501
|
Shakkour Z, Issa H, Ismail H, Ashekyan O, Habashy KJ, Nasrallah L, Jourdi H, Hamade E, Mondello S, Sabra M, Zibara K, Kobeissy F. Drug Repurposing: Promises of Edaravone Target Drug in Traumatic Brain Injury. Curr Med Chem 2021; 28:2369-2391. [PMID: 32787753 DOI: 10.2174/0929867327666200812221022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
Edaravone is a potent free-radical scavenger that has been in the market for more than 30 years. It was originally developed in Japan to treat strokes and has been used there since 2001. Aside from its anti-oxidative effects, edaravone demonstrated beneficial effects on proinflammatory responses, nitric oxide production, and apoptotic cell death. Interestingly, edaravone has shown neuroprotective effects in several animal models of diseases other than stroke. In particular, edaravone administration was found to be effective in halting amyotrophic lateral sclerosis (ALS) progression during the early stages. Accordingly, after its success in Phase III clinical studies, edaravone has been approved by the FDA as a treatment for ALS patients. Considering its promises in neurological disorders and its safety in patients, edaravone is a drug of interest that can be repurposed for traumatic brain injury (TBI) treatment. Drug repurposing is a novel approach in drug development that identifies drugs for purposes other than their original indication. This review presents the biochemical properties of edaravone along with its effects on several neurological disorders in the hope that it can be adopted for treating TBI patients.
Collapse
Affiliation(s)
- Zaynab Shakkour
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Hawraa Issa
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Helene Ismail
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Ohanes Ashekyan
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Karl John Habashy
- Faculty of Medicine, American, University of Beirut, Beirut, Lebanon
| | - Leila Nasrallah
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Hussam Jourdi
- Biology & Environmental Sciences Division at University of Balamand, Souk El Gharb, Aley, Lebanon
| | - Eva Hamade
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Mirna Sabra
- Faculty of Medicine, Lebanese University, Neuroscience Research Center (NRC), Beirut, Lebanon
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Firas Kobeissy
- American University of Beirut, Faculty of Medicine, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| |
Collapse
|
502
|
Huang J, Wei Q, Liang B, Shen T, Wu Y, Chen Z, Yang J, Gu L. Association of CHUK gene polymorphism and ischemic stroke in the Han Chinese population. J Clin Neurosci 2021; 88:271-276. [PMID: 33992196 DOI: 10.1016/j.jocn.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/19/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Recently, the pivotal role of component of inhibitor of nuclear factor kappa B kinase complex (CHUK) in lipid levels and blood pressure has been reported, and hypertension and hyperlipidemia are common risk factors of ischemic stroke (IS). However, the association between CHUK and IS has not yet been explored. This study aims at evaluating the relationship of CHUK polymorphisms (rs3808916, rs2230804 and rs3808917) and IS risk as well as IS-related risk factors. METHODS CHUK mRNA expression was detected between 53 IS patients and 53 healthy controls using quantitative real-time polymerase chain reaction (qRT-PCR). A total of 816 IS patients and 816 age- and sex-matched healthy controls were genotyped using the Sequenom MassARRAY iPLEX platform. RESULTS CHUK mRNA was highly expressed in IS patients compared with healthy subjects (P<0.001). No significant associations were observed between rs3808916, rs2230804, rs3808917 and IS susceptibility (P>0.05). Moreover, haplotype analysis showed that no haplotype of CHUK polymorphisms was associated with IS (P > 0.05). However, rs2230804 was related to diastolic blood pressure (DBP) of IS patients (P = 0.035), while rs3808917 was associated with triglyceride (TG) levels (P = 0.046). CONCLUSIONS The CHUK expression is involved in the development of IS. CHUK variants rs2230804, and rs3808917 may affect blood pressure and lipid levels of IS patients. However, CHUK rs3808916, rs2230804 and rs3808917 polymorphisms are not associated with IS risk.
Collapse
Affiliation(s)
- Jingyan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120 Guangzhou, Guangdong, China; Guangzhou University of Chinese Medicine, 510405 Guangzhou, Guangdong, China; University at Buffalo, The State University of New York, 14228 Buffalo, NY, USA; Guangxi University of Chinese Medicine, 530299 Nanning, Guangxi, China
| | - Qiugui Wei
- Guangxi University of Chinese Medicine, 530299 Nanning, Guangxi, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, 530023 Nanning, Guangxi, China
| | - Baoyun Liang
- Guangxi University of Chinese Medicine, 530299 Nanning, Guangxi, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, 530023 Nanning, Guangxi, China
| | - Tingting Shen
- Guangxi University of Chinese Medicine, 530299 Nanning, Guangxi, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, 530023 Nanning, Guangxi, China
| | - Yanli Wu
- Guangxi University of Chinese Medicine, 530299 Nanning, Guangxi, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, 530023 Nanning, Guangxi, China
| | - Ziwen Chen
- Guangxi University of Chinese Medicine, 530299 Nanning, Guangxi, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, 530023 Nanning, Guangxi, China
| | - Junwei Yang
- Guangxi University of Chinese Medicine, 530299 Nanning, Guangxi, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, 530023 Nanning, Guangxi, China
| | - Lian Gu
- Guangxi University of Chinese Medicine, 530299 Nanning, Guangxi, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, 530023 Nanning, Guangxi, China.
| |
Collapse
|
503
|
Scheldeman L, Wouters A, Dupont P, Christensen S, Boutitie F, Cheng B, Ebinger M, Endres M, Fiebach JB, Gerloff C, Muir KW, Nighoghossian N, Pedraza S, Simonsen CZ, Ringelstein EB, Chamorro A, Grond M, Laage R, Schneider A, Thomalla G, Thijs V, Lemmens R. Reversible Edema in the Penumbra Correlates With Severity of Hypoperfusion. Stroke 2021; 52:2338-2346. [PMID: 33980046 DOI: 10.1161/strokeaha.120.033071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Lauranne Scheldeman
- Department of Neurology, University Hospitals Leuven, Belgium (L.S., A.W., R. Lemmens).,Department of Neurosciences, Experimental Neurology (L.S., A.W., R. Lemmens), KU Leuven-University of Leuven, Belgium.,Center for Brain and Disease Research, Laboratory of Neurobiology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium (L.S., A.W., R. Lemmens)
| | - Anke Wouters
- Department of Neurology, University Hospitals Leuven, Belgium (L.S., A.W., R. Lemmens).,Department of Neurosciences, Experimental Neurology (L.S., A.W., R. Lemmens), KU Leuven-University of Leuven, Belgium.,Center for Brain and Disease Research, Laboratory of Neurobiology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium (L.S., A.W., R. Lemmens)
| | - Patrick Dupont
- Department of Neurosciences, Laboratory for Cognitive Neurology (P.D.), KU Leuven-University of Leuven, Belgium.,Leuven Brain Institute, Belgium (P.D.)
| | | | - Florent Boutitie
- Hospices Civils de Lyon, Service de Biostatistique, France (F.B.).,Université Lyon 1, Villeurbanne, France (F.B.)
| | - Bastian Cheng
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Germany (B.C., C.G., G.T.)
| | - Martin Ebinger
- Center for Stroke Research Berlin (M. Ebinger, M. Endres, J.B.F.), Charité-Universitätsmedizin Berlin, Germany.,Klinik für Neurologie, Medical Park Berlin Humboldtmühle, Germany (M. Ebinger)
| | - Matthias Endres
- Center for Stroke Research Berlin (M. Ebinger, M. Endres, J.B.F.), Charité-Universitätsmedizin Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie (M. Endres), Charité-Universitätsmedizin Berlin, Germany.,German Center for Cardiovascular Research, Partner Site Berlin (M. Endres).,German Center for Neurodegenerative Diseases, Partner Site Berlin (M. Endres).,ExcellenceCluster "NeuroCure" (M. Endres)
| | - Jochen B Fiebach
- Center for Stroke Research Berlin (M. Ebinger, M. Endres, J.B.F.), Charité-Universitätsmedizin Berlin, Germany
| | - Christian Gerloff
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Germany (B.C., C.G., G.T.)
| | - Keith W Muir
- Institute of Neuroscience and Psychology, University of Glasgow, United Kingdom (K.W.M.)
| | - Norbert Nighoghossian
- Department of Stroke Medicine, Université Claude Bernard Lyon 1, CREATIS CNRS UMR 5220-INSERM U1206, Hospices Civils de Lyon, France (N.N.)
| | - Salvador Pedraza
- Department of Radiology, Institut de Diagnostic per la Image, Hospital Dr Josep Trueta, Institut d'Investigació Biomedica de Girona, Parc Hospitalari Marti i Julia de Salt-Edifici M2, Spain (S.P.)
| | - Claus Z Simonsen
- Department of Neurology, Aarhus University Hospital, Denmark (C.Z.S.)
| | | | | | - Martin Grond
- Kreisklinikum Siegen GmbH, Germany (M.G.).,University of Marburg, Germany (M.G.)
| | - Rico Laage
- GUIDED Development Heidelberg GmbH, Germany (R. Laage)
| | | | - Götz Thomalla
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Germany (B.C., C.G., G.T.)
| | - Vincent Thijs
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, Victoria, Australia (V.T.).,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia (V.T.)
| | - Robin Lemmens
- Department of Neurology, University Hospitals Leuven, Belgium (L.S., A.W., R. Lemmens).,Department of Neurosciences, Experimental Neurology (L.S., A.W., R. Lemmens), KU Leuven-University of Leuven, Belgium.,Center for Brain and Disease Research, Laboratory of Neurobiology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium (L.S., A.W., R. Lemmens)
| |
Collapse
|
504
|
Dias L, Pinto MJ, Castro P, Carvalho M. Inflammatory Biomarkers Correlate with Time Evolution in Cerebral Venous Thrombosis. J Stroke Cerebrovasc Dis 2021; 30:105844. [PMID: 33984744 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/01/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVES We aimed to analyse the relationship between specific inflammatory biomarkers' levels and the temporal pattern of cerebral venous thrombosis (CVT) symptoms. MATERIALS AND METHODS We performed a retrospective study of adult CVT patients admitted between Jan 01 2006 and Dec 31 2019. We excluded patients with infection at admission, autoimmune, inflammatory or haematological disorders. We evaluated serum inflammatory biomarkers at admission: C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), absolute neutrophil count, absolute lymphocyte count, platelet count, monocyte count, neutrophile-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte ratio (PLR), bilirubin and monocyte-to-HDL ratio (M-HDLR). These were evaluated according to the time from symptom onset (acute, subacute or chronic). RESULTS We included 78 patients with CVT (mean age 41 ± 13 years). Neutrophil count (p = 0.017), monocyte (p = 0.024), CRP (p = 0.004), NLR (p<0.001) and LMR (p = 0.004) showed significant variation with CVT duration. Acute onset CVT exhibited higher absolute neutrophil count and NLR but lower LMR. The subacute group had higher monocyte values, and the chronic phase patients displayed higher LMR, but lower CRP. ESR, PLR and M-HDLR showed a tendency to decrease in the chronic phase. We did not observe any statistical difference between the duration of symptoms and levels of bilirubin. CONCLUSIONS CVT patients present a differential inflammatory pattern along the time course of the disease: higher NLR and lower LMR in acute phase, and higher LMR and lower CRP level during the chronic phase. These differences may help to ascertain the onset of poorly defined symptoms and provide input regarding anticoagulation management.
Collapse
Affiliation(s)
- Leonor Dias
- Department of Neurology, Centro Hospitalar Universitário de São João, EPE, Department of Clinical Neurosciences and Mental Health, Faculty of Medicine of University of Porto.
| | - Maria João Pinto
- Department of Neurology, Centro Hospitalar Universitário de São João, EPE, Department of Clinical Neurosciences and Mental Health, Faculty of Medicine of University of Porto
| | - Pedro Castro
- Department of Neurology, Centro Hospitalar Universitário de São João, EPE, Department of Clinical Neurosciences and Mental Health, Faculty of Medicine of University of Porto
| | - Marta Carvalho
- Department of Neurology, Centro Hospitalar Universitário de São João, EPE, Department of Clinical Neurosciences and Mental Health, Faculty of Medicine of University of Porto
| |
Collapse
|
505
|
Xia C, Zhou J, Lu C, Wang Y, Tang T, Cai Y, Ju S. Characterizing Diaschisis-Related Thalamic Perfusion and Diffusion After Middle Cerebral Artery Infarction. Stroke 2021; 52:2319-2327. [PMID: 33971741 DOI: 10.1161/strokeaha.120.032464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Cong Xia
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jiaying Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Chunqiang Lu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yuancheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Tianyu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yu Cai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
506
|
Antoniazzi AM, Unda SR, Klyde DM, Miller R, Lam S, Fluss R, Altschul DJ. Sterile Leukocytosis Predicts Hemorrhagic Transformation in Arterial Ischemic Stroke: A National Inpatient Sample Study. Cureus 2021; 13:e14973. [PMID: 34123669 PMCID: PMC8192266 DOI: 10.7759/cureus.14973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Hemorrhage transformation (HT) is a known complication of arterial ischemic stroke (AIS). In addition, it is known that the increase of proinflammatory immune cells in the brain tissue after AIS predict worse outcomes. However, it is not clear whether inflammation due to preceding or post-stroke infections affect outcomes and moreover, if systemic inflammatory markers could be useful as a clinical prediction tool for HT post-stroke. Therefore, our objective was to assess the association between systemic pro-inflammatory profile in AIS patients with HT and in-hospital mortality that did not course with acute infections during hospitalization. METHODS This study was conducted using the 2016 and 2017 National Inpatient Sample (NIS) with International Classification of Diseases (ICD-10) codes. Multivariate logistic regression was used to examine the association between HT and in-hospital mortality with pro-inflammatory anomalies of white blood cells (WBCs) in AIS patients. Exclusion criteria comprised patients with under 18 years old, and with a diagnosis of gastrointestinal, urogenital, respiratory infection, bacteremia, viral infection, sepsis, or fever. RESULTS A total of 212,356 patients with AIS were included in the analysis. 422 (0.2%) patients had a HT and 10,230 (4.8%) patients died during hospitalization. The most common WBC pro-inflammatory marker was leukocytosis with 6.9% (n=29/422) of HT and 5.5% (n=560/10,230) of patients that died during hospitalization. After adjusting for socio-demographic, comorbidities and treatment factors, leukocytosis was found to be an independent risk factor for both outcomes, HT [OR = 1.5, 95% CI: 1-2.3, p=0.024] and, in-hospital mortality [OR = 1.5, 95% CI: 1.3-1.6, p < 0.001]. CONCLUSION Sterile leukocytosis is a potential clinical prediction tool to determine which patients are at higher risk of developing HT and die during hospitalization.
