 354 miRNA genes using miRNA microarrays and then performed expression profile analysis on these miRNAs for all developmental stages. While 106 miRNAs were expressed in all stages, 248 miRNAs were egg- and pupa-specific, suggesting that insect miRNAs play a significant role in embryogenesis and metamorphosis. We selected eight miRNAs for quantitative RT-PCR analysis; six of these were consistent with our microarray results. In addition, we searched for orthologous miRNA genes in mammals, a nematode, and other insects and found that most silkworm miRNAs are conserved in insects, whereas only a small number of silkworm miRNAs has orthologs in mammals and the nematode. These results suggest that there are many miRNAs unique to insects.
Collapse
Affiliation(s)
- Yong Zhang
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xue Zhou
- Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xie Ge
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jianhao Jiang
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Muwang Li
- Sericultural Research Institute, Chinese Academy of Agriculture Sciences, Zhengjiang, People's Republic of China
| | - Shihai Jia
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xiaonan Yang
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yunchao Kan
- Nan Yang Normal University, Nanyang, Henan Province, People's Republic of China
| | - Xuexia Miao
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Guoping Zhao
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Fei Li
- Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
- * E-mail: (FL); (YH)
| | - Yongping Huang
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, People's Republic of China
- * E-mail: (FL); (YH)
| |
Collapse
|
506
|
MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 2009; 4:e4699. [PMID: 19259271 PMCID: PMC2649537 DOI: 10.1371/journal.pone.0004699] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/14/2009] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, that play important regulatory roles in a variety of biological processes, including development, differentiation, apoptosis, and metabolism. In mammals, miRNAs have been shown to modulate adipocyte differentiation. Therefore, we performed a global miRNA gene expression assay in different fat depots of overweight and obese individuals to investigate whether miRNA expression in human adipose tissue is fat-depot specific and associated with parameters of obesity and glucose metabolism. Paired samples of abdominal subcutaneous (SC) and intraabdominal omental adipose tissue were obtained from fifteen individuals with either normal glucose tolerance (NGT, n = 9) or newly diagnosed type 2 diabetes (T2D, n = 6). Expression of 155 miRNAs was carried out using the TaqMan(R)MicroRNA Assays Human Panel Early Access Kit (Applied Biosystems, Darmstadt, Germany). We identified expression of 106 (68%) miRNAs in human omental and SC adipose tissue. There was no miRNA exclusively expressed in either fat depot, suggesting common developmental origin of both fat depots. Sixteen miRNAs (4 in NGT, 12 in T2D group) showed a significant fat depot specific expression pattern. We identified significant correlations between the expression of miRNA-17-5p, -132, -99a, -134, 181a, -145, -197 and both adipose tissue morphology and key metabolic parameters, including visceral fat area, HbA(1c), fasting plasma glucose, and circulating leptin, adiponectin, interleukin-6. In conclusion, microRNA expression differences may contribute to intrinsic differences between omental and subcutaneous adipose tissue. In addition, human adipose tissue miRNA expression correlates with adipocyte phenotype, parameters of obesity and glucose metabolism.
Collapse
|
507
|
Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci U S A 2009; 106:3384-9. [PMID: 19211792 DOI: 10.1073/pnas.0808300106] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Direct control of microRNA (miRNA) expression by oncogenic and tumor suppressor networks results in frequent dysregulation of miRNAs in cancer cells and contributes to tumorigenesis. We previously demonstrated that activation of the c-Myc oncogenic transcription factor (Myc) broadly influences miRNA expression and in particular leads to widespread miRNA down-regulation. miRNA transcripts repressed by Myc include several with potent tumor suppressor activity such as miR-15a/16-1, miR-34a, and let-7 family members. In this study, we have investigated mechanisms downstream of Myc that contribute to miRNA repression. Consistent with transcriptional down-regulation, Myc activity results in the decreased abundance of multiple miRNA primary transcripts. Surprisingly, however, primary transcripts encoding several let-7 miRNAs are not reduced in the high Myc state, suggesting a posttranscriptional mechanism of repression. The Lin-28 and Lin-28B RNA binding proteins were recently demonstrated to negatively regulate let-7 biogenesis. We now show that Myc induces Lin-28B expression in multiple human and mouse tumor models. Chromatin immunoprecipitation and reporter assays reveal direct association of Myc with the Lin-28B promoter resulting in transcriptional transactivation. Moreover, we document that activation of Lin-28B is necessary and sufficient for Myc-mediated let-7 repression. Accordingly, Lin-28B loss-of-function significantly impairs Myc-dependent cellular proliferation. These findings highlight an important role for Lin-28B in Myc-driven cellular phenotypes and uncover an orchestration of transcriptional and posttranscriptional mechanisms in Myc-mediated reprogramming of miRNA expression.
Collapse
|
508
|
Koh TC, Lee YY, Chang SQ, Nissom PM. Identification and expression analysis of miRNAs during batch culture of HEK-293 cells. J Biotechnol 2009; 140:149-55. [PMID: 19428708 DOI: 10.1016/j.jbiotec.2009.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 01/23/2009] [Accepted: 01/29/2009] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of about 20-24 nucleotides in length. They regulate gene expression negatively and have been implicated in a wide variety of biological processes. To identify potential miRNAs that may influence the growth and proliferation of mammalian cells cultured in bioreactors, we applied miRNA microarray expression profiling technology to batch cultures of HEK293 cells in protein free media. In our study, we identified miRNAs that were differentially expressed during the exponential and stationary phases, 13 of these showed distinct up regulation trends while 1 exhibited down regulation. These miRNAs have been implicated in cellular differentiation, growth arrest and apoptosis. Specifically, miR-16 and let-7b are potentially useful in the enhancement of bioreactor cell cultures.
Collapse
Affiliation(s)
- Thong-Chuan Koh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | | | | | | |
Collapse
|
509
|
Huang J. Current progress in epigenetic research for hepatocarcinomagenesis. ACTA ACUST UNITED AC 2009; 52:31-42. [PMID: 19152082 DOI: 10.1007/s11427-009-0014-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 10/08/2008] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma is the main type of primary liver cancer, and also one of the most malignant tumors. At present, the pathogenesis mechanisms of liver cancer are not entirely clear. It has been shown that inactivation of tumor suppressor genes and activation of oncogenes play a significant role in carcinogenesis, caused by the genetic and epigenetic aberrance. In the past, people generally thought that genetic mutation is a key event of tumor pathogenesis, and somatic mutation of tumor suppressor genes is in particular closely associated with oncogenesis. With deeper understanding of tumors in recent years, increasing evidence has shown that epigenetic silencing of those genes, as a result of aberrant hypermethylation of CpG islands in promoters and histone modification, is essential to carcinogenesis and metastasis. The term epigenetics refers to heritable changes in gene expression caused by regulation mechanisms, other than changes in the underlying DNA sequence. Specific epigenetic processes include DNA methylation, genome imprinting, chromotin remodeling, histone modification and microRNA regulations. This paper reviews recent epigenetics research progress in the hepatocellular carcinoma study, and tries to depict the relationships between hepatocellular carcinomagenesis and DNA methylation as well as microRNA regulation.
