501
|
Abstract
Even though phosphorylation of phosphatidylinositols by phosphoinositide 3-kinase (PI3K) has an important and pervasive role in the nervous system, there is little known about the phosphatases that reverse this reaction. Such a phosphatase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN), was cloned as a tumor suppressor for gliomas. PTEN is expressed in most, if not all, neurons and is localized in the nucleus and cytoplasm. Recently, a series of papers using PTEN conditional knockouts has greatly extended our knowledge of PTEN's role during development. Loss of PTEN results in disorganization of the brain, probably due to a flaw in cell migration. In addition, there is a gradual increase in the size of neuronal soma, mimicking Lhermitte-Duclos disease. Recent experiments in our laboratory with adult PTEN +/- mice demonstrate that PTEN regulates migration of precursor cells in the subventricular zone to the olfactory bulb. We also found that PTEN haploinsufficiency can protect precursor cells from apoptosis in response to oxidative stress. Collectively, these studies demonstrate that PTEN does much more than suppressing tumors. It is a master regulator in developing and adult brain.
Collapse
Affiliation(s)
- Li Li
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
502
|
Freeburn RW, Wright KL, Burgess SJ, Astoul E, Cantrell DA, Ward SG. Evidence that SHIP-1 contributes to phosphatidylinositol 3,4,5-trisphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5441-50. [PMID: 12421919 DOI: 10.4049/jimmunol.169.10.5441] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The leukemic T cell line Jurkat is deficient in protein expression of the lipid phosphatases Src homology 2 domain containing inositol polyphosphate phosphatase (SHIP) and phosphatase and tensin homolog deleted on chromosome ten (PTEN). We examined whether the lack of expression of SHIP-1 and PTEN is shared by other leukemic T cell lines and PBLs. Analysis of a range of cell lines and PBLs revealed that unlike Jurkat cells, two other well-characterized T cell lines, namely CEM and MOLT-4 cells, expressed the 5'-phosphatase SHIP at the protein level. However, the 3-phosphatase PTEN was not expressed by CEM or MOLT-4 cells or Jurkat cells. The HUT78 cell line and PBLs expressed both SHIP and PTEN. Jurkat cells exhibited high basal levels of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3); the lipid substrate for both SHIP and PTEN) as well as saturated protein kinase B (PKB) phosphorylation. Lower levels of PI(3,4,5)P(3) and higher levels of phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) as well as unsaturated constitutive phosphorylation of PKB were observed in CEM and MOLT-4 cells compared with Jurkat cells. In PBLs and HUT78 cells which express both PTEN and SHIP-1, there was no constitutive PI(3,4,5)P(3) or PKB phosphorylation, and receptor stimuli were able to elicit robust phosphorylation of PKB. Expression of a constitutively active SHIP-1 protein in Jurkat cells was sufficient to reduce both constitutive PKB membrane localization and PKB phosphorylation. Together, these data indicate important differences between T leukemic cells as well as PBLs, regarding expression of key lipid phosphatases. This study provides the first evidence that SHIP-1 can influence the constitutive levels of PI(3,4,5)P(3) and the activity of downstream phosphoinositide 3-kinase effectors in T lymphocytes.
Collapse
Affiliation(s)
- Robin W Freeburn
- Department of Pharmacy and Pharmacology, Bath University, Claverton Down, Bath, BA2 7AY, UK
| | | | | | | | | | | |
Collapse
|
503
|
Kandel ES, Skeen J, Majewski N, Di Cristofano A, Pandolfi PP, Feliciano CS, Gartel A, Hay N. Activation of Akt/protein kinase B overcomes a G(2)/m cell cycle checkpoint induced by DNA damage. Mol Cell Biol 2002; 22:7831-41. [PMID: 12391152 PMCID: PMC134727 DOI: 10.1128/mcb.22.22.7831-7841.2002] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of Akt, or protein kinase B, is frequently observed in human cancers. Here we report that Akt activation via overexpression of a constitutively active form or via the loss of PTEN can overcome a G(2)/M cell cycle checkpoint that is induced by DNA damage. Activated Akt also alleviates the reduction in CDC2 activity and mitotic index upon exposure to DNA damage. In addition, we found that PTEN null embryonic stem (ES) cells transit faster from the G(2)/M to the G(1) phase of the cell cycle when compared to wild-type ES cells and that inhibition of phosphoinositol-3-kinase (PI3K) in HEK293 cells elicits G(2) arrest that is alleviated by activated Akt. Furthermore, the transition from the G(2)/M to the G(1) phase of the cell cycle in Akt1 null mouse embryo fibroblasts (MEFs) is attenuated when compared to that of wild-type MEFs. These results indicate that the PI3K/PTEN/Akt pathway plays a role in the regulation of G(2)/M transition. Thus, cells expressing activated Akt continue to divide, without being eliminated by apoptosis, in the presence of continuous exposure to mutagen and accumulate mutations, as measured by inactivation of an exogenously expressed herpes simplex virus thymidine kinase (HSV-tk) gene. This phenotype is independent of p53 status and cannot be reproduced by overexpression of Bcl-2 or Myc and Bcl-2 but seems to counteract a cell cycle checkpoint mediated by DNA mismatch repair (MMR). Accordingly, restoration of the G(2)/M cell cycle checkpoint and apoptosis in MMR-deficient cells, through reintroduction of the missing component of MMR, is alleviated by activated Akt. We suggest that this new activity of Akt in conjunction with its antiapoptotic activity may contribute to genetic instability and could explain its frequent activation in human cancers.
Collapse
Affiliation(s)
- Eugene S Kandel
- Department of Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | | | |
Collapse
|
504
|
Crackower MA, Oudit GY, Kozieradzki I, Sarao R, Sun H, Sasaki T, Hirsch E, Suzuki A, Shioi T, Irie-Sasaki J, Sah R, Cheng HYM, Rybin VO, Lembo G, Fratta L, Oliveira-dos-Santos AJ, Benovic JL, Kahn CR, Izumo S, Steinberg SF, Wymann MP, Backx PH, Penninger JM. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 2002; 110:737-49. [PMID: 12297047 DOI: 10.1016/s0092-8674(02)00969-8] [Citation(s) in RCA: 449] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The PTEN/PI3K signaling pathway regulates a vast array of fundamental cellular responses. We show that cardiomyocyte-specific inactivation of tumor suppressor PTEN results in hypertrophy, and unexpectedly, a dramatic decrease in cardiac contractility. Analysis of double-mutant mice revealed that the cardiac hypertrophy and the contractility defects could be genetically uncoupled. PI3Kalpha mediates the alteration in cell size while PI3Kgamma acts as a negative regulator of cardiac contractility. Mechanistically, PI3Kgamma inhibits cAMP production and hypercontractility can be reverted by blocking cAMP function. These data show that PTEN has an important in vivo role in cardiomyocyte hypertrophy and GPCR signaling and identify a function for the PTEN-PI3Kgamma pathway in the modulation of heart muscle contractility.
Collapse
Affiliation(s)
- Michael A Crackower
- IMBA, Institute for Molecular Biotechnology of the Austrian Academy of Sciences, c/o Dr. Bohr Gasse 7, A-1030, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
505
|
Santos J, Montagutelli X, Acevedo A, López P, Vaquero C, Fernández M, Arnau MR, Szatanik M, Salido E, Guénet JL, Fernández-Piqueras J. A new locus for resistance to gamma-radiation-induced thymic lymphoma identified using inter-specific consomic and inter-specific recombinant congenic strains of mice. Oncogene 2002; 21:6680-3. [PMID: 12242666 DOI: 10.1038/sj.onc.1205846] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Revised: 07/02/2002] [Accepted: 07/05/2002] [Indexed: 11/09/2022]
Abstract
Mice of the C57BL/6J inbred strain develop thymic lymphomas at very high frequency after acute gamma-irradiation, while mice of several inbred strains derived from the wild progenitor of the Mus spretus species and their F1 hybrids with C57BL/6J appear extremely resistant. Analysis of the genetic determinism of the gamma-radiation-induced thymic lymphoma (RITL) resistance with the help of inter-specific consomic strains (ICS), which carry a single introgressed Mus spretus chromosome on a C57BL/6J genetic background, provide significant evidence for the existence of a thymic lymphoma resistance (Tlyr1) locus on chromosome 19. The subsequent analysis of the backcross progeny resulting from a cross between consomic mice heterozygous for the Mus spretus chromosome 19 and C57BL/6J mice, together with the study of inter-specific recombinant congenic strains (IRCS), suggest that this Tlyr1 locus maps within the D19Mit60-D19Mit40 chromosome interval. In addition to the discovery of a new locus controlling RITL development, our study emphasizes the value of ICS and IRCS for the genetic analysis of cancer predisposition.