Collapse
Affiliation(s)
| | | | - Daniel M Klyde
- Neurological Surgery, Montefiore Medical Center, New York, USA
| | - Raphael Miller
- Neurological Surgery, Montefiore Medical Center, New York, USA
| | - Sharon Lam
- Neurological Surgery, Montefiore Medical Center, New York, USA
| | - Rose Fluss
- Neurological Surgery, Montefiore Medical Center, New York, USA
| | - David J Altschul
- Neurological Surgery, Albert Einstein College of Medicine, Bronx, USA
| |
Collapse
|
507
|
Neuroprotective effect of 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline mediated via regulation of antioxidant system and inhibition of inflammation and apoptosis in a rat model of cerebral ischemia/reperfusion. Biochimie 2021; 186:130-146. [PMID: 33964368 DOI: 10.1016/j.biochi.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
The aim of the study was the assessment of the neuroprotective potential of 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline (DHQ) and its effect on inflammation, apoptosis, and transcriptional regulation of the antioxidant system in cerebral ischemia/reperfusion (CIR) in rats. The CIR rat model was constructed using the bilateral common carotid artery occlusion followed by reoxygenation. DHQ was administered at a dose of 50 mg/kg for three days. Histological staining was performed using hematoxylin and eosin. The level of S100B protein, 8-hydroxy-2-deoxyguanosine, and 8-isoprostane was assessed using an enzyme immunoassay. The intensity of apoptosis was assessed based on the activity of caspases and DNA fragmentation. The activity of enzymes was measured spectrophotometrically, the level of gene transcripts was assessed by real-time PCR. DHQ reduced the histopathological changes and normalized levels of S100B, lactate, pyruvate, and HIF-1 mRNA in the CIR rat model. In addition, DHQ decreased the oxidative stress markers in animals with a pathology. The tested compound also inhibited inflammation by decreasing the activity of myeloperoxidase, expression of interleukins and Nfkb2. DHQ-treated rats with CIR showed decreased caspase activity, DNA fragmentation, and AIF expression. DHQ changed activity of antioxidant enzymes to the control values, decreased the expression of Cat, Gsr, and Nfe2l2, which was overexpressed in CIR, and activated the expression of Sod1, Gpx1, Gsta2, and Foxo1. DHQ showed a neuroprotective effect on CIR in rats. The neuroprotective effect involve mechanisms such as the inhibition of oxidative stress, leading to a reduction in the inflammatory response and apoptosis and the modulation of the antioxidant defense components.
Collapse
|
508
|
Di Cataldo V, Debatisse J, Piraquive J, Géloën A, Grandin C, Verset M, Taborik F, Labaronne E, Loizon E, Millon A, Mury P, Pialoux V, Serusclat A, Lamberton F, Ibarrola D, Lavenne F, Le Bars D, Troalen T, Confais J, Crola Da Silva C, Mechtouff L, Contamin H, Fayad ZA, Canet-Soulas E. Cortical inflammation and brain signs of high-risk atherosclerosis in a non-human primate model. Brain Commun 2021; 3:fcab064. [PMID: 33937770 PMCID: PMC8063585 DOI: 10.1093/braincomms/fcab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/14/2022] Open
Abstract
Atherosclerosis is a chronic systemic inflammatory disease, inducing cardiovascular and cerebrovascular acute events. A role of neuroinflammation is suspected, but not yet investigated in the gyrencephalic brain and the related activity at blood−brain interfaces is unknown. A non-human primate model of advanced atherosclerosis was first established using longitudinal blood samples, multimodal imaging and gene analysis in aged animals. Non-human primate carotid lesions were compared with human carotid endarterectomy samples. During the whole-body imaging session, imaging of neuroinflammation and choroid plexus function was performed. Advanced plaques were present in multiple sites, premature deaths occurred and downstream lesions (myocardial fibrosis, lacunar stroke) were present in this model. Vascular lesions were similar to in humans: high plaque activity on PET and MRI imaging and systemic inflammation (high plasma C-reactive protein levels: 42 ± 14 µg/ml). We also found the same gene association (metabolic, inflammatory and anti-inflammatory markers) as in patients with similar histological features. Metabolic imaging localized abnormal brain glucose metabolism in the frontal cortex. It corresponded to cortical neuro-inflammation (PET imaging) that correlated with C-reactive protein level. Multimodal imaging also revealed pronounced choroid plexus function impairment in aging atherosclerotic non-human primates. In conclusion, multimodal whole-body inflammation exploration at the vascular level and blood−brain interfaces identified high-risk aging atherosclerosis. These results open the way for systemic and central inflammation targeting in atherosclerosis in the new era of immunotherapy.
Collapse
Affiliation(s)
- Vanessa Di Cataldo
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Justine Debatisse
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France.,Siemens-Healthcare SAS, Saint-Denis, France
| | | | - Alain Géloën
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Emmanuel Labaronne
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Emmanuelle Loizon
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Antoine Millon
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Pauline Mury
- LIBM Laboratory, Univ Lyon, Université Lyon 1, Lyon, France
| | | | - André Serusclat
- Radiology Department, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France
| | | | | | | | | | | | | | - Claire Crola Da Silva
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Laura Mechtouff
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France.,Stroke Department, Hospices Civils de Lyon, Lyon, France
| | | | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
509
|
Feng L, Han F, Zhou L, Wu S, Du Y, Zhang D, Zhang C, Gao Y. Efficacy and Safety of Panax Notoginseng Saponins (Xueshuantong) in Patients With Acute Ischemic Stroke (EXPECT) Trial: Rationale and Design. Front Pharmacol 2021; 12:648921. [PMID: 33967788 PMCID: PMC8101545 DOI: 10.3389/fphar.2021.648921] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Although revascularization treatment is recommended as the first-line therapy for patients with non-minor acute ischemic stroke (AIS), it only benefits a minority of patients. Previous studies have reported the positive effects of Panax notoginseng saponins (PNS) (Xueshuantong lyophilized powder) on AIS, however, there have been no rigorous trials. This study aims to assess the efficacy and safety of PNS therapy for patients with AIS. Methods: The Evaluation of Xueshuantong in Patients with acutE ischemiC sTroke (EXPECT) trial is a multicenter, randomized, placebo-controlled, double-blind study aiming to enroll 480 patients in China. Eligible patients with AIS within 72 h of symptom onset will randomly receive either PNS or PNS placebo for 10 days and subsequently be followed up to 90 days. The primary outcome will be a change in the National Institute of Health Stroke Scale (NIHSS) score from baseline to 10 post-randomization days. The secondary outcomes include early neurological improvement (proportion of patients with NIHSS score 0–1), and Patient-Reported Outcomes Scale for Stroke score at 10 post-randomization days, the proportion of patients with life independence (modified Rankin Scale score of 0–1), the proportion of patients with a favorable outcome (Barthel Index ≥90), and Stroke-Specific Quality of Life score at 90 days. Adverse events or clinically significant changes in vital signs and laboratory parameters, regardless of the severity, will be recorded during the trial to assess the safety of PNS. Conclusions: To our knowledge, this study is the first double-blind trial to assess the efficacy and safety of PNS in patients with AIS. Findings of the EXPECT trial will be valuable in improving evidence regarding the clinical application of PNS therapy in patients with AIS ineligible for revascularization treatment in the reperfusion era.
Collapse
Affiliation(s)
- Luda Feng
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.,Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Fang Han
- Office of Academic Research, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Li Zhou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shengxian Wu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Office of State Drug Clinical Trial Institution, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yawei Du
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dandan Zhang
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Chi Zhang
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.,Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.,Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
510
|
Salivary Biomarkers of Oxidative Stress and Inflammation in Stroke Patients: From Basic Research to Clinical Practice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5545330. [PMID: 33897941 PMCID: PMC8052150 DOI: 10.1155/2021/5545330] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
Cerebral stroke is a serious worldwide health problem, as can be seen by the global epidemic of the disease. In this disorder, when the blood flow is compromised by ruptures or blocked arteries, sudden death of neurons is observed as a result of a lack of oxygen and nutrients. Numerous severe problems and frequent complications also exist in stroke patients; therefore, there is an urgent need to develop new therapeutic, diagnostic, and prognostic methods for the disease. At present, the diagnosis of stroke is based on a neurological examination, medical history, and neuroimaging, due to the fact that rapid and noninvasive diagnostic tests are unavailable. Nevertheless, oxidative stress and inflammation are considered key factors in stroke pathogenesis. Oxygen free radicals are responsible for oxidation of lipids, proteins, and DNA/RNA, which in turn contributes to oxidative damage of the brain. Toxic products of the oxidation reactions act cytostatically on the cell by damaging cell membranes and leading to neuronal death by apoptosis or necrosis. Thus, it seems that redox/inflammatory biomarkers might be used in the diagnosis of the disease. Nowadays, saliva is of increasing interest in clinical laboratory medicine. Redox biomarkers could be obtained easily, noninvasively, cheaply, and stress-free from saliva. This minireview is aimed at presenting the current knowledge concerning the use of salivary biomarkers of oxidative stress and inflammation in the diagnosis and prognosis of stroke.
Collapse
|
511
|
Suzuki K, Shinohara M, Uno Y, Tashiro Y, Gheni G, Yamamoto M, Fukumori A, Shindo A, Mashimo T, Tomimoto H, Sato N. Deletion of B-cell translocation gene 2 (BTG2) alters the responses of glial cells in white matter to chronic cerebral hypoperfusion. J Neuroinflammation 2021; 18:86. [PMID: 33812385 PMCID: PMC8019185 DOI: 10.1186/s12974-021-02135-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/19/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Subcortical ischemic vascular dementia, one of the major subtypes of vascular dementia, is characterized by lacunar infarcts and white matter lesions caused by chronic cerebral hypoperfusion. In this study, we used a mouse model of bilateral common carotid artery stenosis (BCAS) to investigate the role of B-cell translocation gene 2 (BTG2), an antiproliferation gene, in the white matter glial response to chronic cerebral hypoperfusion. METHODS Btg2-/- mice and littermate wild-type control mice underwent BCAS or sham operation. Behavior phenotypes were assessed by open-field test and Morris water maze test. Brain tissues were analyzed for the degree of white matter lesions and glial changes. To further confirm the effects of Btg2 deletion on proliferation of glial cells in vitro, BrdU incorporation was investigated in mixed glial cells derived from wild-type and Btg2-/- mice. RESULTS Relative to wild-type mice with or without BCAS, BCAS-treated Btg2-/- mice exhibited elevated spontaneous locomotor activity and poorer spatial learning ability. Although the severities of white matter lesions did not significantly differ between wild-type and Btg2-/- mice after BCAS, the immunoreactivities of GFAP, a marker of astrocytes, and Mac2, a marker of activated microglia and macrophages, in the white matter of the optic tract were higher in BCAS-treated Btg2-/- mice than in BCAS-treated wild-type mice. The expression level of Gfap was also significantly elevated in BCAS-treated Btg2-/- mice. In vitro analysis showed that BrdU incorporation in mixed glial cells in response to inflammatory stimulation associated with cerebral hypoperfusion was higher in Btg2-/- mice than in wild-type mice. CONCLUSION BTG2 negatively regulates glial cell proliferation in response to cerebral hypoperfusion, resulting in behavioral changes.
Collapse
Affiliation(s)
- Kaoru Suzuki
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Mitsuru Shinohara
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
- Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Uno
- Institute of Experimental Animal Sciences, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshitaka Tashiro
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Ghupurjan Gheni
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Miho Yamamoto
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Akio Fukumori
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
- Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akihiko Shindo
- Department of Neurology, Graduate School of Medicine, Mie University, 174, Edobashi 2-chome, Tsu, Mie, 514-8507, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Graduate School of Medicine, Mie University, 174, Edobashi 2-chome, Tsu, Mie, 514-8507, Japan
| | - Naoyuki Sato
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan.
- Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
512
|
Zhou G, Wang Y, Gao S, Fu X, Cao Y, Peng Y, Zhuang J, Hu J, Shao A, Wang L. Potential Mechanisms and Perspectives in Ischemic Stroke Treatment Using Stem Cell Therapies. Front Cell Dev Biol 2021; 9:646927. [PMID: 33869200 PMCID: PMC8047216 DOI: 10.3389/fcell.2021.646927] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) remains one of the major causes of death and disability due to the limited ability of central nervous system cells to regenerate and differentiate. Although several advances have been made in stroke therapies in the last decades, there are only a few approaches available to improve IS outcome. In the acute phase of IS, mechanical thrombectomy and the administration of tissue plasminogen activator have been widely used, while aspirin or clopidogrel represents the main therapy used in the subacute or chronic phase. However, in most cases, stroke patients fail to achieve satisfactory functional recovery under the treatments mentioned above. Recently, cell therapy, especially stem cell therapy, has been considered as a novel and potential therapeutic strategy to improve stroke outcome through mechanisms, including cell differentiation, cell replacement, immunomodulation, neural circuit reconstruction, and protective factor release. Different stem cell types, such as mesenchymal stem cells, marrow mononuclear cells, and neural stem cells, have also been considered for stroke therapy. In recent years, many clinical and preclinical studies on cell therapy have been carried out, and numerous results have shown that cell therapy has bright prospects in the treatment of stroke. However, some cell therapy issues are not yet fully understood, such as its optimal parameters including cell type choice, cell doses, and injection routes; therefore, a closer relationship between basic and clinical research is needed. In this review, the role of cell therapy in stroke treatment and its mechanisms was summarized, as well as the function of different stem cell types in stroke treatment and the clinical trials using stem cell therapy to cure stroke, to reveal future insights on stroke-related cell therapy, and to guide further studies.