Collapse
Affiliation(s)
- Jian Huang
- National Human Genome Research Center at Shanghai-Ministry of Science and Technology to build a healthy and disease Genomics Laboratory, Shanghai, 201203, China.
| |
Collapse
|
510
|
Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biol 2009; 10:R6. [PMID: 19146710 PMCID: PMC2687794 DOI: 10.1186/gb-2009-10-1-r6] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 12/11/2008] [Accepted: 01/16/2009] [Indexed: 11/26/2022] Open
Abstract
High-throughput sequencing of the small RNA transcriptome of locust reveals differences in post-transcriptional regulation between solitary and swarming phases and provides insights into the evolution of insect small RNAs. Background All the reports on insect small RNAs come from holometabolous insects whose genome sequence data are available. Therefore, study of hemimetabolous insect small RNAs could provide more insights into evolution and function of small RNAs in insects. The locust is an important, economically harmful hemimetabolous insect. Its phase changes, as a phenotypic plasticity, result from differential gene expression potentially regulated at both the post-transcriptional level, mediated by small RNAs, and the transcriptional level. Results Here, using high-throughput sequencing, we characterize the small RNA transcriptome in the locust. We identified 50 conserved microRNA families by similarity searching against miRBase, and a maximum of 185 potential locust-specific microRNA family candidates were identified using our newly developed method independent of locust genome sequence. We also demonstrate conservation of microRNA*, and evolutionary analysis of locust microRNAs indicates that the generation of miRNAs in locusts is concentrated along three phylogenetic tree branches: bilaterians, coelomates, and insects. Our study identified thousands of endogenous small interfering RNAs, some of which were of transposon origin, and also detected many Piwi-interacting RNA-like small RNAs. Comparison of small RNA expression patterns of the two phases showed that longer small RNAs were expressed more abundantly in the solitary phase and that each category of small RNAs exhibited different expression profiles between the two phases. Conclusions The abundance of small RNAs in the locust might indicate a long evolutionary history of post-transcriptional gene expression regulation, and differential expression of small RNAs between the two phases might further disclose the molecular mechanism of phase changes.
Collapse
|
511
|
Abstract
Drosophila is a powerful model system for the identification of cell death genes and understanding the role of cell death in development. In this chapter, we describe three methods typically used for the detection of cell death in Drosophila. The TUNEL and acridine orange methods are used to detect dead or dying cells in a variety of tissues. We focus on methods for the embryo and the ovary, but these techniques can be used on other tissues as well. The third method is the detection of genetic interactions by expressing cell death genes in the Drosophila eye.
Collapse
|
512
|
Xu D, Woodfield SE, Lee TV, Fan Y, Antonio C, Bergmann A. Genetic control of programmed cell death (apoptosis) in Drosophila. Fly (Austin) 2009; 3:78-90. [PMID: 19182545 PMCID: PMC2702463 DOI: 10.4161/fly.3.1.7800] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death, or apoptosis, is a highly conserved cellular process that has been intensively investigated in nematodes, flies and mammals. The genetic conservation, the low redundancy, the feasibility for high-throughput genetic screens and the identification of temporally and spatially regulated apoptotic responses make Drosophila melanogaster a great model for the study of apoptosis. Here, we review the key players of the cell death pathway in Drosophila and discuss their roles in apoptotic and non-apoptotic processes.
Collapse
Affiliation(s)
- Dongbin Xu
- The University of Texas MD Anderson Cancer Center; The Genes and Development Graduate Program; Department of Biochemistry and Molecular Biology; Houston, Texas USA; Baylor College of Medicine; Graduate Program of Developmental Biology; Houston, Texas USA
| | - Sarah E. Woodfield
- The University of Texas MD Anderson Cancer Center; The Genes and Development Graduate Program; Department of Biochemistry and Molecular Biology; Houston, Texas USA; Baylor College of Medicine; Graduate Program of Developmental Biology; Houston, Texas USA
| | - Tom V. Lee
- The University of Texas MD Anderson Cancer Center; The Genes and Development Graduate Program; Department of Biochemistry and Molecular Biology; Houston, Texas USA; Baylor College of Medicine; Graduate Program of Developmental Biology; Houston, Texas USA
| | - Yun Fan
- The University of Texas MD Anderson Cancer Center; The Genes and Development Graduate Program; Department of Biochemistry and Molecular Biology; Houston, Texas USA; Baylor College of Medicine; Graduate Program of Developmental Biology; Houston, Texas USA
| | - Christian Antonio
- The University of Texas MD Anderson Cancer Center; The Genes and Development Graduate Program; Department of Biochemistry and Molecular Biology; Houston, Texas USA; Baylor College of Medicine; Graduate Program of Developmental Biology; Houston, Texas USA
| | - Andreas Bergmann
- The University of Texas MD Anderson Cancer Center; The Genes and Development Graduate Program; Department of Biochemistry and Molecular Biology; Houston, Texas USA; Baylor College of Medicine; Graduate Program of Developmental Biology; Houston, Texas USA
| |
Collapse
|
513
|
Abstract
MicroRNAs (miRNAs) are noncoding RNAs whose hallmarks are the very short sequences and the ability to repress the translation and/or transcription of target genes. miRNAs can have diverse functions, including regulation of cellular differentiation, proliferation, and embryogenesis. Over the past 5 years, an increasing number of studies have linked different miRNAs with programmed cell death or apoptosis. The principal aim of this chapter is to describe a method that (1) identifies miRNAs involved in apoptosis, using a validated array profiling approach, (2) assesses the direct involvement of candidate miRNAs in apoptosis, and (3) identifies the molecular mechanisms possibly involved in apoptotic response. To disclose the possible molecular targets of miRNAs, we propose the generation of a database created using a list of presumptive miRNA targets and the changes in the transcriptome after ectopic expression of the miRNAs. Our proposed method for doing this is suitable for both discovery of apoptotic pathways that regulate miRNAs and finding new miRNAs able to induce apoptosis.
Collapse
Affiliation(s)
- Riccardo Spizzo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
514
|
Abstract
Nearly 97% of the human genome is non-coding DNA, and introns occupy most of it around the gene-coding regions. Numerous intronic sequences have been recently found to encode microRNAs, which are responsible for RNA-mediated gene silencing through RNA interference (RNAi)-like pathways. microRNAs (miRNAs), small single-stranded regulatory RNAs capable of interfering with intracellular messenger RNAs (mRNAs) that contain either complete or partial complementarity, are useful for the design of new therapies against cancer polymorphism and viral mutation. This flexible characteristic is different from double-stranded siRNAs (small interfering RNAs) because a much more rigid complementarity is required for siRNA-induced RNAi gene silencing. miRNAs were firstly discovered in Caenorhabditis elegans as native RNA fragments that modulate a wide range of genetic regulatory pathways during embryonic development. Currently, varieties of miRNAs are widely reported in plants, animals and even microbes. Intronic microRNA is a new class of miRNAs derived from the processing of gene introns. The intronic miRNAs differ uniquely from previously described intergenic miRNAs in the requirement of type II RNA polymerases (Pol-II) and spliceosomal components for their biogenesis. Several kinds of intronic miRNAs have been identified in C. elegans, mouse and human cells; however, neither function nor application has been reported. Here, we show for the first time that intron-derived miRNAs are able to induce RNA interference in not only human and mouse cells but also zebrafishes, chicken embryos and adult mice, demonstrating the evolutionary preservation of the intron-mediated gene silencing through miRNA functionality in cell and in vivo. These findings suggest an intracellular miRNA-mediated gene regulatory system, fine-tuning the degradation of protein-coding messenger RNAs.