Collapse
Affiliation(s)
- Javier Santos
- Departamento de Biologia, Laboratorio Genética Molecular Humana, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049-Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
506
|
Wang Q, Wang X, Hernandez A, Hellmich MR, Gatalica Z, Evers BM. Regulation of TRAIL expression by the phosphatidylinositol 3-kinase/Akt/GSK-3 pathway in human colon cancer cells. J Biol Chem 2002; 277:36602-10. [PMID: 12140294 DOI: 10.1074/jbc.m206306200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The intestinal mucosa is a rapidly-renewing tissue characterized by cell proliferation, differentiation, and eventual apoptosis with progression up the vertical gut axis. The inhibition of phosphatidylinositol (PI) 3-kinase by specific chemical inhibitors or overexpression of the lipid phosphatase PTEN enhances enterocyte-like differentiation in human colon cancer cell models of intestinal differentiation. In this report, we examined the role of PI 3-kinase inhibition in the regulation of apoptotic gene expression in human colon cancer cell lines HT29, HCT-116, and Caco-2. Inhibition of PI 3-kinase with the chemical inhibitor wortmannin increased TNF-related apoptosis-inducing ligand (TRAIL; Apo2) mRNA and protein expression. Similarly, overexpression of the tumor suppressor protein PTEN, an antagonist of PI 3-kinase signaling, resulted in the increased expression of TRAIL. Activation of PI 3-kinase by pretreatment with IGF-1, a gut trophic factor, markedly attenuated the induction of TRAIL by wortmannin. Moreover, overexpression of active Akt, a downstream target of PI 3-kinase, or inhibition of GSK-3, a downstream target of active Akt, completely blocked the induction of TRAIL by wortmannin. Consistent with findings that TRAIL is induced by agents that enhance intestinal cell differentiation, TRAIL expression was specifically localized to the differentiated cells of the colon and small bowel. Adenovirus-mediated overexpression of TRAIL increased DNA fragmentation of HCT-116 cells, demonstrating the functional activity of TRAIL induction. Taken together, our findings demonstrate induction of the TRAIL by inhibition of PI 3-kinase in colon cancer cell lines. These results identify TRAIL, a novel TNF family member, as a downstream target of the PI 3-kinase/Akt/GSK-3 pathway and may have important implications for better understanding the role of the PI 3-kinase pathway in intestinal cell homeostasis.
Collapse
Affiliation(s)
- Qingding Wang
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | |
Collapse
|
507
|
Li G, Robinson GW, Lesche R, Martinez-Diaz H, Jiang Z, Rozengurt N, Wagner KU, Wu DC, Lane TF, Liu X, Hennighausen L, Wu H. Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development 2002; 129:4159-70. [PMID: 12163417 DOI: 10.1242/dev.129.17.4159] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PTEN tumor suppressor is frequently mutated in human cancers, including breast cancers. Female patients with inherited PTEN mutations suffer from virginal hypertrophy of the breast with high risk of malignant transformation. However, the exact mechanisms of PTEN in controlling mammary gland development and tumorigenesis are unclear. In this study, we generated mice with a mammary-specific deletion of the Pten gene. Mutant mammary tissue displayed precocious lobulo-alveolar development, excessive ductal branching, delayed involution and severely reduced apoptosis. Pten null mammary epithelial cells were disregulated and hyperproliferative. Mutant females developed mammary tumors early in life. Similar phenotypes were observed in Pten-null mammary epithelia that had been transplanted into wild-type stroma, suggesting that PTEN plays an essential and cell-autonomous role in controlling the proliferation, differentiation and apoptosis of mammary epithelial cells.
Collapse
Affiliation(s)
- Gang Li
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, 650 Circle Drive South, 90095-1735, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
508
|
Abstract
The PTEN tumor suppressor gene encodes a phosphatidylinositol 3'-phosphatase that is inactivated in a high percentage of human tumors, particularly glioblastoma, melanoma, and prostate and endometrial carcinoma. Previous studies showed that PTEN is a seryl phosphoprotein and a substrate of protein kinase CK2 (CK2). However, the sites in PTEN that are phosphorylated in vivo have not been identified directly, nor has the effect of phosphorylation on PTEN catalytic activity been reported. We used mass spectrometric methods to identify Ser(370) and Ser(385) as in vivo phosphorylation sites of PTEN. These sites also are phosphorylated by CK2 in vitro, and phosphorylation inhibits PTEN activity towards its substrate, PIP3. We also identify a novel in vivo phosphorylation site, Thr(366). Following transient over-expression, a fraction of CK2 and PTEN co-immunoprecipitate. Moreover, pharmacological inhibition of CK2 activity leads to decreased Akt activation in PTEN+/+ but not PTEN-/- fibroblasts. Our results contrast with previous assignments of PTEN phosphorylation sites based solely on mutagenesis approaches, suggest that CK2 is a physiologically relevant PTEN kinase, and raise the possibility that CK2-mediated inhibition of PTEN plays a role in oncogenesis.
Collapse
Affiliation(s)
- Susan J Miller
- Cancer Biology Program, Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
509
|
Choi Y, Zhang J, Murga C, Yu H, Koller E, Monia BP, Gutkind JS, Li W. PTEN, but not SHIP and SHIP2, suppresses the PI3K/Akt pathway and induces growth inhibition and apoptosis of myeloma cells. Oncogene 2002; 21:5289-300. [PMID: 12149650 DOI: 10.1038/sj.onc.1205650] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Revised: 05/03/2002] [Accepted: 05/07/2002] [Indexed: 02/07/2023]
Abstract
Expression of PTEN tumor suppressor gene has been known to dephosphorylate the phosphatidylinositol 3' kinase (PI3K) products on the 3 prime inositol ring, resulting in reduced Akt activation. Loss of PTEN expression in OPM2 and delta47 human myeloma lines led to high Akt activity toward insulin-like growth factor I (IGF-I). In contrast, mouse plasma cell tumor (PCT) lines, expressing wild type PTEN, did not respond to IGF-I for Akt activation. We demonstrated here that endogenous PTEN played a negative role in controlling Akt activity in both mouse PCT and NIH3T3 fibroblast lines by using anti-sense oligonucleotides against PTEN. To determine the role of src-homology 2-containing inositol 5' phosphatase (SHIP) in regulating the PI3K/Akt pathway, we manipulated its expression by down-regulation and overexpression in myeloma, PCT and NIH3T3 lines and analysed Akt activation. Our results showed that SHIP, unlike PTEN, did not affect Akt activity in all systems analysed, despite its ability to dephosphorylate a PI3K product. Although SHIP2 expression resulted in suppression of interleukin-6-mediated mitogen-activated protein kinase activation, expression of SHIP and SHIP2 in a PTEN-null myeloma line did not suppress Akt activity. Biologically, expression of only PTEN, but not SHIP and SHIP2, resulted in growth inhibition and increased apoptosis in OPM2 myeloma line. Together, our results have established the role of PTEN, but not SHIP and SHIP2, in negatively regulating the PI3K/Akt cascade and in myeloma leukemogenesis.
Collapse
Affiliation(s)
- Yong Choi
- Lomabardi Cancer Center, Georgetown University Medical Center, Washington, District of Colombia 20007, USA
| | | | | | | | | | | | | | | |
Collapse
|
510
|
PI3K Blockade by Ad-PTEN Inhibits Invasion and Induces Apoptosis in Radial Growth Phase and Metastatic Melanoma Cells. Mol Med 2002. [DOI: 10.1007/bf03402025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
511
|
Fox JA, Ung K, Tanlimco SG, Jirik FR. Disruption of a single Pten allele augments the chemotactic response of B lymphocytes to stromal cell-derived factor-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:49-54. [PMID: 12077227 DOI: 10.4049/jimmunol.169.1.49] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The tumor suppressor, Pten, has emerged as a critical negative regulator of phosphatidylinositol-3-kinase-dependent intracellular signaling pathways responsible for phenomena such as cellular adhesion, proliferation, and apoptosis. Herein, we present evidence that Pten regulates chemokine-dependent events in B lymphocytes. Primary B cells isolated from Pten(+/-) mice demonstrated increased responsiveness to stromal cell-derived factor-1-induced chemotaxis. This was accompanied by an elevated level of protein kinase B phosphorylation on Ser(473). Our results suggest not only that Pten may be an important regulator of stromal cell-derived factor-1-directed chemotaxis, but also that Pten heterozygosity is associated with increased cellular sensitivity to this chemokine, likely via dysregulation of events lying downstream of phosphatidylinositol-3-kinase. These observations suggest a mechanism by which loss of a single Pten allele may confer a selective advantage on cells during multistep tumor progression.
