501
|
Kalas W, Gilpin S, Yu JL, May L, Krchnakova H, Bornstein P, Rak J. Restoration of thrombospondin 1 expression in tumor cells harbouring mutant ras oncogene by treatment with low doses of doxycycline. Biochem Biophys Res Commun 2003; 310:109-14. [PMID: 14511656 DOI: 10.1016/j.bbrc.2003.08.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oncogenes act as inducers of tumor neovascularization, at least in part through suppression of endogenous angiogenesis inhibitors, e.g., thrombospondin 1 (TSP-1/THSP1). Therefore, restoration of TSP-1 levels can be viewed as a possible means to inhibit tumor angiogenesis. We observed that low concentrations (0.1-10 microg/ml) of doxycycline (but not those of related tetracycline) restore TSP-1 expression in H-ras oncogene-expressing tumor cell lines (528ras1, MT-Ras). Interestingly, this effect was relatively ras-specific, as doxycycline did not alter TSP-1 expression in several cell lines (e.g., 528neu2 fibrosarcoma, B16F1 melanoma, and Lewis lung carcinoma) harbouring other types of transforming alterations. Doxycycline-induced reversal of TSP down-regulation was abrogated under hypoxic conditions. Therefore, we conclude that, in vivo, TSP-1 is likely under dual and/or synergistic control of oncogenes and hypoxia-related pathways. Disruption of both components may be necessary for the 'rescue' of TSP-1 expression in ras-driven cancers.
Collapse
Affiliation(s)
- Wojciech Kalas
- Henderson Research Centre, Experimental Thrombosis Research, McMaster University, Hamilton, Ont, Canada L8V 1C3
| | | | | | | | | | | | | |
Collapse
|
502
|
Xiao HD, Fuchs S, Frenzel K, Cole JM, Bernstein KE. Newer approaches to genetic modeling in mice: tissue-specific protein expression as studied using angiotensin-converting enzyme (ACE). THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:807-17. [PMID: 12937122 PMCID: PMC1868276 DOI: 10.1016/s0002-9440(10)63441-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hong D Xiao
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
503
|
Abstract
Therapeutic resistance and proclivity for metastasis are hallmarks of malignant melanoma. Genetic, epidemiological and genomic investigations are uncovering the spectrum of stereotypical mutations that are associated with melanoma and how these mutations relate to risk factors such as ultraviolet exposure. The ability to validate the pathogenetic relevance of these mutations in the mouse, coupled with advances in rational drug design, has generated optimism for the development of effective prevention programmes, diagnostic measures and targeted therapeutics in the near future.
Collapse
Affiliation(s)
- Lynda Chin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
504
|
Abstract
An increasing number of model systems of plasma cell tumor (PCT) formation have been and are being developed. Discussed here are six models in mice and multiple myeloma (MM) in humans. Each model illustrates a unique set of biological factors. There are two general types of model systems: those that depend upon naturally arising mutagenic changes (pristane-induced PCTs, 5TMM, and MM) and those that are associated with oncogenes (Emu-v-abl), growth factors [interleukin-6 (IL-6)], and anti-apoptotic factors (Bcl-xL/Bcl-2). PCTs develop in several special tissue microenvironments that provide essential cytokines (IL-6) and cell-cell interactions. In mice, the activation and deregulation of c-myc by chromosomal translocations is a major feature in many of the models. This mechanism is much less a factor in MM and the 5T model in mice. Genetically determined susceptibility is involved in many of the mouse models, but only a few genes have been implicated thus far.
Collapse
Affiliation(s)
- Michael Potter
- Laboratory of Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
505
|
Abstract
Activating point mutations of the small GTPase Ras are present in about 30% of all human tumors. Constitutively active Ras induces growth factor independent cell proliferation and cell survival. Oncogenic Ras appears to be essential for tumor progression and maintenance. Several therapeutic agents have been developed to inhibit Ras, such as FTIs and antisense oligonucleotides. A new tool for blocking oncogenes in cancer cells has emerged with the discovery that RNA interference can specifically silence expression of endogenous human genes. The therapeutic potential of a RNAi-mediating vector was recently demonstrated by the stable suppression of oncogenic K-Ras in tumor cells.