Collapse
|
515
|
Yin C, Wang X, Kukreja RC. Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice. FEBS Lett 2008; 582:4137-42. [PMID: 19041309 PMCID: PMC3031789 DOI: 10.1016/j.febslet.2008.11.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/20/2008] [Accepted: 11/11/2008] [Indexed: 01/28/2023]
Abstract
We investigated the role of microRNAs (miRNA) in protection against ischemia/reperfusion (I/R) injury in heart. Mice subjected to cytoprotective heat-shock (HS) showed a significant increase of miRNA-1, miRNA-21 and miRNA-24 in the heart. miRNAs isolated from HS mice and injected into non-HS mice significantly reduced infarct size after I/R injury, which was associated with the inhibition of pro-apoptotic genes and increase in anti-apoptotic genes. Chemically synthesized miRNA-21 also reduced infarct size, whereas a miRNA-21 inhibitor abolished this effect. Overall, these studies for the first time provide evidence for the potential role of endogenously synthesized miRNA's in cardioprotection following I/R injury.
Collapse
Affiliation(s)
- Chang Yin
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University Medical Center, 1101 E. Marshall St. Sanger Hall, Box 980281, Richmond, VA 23298-0281, USA
| | | | | |
Collapse
|
516
|
Pandey P, Brors B, Srivastava PK, Bott A, Boehn SNE, Groene HJ, Gretz N. Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease. BMC Genomics 2008; 9:624. [PMID: 19102782 PMCID: PMC2640396 DOI: 10.1186/1471-2164-9-624] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/23/2008] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) play key roles in mammalian gene expression and several cellular processes, including differentiation, development, apoptosis and cancer pathomechanisms. Recently the biological importance of primary cilia has been recognized in a number of human genetic diseases. Numerous disorders are related to cilia dysfunction, including polycystic kidney disease (PKD). Although involvement of certain genes and transcriptional networks in PKD development has been shown, not much is known how they are regulated molecularly. Results Given the emerging role of miRNAs in gene expression, we explored the possibilities of miRNA-based regulations in PKD. Here, we analyzed the simultaneous expression changes of miRNAs and mRNAs by microarrays. 935 genes, classified into 24 functional categories, were differentially regulated between PKD and control animals. In parallel, 30 miRNAs were differentially regulated in PKD rats: our results suggest that several miRNAs might be involved in regulating genetic switches in PKD. Furthermore, we describe some newly detected miRNAs, miR-31 and miR-217, in the kidney which have not been reported previously. We determine functionally related gene sets, or pathways to reveal the functional correlation between differentially expressed mRNAs and miRNAs. Conclusion We find that the functional patterns of predicted miRNA targets and differentially expressed mRNAs are similar. Our results suggest an important role of miRNAs in specific pathways underlying PKD.
Collapse
Affiliation(s)
- Priyanka Pandey
- Medical Research Center, University Hospital Mannheim, Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
517
|
|
518
|
Schickel R, Boyerinas B, Park SM, Peter ME. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 2008; 27:5959-74. [PMID: 18836476 DOI: 10.1038/onc.2008.274] [Citation(s) in RCA: 593] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Micro (mi)RNAs are small, highly conserved noncoding RNAs that control gene expression post-transcriptionally either via the degradation of target mRNAs or the inhibition of protein translation. Each miRNA is believed to regulate the expression of multiple mRNA targets, and many miRNAs have been linked to the initiation and progression of human cancer. miRNAs control various activities of the immune system and different stages of hematopoietic development, and their misexpression is the cause of various blood malignancies. Certain miRNAs have oncogenic activities, whereas others have the potential to act as tumor suppressors. Because they control fundamental processes such as differentiation, cell growth and cell death, the study of the role of miRNAs in human neoplasms holds great promise for novel forms of therapy. Here, we summarize the role of miRNAs and their targets in contributing to human cancers and their function as regulators of apoptotic pathways and the immune system.
Collapse
Affiliation(s)
- R Schickel
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
519
|
Grimard V, Massier J, Richter D, Schwudke D, Kalaidzidis Y, Fava E, Hermetter A, Thiele C. siRNA screening reveals JNK2 as an evolutionary conserved regulator of triglyceride homeostasis. J Lipid Res 2008; 49:2427-40. [DOI: 10.1194/jlr.m800168-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
520
|
Tang X, Tang G, Ozcan S. Role of microRNAs in diabetes. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:697-701. [PMID: 18655850 PMCID: PMC2643014 DOI: 10.1016/j.bbagrm.2008.06.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/18/2008] [Accepted: 06/27/2008] [Indexed: 11/17/2022]
Abstract
Diabetes is one of the most common chronic diseases in the world. Multiple and complex factors including various genetic and physiological changes can lead to type 1 and type 2 diabetes. However, the major mechanisms underlying the pathogenesis of diabetes remain obscure. With the recent discovery of microRNAs (miRNAs), these small ribonucleotides have been implicated as new players in the pathogenesis of diabetes and diabetes-associated complications. MiRNAs have been shown to regulate insulin production, insulin secretion, and insulin action. This review summarizes the recent progress in the cutting-edge research of miRNAs involved in diabetes and diabetes related complications.
Collapse
Affiliation(s)
- Xiaoqing Tang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, 741 South Limestone, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
521
|
Savvateeva-Popova E, Medvedeva A, Popov A, Evgen'ev M. Role of non-coding RNAs in neurodegeneration and stress response in Drosophila. Biotechnol J 2008; 3:1010-21. [PMID: 18702036 DOI: 10.1002/biot.200800120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inherent limitations of genetic analysis in humans and other mammals as well as striking conservation of most genes controlling nervous system functioning in flies and mammals made Drosophila an attractive model to investigate various aspects of brain diseases. Since RNA research has made great progress in recent years here we present an overview of studies demonstrating the role of various non-coding RNAs in neurodegeneration and stress response in Drosophila as a model organism. We put special emphasis on the role of non-coding micro RNAs, hsr-omega transcripts, and artificial small highly structured RNAs as triggers of neuropathology including aggregates formation, cognitive abnormalities and other symptoms. Cellular stress is a conspicuous feature of many neurodegenerative diseases and the production of specialized proteins protects the nerve cells against aggregates formation. Therefore, herein we describe some data implicating various classes of non-coding RNAs in stress response in Drosophila. All these findings highlight Drosophila as an important model system to investigate various brain diseases potentially mediated by some non-coding RNAs including polyglutamine diseases, Alzheimer's disease, Huntigton's disease, and many others.