Collapse
Affiliation(s)
- Joanne A Fox
- Center for Molecular Medicine and Therapeutics, British Columbia Research Institute for Children's and Women's Health, and Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
512
|
Affiliation(s)
- Igor Vivanco
- Department of Medicine and Molecular Biology Institute, UCLA School of Medicine, 11-935 Factor Building, 10833 LeConte Avenue, Los Angeles, California 90095, USA
| | | |
Collapse
|
513
|
Herzig M, Christofori G. Recent advances in cancer research: mouse models of tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1602:97-113. [PMID: 12020798 DOI: 10.1016/s0304-419x(02)00039-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past 20 years, cancer research has gained major insights into the complexity of tumor development, in particular into the molecular mechanisms that underlie the progressive transformation of normal cells into highly malignant derivatives. It is estimated that the transformation of a normal cell to a malignant tumor cell is dependent upon a small number of genetic alterations, estimated to be within the range of four to seven rate-limiting events. Critical events in the evolution of neoplastic disease include the loss of proliferative control, the failure to undergo programmed cell death (apoptosis), the onset of neoangiogenesis, tissue remodeling, invasion of tumor cells into surrounding tissue and, finally, metastatic dissemination of tumor cells to distant organs. In patients, the molecular analysis of these multiple steps is hampered by the unavailability of tumor biopsies from all tumor stages. In contrast, mouse models of tumorigenesis allow the reproducible isolation of all tumor stages, including normal tissue, which are then amenable to pathological, genetic and biochemical analyses and, hence, have been instrumental in investigating cancer-related genes and their role in carcinogenesis. In this review, we discuss mouse tumor models that have contributed substantially to the identification and characterization of novel tumor pathways. In particular, we focus on transgenic and knockout mouse models that closely mimic human cancer and thus can be used as model systems for cancer research.
Collapse
|
514
|
Abstract
Immune cells are activated as a result of productive interactions between ligands and various receptors known as immunoreceptors. These receptors function by recruiting cytoplasmic protein tyrosine kinases, which trigger a unique phosphorylation signal leading to cell activation. In the recent past, there has been increasing interest in elucidating the processes involved in the negative regulation of immunoreceptor-mediated signal transduction. Evidence is accumulating that immunoreceptor signaling is inhibited by complex and highly regulated mechanisms that involve receptors, protein tyrosine kinases, protein tyrosine phosphatases, lipid phosphatases, ubiquitin ligases, and inhibitory adaptor molecules. Genetic evidence indicates that this inhibitory machinery is crucial for normal immune cell homeostasis.
Collapse
Affiliation(s)
- André Veillette
- Laboratory of Molecular Oncology, IRCM, 110 Pine Avenue West, Montréal, Québec, Canada H2W 1R7.
| | | | | |
Collapse
|
515
|
Sternberger M, Schmiedeknecht A, Kretschmer A, Gebhardt F, Leenders F, Czauderna F, Von Carlowitz I, Engle M, Giese K, Beigelman L, Klippel A. GeneBlocs are powerful tools to study and delineate signal transduction processes that regulate cell growth and transformation. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:131-43. [PMID: 12162696 DOI: 10.1089/108729002760220734] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The study of signal transduction processes using antisense oligonucleotides is often complicated by low intracellular stability of the antisense reagents or by nonspecific effects that cause toxicity. Here, we introduce a new class of antisense molecules, so-called GeneBlocs, which are characterized by improved stability, high target RNA specificity, and low toxicity. GeneBlocs allow for efficient downregulation of mRNA expression at nanomolar concentrations, and they do not interfere with cell proliferation. We demonstrate these beneficial properties using a positive readout system. GeneBloc-mediated inhibition of tumor suppressor PTEN (phosphatase and tension homologue detected on chromosome 10) expression leads to hyperactivation of the phosphatidylinositol (PI) 3-kinase pathway, thereby mimicking the loss of PTEN function and its early consequences observed in mammalian cancer cells. Specifically, cells treated with PTEN GeneBlocs show functional activation of Akt, a downstream effector of PI 3-kinase signaling, and exhibit enhanced proliferation when seeded on a basement membrane matrix. In addition, GeneBlocs targeting the catalytic subunit of PI 3-kinase, p110, specifically inhibit signal transduction of endogenous or recombinant PI 3-kinase. This demonstrates that GeneBlocs are powerful tools to analyze and to modulate signal transduction processes and, therefore, represent alternative reagents for the validation of gene function.
Collapse
|
516
|
Stiles B, Gilman V, Khanzenzon N, Lesche R, Li A, Qiao R, Liu X, Wu H. Essential role of AKT-1/protein kinase B alpha in PTEN-controlled tumorigenesis. Mol Cell Biol 2002; 22:3842-51. [PMID: 11997518 PMCID: PMC133830 DOI: 10.1128/mcb.22.11.3842-3851.2002] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2001] [Revised: 01/08/2002] [Accepted: 02/15/2002] [Indexed: 11/20/2022] Open
Abstract
PTEN is mutated at high frequency in many primary human cancers and several familial cancer predisposition disorders. Activation of AKT is a common event in tumors in which the PTEN gene has been inactivated. We previously showed that deletion of the murine Pten gene in embryonic stem (ES) cells led to increased phosphatidylinositol triphosphate (PIP(3)) accumulation, enhanced entry into S phase, and better cell survival. Since PIP(3) controls multiple signaling molecules, it was not clear to what degree the observed phenotypes were due to deregulated AKT activity. In this study, we mutated Akt-1 in Pten(-/-) ES cells to directly assess the role of AKT-1 in PTEN-controlled cellular processes, such as cell proliferation, cell survival, and tumorigenesis in nude mice. We showed that AKT-1 is one of the major downstream effectors of PTEN in ES cells and that activation of AKT-1 is required for both the cell survival and cell proliferation phenotypes observed in Pten(-/-) ES cells. Deletion of Akt-1 partially reverses the aggressive growth of Pten(-/-) ES cells in vivo, suggesting that AKT-1 plays an essential role in PTEN-controlled tumorigenesis.
Collapse
Affiliation(s)
- Bangyan Stiles
- Howard Hughes Medical Institute and Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, California 90095-1735, USA
| | | | | | | | | | | | | | | |
Collapse
|
517
|
Bauer B, Baier G. Protein kinase C and AKT/protein kinase B in CD4+ T-lymphocytes: new partners in TCR/CD28 signal integration. Mol Immunol 2002; 38:1087-99. [PMID: 12044776 DOI: 10.1016/s0161-5890(02)00011-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T-cell biological responses appear to involve the complex interaction of T-cell surface receptors, intracellular signaling molecules and the cytoskeleton. Both the serine/threonine protein kinase families protein kinase C (PKC) and protein kinase B or RAC-PK (AKT/PKB) have been implicated in signal transmission leading to activation, differentiation as well as cellular survival of T-lymphocytes. The PKC gene family consists of nine diverse isotypes (PKC alpha, beta, gamma, delta, epsilon, xi, eta, theta; and iota), the AKT/PKB gene family includes three kinases (AKT1/PKB alpha, AKT2/PKB beta, AKT3/PKB gamma). Here, we attempt to summarize the regulation as well as downstream signaling pathways of PKC and AKT/PKB isotypes, that may act additive in TCR/CD28 induced proliferation and survival of peripheral CD4+ T-lymphocytes.