Collapse
Affiliation(s)
- Anja M Duursma
- Division of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
506
|
Sippel RS, Carpenter JE, Kunnimalaiyaan M, Lagerholm S, Chen H. Raf-1 activation suppresses neuroendocrine marker and hormone levels in human gastrointestinal carcinoid cells. Am J Physiol Gastrointest Liver Physiol 2003; 285:G245-54. [PMID: 12851216 DOI: 10.1152/ajpgi.00420.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrointestinal carcinoid cells secrete multiple neuroendocrine markers and hormones including 5-HT and chromogranin A. The intracellular signaling pathways that regulate production of bioactive molecules are not completely understood. Our aim was to determine whether activation of the raf-1/MEK/MAPK signal transduction pathway in carcinoid cells could modulate production of neuroendocrine markers and hormones. Human pancreatic carcinoid cells (BON) were stably transduced with an estrogen-inducible raf-1 construct creating BON-raf cells. Activation of raf-1 in BON-raf cells led to a marked induction of phosphorylated MEK and ERK1/2 within 48 h. Importantly, raf-1 activation resulted in morphological changes accompanied by a marked decrease in neuroendocrine secretory granules by electronmicroscopy. Moreover, induction of raf-1 in BON-raf cells led to significant reductions in 5-HT, chromogranin A, and synaptophysin levels. Furthermore, treatment of BON-raf cells with MEK inhibitors PD-98059 and U-0126 blocked raf-1-mediated morphological changes and hormone suppression but not ERK1/2 phosphorylation. These results show that raf-1 induction suppresses neuroendocrine marker and hormone production in human gastrointestinal carcinoid cells via a pathway dependent on MEK activation.
Collapse
Affiliation(s)
- Rebecca S Sippel
- Dept. of Surgery, Univ. of Wisconsin Medical School, University of Wisconsin Comprehensive Cancer Center, Madison 53792, USA
| | | | | | | | | |
Collapse
|
507
|
Pao W, Klimstra DS, Fisher GH, Varmus HE. Use of avian retroviral vectors to introduce transcriptional regulators into mammalian cells for analyses of tumor maintenance. Proc Natl Acad Sci U S A 2003; 100:8764-9. [PMID: 12857957 PMCID: PMC166387 DOI: 10.1073/pnas.1133333100] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key issue in cancer biology is whether genetic lesions involved in tumor initiation or progression are required for tumor maintenance. This question can be addressed with mouse models that conditionally express oncogenic transgenes, i.e., under the control of tetracycline (tet)-dependent transcriptional regulators. We have developed a system for studying tumor maintenance by using avian retroviral [i.e., replication-competent avian leukosis virus long terminal repeat with splice acceptor (RCAS)] vectors to deliver the reverse tet transcriptional transactivator (rtTA) gene to somatic mammalian cells. rtTA can regulate any transgene in which the protein coding sequence is preceded by a tet-operator (tet-o); RCAS viruses infect only cells engineered to express ectopically the avian retroviral receptor, TVA. One vector, RCAS-rtTA-IRES-GFP, also encodes GFP to identify infected cells. Infection of cells from beta-actin TVA transgenic mice with this vector permits efficient regulation of tet-responsive transgenes. Sarcomas arise when p53-deficient murine embryonic fibroblasts carrying beta-actin TVA and tet-o-K-ras4bG12D transgenes are infected with RCAS-rtTA-IRES-GFP and introduced into nude mice treated with the tet analog, doxycycline (dox); when dox is withdrawn, K-ras4bG12D levels fall, cells undergo apoptosis, and tumors regress. Regression can be prevented by means of a genetic complementation assay in which tumors are superinfected before dox withdrawal with other RCAS viruses, such as those carrying an active allele of K-ras. Many TVA and tet-regulated transgenic mice have been generated; thus, this method for somatic cell-specific and temporally controlled gene expression may have broad applications for the study of oncogenesis and tumor maintenance, as well as other cell functions and development.