Collapse
Affiliation(s)
- Guoyang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junwen Hu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
513
|
Wang WY, Xie L, Zou XS, Li N, Yang YG, Wu ZJ, Tian XY, Zhao GY, Chen MH. Inhibition of extracellular signal-regulated kinase/calpain-2 pathway reduces neuroinflammation and necroptosis after cerebral ischemia-reperfusion injury in a rat model of cardiac arrest. Int Immunopharmacol 2021; 93:107377. [PMID: 33517223 DOI: 10.1016/j.intimp.2021.107377] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury (CIRI) is the leading cause of poor neurological prognosis after cardiopulmonary resuscitation (CPR). We previously reported that the extracellular signal-regulated kinase (ERK) activation mediates CIRI. Here, we explored the potential ERK/calpain-2 pathway role in CIRI using a rat model of cardiac arrest (CA). METHODS Adult male Sprague-Dawley rats suffered from CA/CPR-induced CIRI, received saline, DMSO, PD98059 (ERK1/2 inhibitor, 0.3 mg/kg), or MDL28170 (calpain inhibitor, 3.0 mg/kg) after spontaneous circulation recovery. The survival rate and the neurological deficit score (NDS) were utilized to assess the brain function. Hematoxylin stain, Nissl staining, and transmission electron microscopy were used to evaluate the neuron injury. The expression levels of p-ERK, ERK, calpain-2, neuroinflammation-related markers (GFAP, Iba1, IL-1β, TNF-α), and necroptosis proteins (TNFR1, RIPK1, RIPK3, p-MLKL, and MLKL) in the brain tissues were determined by western blotting and immunohistochemistry. Fluorescent multiplex immunohistochemistry was used to analyze the p-ERK, calpain-2, and RIPK3 co-expression in neurons, and RIPK3 expression levels in microglia or astrocytes. RESULTS At 24 h after CA/CPR, the rats in the saline-treated and DMSO groups presented with injury tissue morphology, low NDS, ERK/calpain-2 pathway activation, and inflammatory cytokine and necroptosis protein over-expression in the brain tissue. After PD98059 and MDL28170 treatment, the brain function was improved, while inflammatory response and necroptosis were suppressed by ERK/calpain-2 pathway inhibition. CONCLUSION Inflammation activation and necroptosis involved in CA/CPR-induced CIRI were regulated by the ERK/calpain-2 signaling pathway. Inhibition of that pathway can reduce neuroinflammation and necroptosis after CIRI in the CA model rats.
Collapse
Affiliation(s)
- Wen-Yan Wang
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Lu Xie
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Xin-Sen Zou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Nuo Li
- Department of Physiology, Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Ye-Gui Yang
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Zhi-Jiang Wu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Xin-Yue Tian
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Gao-Yang Zhao
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Meng-Hua Chen
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China.
| |
Collapse
|
514
|
Advances and Perspectives in Dental Pulp Stem Cell Based Neuroregeneration Therapies. Int J Mol Sci 2021; 22:ijms22073546. [PMID: 33805573 PMCID: PMC8036729 DOI: 10.3390/ijms22073546] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Human dental pulp stem cells (hDPSCs) are some of the most promising stem cell types for regenerative therapies given their ability to grow in the absence of serum and their realistic possibility to be used in autologous grafts. In this review, we describe the particular advantages of hDPSCs for neuroregenerative cell therapies. We thoroughly discuss the knowledge about their embryonic origin and characteristics of their postnatal niche, as well as the current status of cell culture protocols to maximize their multilineage differentiation potential, highlighting some common issues when assessing neuronal differentiation fates of hDPSCs. We also review the recent progress on neuroprotective and immunomodulatory capacity of hDPSCs and their secreted extracellular vesicles, as well as their combination with scaffold materials to improve their functional integration on the injured central nervous system (CNS) and peripheral nervous system (PNS). Finally, we offer some perspectives on the current and possible future applications of hDPSCs in neuroregenerative cell therapies.
Collapse
|
515
|
Li T, Zhao J, Xie W, Yuan W, Guo J, Pang S, Gan WB, Gómez-Nicola D, Zhang S. Specific depletion of resident microglia in the early stage of stroke reduces cerebral ischemic damage. J Neuroinflammation 2021; 18:81. [PMID: 33757565 PMCID: PMC7986495 DOI: 10.1186/s12974-021-02127-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ischemia can induce rapid activation of microglia in the brain. As key immunocompetent cells, reactive microglia play an important role in pathological development of ischemic stroke. However, the role of activated microglia during the development of ischemia remains controversial. Thus, we aimed to investigate the function of reactive microglia in the early stage of ischemic stroke. METHODS A Rose Bengal photothrombosis model was applied to induce targeted ischemic stroke in mice. CX3CR1CreER:R26iDTR mice were used to specifically deplete resident microglia through intragastric administration of tamoxifen (Ta) and intraperitoneal injection of diphtheria toxin (DT). At day 3 after ischemic stroke, behavioral tests were performed. After that, mouse brains were collected for further histological analysis and detection of mRNA expression of inflammatory factors. RESULTS The results showed that specific depletion of microglia resulted in a significant decrease in ischemic infarct volume and improved performance in motor ability 3 days after stroke. Microglial depletion caused a remarkable reduction in the densities of degenerating neurons and inducible nitric oxide synthase positive (iNOS+) cells. Importantly, depleting microglia induced a significant increase in the mRNA expression level of anti-inflammatory factors TGF-β1, Arg1, IL-10, IL-4, and Ym1 as well as a significant decline of pro-inflammatory factors TNF-α, iNOS, and IL-1β 3 days after stroke. CONCLUSIONS These results suggest that activated microglia is an important modulator of the brain's inflammatory response in stroke, contributing to neurological deficit and infarct expansion. Modulation of the inflammatory response through the elimination of microglia at a precise time point may be a promising therapeutic approach for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Ting Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Jin Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Wenguang Xie
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Wanru Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Jing Guo
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Shengru Pang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, People's Republic of China
| | - Wen-Biao Gan
- Molecular Neurobiology Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA.
| | - Diego Gómez-Nicola
- Centre for Biological Sciences, University of Southampton, South Lab and Path Block, Mail Point 840 LD80C, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK.
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, People's Republic of China.
| |
Collapse
|
516
|
Wei M, Huang Q, Liu Z, Luo Y, Xia J. Intestinal Barrier Dysfunction Participates in the Pathophysiology of Ischemic Stroke. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:401-416. [PMID: 33749565 DOI: 10.2174/1871527320666210322115808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
The gastrointestinal tract is a major organ for the body to absorb nutrients, water and electrolytes. At the same time, it is a tight barrier to resist the invasion of harmful substances and maintain the homeostasis of the internal environment. Destruction of the intestinal barrier is linked to the digestive system, cardiovascular system, endocrine system and other systemic diseases. Mounting evidence suggests that ischemic stroke not only changes the intestinal microbes, but also increases the permeability of the intestinal barrier, leading to bacterial translocation, infection, and even sepsis. The intestinal barrier, as part of the gut-brain axis, has also been proven to participate in the pathophysiological process of ischemic stroke. However, little attention has been paid to it. Since ischemic stroke is a major public health issue worldwide, there is an urgent need to know more about the disease for better prevention, treatment and prognosis. Therefore, understanding the pathophysiological relationship between ischemic stroke and the intestinal barrier will help researchers further uncover the pathophysiological mechanism of ischemic stroke and provide a novel therapeutic target for the treatment of ischemic stroke. Here, we review the physiology and pathology between ischemic stroke and intestinal barrier based on related articles published in the past ten years about the relationship between ischemic stroke, stroke risk factors and intestinal flora, intestinal barrier, and discuss the following parts: the intestinal barrier; possible mechanisms of intestinal barrier destruction in ischemic stroke; intestinal barrier destruction caused by stroke-related risk factors; intestinal barrier dysfunction in ischemic stroke; targeting the intestinal barrier to improve stroke; conclusions and perspectives.
Collapse
Affiliation(s)
- Minping Wei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| | - Qin Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| | - Zeyu Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| | - Yunfang Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008. China
| |
Collapse
|
517
|
Balança B, Desmurs L, Grelier J, Perret-Liaudet A, Lukaszewicz AC. DAMPs and RAGE Pathophysiology at the Acute Phase of Brain Injury: An Overview. Int J Mol Sci 2021; 22:ijms22052439. [PMID: 33670976 PMCID: PMC7957733 DOI: 10.3390/ijms22052439] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Early or primary injury due to brain aggression, such as mechanical trauma, hemorrhage or is-chemia, triggers the release of damage-associated molecular patterns (DAMPs) in the extracellular space. Some DAMPs, such as S100B, participate in the regulation of cell growth and survival but may also trigger cellular damage as their concentration increases in the extracellular space. When DAMPs bind to pattern-recognition receptors, such as the receptor of advanced glycation end-products (RAGE), they lead to non-infectious inflammation that will contribute to necrotic cell clearance but may also worsen brain injury. In this narrative review, we describe the role and ki-netics of DAMPs and RAGE at the acute phase of brain injury. We searched the MEDLINE database for “DAMPs” or “RAGE” or “S100B” and “traumatic brain injury” or “subarachnoid hemorrhage” or “stroke”. We selected original articles reporting data on acute brain injury pathophysiology, from which we describe DAMPs release and clearance upon acute brain injury, and the implication of RAGE in the development of brain injury. We will also discuss the clinical strategies that emerge from this overview in terms of biomarkers and therapeutic perspectives
Collapse
Affiliation(s)
- Baptiste Balança
- Department of Neurological Anesthesiology and Intensive Care Medicine, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France;
- Team TIGER, Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292, 69500 Bron, France
- Correspondence: ; Tel.: +33-6-2391-0594
| | - Laurent Desmurs
- Clinical Chemistry and Molecular Biology Laboratory, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France; (L.D.); (A.P.-L.)
| | - Jérémy Grelier
- Department of Neurological Anesthesiology and Intensive Care Medicine, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France;
| | - Armand Perret-Liaudet
- Clinical Chemistry and Molecular Biology Laboratory, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, 69500 Bron, France; (L.D.); (A.P.-L.)
- Team BIORAN, Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292, 69500 Bron, France
| | - Anne-Claire Lukaszewicz
- Department of Neurological Anesthesiology and Intensive Care Medicine, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69003 Lyon, France;
| |
Collapse
|
518
|
Krinock MJ, Singhal NS. Diabetes, stroke, and neuroresilience: looking beyond hyperglycemia. Ann N Y Acad Sci 2021; 1495:78-98. [PMID: 33638222 DOI: 10.1111/nyas.14583] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
Abstract
Ischemic stroke is a leading cause of morbidity and mortality among type 2 diabetic patients. Preclinical and translational studies have identified critical pathophysiological mediators of stroke risk, recurrence, and poor outcome in diabetic patients, including endothelial dysfunction and inflammation. Most clinical trials of diabetes and stroke have focused on treating hyperglycemia alone. Pioglitazone has shown promise in secondary stroke prevention for insulin-resistant patients; however, its use is not yet widespread. Additional research into clinical therapies directed at diabetic pathophysiological processes to prevent stroke and improve outcome for diabetic stroke survivors is necessary. Resilience is the process of active adaptation to a stressor. In patients with diabetes, stroke recovery is impaired by insulin resistance, endothelial dysfunction, and inflammation, which impair key neuroresilience pathways maintaining cerebrovascular integrity, resolving poststroke inflammation, stimulating neural plasticity, and preventing neurodegeneration. Our review summarizes the underpinnings of stroke risk in diabetes, the clinical consequences of stroke in diabetic patients, and proposes hypotheses and new avenues of research for therapeutics to stimulate neuroresilience pathways and improve stroke outcome in diabetic patients.
Collapse
Affiliation(s)
- Matthew J Krinock
- Department of Neurology, University of California - San Francisco, San Francisco, California
| | - Neel S Singhal
- Department of Neurology, University of California - San Francisco, San Francisco, California
| |
Collapse
|
519
|
Liu K, Cai GL, Zhuang Z, Pei SY, Xu SN, Wang YN, Wang H, Wang X, Cui C, Sun MC, Guo SH, Jia KP, Wang XZ, Cai GF. Interleukin-1β-Treated Mesenchymal Stem Cells Inhibit Inflammation in Hippocampal Astrocytes Through Exosome-Activated Nrf-2 Signaling. Int J Nanomedicine 2021; 16:1423-1434. [PMID: 33654394 PMCID: PMC7910114 DOI: 10.2147/ijn.s289914] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Interleukin-1β (IL-1)-treated mesenchymal stem cells (MSCs) and IL-1-MSCs-conditioned medium (CM) exert anti-inflammatory roles. Astrocytes are essential for the modulation of synaptic activity and neuronal homeostasis in the brain. Exosomes are the critical mediators in intercellular communication. However, the mechanism underlying the anti-inflammatory effect of IL-1-treated MSCs remains unknown. METHODS In this study, exosomes (IL-1-Exo) were isolated from IL-1-treated MSCs. In addition, lipopolysaccharide (LPS)-treated hippocampal astrocytes and status epilepticus (SE) mice were treated with IL-1-Exo. Inflammatory activity, astrogliosis, and cognitive performance were measured to determine the effect of IL-1-Exo on inflammation. RESULTS The results revealed that IL-1-Exo significantly inhibited LPS-induced astrogliosis and inflammatory responses of astrocytes. Also, IL-1-Exo reversed the LPS-induced effect on calcium signaling. The Nrf2 signaling pathway was associated with the effect of IL-1-Exo in LPS-treated astrocytes. Furthermore, IL-1-Exo reduced the inflammatory response and improved the cognitive performance of SE mice. CONCLUSION The results suggest that IL-1-Exo inhibited LPS-induced inflammatory responses in astrocytes and SE mice and that the effect of IL-1-Exo was primarily mediated through the Nrf-2 signaling pathway. This study provides a new understanding of the molecular mechanism of inflammation-associated brain diseases and an avenue to develop nanotherapeutic agents for the treatment of inflammatory conditions in the brain.