Collapse
|
522
|
El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E. miR-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 2008; 57:2708-17. [PMID: 18591395 PMCID: PMC2551681 DOI: 10.2337/db07-1614] [Citation(s) in RCA: 355] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE MicroRNAs are short, noncoding RNAs that regulate gene expression. We hypothesized that the phosphatidylinositol 3-kinase (PI 3-kinase) cascade known to be important in beta-cell physiology could be regulated by microRNAs. Here, we focused on the pancreas-specific miR-375 as a potential regulator of its predicted target 3'-phosphoinositide-dependent protein kinase-1 (PDK1), and we analyzed its implication in the response of insulin-producing cells to elevation of glucose levels. RESEARCH DESIGN AND METHODS We used insulinoma-1E cells to analyze the effects of miR-375 on PDK1 protein level and downstream signaling using Western blotting, glucose-induced insulin gene expression using quantitative RT-PCR, and DNA synthesis by measuring thymidine incorporation. Moreover, we analyzed the effect of glucose on miR-375 expression in both INS-1E cells and primary rat islets. Finally, miR-375 expression in isolated islets was analyzed in diabetic Goto-Kakizaki (GK) rats. RESULTS We found that miR-375 directly targets PDK1 and reduces its protein level, resulting in decreased glucose-stimulatory action on insulin gene expression and DNA synthesis. Furthermore, glucose leads to a decrease in miR-375 precursor level and a concomitant increase in PDK1 protein. Importantly, regulation of miR-375 expression by glucose occurs in primary rat islets as well. Finally, miR-375 expression was found to be decreased in fed diabetic GK rat islets. CONCLUSIONS Our findings provide evidence for a role of a pancreatic-specific microRNA, miR-375, in the regulation of PDK1, a key molecule in PI 3-kinase signaling in pancreatic beta-cells. The effects of glucose on miR-375 are compatible with the idea that miR-375 is involved in glucose regulation of insulin gene expression and beta-cell growth.
Collapse
|
523
|
|
524
|
Stutes M, Tran S, DeMorrow S. Genetic and epigenetic changes associated with cholangiocarcinoma: from DNA methylation to microRNAs. World J Gastroenterol 2008. [PMID: 18161915 DOI: 10.3748/wjg.13.6465] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinomas are malignant epithelial liver tumors arising from the intra- and extra-hepatic bile ducts. Little is known about the molecular development of this disease, and very few effective treatment options are available. Thus, prognosis is poor. Genetic and epigenetic changes play an integral role in the neoplastic transformation of human cells to their malignant counterparts. This review summarizes some of the more prevalent genetic alterations (by microRNA expression) and epigenetic changes (hypermethylation of specific gene promoters) that are thought to contribute to the carcinogenic process in cholangiocarcinoma.
Collapse
Affiliation(s)
- Monique Stutes
- Division of Research and Education, Scott & White Hospital, Temple, TX 76504, USA
| | | | | |
Collapse
|
525
|
Abstract
MicroRNA 34a (miR-34a) is a tumor suppressor gene, but how it regulates cell proliferation is not completely understood. We now show that the microRNA miR-34a regulates silent information regulator 1 (SIRT1) expression. MiR-34a inhibits SIRT1 expression through a miR-34a-binding site within the 3' UTR of SIRT1. MiR-34 inhibition of SIRT1 leads to an increase in acetylated p53 and expression of p21 and PUMA, transcriptional targets of p53 that regulate the cell cycle and apoptosis, respectively. Furthermore, miR-34 suppression of SIRT1 ultimately leads to apoptosis in WT human colon cancer cells but not in human colon cancer cells lacking p53. Finally, miR-34a itself is a transcriptional target of p53, suggesting a positive feedback loop between p53 and miR-34a. Thus, miR-34a functions as a tumor suppressor, in part, through a SIRT1-p53 pathway.
Collapse
|
526
|
Abstract
It is apparent that microRNAs (miRNAs) are important components in the regulation of genetic networks in many biological contexts. Based on computational analysis, typical miRNAs are inferred to have tens to hundreds of conserved targets. Many miRNA-target interactions have been validated by various means, including heterologous tests in cultured cells and gain-of-function approaches that can yield striking phenotypes in whole animals. However, these strategies do not report on the endogenous importance of such miRNA activities. Likewise, studies of miRNA pathway mutants can suggest an endogenous role for miRNAs in a given setting, but do not identify roles for specific miRNAs. Therefore, these approaches must be complemented with the analysis of miRNA mutant alleles. In this review, we describe some of the lessons learned from studying miRNA gene deletions in worms, flies and mice, and discuss their implications for the control of endogenous regulatory networks.
Collapse
Affiliation(s)
- Peter Smibert
- Memorial Sloan-Kettering Institute; Department of Developmental Biology; 521 Rockefeller Research Labs; New York, New York USA
| | - Eric C. Lai
- Memorial Sloan-Kettering Institute; Department of Developmental Biology; 521 Rockefeller Research Labs; New York, New York USA
| |
Collapse
|
527
|
Yu JY, Chung KH, Deo M, Thompson RC, Turner DL. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 2008; 314:2618-33. [PMID: 18619591 PMCID: PMC2702206 DOI: 10.1016/j.yexcr.2008.06.002] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/02/2008] [Accepted: 06/03/2008] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small RNAs with diverse regulatory roles. The miR-124 miRNA is expressed in neurons in the developing and adult nervous system. Here we show that overexpression of miR-124 in differentiating mouse P19 cells promotes neurite outgrowth, while blocking miR-124 function delays neurite outgrowth and decreases acetylated alpha-tubulin. Altered neurite outgrowth also was observed in mouse primary cortical neurons when miR-124 expression was increased, or when miR-124 function was blocked. In uncommitted P19 cells, miR-124 expression led to disruption of actin filaments and stabilization of microtubules. Expression of miR-124 also decreased Cdc42 protein and affected the subcellular localization of Rac1, suggesting that miR-124 may act in part via alterations to members of the Rho GTPase family. Furthermore, constitutively active Cdc42 or Rac1 attenuated neurite outgrowth promoted by miR-124. To obtain a broader perspective, we identified mRNAs downregulated by miR-124 in P19 cells using microarrays. mRNAs for proteins involved in cytoskeletal regulation were enriched among mRNAs downregulated by miR-124. A miR-124 variant with an additional 5' base failed to promote neurite outgrowth and downregulated substantially different mRNAs. These results indicate that miR-124 contributes to the control of neurite outgrowth during neuronal differentiation, possibly by regulation of the cytoskeleton.
Collapse
Affiliation(s)
- Jenn-Yah Yu
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
528
|
Abstract
MicroRNAs (miRNAs) are critical post-transcriptional regulators that may collectively control a majority of animal genes. With thousands of miRNAs identified, a pressing challenge is now to understand their specific biological activities. Many predicted miRNA:target interactions only subtly alter gene activity. It has consequently not been trivial to deduce how miRNAs are relevant to phenotype, and by extension, relevant to disease. We note that the major signal transduction cascades that control animal development are highly dose-sensitive and frequently altered in human disorders. On this basis, we hypothesize that developmental cell signaling pathways represent prime candidates for mediating some of the major phenotypic consequences of miRNA deregulation, especially under gain-of-function conditions. This perspective reviews the evidence for miRNA targeting of the major signaling pathways, and discusses its implications for how aberrant miRNA activity might underlie human disease and cancer.