Collapse
Affiliation(s)
- William Pao
- Departments of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
508
|
Weber W, Schoenmakers R, Spielmann M, El-Baba MD, Folcher M, Keller B, Weber CC, Link N, van de Wetering P, Heinzen C, Jolivet B, Séquin U, Aubel D, Thompson CJ, Fussenegger M. Streptomyces-derived quorum-sensing systems engineered for adjustable transgene expression in mammalian cells and mice. Nucleic Acids Res 2003; 31:e71. [PMID: 12853648 PMCID: PMC167645 DOI: 10.1093/nar/gng071] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prokaryotic transcriptional regulatory elements have been adopted for controlled expression of cloned genes in mammalian cells and animals, the cornerstone for gene-function correlations, drug discovery, biopharmaceutical manufacturing as well as advanced gene therapy and tissue engineering. Many prokaryotes have evolved specific molecular communication systems known as quorum-sensing to coordinate population-wide responses to physiological and/or physicochemical signals. A generic bacterial quorum-sensing system is based on a diffusible signal molecule that prevents binding of a repressor to corresponding operator sites thus resulting in derepression of a target regulon. In Streptomyces, a family of butyrolactones and their corresponding receptor proteins, serve as quorum-sensing systems that control morphological development and antibiotic biosynthesis. Fusion of the Streptomyces coelicolor quorum-sensing receptor (ScbR) to a eukaryotic transactivation domain (VP16) created a mammalian transactivator (SCA) which binds and adjusts transcription from chimeric promoters containing an SCA-specific operator module (P(SPA)). Expression of erythropoietin or the human secreted alkaline phosphatase (SEAP) by this quorum-sensor-regulated gene expression system (QuoRex) could be fine-tuned by non-toxic butyrolactones in a variety of mammalian cells including human primary and mouse embryonic stem cells. Following intraperitoneal implantation of microencapsulated Chinese hamster ovary cells transgenic for QuoRex-controlled SEAP expression into mice, the serum levels of this model glycoprotein could be adjusted to desired concentrations using different butyrolactone dosing regimes.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
509
|
Abstract
The prospect of specifically controlling gene activities in vivo has become a defining hallmark of many model organisms of biological research. Where once the aim was to gain control over gene activities using endogenous control elements, new technologies have emerged that owe their remarkable specificity to heterologous components derived from evolutionarily distant species. This review highlights inducible transcriptional systems and site-specific recombination. Their quantitative and qualitative characteristics are discussed, with examples of how recent developments have expanded the spectrum of cells and organisms that are now accessible to genetic dissection of unprecedented precision. Transgenesis has already converted the mouse into a prime model for mammalian genetics. Combined with the new approaches of conditional activation or inactivation of genes, this model has opened up new horizons for the analysis of gene function in mammals.
Collapse
Affiliation(s)
- Manfred Gossen
- Max Delbrück Centrum, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany.
| | | |
Collapse
|
510
|
Sommer KW, Schamberger CJ, Schmidt GE, Sasgary S, Cerni C. Inhibitor of apoptosis protein (IAP) survivin is upregulated by oncogenic c-H-Ras. Oncogene 2003; 22:4266-80. [PMID: 12833149 DOI: 10.1038/sj.onc.1206509] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Among the inhibitors of apoptosis proteins (IAPs), survivin has attracted special attention through its involvement in human cancer. The mechanism underlying tumour-associated survivin re-expression is not known. We found a correlation between exogenous c-H-Ras oncoprotein and endogenous survivin in a series of rat cell lines, which expressed defined oncogenes. Moreover, human HaCat cells, transfected with a constitutively activated c-H-ras gene, had significantly increased survivin levels. To study the interdependence of the two proteins, we generated a rat cell line that expressed a dexamethasone-inducible c-H-ras construct. Induction of c-H-Ras expression was followed by rapid upregulation of survivin. Conversely, downregulation of the oncoprotein resulted in prompt reduction of survivin to baseline value. c-H-Ras-induced survivin was expressed constitutively and independent of cell cycle progression or proliferation. Compromising Ras-stimulated PI3-K activity and MEK1 by chemicals abolished survivin expression and was associated with apoptotic cell death. Upregulation of survivin appeared to be an important activity of c-H-Ras oncoprotein, since cotransfection of a survivin-antisense construct into c-myc/c-H-ras-transfected primary rat embryo cells resulted in profound reduction of transformed clones. It is tempted to speculate that the frequent presence of survivin in human cancer cells might be a consequence of activated Ras-signalling pathways.
Collapse
Affiliation(s)
- Klaus W Sommer
- Institute of Cancer Research, University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
511
|
Abstract
Tumor angiogenesis is the proliferation of a network of blood vessels that penetrates into cancerous growths, supplying nutrients and oxygen and removing waste products. The process of angiogenesis plays an important role in many physiological and pathological conditions. Solid tumors depend on angiogenesis for growth and metastasis in a hostile environment. In the prevascular phase, the tumor is rarely larger than 2 to 3 mm3 and may contain a million or more cells. Up to this size, tumor cells can obtain the necessary oxygen and nutrient supplies required for growth and survival by simple passive diffusion. The properties of tumors to release and induce several angiogenic and anti-angiogenic factors which play crucial roles in regulating endothelial cell (EC) proliferation, migration, apoptosis or survival, cell-cell and cell-matrix adhesion through different intracellular signaling are thought to be the essential mechanisms during tumor-induced angiogenesis. Tumor angiogenesis actually starts with tumor cells releasing molecules that send signals to surrounding normal host tissue. This signaling activates certain genes in the host tissue that, in turn, make proteins to encourage growth of new blood vessels. In this review, we focus the mechanisms of tumor-induced angiogenesis, with an emphasis on the regulatory role of several angiogenic and anti-angiogenic agents during the angiogenic process in tumors. Advances in understanding the mechanisms of tumor angiogenesis have led to the development of several most effective anti-angiogenic and anti-metastatic therapeutic agents and also have provided several techniques for the regulation of cancer's angiogenic switch. The suggestion is made that standard cytotoxic chemotherapy and angiogenesis inhibitors used in combination may produce complementary therapeutic benefits in the treatment of cancer.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | | |
Collapse
|
512
|
Abstract
From the pioneering work with acute transforming retroviruses to the current post-genomic era, RAS genes have always been at the leading edge of signal transduction and molecular oncology. Yet, a complete understanding of RAS function and dysfunction - mainly in human cancer - is still to come. The knowledge that has accumulated since their discovery 30 years ago has, however, been remarkable, and should pave the way for not only solving the outstanding issues regarding RAS biology, but also for developing efficacious drugs that could have a significant impact on cancer treatment.