Collapse
Affiliation(s)
- Kai Liu
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001, People’s Republic of China
| | - Guo-Liang Cai
- Postdoctoral Research Workstation of Harbin Sport University, Harbin, 150001, People’s Republic of China
- Department of Sport Science and Health, Harbin Sport University, Harbin, 150008, People’s Republic of China
| | - Zhe Zhuang
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001, People’s Republic of China
| | - Si-Ying Pei
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001, People’s Republic of China
| | - Sheng-Nan Xu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001, People’s Republic of China
| | - Ya-Nan Wang
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001, People’s Republic of China
| | - Hong Wang
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001, People’s Republic of China
| | - Xin Wang
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001, People’s Republic of China
| | - Cheng Cui
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001, People’s Republic of China
| | - Man-Chao Sun
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001, People’s Republic of China
| | - Si-Hui Guo
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001, People’s Republic of China
| | - Kun-Ping Jia
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001, People’s Republic of China
| | - Xiu-Zhen Wang
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001, People’s Republic of China
| | - Guo-Feng Cai
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150001, People’s Republic of China
| |
Collapse
|
520
|
Gong P, Liu Y, Gong Y, Chen G, Zhang X, Wang S, Zhou F, Duan R, Chen W, Huang T, Wang M, Deng Q, Shi H, Zhou J, Jiang T, Zhang Y. The association of neutrophil to lymphocyte ratio, platelet to lymphocyte ratio, and lymphocyte to monocyte ratio with post-thrombolysis early neurological outcomes in patients with acute ischemic stroke. J Neuroinflammation 2021; 18:51. [PMID: 33610168 PMCID: PMC7896410 DOI: 10.1186/s12974-021-02090-6] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background and purpose To investigate the association of neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and lymphocyte to monocyte ratio (LMR) with post-thrombolysis early neurological outcomes including early neurological improvement (ENI) and early neurological deterioration (END) in patients with acute ischemic stroke (AIS). Methods AIS patients undergoing intravenous thrombolysis were enrolled from April 2016 to September 2019. Blood cell counts were sampled before thrombolysis. Post-thrombolysis END was defined as the National Institutes of Health Stroke Scale (NIHSS) score increase of ≥ 4 within 24 h after thrombolysis. Post-thrombolysis ENI was defined as NIHSS score decrease of ≥ 4 or complete recovery within 24 h. Multinomial logistic regression analysis was performed to explore the relationship of NLR, PLR, and LMR to post-thrombolysis END and ENI. We also used receiver operating characteristic curve analysis to assess the discriminative ability of three ratios in predicting END and ENI. Results Among 1060 recruited patients, a total of 193 (18.2%) were diagnosed with END and 398 (37.5%) were diagnosed with ENI. Multinomial logistic model indicated that NLR (odds ratio [OR], 1.385; 95% confidence interval [CI] 1.238–1.551, P = 0.001), PLR (OR, 1.013; 95% CI 1.009–1.016, P = 0.001), and LMR (OR, 0.680; 95% CI 0.560–0.825, P = 0.001) were independent factors for post-thrombolysis END. Moreover, NLR (OR, 0.713; 95% CI 0.643–0.791, P = 0.001) served as an independent factor for post-thrombolysis ENI. Area under curve (AUC) of NLR, PLR, and LMR to discriminate END were 0.763, 0.703, and 0.551, respectively. AUC of NLR, PLR, and LMR to discriminate ENI were 0.695, 0.530, and 0.547, respectively. Conclusions NLR, PLR, and LMR were associated with post-thrombolysis END. NLR and PLR may predict post-thrombolysis END. NLR was related to post-thrombolysis ENI. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02090-6.
Collapse
Affiliation(s)
- Pengyu Gong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Yukai Liu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Yachi Gong
- Department of Gerontology, Nantong Third People's Hospital, Nantong University, Nantong, 226006, Jiangsu, China
| | - Gang Chen
- Department of Neurology, Haimen Hospital Affiliated to Nantong University, Nantong, 226000, Jiangsu, China
| | - Xiaohao Zhang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210000, Jiangsu, China
| | - Siyu Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Feng Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Rui Duan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, Jiangsu, China
| | - Wenxiu Chen
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Ting Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Meng Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Qiwen Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Hongchao Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
521
|
Zhang B, Ran Y, Wu S, Zhang F, Huang H, Zhu C, Zhang S, Zhang X. Inhibition of Colony Stimulating Factor 1 Receptor Suppresses Neuroinflammation and Neonatal Hypoxic-Ischemic Brain Injury. Front Neurol 2021; 12:607370. [PMID: 33679579 PMCID: PMC7930561 DOI: 10.3389/fneur.2021.607370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Hypoxic-ischemic (HI) brain injury is a major cause of neonatal death or lifetime disability without widely accepted effective pharmacological treatments. It has been shown that the survival of microglia requires colony-stimulating factor 1 receptor (CSF1R) signaling and microglia participate in neonatal HI brain injury. We therefore hypothesize that microglia depletion during a HI insult period could reduce immature brain injury. In this study, CD1 mouse pups were treated with a CSF1R inhibitor (PLX3397, 25 mg/kg/daily) or a vehicle from postnatal day 4 to day 11 (P4-11), and over 90% of total brain microglia were deleted at P9. Unilateral hemisphere HI injury was induced at P9 by permanently ligating the left common carotid arteries and exposing the pups to 10% oxygen for 30 min to produce moderate left hemisphere injury. We found that the PLX3397 treatment reduced HI brain injury by 46.4%, as evaluated by the percentage of brain infarction at 48 h after HI. Furthermore, CSF1R inhibition suppressed the infiltration of neutrophils (69.7% reduction, p = 0.038), macrophages (77.4% reduction, p = 0.009), and T cells (72.9% reduction, p = 0.008) to the brain, the production of cytokines and chemokines (such as CCL12, CCL6, CCL21, CCL22, CCL19, IL7, CD14, and WISP-1), and reduced neuronal apoptosis as indicated by active caspase-3 labeled cells at 48 h after HI (615.20 ± 156.84/mm2 vs. 1,205.00 ± 99.15/mm2, p = 0.013). Our results suggest that CSF1R inhibition suppresses neuroinflammation and neonatal brain injury after acute cerebral hypoxia-ischemia in neonatal mice.
Collapse
Affiliation(s)
- Bohao Zhang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Center of Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou, China
| | - Yunwei Ran
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siting Wu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fang Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Huachen Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Clinical Neuroscience, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Shusheng Zhang
- Center of Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
522
|
Liegey JS, Sagnier S, Debruxelles S, Poli M, Olindo S, Renou P, Rouanet F, Moal B, Tourdias T, Sibon I. Influence of inflammatory status in the acute phase of stroke on post-stroke depression. Rev Neurol (Paris) 2021; 177:941-946. [PMID: 33610348 DOI: 10.1016/j.neurol.2020.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Thirty percent of stroke patients will suffer from post-stroke depression (PSD). Recent data suggest that inflammation accounts for a substantial amount of depression. Our primary objective was to assess the association between standard inflammation biomarkers in the acute phase of stroke and PSD at three months. The secondary objective was to elaborate a predictive model of PSD from clinical, biological and radiological data. METHODS We performed a retrospective analysis of a single-centre cohort of stroke patients with a three-month follow-up. Serum levels of C-reactive protein (CRP), fibrinogen, leukocyte count and neutrophil to lymphocyte ratio (NLR) were tested at admission and at peak. Mood was assessed at three months using the depression sub-scale of the Hospital Anxiety and Depression Scale (HADS). Association between inflammation biomarkers and HADS was evaluated with multi-linear regression adjusted on clinical and radiological parameters. Logistic predictive models of PSD at three months, with and without inflammation biomarkers, were compared. RESULTS Three hundred and forty-eight patients were included, of whom 20.06% developed PSD. Baseline and peak values of all inflammatory markers were associated with the severity of PSD at three months. Area under the curve for the receiver operating characteristic curve of PSD prediction was 0.746 (CI 95% 0.592-0.803) with selected inflammation biomarkers and 0.744 (CI 95% 0.587-0.799) without. CONCLUSION Most inflammation biomarkers are weakly associated with PSD, adding negligible value to predictive models. While they suggest the implication of inflammation in PSD pathogenesis, they are useless for the prediction of PSD, underscoring the need for more specific biomarkers.
Collapse
Affiliation(s)
- J S Liegey
- Unité neurovasculaire, pôle de neurosciences cliniques, hôpital Pellegrin, CHU de Bordeaux, Unité Bordeaux Segalen, 33076 Bordeaux, France.
| | - S Sagnier
- Unité neurovasculaire, pôle de neurosciences cliniques, hôpital Pellegrin, CHU de Bordeaux, Unité Bordeaux Segalen, 33076 Bordeaux, France
| | - S Debruxelles
- Unité neurovasculaire, pôle de neurosciences cliniques, hôpital Pellegrin, CHU de Bordeaux, Unité Bordeaux Segalen, 33076 Bordeaux, France
| | - M Poli
- Unité neurovasculaire, pôle de neurosciences cliniques, hôpital Pellegrin, CHU de Bordeaux, Unité Bordeaux Segalen, 33076 Bordeaux, France
| | - S Olindo
- Unité neurovasculaire, pôle de neurosciences cliniques, hôpital Pellegrin, CHU de Bordeaux, Unité Bordeaux Segalen, 33076 Bordeaux, France
| | - P Renou
- Unité neurovasculaire, pôle de neurosciences cliniques, hôpital Pellegrin, CHU de Bordeaux, Unité Bordeaux Segalen, 33076 Bordeaux, France
| | - F Rouanet
- Unité neurovasculaire, pôle de neurosciences cliniques, hôpital Pellegrin, CHU de Bordeaux, Unité Bordeaux Segalen, 33076 Bordeaux, France
| | - B Moal
- CHU de Bordeaux, Bordeaux, France
| | - T Tourdias
- Neuroradiologie, CHU de Bordeaux, Bordeaux, France
| | - I Sibon
- Unité neurovasculaire, pôle de neurosciences cliniques, hôpital Pellegrin, CHU de Bordeaux, Unité Bordeaux Segalen, 33076 Bordeaux, France
| |
Collapse
|
523
|
McGettrick HM. Bridging the gap-Immune cells that can repair nerves. Cell Mol Immunol 2021; 18:784-786. [PMID: 33580168 PMCID: PMC8115059 DOI: 10.1038/s41423-021-00642-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Helen M McGettrick
- Institute of Inflammation and Aging, University of Birmingham, Birmingham, UK.
| |
Collapse
|
524
|
Wang Q, Zhao H, Gao Y, Lu J, Xie D, Yu W, He F, Liu W, Hisatome I, Yamamoto T, Wang W, Cheng J. Uric acid inhibits HMGB1-TLR4-NF-κB signaling to alleviate oxygen-glucose deprivation/reoxygenation injury of microglia. Biochem Biophys Res Commun 2021; 540:22-28. [PMID: 33429196 DOI: 10.1016/j.bbrc.2020.12.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/26/2020] [Indexed: 02/08/2023]
Abstract
Mounting evidence has implicated inflammation in ischemia-reperfusion injury following acute ischemic stroke (AIS). Microglia remain the primary initiator and participant of brain inflammation. Emerging evidence has indicated that uric acid has promise for the treatment of AIS, but its explicit mechanisms remain elusive. Here, we observed that uric acid reduced the severity of cerebral infarction and attenuated the activation of microglia in the cerebral cortex in a mouse middle cerebral-artery occlusion/reperfusion model. Thus, we speculated that uric acid may play a role by directly interfering with the inflammatory response of microglia. First, we investigated whether the HMGB1-TLR4-NF-κB signaling plays a role in oxygen glucose deprivation and reperfusion (OGD/R) injury of BV2 cells. Inhibition of the signaling significantly reduced the release of the proinflammatory cytokines tumor necrosis factor α (TNF-α), interleukin 1β (IL1β), and IL6 caused by OGD/R in BV2 cells. Second, uric acid weakened the decreased cell viability and lactate dehydrogenase release induced by OGD/R in BV2 cells. Finally, uric acid reduced the release of the proinflammatory cytokines TNF-α, IL1β, and IL6 caused by OGD/R in BV2 cells by dampening HMGB1-TLR4-NF-κB signaling, which was reversed by probenecid treatment, an inhibitor of the uric acid channel. Hence, uric acid halted the release of inflammatory factors and the decreased cell viability induced by ODG/R via inhibiting the microglia HMGB1-TLR4-NF-κB signaling, thereby alleviating the damage to microglia. This may be part of the molecular mechanisms by which uric acid protects mice against the brain damage of middle cerebral-artery occlusion/reperfusion.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hairong Zhao
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yuan Gao
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jiaming Lu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Wei Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Furong He
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Weidong Liu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, Yonago, Japan
| | - Tetsuya Yamamoto
- Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Wei Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, Fujian, China.
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, Fujian, China.
| |
Collapse
|
525
|
Hou D, Wang C, Ye X, Zhong P, Wu D. Persistent inflammation worsens short-term outcomes in massive stroke patients. BMC Neurol 2021; 21:62. [PMID: 33568099 PMCID: PMC7874622 DOI: 10.1186/s12883-021-02097-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/31/2021] [Indexed: 11/10/2022] Open
Abstract
Background Persistent inflammation is an important driver of disease progression and affects prognosis. Some indicators of inflammation predict short-term outcomes. The relationship between prognosis, especially mortality, and persistent inflammation in massive stroke has not been studied, and this has been the subject of our research. Methods From April 1, 2017 to February 1, 2020, consecutive patients were prospectively enrolled. Clinical data, laboratory data, imaging data and follow-up infections morbidity were compared between 2 groups according to modified Rankin scale (mRS) scores (mRS < 3 and ≥ 3) at 1 month. The binomial logistic analysis was used to determine independent factors of 1-month prognosis. Short-term functional outcome, mortality and infection rates in massive stroke with and without persistent inflammation were compared. Results One hundred thirty-nine patients with massive stroke were included from 800 patients. We found that admission blood glucose levels (p = 0.005), proportions of cerebral hemispheric (p = 0.001), posterior circulatory (p = 0.035), and lacunar (p = 0.022) ischemia were higher in poor outcome patients; neutrophil-to-lymphocyte ratio (odd ratio = 1.87, 95%CI 1.14–3.07, p = 0.013) and blood glucose concentrations (odd ratio = 1.34, 95%CI 1.01–1.79, p = 0.043) can independently predict the short-term prognosis in massive stroke patients. We also found that the incidence of pulmonary infection (p = 0.009), one-month mortality (p = 0.003) and adverse outcomes (p = 0.0005) were higher in patients with persistent inflammation. Conclusions This study suggested that persistent inflammation is associated with poor prognosis, 1-month mortality and the occurrence of in-hospital pulmonary infection and that higher baseline inflammation level predicts short-term poor outcomes in massive stroke. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02097-9.