Collapse
Affiliation(s)
- Joshua W. Hagen
- Sloan-Kettering Institute; Department of Developmental Biology; New York, New York USA
| | - Eric C. Lai
- Sloan-Kettering Institute; Department of Developmental Biology; New York, New York USA
| |
Collapse
|
529
|
Low CP, Shui G, Liew LP, Buttner S, Madeo F, Dawes IW, Wenk MR, Yang H. Caspase-dependent and -independent lipotoxic cell-death pathways in fission yeast. J Cell Sci 2008; 121:2671-84. [PMID: 18653539 DOI: 10.1242/jcs.028977] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the mechanisms underlying lipid-induced cell death has significant implications in both cell biology and human diseases. Previously, we showed that fission-yeast Schizosaccharomyces pombe cells deficient in triacylglycerol synthesis display apoptotic markers upon entry into stationary phase. Here, we characterize the sequential molecular events that take place at the onset of cell death in S. pombe, including a surge of diacylglycerol, post-mitotic arrest, alterations in mitochondrial activities and in intracellular redox balance, chromatin condensation, nuclear-envelope fragmentation, and eventually plasma-membrane permeabilization. Our results demonstrated active roles of mitochondria and reactive oxygen species in cell death, and identified novel cell-death regulators--including metacaspase Pca1, BH3-domain protein Rad9, and diacylglycerol-binding proteins Pck1 and Bzz1. Most importantly, we show that, under different conditions and stimuli, failure to maintain intracellular-lipid homeostasis can lead to cell death with different phenotypic manifestations, genetic criteria and cellular mechanisms, pointing to the existence of multiple lipotoxic pathways in this organism. Our study represents the first in-depth analysis of cell-death pathways in S. pombe.
Collapse
Affiliation(s)
- Choon Pei Low
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | | | | | | | | | | | | | | |
Collapse
|
530
|
Merkerova M, Belickova M, Bruchova H. Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol 2008; 81:304-10. [PMID: 18573170 DOI: 10.1111/j.1600-0609.2008.01111.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES MicroRNAs (miRNAs) play key roles in a wide variety of normal and pathological cellular processes. A number of studies identified hematopoietic-specific miRNAs that are necessary for correct function of blood cells. Out of our microarray data, we chose 13 miRNAs that showed differential expression in peripheral blood cells (miR-15b, miR-16, miR-24, miR-30c, miR-106b, miR-142-3p, miR-142-5p, miR-150, miR-155, miR-181, miR-223, miR-342, and miR-451) and examined their expression in separated hematopoietic cell lineages. METHODS Using quantitative real-time polymerase chain reaction, we measured relative expression of the miRNAs in fractions of reticulocytes, platelets, granulocytes, monocytes, B- and T-lymphocytes as well as in several hematopoietic cell lines. RESULTS We observed that miR-16 and miR-142-3p were highly expressed in all native cell lineages, miR-451 reached the maximal expression in reticulocytes, miR-223 in platelets, granulocytes and monocytes, and miR-150 in B- and T-lymphocytes. Hierarchical clustering analysis grouped the lineage samples according to their origin based on the expression of these miRNAs. To validate discrimination power of the miRNAs, we quantified expression of the 13 miRNAs in several immortalized cell lines. Although the cell lines showed miRNA expression patterns considerably different from those of native cell lineages, clustering analysis distinguished between myeloid, lymphoid and non-hematopoietic cells. CONCLUSIONS In conclusion, the study reports the expression levels of 13 miRNAs in particular blood cell lineages as well as immortalized cell lines. We demonstrate that the expression profiles of these miRNAs may be used for discrimination of the hematopoietic cell lineages.
Collapse
Affiliation(s)
- Michaela Merkerova
- Department of Molecular Genetics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | | |
Collapse
|
531
|
Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, Liu CG, Croce CM, Condorelli G. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene 2008; 27:3845-55. [PMID: 18246122 DOI: 10.1038/onc.2008.6] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 12/21/2007] [Accepted: 01/04/2008] [Indexed: 01/13/2023]
Abstract
To define novel pathways that regulate susceptibility to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in non-small cell lung cancer (NSCLC), we have performed genome-wide expression profiling of microRNAs (miRs). We show that in TRAIL-resistant NSCLC cells, levels of different miRs are increased, and in particular, miR-221 and -222. We demonstrate that these miRs impair TRAIL-dependent apoptosis by inhibiting the expression of key functional proteins. Indeed, transfection with anti-miR-221 and -222 rendered CALU-1-resistant cells sensitive to TRAIL. Conversely, H460-sensitive cells treated with -221 and -222 pre-miRs become resistant to TRAIL. miR-221 and -222 target the 3'-UTR of Kit and p27(kip1) mRNAs, but interfere with TRAIL signaling mainly through p27(kip1). In conclusion, we show that high expression levels of miR-221 and -222 are needed to maintain the TRAIL-resistant phenotype, thus making these miRs as promising therapeutic targets or diagnostic tool for TRAIL resistance in NSCLC.
Collapse
Affiliation(s)
- M Garofalo
- Department of Cellular and Molecular Biology and Pathology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
532
|
Roehle A, Hoefig KP, Repsilber D, Thorns C, Ziepert M, Wesche KO, Thiere M, Loeffler M, Klapper W, Pfreundschuh M, Matolcsy A, Bernd HW, Reiniger L, Merz H, Feller AC. MicroRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas. Br J Haematol 2008; 142:732-44. [PMID: 18537969 DOI: 10.1111/j.1365-2141.2008.07237.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNA, miR) are negative regulators of gene expression that play an important role in diverse biological processes such as development, cell growth, apoptosis and haematopoiesis, suggesting their association with cancer. Here we analysed the expression signatures of 157 miRNAs in 58 diffuse large B-cell lymphoma (DLBCL), 46 follicular lymphoma (FL) and seven non-neoplastic lymph nodes (LN). Comparison of the possible combinations of DLBCL-, FL- and LN resulted in specific DLBCL- and FL-signatures, which include miRNAs with previously published function in haematopoiesis (MIRN150 and MIRN155) or tumour development (MIRN210, MIRN10A, MIRN17-5P and MIRN145). As compared to LN, some miRNAs are differentially regulated in both lymphoma types (MIRN155, MIRN210, MIRN106A, MIRN149 and MIRN139). Conversely, some miRNAs show lymphoma-specific aberrant expression, such as MIRN9/9*, MIRN301, MIRN338 and MIRN213 in FL and MIRN150, MIRN17-5P, MIRN145, MIRN328 and others in DLBCL. A classification tree was computed using four miRNAs (MIRN330, MIRN17-5P, MIRN106a and MIRN210) to correctly identify 98% of all 111 cases that were analysed in this study. Finally, eight miRNAs were found to correlate with event-free and overall survival in DLBCL including known tumour suppressors (MIRN21, MIRN127 and MIRN34a) and oncogenes (MIRN195 and MIRNLET7G).
Collapse
Affiliation(s)
- Anja Roehle
- Institute for Pathology, University Clinic Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
533
|
Abstract
Death receptors induce apoptosis through either the Type I or II pathway. In Type I cells, the initiator caspase-8 directly activates effector caspases such as caspase-3, whereas in Type II cells, the death signal is amplified through mitochondria thereby activating effector caspases causing cell death. Recently, there have been advances in elucidating the early events in the CD95 signaling pathways and how post-translational modifications regulate CD95 signaling. This review will focus on recent insights into the mechanisms of the two different types of CD95 signaling pathways, and will introduce miRNAs as regulators of death receptor signaling.