Collapse
Affiliation(s)
- Birgit Bauer
- Institute for Medical Biology and Human Genetics, University of Innsbruck, Schoepfstr. 41, A-6020 Innsbruck, Austria
| | | |
Collapse
|
518
|
Seely BL, Samimi G, Webster NJG. Retroviral expression of a kinase-defective IGF-I receptor suppresses growth and causes apoptosis of CHO and U87 cells in-vivo. BMC Cancer 2002; 2:15. [PMID: 12057025 PMCID: PMC115841 DOI: 10.1186/1471-2407-2-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Accepted: 05/31/2002] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Phosphatidylinositol-3,4,5-triphosphate (PtdInsP3) signaling is elevated in many tumors due to loss of the tumor suppressor PTEN, and leads to constitutive activation of Akt, a kinase involved in cell survival. Reintroduction of PTEN in cells suppresses transformation and tumorigenicity. While this approach works in-vitro, it may prove difficult to achieve in-vivo. In this study, we investigated whether inhibition of growth factor signaling would have the same effect as re-expression of PTEN. METHODS Dominant negative IGF-I receptors were expressed in CHO and U87 cells by retroviral infection. Cell proliferation, transformation and tumor formation in athymic nude mice were assessed. RESULTS Inhibition of IGF-IR signaling in a CHO cell model system by expression of a kinase-defective IGF-IR impairs proliferation, transformation and tumor growth. Reduction in tumor growth is associated with an increase in apoptosis in-vivo. The dominant-negative IGF-IRs also prevented growth of U87 PTEN-negative glioblastoma cells when injected into nude mice. Injection of an IGF-IR blocking antibody alphaIR3 into mice harboring parental U87 tumors inhibits tumor growth and increases apoptosis. CONCLUSION Inhibition of an upstream growth factor signal prevents tumor growth of the U87 PTEN-deficient glioma to the same extent as re-introduction of PTEN. This result suggests that growth factor receptor inhibition may be an effective alternative therapy for PTEN-deficient tumors.
Collapse
Affiliation(s)
- B Lynn Seely
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Goli Samimi
- UCSD Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas JG Webster
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- UCSD Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
- Medical Research Service, San Diego Veterans Affairs Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
519
|
Lavenu-Bombled C, Trainor CD, Makeh I, Romeo PH, Max-Audit I. Interleukin-13 gene expression is regulated by GATA-3 in T cells: role of a critical association of a GATA and two GATG motifs. J Biol Chem 2002; 277:18313-21. [PMID: 11893731 DOI: 10.1074/jbc.m110013200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using a transgenic approach, we studied the role of GATA-3 in T cells. As previously shown, enforced GATA-3 expression in transgenic mice inhibits Th1 differentiation of CD4 T cells, but unexpectedly, both type 1 (interferon gamma) and type 2 (interleukin (IL)-4 and IL-13) cytokine genes were activated in the transgenic CD8 T cells. Because IL-13 gene expression was highly enhanced in vivo by GATA-3 expression, we studied the human and the mouse IL-13 gene promoters and found an evolutionary-conserved association of a consensus GATA binding site and two GATG motifs. We showed that efficient GATA-3 binding to this regulatory sequence required these three motifs and that the affinity of the GATA zinc fingers for this association was five times higher than for the consensus GATA binding site alone. Transfections in a T cell line or transactivation by GATA-3 showed that the combination of the three sites was required for full transcriptional activity of the IL-13 gene promoter. Finally we showed that this association of binding sites causes a very high sensitivity of the IL-13 gene promoter to small variations in the level of GATA-3 protein. Altogether, these results indicate an important role of GATA-3 in CD8 cytokine gene expression and demonstrate that a critical network of GATA binding sites highly modulates GATA-3 activity.
Collapse
Affiliation(s)
- Cecile Lavenu-Bombled
- Institut Cochen (INSERM, CNRS, Université Paris V), Département d'Hematologie, Maternite Port-Royal, 123 Bd de Port-Royal, 75014 Paris, France
| | | | | | | | | |
Collapse
|
520
|
Staal FJT, van der Luijt RB, Baert MRM, van Drunen J, van Bakel H, Peters E, de Valk I, van Amstel HKP, Taphoorn MJB, Jansen GH, van Veelen CWM, Burgering B, Staal GEJ. A novel germline mutation of PTEN associated with brain tumours of multiple lineages. Br J Cancer 2002; 86:1586-91. [PMID: 12085208 PMCID: PMC2746590 DOI: 10.1038/sj.bjc.6600206] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 01/07/2002] [Accepted: 01/24/2002] [Indexed: 11/30/2022] Open
Abstract
We have identified a novel germline mutation in the PTEN tumour suppressor gene. The mutation was identified in a patient with a glioma, and turned out to be a heterozygous germline mutation of PTEN (Arg234Gln), without loss of heterozygosity in tumour DNA. The biological consequences of this germline mutation were investigated by means of transfection studies of the mutant PTEN molecule compared to wild-type PTEN. In contrast to the wild-type molecule, the mutant PTEN protein is not capable of inducing apoptosis, induces increased cell proliferation and leads to high constitutive PKB/Akt activation, which cannot be increased anymore by stimulation with insulin. The reported patient, in addition to glioma, had suffered from benign meningioma in the past but did not show any clinical signs of Cowden disease or other hereditary diseases typically associated with PTEN germline mutations. The functional consequences of the mutation in transfection studies are consistent with high proliferative activity. Together, these findings suggest that the Arg234Gln missense mutation in PTEN has oncogenic properties and predisposes to brain tumours of multiple lineages.
Collapse
Affiliation(s)
- F J T Staal
- Department of Immunology, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
521
|
Li L, Liu F, Salmonsen RA, Turner TK, Litofsky NS, Di Cristofano A, Pandolfi PP, Jones SN, Recht LD, Ross AH. PTEN in neural precursor cells: regulation of migration, apoptosis, and proliferation. Mol Cell Neurosci 2002; 20:21-9. [PMID: 12056837 DOI: 10.1006/mcne.2002.1115] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PTEN is a lipid phosphatase, and PTEN mutations are associated with gliomas, macrocephaly, and mental deficiencies. We have used PTEN +/- mice to assess PTEN's role in subventricular zone (SVZ) precursor cells. For cultured SVZ neurosphere cells, haploinsufficiency for PTEN increases phosphorylation of Akt and forkhead transcription factor and slightly enhances proliferation. Based on a filter penetration assay, PTEN +/- cells are substantially more migratory and invasive than +/+ cells. The +/- cells also are more resistant to H(2)O(2)-induced apoptosis. Analysis of PTEN +/- and +/+ mice by BrdU labeling reveals no difference in the rate of cell proliferation in the SVZ. Exit of BrdU-labeled cells from the SVZ and radial migration to the outer layers of the olfactory bulb are more rapid for +/- cells. These observations indicate that PTEN regulates SVZ precursor cell function and is particularly important for migration and apoptosis in response to oxidative stress.
Collapse
Affiliation(s)
- Li Li
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester 01605, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
522
|
Abstract
Cancer arises from a stepwise accumulation of genetic changes that liberates neoplastic cells from the homeostatic mechanisms that govern normal cell proliferation. In humans, at least four to six mutations are required to reach this state, but fewer seem to be required in mice. By rationalizing the shared and unique elements of human and mouse models of cancer, we should be able to identify the molecular circuits that function differently in humans and mice, and use this knowledge to improve existing models of cancer.
Collapse
Affiliation(s)
- William C Hahn
- Whitehead Institute for Biomedical Research, Massachusetts 02142, USA.
| | | |
Collapse
|
523
|
|
524
|
Abstract
Every cell in a multicellular organism has the potential to die by apoptosis, but tumour cells often have faulty apoptotic pathways. These defects not only increase tumour mass, but also render the tumour resistant to therapy. So, what are the molecular mechanisms of tumour resistance to apoptosis and how can we use this knowledge to resensitize tumour cells to cancer therapy?