Collapse
Affiliation(s)
- Duanlu Hou
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Shanghai, 200240, China
| | - Chunjie Wang
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Shanghai, 200240, China.,Jiangchuan Community Health Service Center of Minhang District, Shanghai, China
| | - Xiaofei Ye
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Ping Zhong
- Department of Neurology, Shidong Hospital of Yangpu District, Shanghai, No.999, Shiguang Road, Shanghai, 200438, China.
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Shanghai, 200240, China.
| |
Collapse
|
526
|
Exosomal microRNA-22-3p alleviates cerebral ischemic injury by modulating KDM6B/BMP2/BMF axis. Stem Cell Res Ther 2021; 12:111. [PMID: 33546766 PMCID: PMC7863295 DOI: 10.1186/s13287-020-02091-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cerebral ischemia-reperfusion (I/R) injury, the most common form of stroke, has high mortality and often brings persistent and serious brain dysfunction among survivors. Administration of adipose-derived mesenchymal stem cells (ASCs) has been suggested to alleviate the I/R brain injury, but the mechanism remains uncharacterized. Here, we aimed at investigating the mechanism of ASCs and their extracellular vesicles (EVs) in the repair of or protection from I/R injury. Methods We established the middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation/reperfusion (OGD/RP) neuron model. ASCs or ASC-derived EVs (ASC-EVs) were co-cultured with neurons. RT-qPCR and Western blot analyses determined microRNA (miRNA)-22-3p, BMP2, BMF, and KDM6B expression in neurons upon treatment with ASC-EVs. Bioinformatics analysis predicted the binding between miR-22-3p and KDM6B. Using gain- and loss-of-function methods, we tested the impact of these molecules on I/R injury in vivo and in vitro. Results Treatment with ASCs and ASC-derived EVs significantly alleviated the I/R brain injury in vivo, elevated neuron viability in vitro, and decreased apoptosis. Interestingly, miR-22-3p was upregulated in ASC-EVs, and treatment with EV-miR-22-3p inhibitor led to increased apoptosis and decreased neuronal. Of note, miR-22-3p bound to and inhibited KDM6B, as demonstrated by dual-luciferase reporter gene assay and Western blot assay. Overexpression of KDM6B enhanced apoptosis of neurons in the OGD/RP model, and KDM6B bound to BMB2 and promoted its expression by binding to BMP2. Silencing of BMF reduced infarct volume and apoptosis in the stroke model. Conclusion Results support a conclusion that ASC-EV-derived miR-22-3p could alleviate brain ischemic injury by inhibiting KDM6B-mediated effects on the BMP2/BMF axis. These findings compelling indicate a novel treatment strategy for cerebral ischemic injury.
Collapse
|
527
|
Ferro D, Matias M, Neto J, Dias R, Moreira G, Petersen N, Azevedo E, Castro P. Neutrophil-to-Lymphocyte Ratio Predicts Cerebral Edema and Clinical Worsening Early After Reperfusion Therapy in Stroke. Stroke 2021; 52:859-867. [PMID: 33517702 DOI: 10.1161/strokeaha.120.032130] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE The mechanisms linking systemic inflammation to poor outcome in ischemic stroke are not fully understood. The authors investigated if peripheral inflammation following reperfusion therapy leads to an increase in cerebral edema (CED), thus hindering the clinical recovery. METHODS We designed a single-center study conducted at Centro Hospitalar Universitário São João between 2017 and 2019. Inclusion criteria were being adult, having an anterior circulation acute ischemic stroke, and receiving reperfusion therapy. Neutrophil-to-lymphocyte, platelet-to-lymphocyte ratios, and the systemic inflammatory response syndrome criteria were determined. The presence and grade of CED were evaluated on the computed tomography performed 24 hours following event. The clinical outcomes included early neurological deterioration and functional dependence at 90 days. Adjusted odds ratio and 95% CI were obtained by ordinal and logistic regression models. Optimal cutoff values were defined using receiver operating characteristic analysis in the training cohort and validated in an independent data set. RESULTS Five hundred fifty-three patients were included. Neutrophil-to-lymphocyte increased with higher degrees of CED at 24 hours (adjusted odds ratio, 1.34 [1.09-1.68], P<0.01) and was associated with early neurological deterioration (adjusted odds ratio, 1.30 [1.04-1.63], P<0.05) and poor functional status at 90 days (adjusted odds ratio, 1.79 [1.28-2.48], P<0.01). Platelet-to-lymphocyte was not associated with the outcomes. Systemic inflammatory response syndrome was related to CED due to altered white blood cell counts. Neutrophil-to-lymphocyte was the best predictor with an area under the curve around 0.7. Neutrophil-to-lymphocyte ≥7 had and accuracy, sensitivity, and specificity around 60%. CONCLUSIONS Increased systemic inflammation is linked to the severity of CED early after reperfusion therapy in stroke. Easily obtained inflammatory markers convey early warning alerts for patients at risk of severe neurological complications with an impact on long-term functional outcome. CED quantification should be included as an end point in proof-of-concept trials in immunomodulation in stroke.
Collapse
Affiliation(s)
- Daniela Ferro
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Portugal (D.F., J.N., R.D.)
- Department of Neurology (D.F., M.M., R.D., E.A., P.C.), Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Margarida Matias
- Department of Neurology (D.F., M.M., R.D., E.A., P.C.), Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Joana Neto
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Portugal (D.F., J.N., R.D.)
| | - Rafael Dias
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Portugal (D.F., J.N., R.D.)
- Department of Neurology (D.F., M.M., R.D., E.A., P.C.), Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Goreti Moreira
- Department of Internal Medicine (G.M.), Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Nils Petersen
- Neurocritical Care and Emergency Neurology, Yale School of Medicine, Yale-New Haven Hospital, CT (N.P.)
| | - Elsa Azevedo
- Department of Neurology (D.F., M.M., R.D., E.A., P.C.), Centro Hospitalar Universitário de São João, Porto, Portugal
- Department of Clinical Neurosciences and Mental Health, Cardiovascular Research and Development Unit, Faculty of Medicine, University of Porto, Portugal (E.A., P.C.)
| | - Pedro Castro
- Department of Neurology (D.F., M.M., R.D., E.A., P.C.), Centro Hospitalar Universitário de São João, Porto, Portugal
- Department of Clinical Neurosciences and Mental Health, Cardiovascular Research and Development Unit, Faculty of Medicine, University of Porto, Portugal (E.A., P.C.)
| |
Collapse
|
528
|
Inhibition of miR-129 Improves Neuronal Pyroptosis and Cognitive Impairment Through IGF-1/GSK3β Signaling Pathway: An In Vitro and In Vivo Study. J Mol Neurosci 2021; 71:2299-2309. [PMID: 33484421 DOI: 10.1007/s12031-021-01794-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Pyroptosis is a programmed cell death process which is accompanied by inflammation. The aims of this in vitro and in vivo study were to reveal whether miR-129 contributed to neuronal pyroptosis and cognitive impairment and to further explore its mechanism involved. PC-12 cells were treated with LPS, miR-129 antagomir, AXL1717 (IGF-1 receptor blocker), or SB216763 (GSK3β blocker). After that, expression of miR-129 was measured using qRT-PCR. Relationship between miR-129 and IGF-1 was revealed using luciferase reporter assay. Protein expression of IGF-1, p-Ser9-GSK3β, NLRP3, and Caspase-1 was determined using western blotting. Pyroptosis rate was measured using flow cytometry. Wistar rats were fed with high-fat diet to induce neural inflammation and were further treated with miR-129 antagomir through intracerebroventricular injection. Then, cognitive impairment was assessed by water maze test. Expression of the proteins mentioned above was measured again in midbrain and hippocampus of the rats. In the PC-12 cells, LPS-induced neuronal pyroptosis can be alleviated by miR-129 antagomir. IGF-1 was a specific target for miR-129. Up-regulation and down-regulation of IGF-1/GSK3β signaling pathway separately alleviated and deteriorated neuronal pyroptosis in the cells. In the rats, high-fat diet caused cognitive impairment following with neuronal pyroptosis and down-regulation of IGF-1/GSK3β signaling pathway in midbrain and hippocampus tissues. Also, miR-129 antagomir improved these abnormalities in the rats. Inhibition of miR-129 improved neuronal pyroptosis and cognitive impairment through IGF-1/GSK3β signaling pathway.
Collapse
|
529
|
Zhang Z, Zou X, Zhang R, Xie Y, Feng Z, Li F, Han J, Sun H, Ouyang Q, Hua S, Lv B, Hua T, Liu Z, Cai Y, Zou Y, Tang Y, Jiang X. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke. Aging (Albany NY) 2021; 13:3060-3079. [PMID: 33479185 PMCID: PMC7880318 DOI: 10.18632/aging.202466] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
To investigate the therapeutic mechanism of action of transplanted stem cells and develop exosome-based nanotherapeutics for ischemic stroke, we assessed the effect of exosomes (Exos) produced by human umbilical cord mesenchymal stem cells (hUMSCs) on microglia-mediated neuroinflammation after ischemic stroke. Our results found that injected hUMSC-Exos were able to access the site of ischemic damage and could be internalized by cells both in vivo and in vitro. In vitro, treatment with hUMSC-Exos attenuated microglia-mediated inflammation after oxygen-glucose deprivation (OGD). In vivo results demonstrated that treatment with hUMSC-Exos significantly reduced infarct volume, attenuated behavioral deficits, and ameliorated microglia activation, as measured three days post-transient brain ischemia. Furthermore, miR-146a-5p knockdown (miR-146a-5p k/d Exos) partially reversed the neuroprotective effect of hUMSC-Exos. Our mechanistic study demonstrated that miR-146a-5p in hUMSC-Exos reduces microglial-mediated neuroinflammatory response through IRAK1/TRAF6 pathway. We conclude that miR-146a-5p derived from hUMSC-Exos can attenuate microglia-mediated neuroinflammation and consequent neural deficits following ischemic stroke. These results elucidate a potential therapeutic mechanism of action of mesenchymal stem cells and provide evidence that hUMSC-Exos represent a potential cell-free therapeutic option for ischemic stroke.
Collapse
Affiliation(s)
- Zhongfei Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaoxiong Zou
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Run Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yu Xie
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Zhiming Feng
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Feng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Jianbang Han
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Haitao Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Qian Ouyang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Shiting Hua
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Bingke Lv
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Tian Hua
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Zhizheng Liu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yingqian Cai
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yuxi Zou
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yanping Tang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
530
|
Lei TY, Ye YZ, Zhu XQ, Smerin D, Gu LJ, Xiong XX, Zhang HF, Jian ZH. The immune response of T cells and therapeutic targets related to regulating the levels of T helper cells after ischaemic stroke. J Neuroinflammation 2021; 18:25. [PMID: 33461586 PMCID: PMC7814595 DOI: 10.1186/s12974-020-02057-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Through considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.
Collapse
Affiliation(s)
- Tian-Yu Lei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Ying-Ze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Xi-Qun Zhu
- Department of Head and Neck and Neurosurgery, Hubei Cancer Hospital, Wuhan, 430079, Hubei Province, People's Republic of China
| | - Daniel Smerin
- University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Li-Juan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Xiao-Xing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Zhi-Hong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
531
|
Liu J, Liu L, Kang W, Peng G, Yu D, Ma Q, Li Y, Zhao Y, Li L, Dai F, Wang J. Cytokines/Chemokines: Potential Biomarkers for Non-paraneoplastic Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Front Neurol 2021; 11:582296. [PMID: 33408682 PMCID: PMC7779630 DOI: 10.3389/fneur.2020.582296] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most common type of autoimmune encephalitis. This study focuses on finding new biomarkers to evaluate the clinical condition and provide new directions for treatment. Methods: A total of 44 cytokines/chemokines in the cerebrospinal fluid of 10 non-paraneoplastic patients and nine controls were measured. We selected some of the cytokines/chemokines that significantly increased in patients. Six selected cytokines/chemokines, including IL-10, CXCL10, CCL22, CCL3, IL-7, TNF-α, and three previously reported (IL-2, IL-6, and IL-17A), were measured in seven other patients who provided repeat samples. We compared their levels and explored correlations with severity of disease and antibody titers. Results: The levels of Th1 axis (CXCL10, TNF-α, IFN-γ, CCL3), Th2 axis (CCL1, CCL8, CCL17, CCL22), Treg axis (IL-10), Th17 axis (IL-7), and B cell axis (CXCL13) cytokines, as well as IL-12 p40 and IL-16, were significantly higher in patients compared to those in controls. The level of IL-2 was significantly decreased at the intermediate stage of treatment compared with that before treatment. The severity of disease is positively correlated with levels of CXCL10, CCL3, IL-10, CCL22, and IL-6. The level of CCL3 in the high antibody titer group was greater than that in the low antibody titer group. Conclusion: The pathogenesis of anti-NMDAR encephalitis involves T cell and B cell cytokines. T cells likely assist B cells to produce antibodies. IL-2, CXCL10, CCL3, IL-10, CCL22, and IL-6 may represent new biomarkers in anti-NMDAR encephalitis. Given the lack of research on IL-10, CCL3, and CCL22 in this disease, it will be informative to explore their potential role in pathogenesis in larger studies.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lei Liu
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wenting Kang
- Medical Research Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Gongxin Peng
- Center for Bioinformatics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Di Yu
- Medical Research Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qiuying Ma
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yatong Li
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yan Zhao
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lin Li
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Feifei Dai
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Medical Research Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
532
|
Wang F, Wang L, Sui G, Yang C, Guo M, Xiong X, Chen Z, Lei P. IGF-1 Alleviates Mitochondrial Apoptosis through the GSK3β/NF-κB/NLRP3 Signaling Pathway in LPS-Treated PC-12 Cells. J Mol Neurosci 2021; 71:1320-1328. [PMID: 33403593 DOI: 10.1007/s12031-020-01759-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Inflammation contributes to mitochondrial dysfunction and neuronal apoptosis. The aim of this study was to determine whether insulin-like growth factor-1 (IGF-1) alleviates mitochondrial apoptosis in lipopolysaccharide (LPS)-treated PC-12 cells, and to further explore the mechanism involved. Prepared PC-12 cells were treated with IGF-1, Mdivi-1 (DRP1 blocker), LY294002 (PI3K blocker), betulinic acid (NF-κB activator) or their combinations. Mitochondrial membrane potential and ATP generation were then measured to assess mitochondrial function. The rate of apoptosis was determined using flow cytometry. The expression of several apoptosis proteins (i.e. Bax, cleaved caspase-9 and cleaved caspase-3) and signaling proteins (i.e. p-GSK3β, NF-κB and NLRP3) was measured using western blotting. Compared with the control cells, the LPS-treated cells showed evidence of mitochondrial dysfunction, increased apoptosis and upregulation of apoptosis proteins, which were significantly alleviated by Mdivi-1. These findings indicate that neuronal apoptosis was activated partly through the mitochondrial pathway. IGF-1 treatment inhibited mitochondrial apoptosis in a dose-dependent manner in the LPS-treated cells. The reagent also increased the expression of p-GSK3β and decreased the expression of NF-κB and NLRP3. Both LY294002 and betulinic acid reversed the protective effect of IGF-1. In addition, LY294002 affected the expression of the three signaling proteins, while betulinic acid only affected the expression of NF-κB and NLRP3. These findings indicated a GSK3β/NF-κB/NLRP3 signaling pathway was existed and was involved in the protective mechanism of IGF-1. In conclusion, IGF-1 alleviated mitochondrial apoptosis through GSK3β/NF-κB/NLRP3 signaling pathway in LPS-treated PC-12 cells.