Collapse
Affiliation(s)
- Sun-Mi Park
- The Ben May Department for Cancer Research, The University of Chicago, 924 E 57th Street, Chicago, IL 60637, Phone: 773-702-4728, FAX: 773-702-3701
| | - Marcus E. Peter
- The Ben May Department for Cancer Research, The University of Chicago, 924 E 57th Street, Chicago, IL 60637, Phone: 773-702-4728, FAX: 773-702-3701
| |
Collapse
|
534
|
Ryazansky SS, Gvozdev VA. Small RNAs and cancerogenesis. BIOCHEMISTRY (MOSCOW) 2008; 73:514-27. [DOI: 10.1134/s0006297908050040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
535
|
Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi. BMC Genomics 2008; 9:244. [PMID: 18500992 PMCID: PMC2430712 DOI: 10.1186/1471-2164-9-244] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 05/23/2008] [Indexed: 12/29/2022] Open
Abstract
Background microRNAs (miRNAs) are non-coding RNAs that are now recognized as a major class of gene-regulating molecules widely distributed in metozoans and plants. miRNAs have been found to play important roles in apoptosis, cancer, development, differentiation, inflammation, longevity, and viral infection. There are a few reports describing miRNAs in the African malaria mosquito, Anopheles gambiae, on the basis of similarity to known miRNAs from other species. An. stephensi is the most important malaria vector in Asia and it is becoming a model Anopheline species for physiological and genetics studies. Results We report the cloning and characterization of 27 distinct miRNAs from 17-day old An. stephensi female mosquitoes. Seventeen of the 27 miRNAs matched previously predicted An. gambiae miRNAs, offering the first experimental verification of miRNAs from mosquito species. Ten of the 27 are miRNAs previously unknown to mosquitoes, four of which did not match any known miRNAs in any organism. Twenty-five of the 27 Anopheles miRNAs had conserved sequences in the genome of a divergent relative, the yellow fever mosquito Aedes aegypti. Two clusters of miRNAs were found within introns of orthologous genes in An. gambiae, Ae. aegypti, and Drosophila melanogaster. Mature miRNAs were detected in An. stephensi for all of the nine selected miRNAs, including the four novel miRNAs (miR-x1- miR-x4), either by northern blot or by Ribonuclease Protection Assay. Expression profile analysis of eight of these miRNAs revealed distinct expression patterns from early embryo to adult stages in An. stephensi. In both An. stephensi and Ae. aegypti, the expression of miR-x2 was restricted to adult females and predominantly in the ovaries. A significant reduction of miR-x2 level was observed 72 hrs after a blood meal. Thus miR-x2 is likely involved in female reproduction and its function may be conserved among divergent mosquitoes. A mosquito homolog of miR-14, a regulator of longevity and apoptosis in D. melanogaster, represented 25% of all sequenced miRNA clones from 17-day old An. stephensi female mosquitoes. An. stephensi miR-14 displayed a relatively strong signal from late embryonic to adult stages. miR-14 expression is consistent during the adult lifespan regardless of age, sex, and blood feeding status. Thus miR-14 is likely important across all mosquito life stages. Conclusion This study provides experimental evidence for 23 conserved and four new microRNAs in An. stephensi mosquitoes. Comparisons between miRNA gene clusters in Anopheles and Aedes mosquitoes, and in D. melanogaster suggest the loss or significant change of two miRNA genes in Ae. aegypti. Expression profile analysis of eight miRNAs, including the four new miRNAs, revealed distinct patterns from early embryo to adult stages in An. stephensi. Further analysis showed that miR-x2 is likely involved in female reproduction and its function may be conserved among divergent mosquitoes. Consistent expression of miR-14 suggests that it is likely important across all mosquito life stages from embryos to aged adults. Understanding the functions of mosquito miRNAs will undoubtedly contribute to a better understanding of mosquito biology including longevity, reproduction, and mosquito-pathogen interactions, which are important to disease transmission.
Collapse
|
536
|
Suomi S, Taipaleenmäki H, Seppänen A, Ripatti T, Väänänen K, Hentunen T, Säämänen AM, Laitala-Leinonen T. MicroRNAs regulate osteogenesis and chondrogenesis of mouse bone marrow stromal cells. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:177-91. [PMID: 19787082 PMCID: PMC2733092 DOI: 10.4137/grsb.s662] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that bind to target mRNA leading to translational arrest or mRNA degradation. To study miRNA-mediated regulation of osteogenesis and chondrogenesis, we compared the expression of 35 miRNAs in osteoblasts and chondroblasts derived from mouse marrow stromal cells (MSCs). Differentiation of MSCs resulted in up- or downregulation of several miRNAs, with miR-199a expression being over 10-fold higher in chondroblasts than in undifferentiated MSCs. In addition, miR-124a was strongly upregulated during chondrogenesis while the expression of miR-96 was substantially suppressed. A systems biological analysis of the potential miRNA target genes and their interaction networks was combined with promoter analysis. These studies link the differentially expressed miRNAs to collagen synthesis and hypoxia, key pathways related to bone and cartilage physiology. The global regulatory networks described here suggest for the first time how miRNAs and transcription factors are capable of fine-tuning the osteogenic and chondrogenic differentiation of mouse MSCs.
Collapse
Affiliation(s)
- Salla Suomi
- Bone Biology Research Consortium, Department of Anatomy, Institute of Biomedicine, University of Turku, FI-20520, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
537
|
Ko MH, Kim S, Hwang DW, Ko HY, Kim YH, Lee DS. Bioimaging of the unbalanced expression of microRNA9 and microRNA9* during the neuronal differentiation of P19 cells. FEBS J 2008; 275:2605-16. [DOI: 10.1111/j.1742-4658.2008.06408.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
538
|
Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RHA. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 2008; 5:e203. [PMID: 17676975 PMCID: PMC1925136 DOI: 10.1371/journal.pbio.0050203] [Citation(s) in RCA: 351] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 05/22/2007] [Indexed: 12/19/2022] Open
Abstract
Several vertebrate microRNAs (miRNAs) have been implicated in cellular processes such as muscle differentiation, synapse function, and insulin secretion. In addition, analysis of Dicer null mutants has shown that miRNAs play a role in tissue morphogenesis. Nonetheless, only a few loss-of-function phenotypes for individual miRNAs have been described to date. Here, we introduce a quick and versatile method to interfere with miRNA function during zebrafish embryonic development. Morpholino oligonucleotides targeting the mature miRNA or the miRNA precursor specifically and temporally knock down miRNAs. Morpholinos can block processing of the primary miRNA (pri-miRNA) or the pre-miRNA, and they can inhibit the activity of the mature miRNA. We used this strategy to knock down 13 miRNAs conserved between zebrafish and mammals. For most miRNAs, this does not result in visible defects, but knockdown of miR-375 causes defects in the morphology of the pancreatic islet. Although the islet is still intact at 24 hours postfertilization, in later stages the islet cells become scattered. This phenotype can be recapitulated by independent control morpholinos targeting other sequences in the miR-375 precursor, excluding off-target effects as cause of the phenotype. The aberrant formation of the endocrine pancreas, caused by miR-375 knockdown, is one of the first loss-of-function phenotypes for an individual miRNA in vertebrate development. The miRNA knockdown strategy presented here will be widely used to unravel miRNA function in zebrafish.