Collapse
Affiliation(s)
- Frederik H Igney
- Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg
| | | |
Collapse
|
525
|
Waite KA, Eng C. Protean PTEN: form and function. Am J Hum Genet 2002; 70:829-44. [PMID: 11875759 PMCID: PMC379112 DOI: 10.1086/340026] [Citation(s) in RCA: 342] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2002] [Accepted: 02/05/2002] [Indexed: 12/19/2022] Open
Abstract
Germline mutations distributed across the PTEN tumor-suppressor gene have been found to result in a wide spectrum of phenotypic features. Originally shown to be a major susceptibility gene for both Cowden syndrome (CS), which is characterized by multiple hamartomas and an increased risk of breast, thyroid, and endometrial cancers, and Bannayan-Riley-Ruvalcaba syndrome, which is characterized by lipomatosis, macrocephaly, and speckled penis, the PTEN hamartoma tumor syndrome spectrum has broadened to include Proteus syndrome and Proteus-like syndromes. Exon 5, which encodes the core motif, is a hotspot for mutations likely due to the biology of the protein. PTEN is a major lipid 3-phosphatase, which signals down the PI3 kinase/AKT pro-apoptotic pathway. Furthermore, PTEN is a protein phosphatase, with the ability to dephosphorylate both serine and threonine residues. The protein-phosphatase activity has also been shown to regulate various cell-survival pathways, such as the mitogen-activated kinase (MAPK) pathway. Although it is well established that PTEN's lipid-phosphatase activity, via the PI3K/AKT pathway, mediates growth suppression, there is accumulating evidence that the protein-phosphatase/MAPK pathway is equally important in the mediation of growth arrest and other crucial cellular functions.
Collapse
Affiliation(s)
- Kristin A. Waite
- Human Cancer Genetics and Clinical Cancer Genetics Programs, Comprehensive Cancer Center, Division of Human Genetics, Department of Internal Medicine, and Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus
| | - Charis Eng
- Human Cancer Genetics and Clinical Cancer Genetics Programs, Comprehensive Cancer Center, Division of Human Genetics, Department of Internal Medicine, and Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus
| |
Collapse
|
526
|
Abstract
Protein tyrosine phosphatases (PTPs) are a diverse group of enzymes that contain a highly conserved active site motif, Cys-x5-Arg (Cx5R). The PTP superfamily enzymes, which include tyrosine-specific, dual specificity, low-molecular-weight, and Cdc25 phosphatases, are key mediators of a wide variety of cellular processes, including growth, metabolism, differentiation, motility, and programmed cell death. The PTEN/MMAC1/TEP1 gene was originally identified as a candidate tumor suppressor gene located on human chromosome 10q23; it encodes a protein with sequence similarity to PTPs and tensin. Recent studies have demonstrated that PTEN plays an essential role in regulating signaling pathways involved in cell growth and apoptosis, and mutations in the PTEN gene are now known to cause tumorigenesis in a number of human tissues. In addition, germ line mutations in the PTEN gene also play a major role in the development of Cowden and Bannayan-Zonana syndromes, in which patients often suffer from increased risk of breast and thyroid cancers. Biochemical studies of the PTEN phosphatase have revealed a molecular mechanism by which tumorigenesis may be caused in individuals with PTEN mutations. Unlike most members of the PTP superfamily, PTEN utilizes the phosphoinositide second messenger, phosphatidylinositol 3,4,5-trisphosphate (PIP3), as its physiologic substrate. This inositol lipid is an important regulator of cell growth and survival signaling through the Ser/Thr protein kinases PDK1 and Akt. By specifically dephosphorylating the D3 position of PIP3, the PTEN tumor suppressor functions as a negative regulator of signaling processes downstream of this lipid second messenger. Mutations that impair PTEN function result in a marked increase in cellular levels of PIP3 and constitutive activation of Akt survival signaling pathways, leading to inhibition of apoptosis, hyperplasia, and tumor formation. Certain structural features of PTEN contribute to its specificity for PIP3, as well as its role(s) in regulating cellular proliferation and apoptosis. Recently, myotubularin, a second PTP superfamily enzyme associated with human disease, has also been shown to utilize a phosphoinositide as its physiologic substrate.
Collapse
Affiliation(s)
- T Maehama
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA.
| | | | | |
Collapse
|
527
|
Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 2002; 70:535-602. [PMID: 11395417 DOI: 10.1146/annurev.biochem.70.1.535] [Citation(s) in RCA: 1218] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 3-phosphorylated inositol lipids fulfill roles as second messengers by interacting with the lipid binding domains of a variety of cellular proteins. Such interactions can affect the subcellular localization and aggregation of target proteins, and through allosteric effects, their activity. Generation of 3-phosphoinositides has been documented to influence diverse cellular pathways and hence alter a spectrum of fundamental cellular activities. This review is focused on the 3-phosphoinositide lipids, the synthesis of which is acutely triggered by extracellular stimuli, the enzymes responsible for their synthesis and metabolism, and their cell biological roles. Much knowledge has recently been gained through structural insights into the lipid kinases, their interaction with inhibitors, and the way their 3-phosphoinositide products interact with protein targets. This field is now moving toward a genetic dissection of 3-phosphoinositide action in a variety of model organisms. Such approaches will reveal the true role of the 3-phosphoinositides at the organismal level in health and disease.
Collapse
Affiliation(s)
- B Vanhaesebroeck
- Ludwig Institute for Cancer Research, Riding House Street, London W1W 7BS.
| | | | | | | | | | | | | | | | | |
Collapse
|
528
|
Kim MJ, Cardiff RD, Desai N, Banach-Petrosky WA, Parsons R, Shen MM, Abate-Shen C. Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci U S A 2002; 99:2884-9. [PMID: 11854455 PMCID: PMC122442 DOI: 10.1073/pnas.042688999] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mouse models have provided significant insights into the molecular mechanisms of tumor suppressor gene function. Here we use mouse models of prostate carcinogenesis to demonstrate that the Nkx3.1 homeobox gene undergoes epigenetic inactivation through loss of protein expression. Loss of function of Nkx3.1 in mice cooperates with loss of function of the Pten tumor suppressor gene in cancer progression. This cooperativity results in the synergistic activation of Akt (protein kinase B), a key modulator of cell growth and survival. Our findings underscore the significance of interactions between tissue-specific regulators such as Nkx3.1 and broad-spectrum tumor suppressors such as Pten in contributing to the distinct phenotypes of different cancers.
Collapse
Affiliation(s)
- Minjung J Kim
- Center for Advanced Biotechnology and Medicine and Department of Neuroscience, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
529
|
Xiao A, Wu H, Pandolfi PP, Louis DN, Van Dyke T. Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 2002; 1:157-68. [PMID: 12086874 DOI: 10.1016/s1535-6108(02)00029-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have inactivated pRb, p107, and p130 in astrocytes by transgenic expression of T(121) (a truncated SV40 T antigen) under the GFAP promoter. Founder mice died perinatally with extensive expansion of neural precursor and anaplastic astrocyte populations. In astrocytes, aberrant proliferation and extensive apoptosis were induced. Using a conditional allele of T(121), early lethality was circumvented, and adult mice developed high-grade astrocytoma, in which regions of decreased apoptosis expressed activated Akt. Indeed, astrocytoma development was accelerated in a PTEN(+/-), but not p53(+/-), background. These studies establish a highly penetrant preclinical model for astrocytoma based on events observed in the human disease and further provide insight into the role of PTEN mutation in astrocytoma progression.
Collapse
Affiliation(s)
- Andrew Xiao
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
530
|
|
531
|
Brennan P, Mehl AM, Jones M, Rowe M. Phosphatidylinositol 3-kinase is essential for the proliferation of lymphoblastoid cells. Oncogene 2002; 21:1263-71. [PMID: 11850846 DOI: 10.1038/sj.onc.1205182] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2001] [Revised: 11/13/2001] [Accepted: 11/13/2001] [Indexed: 12/14/2022]
Abstract
B-cell lymphoma, which is increasing world wide, includes such varied conditions as post-transplant lymphoproliferative disease (PTLD) and Burkitt's lymphoma. This study has characterized a role for the signalling molecule phosphatidylinositol 3-kinase, PI3K, in the regulation of growth and survival of immortalized B-lymphocytes. Burkitt's lymphoma cells die rapidly following inhibition of PI3K with LY294002, a chemical inhibitor. Furthermore, Epstein-Barr virus (EBV) immortalized B-cells, lymphoblastoid cell lines, which are a model of PTLD, do not die but are growth inhibited. This growth inhibition is due to an accumulation at G1 phase of the cell cycle and is paralleled by a loss of E2F transcriptional activity, which is essential for cell cycle entry. An active form of PI3K promotes E2F transcriptional activity in lymphoblastoid cell lines. Treatment of LCL with LY294002 causes a reduction of the expression of both cyclin D2 and cyclin D3, two key cyclins required for cell cycle progression but does not affect the expression of the EBV latent genes, EBNA2A or LMP-1. LY294002 also causes an increase in p27kip1, a cyclin dependent kinase inhibitor and results in the dephosphorylation of members of the pocket protein family. These data describe a mechanism by which PI3K plays a role in B-lymphocyte growth and suggests that a pathway from PI3K to D-type cyclin expression may provide diagnostic or treatment opportunities.