Collapse
Affiliation(s)
- Feng Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China.
| | - Lu Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China
| | - Guanghong Sui
- Department of Child and Adolescent Psychology, Tianjin Anding Hospital, Tianjin, 300074, China
| | - Caixia Yang
- Department of Rehabilitation, Tianjin Anding Hospital, Tianjin, 300074, China
| | - Mengtian Guo
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China
| | - Xiangyang Xiong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China
| | - Zheng Chen
- Department of Psychology, Tianjin Anding Hospital, Tianjin, 300074, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, 300052, China
| |
Collapse
|
533
|
Chen Z, He Y, Su Y, Sun Y, Zhang Y, Chen H. Association of inflammatory and platelet volume markers with clinical outcome in patients with anterior circulation ischaemic stroke after endovascular thrombectomy. Neurol Res 2021; 43:503-510. [PMID: 33402058 DOI: 10.1080/01616412.2020.1870359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background: To determine the correlation of inflammatory and platelet volume indices with the severity of stroke and 3-month clinical outcomes in patients with acute ischemic stroke (AIS) after endovascular thrombectomy (EVT).Methods: A retrospective analysis was conducted for AIS patients who underwent EVT at our hospital from 2015 to 2019. Inflammatory factors, including white blood count, neutrophil count, lymphocyte count, neutrophil to lymphocyte ratio (NLR), high-sensitivity C-reactive protein (hs-CRP), procalcitonin (PCT) and interleukin-6 (IL-6), and platelet volume indices, including platelet count (PC), mean platelet volume (MPV), platelet distribution width (PDW) and MPV/PC levels were assessed. Results were analyzed between patients with favorable and unfavorable outcomes at 3 months post-EVT.Results: A total of 257 AIS patients were included in the study. There were 86 (33.5%) patients with favorable functional outcomes at 3 months. Compared to patients with favorable outcomes, those with poor outcomes have lower lymphocyte count, higher neutrophil count and NLR levels. There were no differences in hs-CRP,PCT and IL-6 between the two groups. The correlation analysis showed that the increase in MPV, PDW, and MPV/PC was related to the high level of the NIHSS score at admission. Multivariate logistic regression analysis showed that higher NLR levels are an independent risk factor for unfavorable outcomes at 3 months (OR = 1.141; 95% CI 1.061 to 1.227, P = 0.000).Conclusions: MPV, PDW, and MPV/PC are associated with stroke severity. Higher NLR levels upon admission may predict unfavorable functional outcomes in patients with AIS after undergoing EVT.Abbreviations ACA: anterior cerebral artery; AIS: acute ischemic stroke; ASPECTS: alberta stroke program early CT score; BMI: body mass index; DBP: diastolic blood pressure; END: early neurological deterioration; EVT: endovascular thrombectomy; hs-CRP: high-sensitivity C-reactive protein; HT: hemorrhagic transformation; ICA: internal carotid artery; IL-6: interleukin-6; IS: ischemic progression; LAA: Large-Artery Atherosclerosis; MCA: middle cerebral artery; MPV: mean platelet volume; mTICI: modified thrombolysis in cerebral infarction; NIHSS: National Institute of Health stroke scale; NLR: neutrophil to lymphocyte ratio; OTP: onset-to-puncture; PC: platelet count; PCT: procalcitonin; PDW: platelet distribution width; SBP: systolic blood pressure; sICH: symptomatic intracerebral hemorrhageWBC: white blood cell.
Collapse
Affiliation(s)
- Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanbo He
- Department of Neurology, The Beijing Moslem People Hospital, Beijing, China
| | - Yingying Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yijia Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yingbo Zhang
- Department of Neurology, Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, China
| | - Hongbo Chen
- Department of Neurology, Liangxiang Hospital of Beijing Fangshan District, Beijing, China
| |
Collapse
|
534
|
Candelario-Jalil E, Paul S. Impact of aging and comorbidities on ischemic stroke outcomes in preclinical animal models: A translational perspective. Exp Neurol 2021; 335:113494. [PMID: 33035516 PMCID: PMC7874968 DOI: 10.1016/j.expneurol.2020.113494] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a highly complex and devastating neurological disease. The sudden loss of blood flow to a brain region due to an ischemic insult leads to severe damage to that area resulting in the formation of an infarcted tissue, also known as the ischemic core. This is surrounded by the peri-infarct region or penumbra that denotes the functionally impaired but potentially salvageable tissue. Thus, the penumbral tissue is the main target for the development of neuroprotective strategies to minimize the extent of ischemic brain damage by timely therapeutic intervention. Given the limitations of reperfusion therapies with recombinant tissue plasminogen activator or mechanical thrombectomy, there is high enthusiasm to combine reperfusion therapy with neuroprotective strategies to further reduce the progression of ischemic brain injury. Till date, a large number of candidate neuroprotective drugs have been identified as potential therapies based on highly promising results from studies in rodent ischemic stroke models. However, none of these interventions have shown therapeutic benefits in stroke patients in clinical trials. In this review article, we discussed the urgent need to utilize preclinical models of ischemic stroke that more accurately mimic the clinical conditions in stroke patients by incorporating aged animals and animal stroke models with comorbidities. We also outlined the recent findings that highlight the significant differences in stroke outcome between young and aged animals, and how major comorbid conditions such as hypertension, diabetes, obesity and hyperlipidemia dramatically increase the vulnerability of the brain to ischemic damage that eventually results in worse functional outcomes. It is evident from these earlier studies that including animal models of aging and comorbidities during the early stages of drug development could facilitate the identification of neuroprotective strategies with high likelihood of success in stroke clinical trials.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
535
|
Gao L, Shi H, Sherchan P, Tang H, Peng L, Xie S, Liu R, Hu X, Tang J, Xia Y, Zhang JH. Inhibition of lysophosphatidic acid receptor 1 attenuates neuroinflammation via PGE2/EP2/NOX2 signalling and improves the outcome of intracerebral haemorrhage in mice. Brain Behav Immun 2021; 91:615-626. [PMID: 33035633 DOI: 10.1016/j.bbi.2020.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/01/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in proinflammatory processes in the central nervous system by modulating microglia activation. The aim of this study was to explore the anti-inflammatory effects and neurological function improvement of LPA1 inhibition after intracerebral haemorrhage (ICH) in mice and to determine whether prostaglandin E2 (PGE2), E-type prostaglandin receptor 2 (EP2), and NADPH oxidase 2 (NOX2) signalling are involved in LPA1-mediated neuroinflammation. ICH was induced in CD1 mice by autologous whole blood injection. AM966, a selective LPA1 antagonist, was administered by oral gavage 1 h and 12 h after ICH. The LPA1 endogenous ligand, LPA was administered to verify the effect of LPA1 activation. To elucidate potential inflammatory mechanisms of LPA1, the selective EP2 activator butaprost was administered by intracerebroventricular injection with either AM966 or LPA1 CRISPR knockout (KO). Water content of the brain, neurobehavior, immunofluorescence staining, and western blot were performed. After ICH, EP2 was expressed in microglia whereas LPA1 was expressed in microglia, neurons, and astrocytes, which peaked after 24 h. AM966 inhibition of LPA1 improved neurologic function, reduced brain oedema, and suppressed perihematomal inflammatory cells after ICH. LPA administration aggravated neurological deficits after ICH. AM966 treatment and LPA1 CRISPR KO both decreased the expressions of PGE2, EP2, NOX2, NF-κB, TNF-α, IL-6, and IL-1β expressions after ICH, which was reversed by butaprost. This study demonstrated that inhibition of LPA1 attenuated neuroinflammation caused by ICH via PGE2/EP2/NOX2 signalling pathway in mice, which consequently improved neurobehavioral functions and alleviated brain oedema. LPA1 may be a promising therapeutic target to attenuate ICH-induced secondary brain injury.
Collapse
Affiliation(s)
- Ling Gao
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hui Shi
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery, Affiliated Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hong Tang
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Li Peng
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Shucai Xie
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Rui Liu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Xiao Hu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Neurosurgery and Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| |
Collapse
|
536
|
Li X, Xia Q, Mao M, Zhou H, Zheng L, Wang Y, Zeng Z, Yan L, Zhao Y, Shi J. Annexin-A1 SUMOylation regulates microglial polarization after cerebral ischemia by modulating IKKα stability via selective autophagy. SCIENCE ADVANCES 2021; 7:7/4/eabc5539. [PMID: 33523920 PMCID: PMC7817101 DOI: 10.1126/sciadv.abc5539] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/01/2020] [Indexed: 05/31/2023]
Abstract
Annexin-A1 (ANXA1) has recently been proposed to play a role in microglial activation after brain ischemia, but the underlying mechanism remains poorly understood. Here, we demonstrated that ANXA1 is modified by SUMOylation, and SUMOylated ANXA1 could promote the beneficial phenotype polarization of microglia. Mechanistically, SUMOylated ANXA1 suppressed nuclear factor κB activation and the production of proinflammatory mediators. Further study revealed that SUMOylated ANXA1 targeted the IκB kinase (IKK) complex and selectively enhanced IKKα degradation. Simultaneously, we detected that SUMOylated ANXA1 facilitated the interaction between IKKα and NBR1 to promote IKKα degradation through selective autophagy. Further work revealed that the overexpression of SUMOylated ANXA1 in microglia/macrophages resulted in marked improvement in neurological function in a mouse model of cerebral ischemia. Collectively, our study demonstrates a previously unidentified mechanism whereby SUMOylated ANXA1 regulates microglial polarization and strongly indicates that up-regulation of ANXA1 SUMOylation in microglia may provide therapeutic benefits for cerebral ischemia.
Collapse
Affiliation(s)
- Xing Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Qian Xia
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Meng Mao
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Huijuan Zhou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Lu Zheng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yi Wang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhen Zeng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Lulu Yan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jing Shi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, Hubei Province, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
537
|
Wu T, Zhang H, Tian X, Cao Y, Wei D, Wu X. Neutrophil-to-Lymphocyte Ratio Better Than High-Sensitivity C-Reactive Protein in Predicting Stroke-Associated Pneumonia in Afebrile Patients. Neuropsychiatr Dis Treat 2021; 17:3589-3595. [PMID: 34916795 PMCID: PMC8668255 DOI: 10.2147/ndt.s340189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To evaluate the association between neutrophil-to-lymphocyte ratio (NLR) and stroke-associated pneumonia (SAP) in patients with acute ischemic stroke (AIS) without fever and to clarify whether NLR has an advantage over high-sensitivity C-reactive protein (hs-CRP) in predicting SAP. PATIENTS AND METHODS A total of 434 patients with AIS without fever were assessed in this study. Multivariable analysis was used to evaluate the relationship between NLR and SAP, and the receiver operating characteristic (ROC) curve was used to compare the predictive value of NLR and hs-CRP. RESULTS Among the total patients, 18 (4.1%) developed SAP. After adjusting for confounders, NLR (adjusted odds ratio [aOR] = 1.60; 95% confidence interval [CI], 1.30-1.96; p < 0.001) remained independently associated with an increased risk of SAP. In addition, the area under the curve (AUC) of NLR (0.862 [0.826-0.893]) was higher than that of hs-CRP (0.738 [0.694-0.779]). CONCLUSION We found that compared with hs-CRP, NLR was significantly associated with the occurrence of SAP in patients with AIS without fever and showed a more effective predictive value for SAP.