Collapse
Affiliation(s)
| | | | - René F Ketting
- Hubrecht Laboratory-KNAW, Utrecht, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| | - Jon D Moulton
- Gene Tools, Philomath, Oregon, United States of America
| | | |
Collapse
|
539
|
A gain-of-function suppressor screen for genes involved in dorsal-ventral boundary formation in the Drosophila wing. Genetics 2008; 178:307-23. [PMID: 18202376 DOI: 10.1534/genetics.107.081869] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Drosophila wing primordium is subdivided into a dorsal (D) and a ventral (V) compartment by the activity of the LIM-homeodomain protein Apterous in D cells. Cell interactions between D and V cells induce the activation of Notch at the DV boundary. Notch is required for the maintenance of the compartment boundary and the growth of the wing primordium. Beadex, a gain-of-function allele of dLMO, results in increased levels of dLMO protein, which interferes with the activity of Apterous and results in defects in DV axis formation. We performed a gain-of-function enhancer-promoter (EP) screen to search for suppressors of Beadex when overexpressed in D cells. We identified 53 lines corresponding to 35 genes. Loci encoding for micro-RNAs and proteins involved in chromatin organization, transcriptional control, and vesicle trafficking were characterized in the context of dLMO activity and DV boundary formation. Our results indicate that a gain-of-function genetic screen in a sensitized background, as opposed to classical loss-of-function-based screenings, is a very efficient way to identify redundant genes involved in a developmental process.
Collapse
|
540
|
Abstract
The modulation of gene expression by small non-coding RNAs is a recently discovered level of gene regulation in animals and plants. In particular, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs) have been implicated in various aspects of animal development, such as neuronal, muscle and germline development. During the past year, an improved understanding of the biological functions of small non-coding RNAs has been fostered by the analysis of genetic deletions of individual miRNAs in mammals. These studies show that miRNAs are key regulators of animal development and are potential human disease loci.
Collapse
|
541
|
Ricarte Filho JCM, Kimura ET. [MicroRNAs: novel class of gene regulators involved in endocrine function and cancer]. ACTA ACUST UNITED AC 2008; 50:1102-7. [PMID: 17221118 DOI: 10.1590/s0004-27302006000600018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 08/11/2006] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) represent a novel class of endogenous approximately 22-nucleotide RNAs that negatively regulate gene expression by inhibiting translation of target RNAs. Discovered just over a decade ago in Caenorhabditis elegans, miRNAs are now recognized as one of the major regulatory gene families in plants and animals. In the human genome, 462 miRNA genes have been discovered and the estimated number of miRNAs is as high as 1000. Bioinformatics analysis indicated that a unique miRNA acts on several mRNA, influencing multiple signaling pathways concomitantly, thus presenting enormous regulatory potential. Although the biology of miRNAs is not well understood, recent evidences have linked these molecules to diverse biological processes. Moreover, aberrant expression of miRNAs has been associated to human disease, including that related to the endocrine system and cancer.
Collapse
Affiliation(s)
- Júlio C M Ricarte Filho
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo
| | | |
Collapse
|
542
|
Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res 2008; 23:287-95. [PMID: 18197755 DOI: 10.1359/jbmr.071011] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED The molecular mechanisms that regulate hADSC differentiation toward osteogenic precursors and subsequent bone-forming osteoblasts is unknown. Using osteoblast precursors obtained from subcutaneous human adipose tissue, we observed that microRNA-26a modulated late osteoblasts differentiation by targeting the SMAD1 transcription factor. INTRODUCTION Elucidation of the molecular mechanisms guiding human adipose tissue-derived stem cells (hADSCs) differentiation is of extreme importance for improving the treatment of bone-related diseases such as osteoporosis. The aim of this study was to identify microRNA as a regulator of the osteogenic differentiation of hADSCs. MATERIALS AND METHODS Osteoblast differentiation of hADSCs was induced by treatment with dexamethasone, ascorbic acid, and beta-glycerol phosphate. The expression of osteoblastic phenotype was evaluated after the induction by simultaneous monitoring of alkaline phosphatase activity, the expression of genes involved in osteoblastic differentiation by real-time RT-PCR, and mineralization at the same time. MicroRNA expression was determined by Northern blot, and transfection of both antisense miR-RNA and sensor plasmids was done to validate the inhibitory role of microRNA during hADSC osteogenesis. Western blot was used to determine the expression levels of the SMAD1 protein. qRT-PCR analysis was used to compare the expression patterns of osteoblastic markers in transfected cells. RESULTS AND CONCLUSIONS We analyzed the role of microRNA 26a (miR-26a) during differentiation of hADSCs. Northern blot analysis of miR-26a during hADSC differentiation showed increased expression, whereas expression of the SMAD1 protein was complementary to that of miR-26a. Because the highest expression of miR-26a and the lowest expression of SMAD1 protein were reached at hADSC terminal differentiation, we carried out our study during the late stages of hADSC differentiation. The inhibition of miR-26a, by 2'-O-methyl-antisense RNA, increased protein levels of its predicted target, SMAD1 transcription factor, in treated osteoblasts, upregulating bone marker genes and thus enhancing osteoblast differentiation. Our data suggest a role for miR-26a in the differentiation induced by treatment with dexamethasone, ascorbic acid, and beta-glycerol phosphate of hADSCs toward the osteogenic lineage by targeting its predicted target, the SMAD1 protein. This study contributes to a better knowledge of molecular mechanisms governing hADSC differentiation by proposing a microRNA-based control of late differentiation.
Collapse
|
543
|
Abstract
MicroRNAs (miRNAs) are an abundant class of evolutionarily conserved small non-coding RNAs that are thought to control gene expression by targeting mRNAs for degradation or translational repression. Emerging evidence suggests that miRNA-mediated gene regulation represents a fundamental layer of genetic programmes at the post-transcriptional level and has diverse functional roles in animals. Here, we provide an overview of the mechanisms by which miRNAs regulate gene expression, with specific focus on the role of miRNAs in regulating the development of immune cells and in modulating innate and adaptive immune responses.
Collapse
Affiliation(s)
- Harvey F Lodish
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA.
| | | | | | | |
Collapse
|
544
|
Fabani MM, Gait MJ. miR-122 targeting with LNA/2'-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA (NEW YORK, N.Y.) 2008; 14:336-46. [PMID: 18073344 PMCID: PMC2212241 DOI: 10.1261/rna.844108] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 11/01/2007] [Indexed: 05/08/2023]
Abstract
MicroRNAs are small noncoding RNAs that regulate many cellular processes in a post-transcriptional mode. MicroRNA knockdown by antisense oligonucleotides is a useful strategy to explore microRNA functionality and as potential therapeutics. MicroRNA-122 (miR-122) is a liver-specific microRNA, the main function of which has been linked with lipid metabolism and liver homeostasis. Here, we show that lipofection of an antisense oligonucleotide based on a Locked Nucleic Acids (LNA)/2'-O-methyl mixmer or electroporation of a Peptide Nucleic Acid (PNA) oligomer is effective at blocking miR-122 activity in human and rat liver cells. These oligonucleotide analogs, evaluated for the first time in microRNA inhibition, are more effective than standard 2'-O-methyl oligonucleotides in binding and inhibiting microRNA action. We also show that microRNA inhibition can be achieved without the need for transfection or electroporation of the human or rat cell lines, by conjugation of an antisense PNA to the cell-penetrating peptide R6-Penetratin, or merely by linkage to just four Lys residues, highlighting the potential of PNA for future therapeutic applications as well as for studying microRNA function.