Collapse
Affiliation(s)
- Paul Brennan
- Section of Infection and Immunity, Tenovus Building, University of Wales College of Medicine, Heath Park, Cardiff, CF14 4XX Wales, UK.
| | | | | | | |
Collapse
|
532
|
You MJ, Castrillon DH, Bastian BC, O'Hagan RC, Bosenberg MW, Parsons R, Chin L, DePinho RA. Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc Natl Acad Sci U S A 2002; 99:1455-60. [PMID: 11818530 PMCID: PMC122212 DOI: 10.1073/pnas.022632099] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dual inactivation of PTEN and INK4a/ARF tumor suppressor genes is a common feature observed in a broad spectrum of human cancer types. To validate functional collaboration between these genes in tumor suppression, we examined the biological consequences of Pten and/or Ink4a/Arf deficiency in cells and mice. Relative to single mutant controls, Ink4a/Arf-/-Pten+/- mouse embryonic fibroblast cultures exhibited faster rates of growth in reduced serum, grew to higher saturation densities, produced more colonies upon low density seeding, and showed increased susceptibility to transformation by oncogenic H-Ras. Ink4a/Arf deficiency reduced tumor-free survival and shortened the latency of neoplasias associated with Pten heterozygosity, specifically pheochromocytoma, prostatic intraepithelial neoplasia, and endometrial hyperplasia. Compound mutant mice also exhibited an expanded spectrum of tumor types including melanoma and squamous cell carcinoma. Functional synergy between Ink4a/Arf and Pten manifested most prominently in the development of pheochromocytoma, prompting an analysis of genes and loci implicated in this rare human neoplasm. The classical pheochromocytoma genes Ret, Vhl, and Nf-1 remained intact, a finding consistent with the intersection of these genes with pathways engaged by Pten and Ink4a/Arf. Notably, conventional and array-comparative genomic hybridization revealed frequent loss of distal mouse chromosome 4 in a region syntenic to human chromosome 1p that is implicated in human pheochromocytoma. This study provides genetic evidence of collaboration between Pten and Ink4a/Arf in constraining the growth and oncogenic transformation of cultured cells and in suppressing a wide spectrum of tumors in vivo.
Collapse
Affiliation(s)
- Mingjian James You
- Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
533
|
Liu W, Asa SL, Fantus IG, Walfish PG, Ezzat S. Vitamin D arrests thyroid carcinoma cell growth and induces p27 dephosphorylation and accumulation through PTEN/akt-dependent and -independent pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:511-9. [PMID: 11839571 PMCID: PMC1850654 DOI: 10.1016/s0002-9440(10)64870-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated the effects of 1,25-dihydroxycholecalciferol vitamin D(3) (VD) and its noncalciomimetic analog EB1089 on thyroid carcinoma cell growth. VD and EB1089 exhibited anti-proliferative effects in a dose-dependent manner as determined by [(3)H]thymidine incorporation and MIB-1 immunolabeling. VD or EB1089 resulted in similar G(1)-phase arrest. Neither apoptosis nor differentiation was affected. VD and EB1089 induced increased nuclear protein expression of the cyclin-dependent kinase inhibitor, p27(kip1) (p27). VD/EB1089 effects paralleled but were not additive to those of the proteasome inhibitor LLnL, consistent with reduced p27 degradation. As p27 phosphorylation and association with Skp2 is a key step in its degradation, we examined the effects of VD/EB1089 on this reaction. Despite increased total p27, the pThr content of p27 remained unaffected, an effect confirmed by diminished association with Skp2 as well as in situ phosphorylation. Moreover, phosphatase inhibition abrogated the effect of VD/EB1089 on p27 accumulation consistent with a role for phosphatase action in mediating this VD effect. Although VD/EB1089 resulted in comparable increases in p27 in WRO and NPA cells, only WRO but not NPA cells demonstrated a change in the phosphatase PTEN and its downstream target pAkt/PKB in response to VD/EB1089. Transfection of PTEN resulted in p27 accumulation and was partially additive to the effect of VD/EB1089. Moreover, treatment with PI-3 kinase inhibitors decreased pAkt/PKB and increased p27 in both WRO and NPA cells highlighting the potential role of this downstream pathway in regulating p27 in the thyroid. These findings point to a novel mechanism of action for VD/EB1089 inhibition of thyroid carcinoma cell growth by p27 hypophosphorylation, diminished association with Skp2, and consequent accumulation. This effect can be mediated but is not essentially dependent on the phosphatase PTEN/Akt/PKB pathway. These properties support the potential utility of VD analogs in the treatment of thyroid carcinomas irrespective of their PTEN/pAkt status.
Collapse
Affiliation(s)
- Wei Liu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
534
|
Lesche R, Groszer M, Gao J, Wang Y, Messing A, Sun H, Liu X, Wu H. Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 2002; 32:148-9. [PMID: 11857804 DOI: 10.1002/gene.10036] [Citation(s) in RCA: 334] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ralf Lesche
- Howard Hughes Medical Institute and Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
535
|
Seminario MC, Wange RL. Signaling pathways of D3-phosphoinositide-binding kinases in T cells and their regulation by PTEN. Semin Immunol 2002; 14:27-36. [PMID: 11884228 DOI: 10.1006/smim.2001.0339] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) phosphorylate the D3 position of the myo -inositol ring of inositol phospholipids, producing, amongst others, phosphatidylinositol-(3,4,5)-trisphosphate. This activity is opposed by the lipid phosphatase PTEN, which catalyzes the removal of this phosphate. Stimulation of PI3Ks is elicited by engagement of receptors for antigen, cytokines and chemokines, and by co-stimulatory molecules. Kinases and other enzymes containing pleckstrin homology domains are activated by binding to these phospholipids, affecting a variety of cellular processes that control lymphocyte function, including cell survival, proliferation, chemotaxis and cytoskeletal reorganization. This review highlights the signaling pathways of these kinases and other enzymes in T cells, their biological effects, and their regulation by PTEN.
Collapse
Affiliation(s)
- Maria-Cristina Seminario
- Laboratory of Cellular and Molecular Biology, National Institute on Aging/NIH, GRC Bldg., MSC-12, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
536
|
Abstract
The development of cancer requires multiple genetic alterations perturbing distinct cellular pathways. In human cancers, these alterations often arise owing to mutations in tumor-suppressor genes whose normal function is to either inhibit the proliferation, apoptosis, or differentiation of cells, or maintain their genomic integrity. Mouse models for tumor suppressors frequently provide definitive evidence for the antitumorigenic functions of these genes. In addition, animal models permit the identification of previously unsuspected roles of these genes in development and differentiation. The availability of null and tissue-specific mouse mutants for tumor-suppressor genes has greatly facilitated our understanding of the mechanisms leading to cancer. In this review, we describe mouse models for tumor-suppressor genes.
Collapse
Affiliation(s)
- R Hakem
- Amgen Institute, Ontario Cancer Institute and the University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | | |
Collapse
|
537
|
Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2002; 17:615-75. [PMID: 11687500 DOI: 10.1146/annurev.cellbio.17.1.615] [Citation(s) in RCA: 948] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The phosphoinositide 3-kinase (PI3K) family of enzymes is recruited upon growth factor receptor activation and produces 3' phosphoinositide lipids. The lipid products of PI3K act as second messengers by binding to and activating diverse cellular target proteins. These events constitute the start of a complex signaling cascade, which ultimately results in the mediation of cellular activities such as proliferation, differentiation, chemotaxis, survival, trafficking, and glucose homeostasis. Therefore, PI3Ks play a central role in many cellular functions. The factors that determine which cellular function is mediated are complex and may be partly attributed to the diversity that exists at each level of the PI3K signaling cascade, such as the type of stimulus, the isoform of PI3K, or the nature of the second messenger lipids. Numerous studies have helped to elucidate some of the key factors that determine cell fate in the context of PI3K signaling. For example, the past two years has seen the publication of many transgenic and knockout mouse studies where either PI3K or its signaling components are deregulated. These models have helped to build a picture of the role of PI3K in physiology and indeed there have been a number of surprises. This review uses such models as a framework to build a profile of PI3K function within both the cell and the organism and focuses, in particular, on the role of PI3K in cell regulation, immunity, and development. The evidence for the role of deregulated PI3K signaling in diseases such as cancer and diabetes is reviewed.