Collapse
Affiliation(s)
- Ti Wu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Haipeng Zhang
- Department of Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Xiaolin Tian
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yang Cao
- Department of Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Dianjun Wei
- Department of Clinical Laboratory, Hebei Yanda Hospital, Langfang, Hebei, People's Republic of China
| | - Xiangkun Wu
- Department of Clinical Laboratory, Hebei Yanda Hospital, Langfang, Hebei, People's Republic of China
| |
Collapse
|
538
|
Cheng H, Di G, Gao CC, He G, Wang X, Han YL, Sun LA, Zhou ML, Jiang X. FTY720 Reduces Endothelial Cell Apoptosis and Remodels Neurovascular Unit after Experimental Traumatic Brain Injury. Int J Med Sci 2021; 18:304-313. [PMID: 33390799 PMCID: PMC7757143 DOI: 10.7150/ijms.49066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. A sequence of pathological processes occurred when there is TBI. Previous studies showed that sphingosine-1-phosphate receptor 1 (S1PR1) played a critical role in inflammatory response in the brain after TBI. Thus, the present study was designed to evaluate the effects of the S1PR1 modulator FTY720 on neurovascular unit (NVU) after experimental TBI in mice. The weight-drop TBI method was used to induce TBI. Western blot (WB) was performed to determine the levels of SIPR1, claudin-5 and occludin at different time points. FTY720 was intraperitoneally administered to mice after TBI was induced. The terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) assay was used to assess endothelial cell apoptosis. Immunofluorescence and WB were performed to measure the expression of tight junction proteins: claudin-5 and occludin. Evans blue (EB) permeability assay and brain water content were applied to evaluate the blood-brain barrier (BBB) permeability and brain edema. Immunohistochemistry was performed to assess the activation of astrocytes and microglia. The results showed that FTY720 administration reduced endothelial cell apoptosis and improved BBB permeability. FTY720 also attenuated astrocytes and microglia activation. Furthermore, treatment with FTY720 not only improved neurological function, but also increased the survival rate of mice significantly. These findings suggest that FTY720 administration restored the structure of the NVU after experimental TBI by decreasing endothelial cell apoptosis and attenuating the activation of astrocytes. Moreover, FTY720 might reduce inflammation in the brain by reducing the activation of microglia in TBI mice.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| | - Guangfu Di
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| | - Chao-Chao Gao
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, China
| | - Guoyuan He
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| | - Xue Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Yan-Ling Han
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Le-An Sun
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| | - Meng-Liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Xiaochun Jiang
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| |
Collapse
|
539
|
Ding KQ, Lai ZH, Zhang Y, Yang GY, He JR, Zeng LL. Monocyte-to-Lymphocyte Ratio is Associated with Depression 3 Months After Stroke. Neuropsychiatr Dis Treat 2021; 17:835-845. [PMID: 33776439 PMCID: PMC7989958 DOI: 10.2147/ndt.s299462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To explore the relationship between the monocyte-to-lymphocyte ratio (MLR) and depression three months after acute ischemic stroke. PATIENTS AND METHODS From May 2013 to September 2014, 203 patients with acute ischemic stroke were recruited within 7 days post-stroke from Shanghai Ruijin Hospital and blood samples were collected after admission. The Hamilton Depression Scale and Clinical Review were evaluated at 3 months after stroke. Based on the Diagnostic and Statistical Manual of Mental Disorders-IV diagnostic criteria, we divided patients into post-stroke depression (PSD) and non-PSD groups. We analyzed the intergroup difference in MLR and the contributing factors. Moreover, dynamic changes in monocytes, lymphocytes and MLR at four different time intervals for all the stroke patients and their relationship with PSD patients were also studied. RESULTS The NIHSS scores and MLR in the PSD group were significantly higher than in the non-PSD group (p<0.05). Logistic regression analysis revealed MLR was an independent risk factor for PSD (odds ratio: 18.020, 95% confidence interval: 1.127‒288.195, p=0.041). MLR correlated negatively with cholesterol and low-density lipoprotein (r=-0.160 and -0.165, respectively, p<0.05). Within 7 days post-acute ischemic stroke, monocytes gradually increased while lymphocytes remained unchanged for all the stroke patients. The MLR value was significantly higher in the PSD group than in the non-PSD group within 24 h post-stroke (p<0.05), but there was no difference in the other three time-intervals between the two groups. CONCLUSION The admission MLR, particularly within 24 h post-stroke, was associated with PSD at 3 months, implying that the MLR might be involved in the PSD inflammatory mechanism.
Collapse
Affiliation(s)
- Kai-Qi Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital/Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ze-Hua Lai
- Department of Neurology and Institute of Neurology, Ruijin Hospital/Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yu Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital/Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Guo-Yuan Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital/Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ji-Rong He
- Department of Neurology and Institute of Neurology, Ruijin Hospital/Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Li-Li Zeng
- Department of Neurology and Institute of Neurology, Ruijin Hospital/Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
540
|
Filling the gaps on stroke research: Focus on inflammation and immunity. Brain Behav Immun 2021; 91:649-667. [PMID: 33017613 PMCID: PMC7531595 DOI: 10.1016/j.bbi.2020.09.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023] Open
Abstract
For the last two decades, researchers have placed hopes in a new era in which a combination of reperfusion and neuroprotection would revolutionize the treatment of stroke. Nevertheless, despite the thousands of papers available in the literature showing positive results in preclinical stroke models, randomized clinical trials have failed to show efficacy. It seems clear now that the existing data obtained in preclinical research have depicted an incomplete picture of stroke pathophysiology. In order to ameliorate bench-to-bed translation, in this review we first describe the main actors on stroke inflammatory and immune responses based on the available preclinical data, highlighting the fact that the link between leukocyte infiltration, lesion volume and neurological outcome remains unclear. We then describe what is known on neuroinflammation and immune responses in stroke patients, and summarize the results of the clinical trials on immunomodulatory drugs. In order to understand the gap between clinical trials and preclinical results on stroke, we discuss in detail the experimental results that served as the basis for the summarized clinical trials on immunomodulatory drugs, focusing on (i) experimental stroke models, (ii) the timing and selection of outcome measuring, (iii) alternative entry routes for leukocytes into the ischemic region, and (iv) factors affecting stroke outcome such as gender differences, ageing, comorbidities like hypertension and diabetes, obesity, tobacco, alcohol consumption and previous infections like Covid-19. We can do better for stroke treatment, especially when targeting inflammation following stroke. We need to re-think the design of stroke experimental setups, notably by (i) using clinically relevant models of stroke, (ii) including both radiological and neurological outcomes, (iii) performing long-term follow-up studies, (iv) conducting large-scale preclinical stroke trials, and (v) including stroke comorbidities in preclinical research.
Collapse
|
541
|
Qiu SZ, Zheng GR, Ma CY, Chen B, Huang JJ, Huang G, Hua H. High Serum S100A12 Levels Predict Poor Outcome After Acute Primary Intracerebral Hemorrhage. Neuropsychiatr Dis Treat 2021; 17:3245-3253. [PMID: 34754192 PMCID: PMC8572103 DOI: 10.2147/ndt.s337041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) triggers an inflammatory cascade that damages brain tissues and worsens functional outcome. S100A12 functions to promote brain inflammation. We aimed to investigate the relationship between serum S100A12 levels and functional outcome in ICH patients. METHODS Serum S100A12 levels were measured in 101 ICH patients hospitalized within 24 h after symptom onset. Poor functional outcome was defined as a modified Rankin scale of 3 or greater at 3 months after stroke. Early neurologic deterioration was defined as an increase of ≥4 points in the National Institutes of Health Stroke Scale (NIHSS) score or death at 24 hours from symptoms onset. RESULTS High serum S100A12 levels were independently correlated with NIHSS score (t = 5.384, P < 0.001), hematoma volume (t = 4.221, P < 0.001) and serum C-reactive protein levels (t = 5.068, P < 0.001). Serum S100A12 levels were substantially higher in patients with a poor outcome (median, 66.5 versus 37.7 ng/mL; P < 0.001) or early neurological deterioration (median, 76.5 versus 40.1 ng/mL; P < 0.001) than in the other remainders, independently predicted a poor outcome (odds ratio, 1.035; 95% confidence interval, 1.007-1.064; P = 0.015) and early neurologic deterioration (odds ratio,1.032; 95% confidence interval, 1.003-1.060; P = 0.027), and significantly discriminated a poor outcome (area under curve, 0.794; 95% confidence interval, 0.702-0.868) and early neurologic deterioration (area under curve, 0.760; 95% confidence interval, 0.664-0.839) under receiver operating characteristic curve. CONCLUSION High serum S100A12 levels at admission are highly associated with the extent of inflammatory response, severity, a poor functional outcome and early neurologic deterioration in ICH patients, substantializing serum S100A12 as a promising prognostic biomarker for ICH.
Collapse
Affiliation(s)
- Shen-Zhong Qiu
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, Hangzhou, People's Republic of China
| | - Guan-Rong Zheng
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, Hangzhou, People's Republic of China
| | - Cai-Yan Ma
- Department of Clinical Laboratory, The First People's Hospital of Fuyang District of Hangzhou City, Hangzhou, People's Republic of China
| | - Bin Chen
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, Hangzhou, People's Republic of China
| | - Jian-Jun Huang
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, Hangzhou, People's Republic of China
| | - Ge Huang
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, Hangzhou, People's Republic of China
| | - Hai Hua
- Department of Neurosurgery, The First People's Hospital of Fuyang District of Hangzhou City, Hangzhou, People's Republic of China
| |
Collapse
|
542
|
Clark I, Vissel B. Broader Insights into Understanding Tumor Necrosis Factor and Neurodegenerative Disease Pathogenesis Infer New Therapeutic Approaches. J Alzheimers Dis 2021; 79:931-948. [PMID: 33459706 PMCID: PMC7990436 DOI: 10.3233/jad-201186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Proinflammatory cytokines such as tumor necrosis factor (TNF), with its now appreciated key roles in neurophysiology as well as neuropathophysiology, are sufficiently well-documented to be useful tools for enquiry into the natural history of neurodegenerative diseases. We review the broader literature on TNF to rationalize why abruptly-acquired neurodegenerative states do not exhibit the remorseless clinical progression seen in those states with gradual onsets. We propose that the three typically non-worsening neurodegenerative syndromes, post-stroke, post-traumatic brain injury (TBI), and post cardiac arrest, usually become and remain static because of excess cerebral TNF induced by the initial dramatic peak keeping microglia chronically activated through an autocrine loop of microglial activation through excess cerebral TNF. The existence of this autocrine loop rationalizes post-damage repair with perispinal etanercept and proposes a treatment for cerebral aspects of COVID-19 chronicity. Another insufficiently considered aspect of cerebral proinflammatory cytokines is the fitness of the endogenous cerebral anti-TNF system provided by norepinephrine (NE), generated and distributed throughout the brain from the locus coeruleus (LC). We propose that an intact LC, and therefore an intact NE-mediated endogenous anti-cerebral TNF system, plus the DAMP (damage or danger-associated molecular pattern) input having diminished, is what allows post-stroke, post-TBI, and post cardiac arrest patients a strong long-term survival advantage over Alzheimer's disease and Parkinson's disease sufferers. In contrast, Alzheimer's disease and Parkinson's disease patients remorselessly worsen, being handicapped by sustained, accumulating, DAMP and PAMP (pathogen-associated molecular patterns) input, as well as loss of the LC-origin, NE-mediated, endogenous anti-cerebral TNF system. Adrenergic receptor agonists may counter this.
Collapse
Affiliation(s)
- I.A. Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - B. Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, Australia
- St. Vincent’s Centre for Applied Medical Research, Sydney, Australia
| |
Collapse
|
543
|
Almalki WH, Alghamdi S, Alzahrani A, Zhang W. Emerging paradigms in treating cerebral infarction with nanotheranostics: opportunities and clinical challenges. Drug Discov Today 2020; 26:826-835. [PMID: 33383212 DOI: 10.1016/j.drudis.2020.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/10/2020] [Accepted: 12/21/2020] [Indexed: 12/28/2022]
Abstract
Interest is increasing in the use of nanotheranostics as diagnosis, imaging and therapeutic tools for stroke management, but movement to the clinic remains challenging.
Collapse
Affiliation(s)
- Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm al-qura University, Saudi Arabia.
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-qura University, Makkah, Saudi Arabia
| | - Abdulaziz Alzahrani
- Department of Pharmacology, College of Clinical Pharmacy, Albaha University, Saudi Arabia
| | - Wenzhi Zhang
- Senior Research Scientist, Inn Research Sdn. Bhd., Subang Jaya, Selangor, Malaysia
| |
Collapse
|
544
|
Astragaloside IV suppresses post-ischemic natural killer cell infiltration and activation in the brain: involvement of histone deacetylase inhibition. Front Med 2020; 15:79-90. [PMID: 33369712 DOI: 10.1007/s11684-020-0783-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/14/2020] [Indexed: 01/30/2023]
Abstract
Natural killer (NK) cells, a type of cytotoxic lymphocytes, can infiltrate into ischemic brain and exacerbate neuronal cell death. Astragaloside IV (ASIV) is the major bioactive ingredient of Astragalus membranaceus, a Chinese herbal medicine, and possesses potent immunomodulatory and neuroprotective properties. This study investigated the effects of ASIV on post-ischemic brain infiltration and activation of NK cells. ASIV reduced brain infarction and alleviated functional deficits in MCAO rats, and these beneficial effects persisted for at least 7 days. Abundant NK cells infiltrated into the ischemic hemisphere on day 1 after brain ischemia, and this infiltration was suppressed by ASIV. Strikingly, ASIV reversed NK cell deficiency in the spleen and blood after brain ischemia. ASIV inhibited astrocyte-derived CCL2 upregulation and reduced CCR2+ NK cell levels in the ischemic brain. Meanwhile, ASIV attenuated NK cell activating receptor NKG2D levels and reduced interferon-γ production. ASIV restored acetylation of histone H3 and the p65 subunit of nuclear factor-κB in the ischemic brain, suggesting inhibition of histone deacetylase (HDAC). Simultaneously, ASIV prevented p65 nuclear translocation. The effects of ASIV on reducing CCL2 production, restoring acetylated p65 levels and preventing p65 nuclear translocation were mimicked by valproate, an HDAC inhibitor, in astrocytes subjected to oxygen-glucose deprivation. Our findings suggest that ASIV inhibits post-ischemic NK cell brain infiltration and activation and reverses NK cell deficiency in the periphery, which together contribute to the beneficial effects of ASIV against brain ischemia. Furthermore, ASIV's effects on suppressing NK cell brain infiltration and activation may involve HDAC inhibition.