Collapse
Affiliation(s)
- Marcos Malumbres
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | | |
Collapse
|
513
|
Abstract
Melanoma is the most aggressive form of skin cancer and is notoriously resistant to all current modalities of cancer therapy. A large set of genetic, functional and biochemical studies suggest that melanoma cells become 'bullet proof' against a variety of chemotherapeutic drugs by exploiting their intrinsic resistance to apoptosis and by reprogramming their proliferation and survival pathways during melanoma progression. In recent years, the identification of molecules involved in the regulation and execution of apoptosis, and their alteration in melanoma, have provided new insights into the molecular basis for melanoma chemoresistance. With this knowledge in hand, the challenge is now to devise strategies potent enough to compensate or bypass these cell death defects and improve the actual poor prognosis of patients at late stages of the disease.
Collapse
Affiliation(s)
- María S Soengas
- Department of Dermatology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 28109, USA.
| | | |
Collapse
|
514
|
Abstract
Recent findings show that even the brief inactivation of a single oncogene might be sufficient to result in the sustained loss of a neoplastic phenotype. It is therefore possible that the targeted inactivation of oncogenes could be a specific and effective treatment for cancer. So why does oncogene inactivation cause tumour regression and will this be a generally successful approach for the treatment of human neoplasia?
Collapse
Affiliation(s)
- Dean W Felsher
- Division of Oncology, Department of Medicine, Stanford University, 269 Campus Drive, CCSR 1105, Stanford, California 94305-5151, USA.
| |
Collapse
|
515
|
Duesberg PH. Are cancers dependent on oncogenes or on aneuploidy? CANCER GENETICS AND CYTOGENETICS 2003; 143:89-91. [PMID: 12742162 DOI: 10.1016/s0165-4608(02)00938-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
516
|
Abstract
During the process of oncogenic transformation, melanoma cells escape from normal growth-control mechanisms and acquire the ability to invade surrounding tissues and organs. The Ras/Raf/MEK/ERK pathway is a major pathway involved in the control of growth signals, cell survival and invasion. Melanomas are known to harbour activating mutations of both Ras and BRAF, suggesting that the downstream effector ERK may be playing a major role in the oncogenic behaviour of these tumours. The past few years have seen a growth in the understanding of the role of ERK and the MAP kinase pathway in melanoma. The aim of the current review is to assess the role of ERK in melanoma behaviour and to determine whether modulation of these kinases could offer new therapeutic opportunities.
Collapse
Affiliation(s)
- Keiran S M Smalley
- Section of Medicine, Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
517
|
Abstract
Our expanding experience with imatinib mesylate provides instructive lessons on the power and pitfalls of targeted therapy. The often impressive initial clinical responses seen with imatinib in a variety of malignancies inevitably give way to the emergence of resistant disease. Recent findings reveal several mechanisms of resistance and suggest ways to overcome them.
Collapse
Affiliation(s)
- Sunil R Hingorani
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania School of Medicine, Department of Medicine, Philadelphia 19104, USA.
| | | |
Collapse
|
518
|
Abstract
Apoptosis and senescence are cellular failsafe programmes that counteract excessive mitogenic signalling from activated oncogenes. Cancellation of apoptosis or senescence is therefore a prerequisite for tumour formation, and the ability of the cancer cell to disrupt these processes can be considered its 'lifeline'. Ironically, the efficacy of anticancer agents also depends on the activation of apoptosis or an acutely inducible form of cellular senescence. Understanding how the 'lifelines' of the cancer cell interfere with treatment sensitivity is of crucial importance for developing safer and more effective treatment strategies.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Max-Delbrück-Center for Molecular Medicine and Charité/Campus Virchow-Hospital, Department of Hematology/Oncology, Humboldt University, 13353 Berlin, Germany.