Collapse
Affiliation(s)
- R Katso
- Ludwig Institute for Cancer Research, 91 Riding House Street, London, W1W 7BS, England.
| | | | | | | | | | | |
Collapse
|
538
|
Yuan XJ, Whang YE. PTEN sensitizes prostate cancer cells to death receptor-mediated and drug-induced apoptosis through a FADD-dependent pathway. Oncogene 2002; 21:319-27. [PMID: 11803475 DOI: 10.1038/sj.onc.1205054] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2001] [Revised: 09/25/2001] [Accepted: 10/09/2001] [Indexed: 12/24/2022]
Abstract
The PTEN tumor suppressor is frequently mutated in human tumors. Loss of PTEN function is associated with constitutive survival signaling through the phosphatidylinositol-3 kinase/Akt pathway. Therefore, we asked if reconstitution of PTEN function would lead to the reversal of resistance to apoptosis in prostate cancer cells. Adenovirus-mediated expression of PTEN completely suppressed constitutive Akt activation in LNCaP prostate cancer cells and enhanced apoptosis induced by a broad range of apoptotic stimuli. PTEN expression sensitized cells to death receptor-mediated apoptosis induced by tumor necrosis factor, anti-Fas antibody, and TRAIL. PTEN also sensitized cells to non-receptor mediated apoptosis induced by a kinase inhibitor staurosporine and chemotherapeutic agents mitoxantrone and etoposide. PTEN-mediated apoptosis was accompanied by caspase-3 and caspase-8 activation and was inhibited by a broad specificity caspase inhibitor Z-VAD-fmk. Bcl-2 overexpression also blocked PTEN-mediated apoptosis. Lipid phosphatase activity of PTEN is required for apoptosis as the PTEN G129E mutant selectively deficient in lipid phosphatase activity was unable to sensitize cells to apoptosis. PTEN-mediated apoptosis involves a FADD-dependent pathway for both death receptor-mediated and drug-induced apoptosis as coexpression of a dominant negative FADD mutant blocked PTEN-mediated apoptosis. Since in death receptor signaling, FADD mediates activation of caspase-8, which in turn cleaves BID, and since caspase-8 is activated in PTEN-mediated apoptosis, we examined BID cleavage in PTEN-mediated apoptosis. PTEN facilitated BID cleavage after treatment with low doses of staurosporine and mitoxantrone. BID cleavage was inhibited by dominant negative FADD. Taken together, these data are consistent with the hypothesis that PTEN promotes drug-induced apoptosis by facilitating caspase-8 activation and BID cleavage through a FADD-dependent pathway.
Collapse
Affiliation(s)
- Xiu-Juan Yuan
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, NC 27599-7295, USA
| | | |
Collapse
|
539
|
|
540
|
Abstract
Autonomous cell proliferation is one of the hallmarks of cancer cells, driven by activated growth-promoting oncogenes. However, deregulated activation of these oncogenes also triggers apoptosis via multiple pathways. Among them, the ARF-p53 pathway appears to play a major role in mediating oncogene-induced apoptosis. Consequently, suppression of apoptosis by inactivation of p53 and other tumor suppressors is central to tumor development. These findings have broad implications in understanding cancer genetics and therapy. They help define the roles for oncogenes and tumor suppressor genes in tumorigenesis. Furthermore, the notion that cancer cells often carry specific defects in apoptotic pathways but are inherently sensitive to apoptosis as a result of deregulated proliferation, offers numerous opportunities for manipulating apoptosis in directions of clinical application.
Collapse
Affiliation(s)
- Han-Fei Ding
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo, OH, USA
| | | |
Collapse
|
541
|
Higuchi M, Masuyama N, Fukui Y, Suzuki A, Gotoh Y. Akt mediates Rac/Cdc42-regulated cell motility in growth factor-stimulated cells and in invasive PTEN knockout cells. Curr Biol 2001; 11:1958-62. [PMID: 11747822 DOI: 10.1016/s0960-9822(01)00599-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Growth factors promote cell survival and cell motility, presumably through the activation of Akt and the Rac and Cdc42 GTPases, respectively. Because Akt is dispensable for Rac/Cdc42 regulation of actin reorganization, it has been assumed that Rac and Cdc42 stimulate cell motility independent of Akt in mammalian cells. However, in this study we demonstrate that Akt is essential for Rac/Cdc42-regulated cell motility in mammalian fibroblasts. A dominant-negative Akt inhibits cell motility stimulated by Rac/Cdc42 or by PDGF treatment, without affecting ruffling membrane-type actin reorganization. We have confirmed a previous report that Akt is activated by expression of Rac and Cdc42 and also observed colocalization of endogenous phosphorylated Akt with Rac and Cdc42 at the leading edge of fibroblasts. Importantly, expression of active Akt but not the closely related kinase SGK is sufficient for increasing cell motility. This effect of Akt is cell autonomous and not mediated by inhibition of GSK3. Finally, we found that dominant-negative Akt but not SGK reverses the increased cell motility phenotype of fibroblasts lacking the PTEN tumor suppressor gene. Taken together, these results suggest that Akt promotes cell motility downstream of Rac/Cdc42 in growth factor-stimulated cells and in invasive PTEN-deficient cells.
Collapse
Affiliation(s)
- M Higuchi
- Institute of Molecular and Cellular Biosciences, Faculty of Agricultural and Life Science, University of Tokyo, Yayoi, Bunkyo-ku, 113-0032, Tokyo, Japan
| | | | | | | | | |
Collapse
|
542
|
Affiliation(s)
- J M Penninger
- Amgen Research Institute, Toronto, Ontario M5G 2C1, Canada.
| | | |
Collapse
|
543
|
Backman SA, Stambolic V, Suzuki A, Haight J, Elia A, Pretorius J, Tsao MS, Shannon P, Bolon B, Ivy GO, Mak TW. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nat Genet 2001; 29:396-403. [PMID: 11726926 DOI: 10.1038/ng782] [Citation(s) in RCA: 377] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Initially identified in high-grade gliomas, mutations in the PTEN tumor-suppressor are also found in many sporadic cancers and a few related autosomal dominant hamartoma syndromes. PTEN is a 3'-specific phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) phosphatase and functions as a negative regulator of PI3K signaling. We generated a tissue-specific deletion of the mouse homolog Pten to address its role in brain function. Mice homozygous for this deletion (PtenloxP/loxP;Gfap-cre), developed seizures and ataxia by 9 wk and died by 29 wk. Histological analysis showed brain enlargement in PtenloxP/loxP;Gfap-cre mice as a consequence of primary granule-cell dysplasia in the cerebellum and dentate gyrus. Pten mutant cells showed a cell-autonomous increase in soma size and elevated phosphorylation of Akt. These data represent the first evidence for the role of Pten and Akt in cell size regulation in mammals and provide an animal model for a human phakomatosis condition, Lhermitte-Duclos disease (LDD).
Collapse
Affiliation(s)
- S A Backman
- Department of Medical Biophysics, University of Toronto and Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
544
|
Virolle T, Adamson ED, Baron V, Birle D, Mercola D, Mustelin T, de Belle I. The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol 2001; 3:1124-8. [PMID: 11781575 DOI: 10.1038/ncb1201-1124] [Citation(s) in RCA: 329] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The PTEN tumour suppressor and pro-apoptotic gene is frequently mutated in human cancers. We show that PTEN transcription is upregulated by Egr-1 after irradiation in wild-type, but not egr-1-/-, mice in vivo. We found that Egr-1 specifically binds to the PTEN 5' untranslated region, which contains a functional GCGGCGGCG Egr-1-binding site. Inducing Egr-1 by exposing cells to ultraviolet light upregulates expression of PTEN messenger RNA and protein, and leads to apoptosis. egr-1-/- cells, which cannot upregulate PTEN expression after irradiation, are resistant to ultraviolet-light-induced apoptosis. Therefore, Egr-1 can directly regulate PTEN, triggering the initial step in this apoptotic pathway. Loss of Egr-1 expression, which often occurs in human cancers, could deregulate the PTEN gene and contribute to the radiation resistance of some cancer cells.