Collapse
|
545
|
Xu X, Yuan L, Wang W, Xu J, Yang Q, Zhu Y, Xu Y, Yang K, Ge L, Huang X, Zhou Z. Systemic Inflammatory Response Syndrome and Outcomes in Ischemic Patients Treated with Endovascular Treatment. Clin Interv Aging 2020; 15:2331-2340. [PMID: 33324045 PMCID: PMC7733387 DOI: 10.2147/cia.s281865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/20/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose Knowledge regarding the systemic inflammatory response syndrome (SIRS) associated with emergent large vessel occlusion (ELVO) is still insufficient. We aimed to investigate the occurrence rate, predictors, and clinical outcomes of SIRS in patients with ELVO after endovascular treatment (EVT). Patients and Methods We retrospectively collected EVT data of patients with ELVO from July 2015 to August 2019 in our center. SIRS in the absence of infection was recorded in detail. A favorable outcome was defined as obtaining a 90-day modified Rankin Scale (mRS) score ≤2. Results Among the 256 patients who received EVT, 91 (35.5%) developed SIRS. The patients who developed SIRS had a reduced favorable outcome (OR 4.112 [95% CI 1.705 to 9.920]; p=0.002) and higher mortality (OR 25.336 [95% CI 8.578 to 74.835]; p<0.001) at 90 days. A greater SIRS burden was positively correlated with the NIHSS scores at discharge and mRS scores at 90 days (r=0.265, p=0.011; r=0.245, p=0.019). The development of SIRS was associated with neutrophilic leukocytosis, hyperglycemia, higher NIHSS scores at admission, and worse collateral circulation. Conclusion The patients with SIRS had higher odds of poor functional outcomes and higher mortality at 90 days in the EVT-treatment setting. The severity of the inflammatory response was positively correlated with the clinical outcomes of the patients. Clinically, SIRS was associated with neutrophilic leukocytosis, hyperglycemia, baseline stroke severity, and worse collateral circulation.
Collapse
Affiliation(s)
- Xiangjun Xu
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Lili Yuan
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Wenbing Wang
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Junfeng Xu
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Qian Yang
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Yujuan Zhu
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Youqing Xu
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Ke Yang
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Liang Ge
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Xianjun Huang
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| | - Zhiming Zhou
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China
| |
Collapse
|
546
|
Tao T, Liu M, Chen M, Luo Y, Wang C, Xu T, Jiang Y, Guo Y, Zhang JH. Natural medicine in neuroprotection for ischemic stroke: Challenges and prospective. Pharmacol Ther 2020; 216:107695. [DOI: 10.1016/j.pharmthera.2020.107695] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
|
547
|
Sas AR, Carbajal KS, Jerome AD, Menon R, Yoon C, Kalinski AL, Giger RJ, Segal BM. A new neutrophil subset promotes CNS neuron survival and axon regeneration. Nat Immunol 2020; 21:1496-1505. [PMID: 33106668 PMCID: PMC7677206 DOI: 10.1038/s41590-020-00813-0] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Transected axons typically fail to regenerate in the central nervous system (CNS), resulting in chronic neurological disability in individuals with traumatic brain or spinal cord injury, glaucoma and ischemia-reperfusion injury of the eye. Although neuroinflammation is often depicted as detrimental, there is growing evidence that alternatively activated, reparative leukocyte subsets and their products can be deployed to improve neurological outcomes. In the current study, we identify a unique granulocyte subset, with characteristics of an immature neutrophil, that had neuroprotective properties and drove CNS axon regeneration in vivo, in part via secretion of a cocktail of growth factors. This pro-regenerative neutrophil promoted repair in the optic nerve and spinal cord, demonstrating its relevance across CNS compartments and neuronal populations. Our findings could ultimately lead to the development of new immunotherapies that reverse CNS damage and restore lost neurological function across a spectrum of diseases.
Collapse
Affiliation(s)
- Andrew R Sas
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- The Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Kevin S Carbajal
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew D Jerome
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- The Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Choya Yoon
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ashley L Kalinski
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin M Segal
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- The Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA.
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
548
|
Liu YL, Wu ZQ, Qu JF, Qiu DH, Luo GP, Yin HP, Fang XW, Wang F, Chen YK. High neutrophil-to-lymphocyte ratio is a predictor of poor short-term outcome in patients with mild acute ischemic stroke receiving intravenous thrombolysis. Brain Behav 2020; 10:e01857. [PMID: 32981201 PMCID: PMC7749577 DOI: 10.1002/brb3.1857] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Very few studies have investigated the specific relationship between neutrophil-to-lymphocyte ratio (NLR) and the short-term outcomes of patients suffering from mild acute ischemic stroke (AIS) and receiving intravenous thrombolysis (IVT). This study aimed to investigate whether a high NLR is associated with a poor short-term outcome in patients with mild AIS after IVT. METHODS We retrospectively analyzed data that were prospectively acquired from patients with AIS treated with IVT. Mild AIS was defined as a National Institutes of Health Stroke Scale (NIHSS) score ≤ 7 on admission. The NLR was based on a blood test performed prior to IVT and was classified as 'high' when exceeding the 75th percentile. Follow-ups were performed at discharge and 3 months after onset. A poor outcome was defined as a modified Rankin scale (mRS) ≥3. RESULTS A total of 192 patients were included in this study. The median NLR was 3.0 (interquartile range [IQR]: 2.0-3.9). Fifty-one patients (26.6%) had a high NLR (≥3.9) on admission. Forty-one patients (21.4%) had a poor outcome at discharge, while 34 patients (17.7%) had a poor outcome at 3 months. Patients with a poor outcome at discharge, and at 3 months after onset, were more likely to have a high NLR at discharge (42.9% vs. 21.9%; p = .005) and at 3 months (44.1% vs. 22.8%; p = .011), compared with those with a better outcome. After adjustment for NIHSS score on admission, ipsilateral severe intracranial large artery occlusion, and atrial fibrillation, logistic regression analyses revealed that a high NLR was a significant predictor of poor outcome at discharge and at 3 months after onset. CONCLUSIONS A high NLR on admission could be a useful marker for predicting poor short-term outcome in patients with mild AIS following IVT.
Collapse
Affiliation(s)
- Yong-Lin Liu
- Department of Neurology, Dongguan People's Hospital (Affiliated Dongguan Hospital, South Medical University), Dongguan, China
| | - Zhi-Qiang Wu
- Department of Neurology, Dongguan People's Hospital (Affiliated Dongguan Hospital, South Medical University), Dongguan, China
| | - Jian-Feng Qu
- Department of Neurology, Dongguan People's Hospital (Affiliated Dongguan Hospital, South Medical University), Dongguan, China
| | - Dong-Hai Qiu
- Department of Neurology, Dongguan People's Hospital (Affiliated Dongguan Hospital, South Medical University), Dongguan, China
| | - Gen-Pei Luo
- Department of Neurology, Dongguan People's Hospital (Affiliated Dongguan Hospital, South Medical University), Dongguan, China
| | - Han-Peng Yin
- Department of Neurology, Dongguan People's Hospital (Affiliated Dongguan Hospital, South Medical University), Dongguan, China
| | - Xue-Wen Fang
- Department of Radiology, Dongguan People's Hospital, Dongguan, China
| | - Fang Wang
- Department of Radiology, Dongguan People's Hospital, Dongguan, China
| | - Yang-Kun Chen
- Department of Neurology, Dongguan People's Hospital (Affiliated Dongguan Hospital, South Medical University), Dongguan, China
| |
Collapse
|
549
|
Debatisse J, Eker OF, Wateau O, Cho TH, Wiart M, Ramonet D, Costes N, Mérida I, Léon C, Dia M, Paillard M, Confais J, Rossetti F, Langlois JB, Troalen T, Iecker T, Le Bars D, Lancelot S, Bouchier B, Lukasziewicz AC, Oudotte A, Nighoghossian N, Ovize M, Contamin H, Lux F, Tillement O, Canet-Soulas E. PET-MRI nanoparticles imaging of blood-brain barrier damage and modulation after stroke reperfusion. Brain Commun 2020; 2:fcaa193. [PMID: 33305265 PMCID: PMC7716090 DOI: 10.1093/braincomms/fcaa193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
In an acute ischaemic stroke, understanding the dynamics of blood-brain barrier injury is of particular importance for the prevention of symptomatic haemorrhagic transformation. However, the available techniques assessing blood-brain barrier permeability are not quantitative and are little used in the context of acute reperfusion therapy. Nanoparticles cross the healthy or impaired blood-brain barrier through combined passive and active processes. Imaging and quantifying their transfer rate could better characterize blood-brain barrier damage and refine the delivery of neuroprotective agents. We previously developed an original endovascular stroke model of acute ischaemic stroke treated by mechanical thrombectomy followed by positron emission tomography-magnetic resonance imaging. Cerebral capillary permeability was quantified for two molecule sizes: small clinical gadolinium Gd-DOTA (<1 nm) and AGuIX® nanoparticles (∼5 nm) used for brain theranostics. On dynamic contrast-enhanced magnetic resonance imaging, the baseline transfer constant K trans was 0.94 [0.48, 1.72] and 0.16 [0.08, 0.33] ×10-3 min-1, respectively, in the normal brain parenchyma, consistent with their respective sizes, and 1.90 [1.23, 3.95] and 2.86 [1.39, 4.52] ×10-3 min-1 in choroid plexus, confirming higher permeability than brain parenchyma. At early reperfusion, K trans for both Gd-DOTA and AGuIX® nanoparticles was significantly higher within the ischaemic area compared to the contralateral hemisphere; 2.23 [1.17, 4.13] and 0.82 [0.46, 1.87] ×10-3 min-1 for Gd-DOTA and AGuIX® nanoparticles, respectively. With AGuIX® nanoparticles, K trans also increased within the ischaemic growth areas, suggesting added value for AGuIX®. Finally, K trans was significantly lower in both the lesion and the choroid plexus in a drug-treated group (ciclosporin A, n = 7) compared to placebo (n = 5). K trans quantification with AGuIX® nanoparticles can monitor early blood-brain barrier damage and treatment effect in ischaemic stroke after reperfusion.
Collapse
Affiliation(s)
- Justine Debatisse
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Siemens-Healthcare SAS, Saint-Denis, France
| | - Omer Faruk Eker
- CREATIS, CNRS UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon Bât. Blaise Pascal, 7 Avenue Jean Capelle, Villeurbanne 69621, France.,Hospices Civils of Lyon, 69000 Lyon, France
| | | | - Tae-Hee Cho
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Hospices Civils of Lyon, 69000 Lyon, France
| | - Marlène Wiart
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - David Ramonet
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | | | | | - Christelle Léon
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Maya Dia
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Laboratory of Experimental and Clinical Pharmacology, Faculty of Sciences, Lebanese University-Beirut, Lebanon
| | - Mélanie Paillard
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | | | - Fabien Rossetti
- Univ Lyon, Institut Lumière Matière, CNRS UMR5306, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | | | | | | | - Didier Le Bars
- Hospices Civils of Lyon, 69000 Lyon, France.,CERMEP - Imagerie du Vivant, Lyon, France
| | - Sophie Lancelot
- Hospices Civils of Lyon, 69000 Lyon, France.,CERMEP - Imagerie du Vivant, Lyon, France
| | | | | | | | - Norbert Nighoghossian
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Hospices Civils of Lyon, 69000 Lyon, France
| | - Michel Ovize
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Hospices Civils of Lyon, 69000 Lyon, France
| | | | - François Lux
- Univ Lyon, Institut Lumière Matière, CNRS UMR5306, Université Claude Bernard Lyon 1, 69000 Lyon, France.,Institut Universitaire de France (IUF), France
| | - Olivier Tillement
- Univ Lyon, Institut Lumière Matière, CNRS UMR5306, Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Emmanuelle Canet-Soulas
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69000 Lyon, France
| |
Collapse
|
550
|
Wang J, Wang W, Liu Y, Zhao X. Associations Between Levels of High-Sensitivity C-Reactive Protein and Outcome After Intracerebral Hemorrhage. Front Neurol 2020; 11:535068. [PMID: 33123072 PMCID: PMC7573166 DOI: 10.3389/fneur.2020.535068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/27/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Patients with spontaneous intracerebral hemorrhage (ICH) have high mortality and morbidity rates; approximately one-third of patients with ICH experience hematoma expansion (HE). The spot sign is an established and validated imaging marker for HE. High-sensitivity C-reactive protein (hs-CRP) is an established laboratory marker for inflammation and secondary brain injury following ICH. Objective: To determine the association between the spot sign and hs-CRP, hematoma expansion, and clinical outcomes. Methods: Between December 2014 and September 2016, we prospectively recruited 1,964 patients with acute symptomatic ICH at 13 hospitals in Beijing, China. Next, we selected 92 patients within 24 h of the onset of symptoms from this cohort for the present study. ICH was diagnosed in the emergency room by non-contrast computed tomography (NCCT) scans. Follow-up scans were carried out within 48 h to evaluate patients for HE. Multidetector computed tomography angiography (MDCTA) was also used to identify spot signs. Blood samples were collected from each patient at admission in EDTA tubes (for plasma) or vacutainer tubes (for serum). hs-CRP values were determined by a particle-enhanced immunoturbidimetric assay in the laboratory at Beijing Tiantan Hospital, Capital Medical University. Patients were categorized into two groups according to their hs-CRP levels (hs-CRP <3 mg/L, hs-CRP ≥3 mg/L). Results: The incidences of spot sign and HE in our study cohort were 31.5 and 29.3%, respectively. Following the removal of potential confounding variables, stepwise-forward logistic regression analysis identified that an hs-CRP level ≥3 mg/L was not a significant indicator for either spot sign (p = 0.68) or HE (p = 0.07). However, an hs-CRP level ≥3 mg/L (odds ratio: 16.64, 95% confidence interval: 2.11-131.45, p = 0.008) was identified as an independent predictor of an unfavorable outcome 1 year after acute ICH. Conclusions: Our analyses identified that an hs-CRP level ≥3 mg/L was a significant indicator for an unfavorable outcome 1 year after acute ICH.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Key Laboratory of Central Nervous System Injury, Beijing, China
| | - Wenjuan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Key Laboratory of Central Nervous System Injury, Beijing, China
| | - Yanfang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Key Laboratory of Central Nervous System Injury, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Key Laboratory of Central Nervous System Injury, Beijing, China
| |
Collapse
|