Collapse
Affiliation(s)
- Martin M Fabani
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | | |
Collapse
|
545
|
Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DLW, Au GKH, Liu CG, Calin GA, Croce CM, Harris CC. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008; 299:425-36. [PMID: 18230780 PMCID: PMC2614237 DOI: 10.1001/jama.299.4.425] [Citation(s) in RCA: 1193] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT MicroRNAs have potential as diagnostic biomarkers and therapeutic targets in cancer. No study has evaluated the association between microRNA expression patterns and colon cancer prognosis or therapeutic outcome. OBJECTIVE To identify microRNA expression patterns associated with colon adenocarcinomas, prognosis, or therapeutic outcome. DESIGN, SETTING, AND PATIENTS MicroRNA microarray expression profiling of tumors and paired nontumorous tissues was performed on a US test cohort of 84 patients with incident colon adenocarcinoma, recruited between 1993 and 2002. We evaluated associations with tumor status, TNM staging, survival prognosis, and response to adjuvant chemotherapy. Associations were validated in a second, independent Chinese cohort of 113 patients recruited between 1991 and 2000, using quantitative reverse transcription polymerase chain reaction assays. The final date of follow-up was December 31, 2005, for the Maryland cohort and August 16, 2004, for the Hong Kong cohort. MAIN OUTCOME MEASURES MicroRNAs that were differentially expressed in tumors and microRNA expression patterns associated with survival using cancer-specific death as the end point. RESULTS Thirty-seven microRNAs were differentially expressed in tumors from the test cohort. Selected for validation were miR-20a, miR-21, miR-106a, miR-181b, and miR-203, and all 5 were enriched in tumors from the validation cohort (P < .001). Higher miR-21 expression was present in adenomas (P = .006) and in tumors with more advanced TNM staging (P < .001). In situ hybridization demonstrated miR-21 to be expressed at high levels in colonic carcinoma cells. The 5-year cancer-specific survival rate was 57.5% for the Maryland cohort and was 49.5% for the Hong Kong cohort. High miR-21 expression was associated with poor survival in both the training (hazard ratio, 2.5; 95% confidence interval, 1.2-5.2) and validation cohorts (hazard ratio, 2.4; 95% confidence interval, 1.4-3.9), independent of clinical covariates, including TNM staging, and was associated with a poor therapeutic outcome. CONCLUSIONS Expression patterns of microRNAs are systematically altered in colon adenocarcinomas. High miR-21 expression is associated with poor survival and poor therapeutic outcome.
Collapse
Affiliation(s)
- Aaron J Schetter
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
546
|
Lee JY, Kim S, Hwang DW, Jeong JM, Chung JK, Lee MC, Lee DS. Development of a Dual-Luciferase Reporter System for In Vivo Visualization of MicroRNA Biogenesis and Posttranscriptional Regulation. J Nucl Med 2008; 49:285-94. [DOI: 10.2967/jnumed.107.042507] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
547
|
Kanellopoulou C, Monticelli S. A role for microRNAs in the development of the immune system and in the pathogenesis of cancer. Semin Cancer Biol 2008; 18:79-88. [PMID: 18291671 DOI: 10.1016/j.semcancer.2008.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs are a growing class of endogenous small non-coding RNAs that regulate gene expression by binding to target messenger RNAs and inducing translational repression, cleavage or destabilization of the target. Because each miRNA potentially can regulate expression of a distinct set of genes, it is conceivable that the differential expression of different miRNAs might profoundly influence the repertoire of genes that are expressed during development, differentiation or disease. Here, we provide background on the biogenesis and function of miRNAs, and discuss how miRNA-mediated regulation can influence tumorigenesis as well as normal development and function of cells of the immune system.
Collapse
Affiliation(s)
- Chryssa Kanellopoulou
- The Dana Farber Cancer Institute, Department of Cancer Biology, Harvard Medical School, Department of Medicine, Boston, MA 02115, United States
| | | |
Collapse
|
548
|
Abstract
The heart is among the most conserved organs of the body and is susceptible to defects more than any other organ. Heart malformations, in fact, occur in roughly 1% of newborns. Moreover, cardiovascular disease arising during adult life is among the main causes of morbidity and mortality in developed countries. It is not surprising, therefore, that much effort is being channeled into understanding the development, physiology, and pathology of the cardiovascular system. MicroRNAs, a newly discovered class of small ribonucleotide-based regulators of gene expression, are being implicated in an increasing number of biological processes, and the study of their role in cardiovascular biology is just beginning. Here, we briefly overview microRNAs in general and report on the recent findings regarding their importance for the heart and vasculature, in particular. The new insights that are being gained will permit not only a greater understanding of cardiovascular pathologies but also, hopefully, the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Michael V G Latronico
- Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, Scientific and Technology Pole, Milan, Italy
| | | | | |
Collapse
|
549
|
Nelson PT, Wang WX, Rajeev BW. MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 2008; 18:130-8. [PMID: 18226108 PMCID: PMC2859437 DOI: 10.1111/j.1750-3639.2007.00120.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 11/16/2007] [Indexed: 12/11/2022] Open
Abstract
Aging-related neurodegenerative diseases (NDs) are the culmination of many different genetic and environmental influences. Prior studies have shown that RNAs are pathologically altered during the inexorable course of some NDs. Recent evidence suggests that microRNAs (miRNAs) may be a contributing factor in neurodegeneration. miRNAs are brain-enriched, small ( approximately 22 nucleotides) non-coding RNAs that participate in mRNA translational regulation. Although discovered in the framework of worm development, miRNAs are now appreciated to play a dynamic role in many mammalian brain-related biochemical pathways, including neuroplasticity and stress responses. Research about miRNAs in the context of neurodegeneration is accumulating rapidly, and the goal of this review is to provide perspective for these new data that may be helpful to specialists in either field. An overview is provided about the normal functions for miRNAs, including some of the newer concepts related to the human brain. Recently published studies pertaining to the roles of miRNAs in NDs--including Alzheimer's disease, Parkinson's disease and triplet repeat disorders-are described. Finally, a discussion is included with theoretical syntheses and possible future directions in exploring the nexus between miRNA and ND research.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
550
|
Abstract
Elucidation of the molecular basis of disease depends upon continued progress in defining the mechanisms by which genomic information is encoded and expressed. Transcription factor-mediated regulation of mRNA is clearly a major source of regulatory control and has been well studied. The more recent discovery of small RNAs as key regulators of gene function has introduced a new level and mechanism of regulation. Mammalian genomes contain hundreds of microRNAs (miRNAs) that each can potentially downregulate many target genes. This suggests a new source for broad control over gene regulation and has inspired extensive interest in defining miRNAs and their functions. Here, the identification of miRNAs, their biogenesis, and some examples of miRNA effects on biology and disease are reviewed and discussed. Emphasis is placed on the possible role for miRNA in nervous system development, function, and disease.
Collapse
Affiliation(s)
- Douglas J Guarnieri
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511, USA.
| | | |
Collapse
|