Collapse
Affiliation(s)
- T Virolle
- The Burnham Institute, Cancer Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
545
|
Kwon CH, Zhu X, Zhang J, Knoop LL, Tharp R, Smeyne RJ, Eberhart CG, Burger PC, Baker SJ. Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat Genet 2001; 29:404-11. [PMID: 11726927 DOI: 10.1038/ng781] [Citation(s) in RCA: 359] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Somatic inactivation of PTEN occurs in different human tumors including glioblastoma, endometrial carcinoma and prostate carcinoma. Germline mutations in PTEN result in a range of phenotypic abnormalities that occur with variable penetrance, including neurological features such as macrocephaly, seizures, ataxia and Lhermitte-Duclos disease (also described as dysplastic gangliocytoma of the cerebellum). Homozygous deletion of Pten causes embryonic lethality in mice. To investigate function in the brain, we used Cre-loxP technology to selectively inactivate Pten in specific mouse neuronal populations. Loss of Pten resulted in progressive macrocephaly and seizures. Neurons lacking Pten expressed high levels of phosphorylated Akt and showed a progressive increase in soma size without evidence of abnormal proliferation. Cerebellar abnormalities closely resembled the histopathology of human Lhermitte-Duclos disease. These results indicate that Pten regulates neuronal size in vivo in a cell-autonomous manner and provide new insights into the etiology of Lhermitte-Duclos disease.
Collapse
Affiliation(s)
- C H Kwon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
546
|
Schöndorf T, Becker M, Göhring UJ, Wappenschmidt B, Kolhagen H, Kurbacher CM. Interaction of cisplatin, paclitaxel and adriamycin with the tumor suppressor PTEN. Anticancer Drugs 2001; 12:797-800. [PMID: 11707646 DOI: 10.1097/00001813-200111000-00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Due to its pivotal role in signal transduction, the universal tumor suppressor PTEN (also termed MMAC or TEP) is one of the putative candidates for involvement in tumorigenesis of several tissues. Although involvement of PTEN in tumorigenesis was shown in different tissues, no data are available concerning PTEN activity in response to antineoplastic agents. Therefore, we assayed the PTEN activity exposed to either blank medium or the commonly used anti-cancer drugs cisplatin, adriamycin or paclitaxel, respectively, in three different concentrations. PTEN activity was determined using the Malachite Green assay basing upon dephosphorylation of phosphatidylinositol-3,4,5-triphosphate (PIP3) by the PTEN enzyme and subsequent determination of inorganic phosphate released. Although the three different anti-cancer drugs assayed act with different cellular modes, the antineoplastics influenced PTEN activity in a similar manner: at low concentrations tested all three antineoplastics significantly increased PTEN activity. However, increasing drug concentrations exhibited a decline but not a total loss of PTEN activity. The data indicate that PTEN activity is increased following cytotoxic drug exposure and, thereby, exhibits its suppressive function. However, the decrease of PTEN activity in response to increasing drug concentrations suggests an aberration of total functional activity. As far as the regulative checkpoint PTEN is abolished, tumor cells might evade cell death pathways resulting in increased proliferation of cancer cells. This might be a general event in refractory tumor cells surviving chemotherapy.
Collapse
Affiliation(s)
- T Schöndorf
- Department of Gynecology and Obstetics, University of Cologne, 50924 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
547
|
Abstract
Since its discovery 10 years ago, the potential functions of protein kinase B (PKB)/AKT have been catalogued with increasing efficiency. The physiological relevance of some of the proposed mechanisms by which PKB/AKT mediates many of its effects has been questioned, and recent work using new reagents and approaches has revealed some cracks in our understanding of this important molecule, and also hinted that these effects may involve other players.
Collapse
Affiliation(s)
- M P Scheid
- Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | | |
Collapse
|
548
|
Sapin V, Blanchon L, Serre AF, Lémery D, Dastugue B, Ward SJ. Use of transgenic mice model for understanding the placentation: towards clinical applications in human obstetrical pathologies? Transgenic Res 2001; 10:377-98. [PMID: 11708649 DOI: 10.1023/a:1012085713898] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mammalian embryo and fetus are unable to develop without a well-established, functional placenta. This transitory yet indispensable structure attaches the conceptus to the uterus and establishes the vascular connections necessary for nutrient and gaseous exchange between maternal and fetal compartments. Genetic targeting strategy allows the generation of mice lacking a specific gene. Such approaches reveal: (i) the high incidence of mutant embryonic or fetal death in utero, and (ii) the extraembryonic (placental) causes of these deaths. Due to the similarities presented between mouse and human placenta, we propose to use the potential of mouse targeting experiments as a model in order to understand human obstetrical pathologies. In this paper, we first review genes that have been demonstrated to be required in mice for implantation, choriovitelline and chorioallantoic placentation. Using examples (integrins, homeoboxs, hepatocyte growth factor or epidermal growth factor receptor...) we demonstrate the reality and efficiency of such an approach. Other candidate genes (receptor of leukemia inhibitory factor, Wnt2 or retinoic acid receptor alpha...) in order to understand, prevent and treat human obstetrical pathologies.
Collapse
Affiliation(s)
- V Sapin
- INSERM U.384, Laboratoire de Biochimie, Faculté de Médecine, Clermont-Ferrand, France.
| | | | | | | | | | | |
Collapse
|
549
|
Abstract
Tumors of the central nervous system (CNS) can be devastating because they often affect children, are difficult to treat, and frequently cause mental impairment or death. New insights into the causes and potential treatment of CNS tumors have come from discovering connections with genes that control cell growth, differentiation, and death during normal development. Links between tumorigenesis and normal development are illustrated by three common CNS tumors: retinoblastoma, glioblastoma, and medulloblastoma. For example, the retinoblastoma (Rb) tumor suppressor protein is crucial for control of normal neuronal differentiation and apoptosis. Excessive activity of the epidermal growth factor receptor and loss of the phosphatase PTEN are associated with glioblastoma, and both genes are required for normal growth and development. The membrane protein Patched1 (Ptc1), which controls cell fate in many tissues, regulates cell growth in the cerebellum, and reduced Ptc1 function contributes to medulloblastoma. Just as elucidating the mechanisms that control normal development can lead to the identification of new cancer-related genes and signaling pathways, studies of tumor biology can increase our understanding of normal development. Learning that Ptc1 is a medulloblastoma tumor suppressor led directly to the identification of the Ptc1 ligand, Sonic hedgehog, as a powerful mitogen for cerebellar granule cell precursors. Much remains to be learned about the genetic events that lead to brain tumors and how each event regulates cell cycle progression, apoptosis, and differentiation. The prospects for beneficial work at the boundary between oncology and developmental biology are great.
Collapse
Affiliation(s)
- R Wechsler-Reya
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5329, USA.
| | | |
Collapse
|
550
|
Abstract
The serine/threonine protein phosphatase 2A (PP2A) appears to be critically involved in cellular growth control and potentially in the development of cancer. A few studies indicated that this enzyme might actually exert tumor suppressive function. However, other findings demonstrated the requirement for PP2A in cell growth and survival, which is not a characteristic of a typical tumor suppressor. This apparent discrepancy might be due to the fact that PP2A is a multitask enzyme system, rather than a single enzyme. Its individual subunits are encoded by a heterogeneous group of genes which give rise to a multitude of different PP2A holoenzyme complexes. Thus, the puzzling observation that PP2A exerts inhibitory, as well as stimulatory, effects on cell growth could be due to the activity of different PP2A complexes with distinct subcellular location and divers substrate specificity. At the same time, this abundance of PP2A components provides a large target for mutations that might derail proper enzyme function and could contribute to the process of tumorigenesis. So far, however, it has not been unequivocally established whether such mutations, examples of which have indeed been found in human cancer cells, result in the activation of an oncogenic function or rather in the inactivation of the presumed tumor suppressive role of PP2A. Therefore, the general opinion of PP2A as being a tumor suppressor needs to be viewed with caution.
Collapse
Affiliation(s)
- A H Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR-405, Los Angeles, CA 90033, USA.
| |
Collapse
|