| |
Collapse
|
519
|
Karlsson A, Giuriato S, Tang F, Fung-Weier J, Levan G, Felsher DW. Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. Blood 2003; 101:2797-803. [PMID: 12517816 DOI: 10.1182/blood-2002-10-3091] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The targeted inactivation of oncogenes may be a specific and effective treatment for cancer. However, because human cancers are the consequence of multiple genetic changes, the inactivation of one oncogene may not be sufficient to cause sustained tumor regression. Moreover, cancers are genomically unstable and may readily compensate for the inactivation of a single oncogene. Here we confirm by spectral karyotypic analysis that MYC-induced hematopoietic tumors are highly genetically complex and genomically unstable. Nevertheless, the inactivation of MYC alone was found to be sufficient to induce sustained tumor regression. After prolonged MYC inactivation, some tumors exhibited a distinct propensity to relapse. When tumors relapsed, they no longer required the overexpression of MYC but instead acquired novel chromosomal translocations. We conclude that even highly genetically complex cancers are reversible on the inactivation of MYC, unless they acquire novel genetic alterations that can sustain a neoplastic phenotype.
Collapse
Affiliation(s)
- Asa Karlsson
- Division of Oncology, Department of Medicine, Stanford University, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
520
|
Schuler M, Maurer U, Goldstein JC, Breitenbücher F, Hoffarth S, Waterhouse NJ, Green DR. p53 triggers apoptosis in oncogene-expressing fibroblasts by the induction of Noxa and mitochondrial Bax translocation. Cell Death Differ 2003; 10:451-60. [PMID: 12719722 DOI: 10.1038/sj.cdd.4401180] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The mechanism of p53-dependent apoptosis is still only partly defined. Using early-passage embryonic fibroblasts (MEF) from wild-type (wt), p53(-/-) and bax(-/-) mice, we observe a p53-dependent translocation of Bax to the mitochondria and a release of mitochondrial Cytochrome c during stress-induced apoptosis. These events proceed independent of zVAD-inhibitable caspase activation, are not prevented by dominant negative FADD (DN-FADD), but are negatively regulated by Mdm-2. Bcl-x(L) expression prevents the release of mitochondrial Cytochrome c and apoptosis, but not Bax translocation. At a single-cell level, enforced expression of p53 is sufficient to induce Bax translocation and Cytochrome c release. Real-time RT-PCR analysis reveals a significant induction of RNA expression of Noxa and Bax in p53(+/+), but not in p53(-/-) MEF. Noxa protein expression becomes detectable prior to Bax translocation, and downregulation of endogenous Noxa by RNA interference protects wt MEF against p53-dependent apoptosis. Hence, in oncogene-expressing MEF p53 induces apoptosis by BH3 protein-dependent caspase activation.
Collapse
Affiliation(s)
- M Schuler
- Division of Cellular Immunology, La Jolla Institute for Allergy, San Diego, CA, USA
| | | | | | | | | | | | | |
Collapse
|
521
|
Abstract
This review assembles the laboratory and clinical evidence that cytotoxic chemotherapy and antiangiogenic therapy are each dependent on endothelial cell apoptosis. During cytotoxic chemotherapy, apoptosis of endothelial cells in the vascular bed of tumors precedes apoptosis of tumor cells, even when the tumor has been made drug resistant. Administration of an angiogenesis inhibitor which is not directly cytotoxic to tumor cells can increase tumor cell apoptosis and inhibit tumor growth by inhibiting endothelial proliferation and migration and/or by inducing endothelial apoptosis. Furthermore, oncogene expression and loss of tumor suppressor gene activity can at once protect tumor cells against apoptosis and increase their angiogenic output. Both of these survival advantages conferred on the tumor can be overcome by antiangiogenic therapy. They can also be overcome by cytotoxic chemotherapy administered on a low dose 'antiangiogenic schedule' which continuously exposes endothelial cells in the tumor bed to the drug. As a result, endothelial apoptosis can be demonstrated to precede tumor cell apoptosis, and tumors regress or are inhibited, whether or not the tumor cells are resistant to the drug, and with little or no host toxicity. In contrast, cytotoxic chemotherapy administered on a 'conventional schedule' of maximal tolerated dose followed by an off-therapy interval, becomes ineffective after drug resistance is acquired. On the basis of these experimental findings, chemotherapy of cancer may possibly be improved-i.e. decreased drug resistance and decreased toxic side-effects-by changing dose and schedule to maximize apoptosis of endothelial cells in the vascular bed of tumors. Further improvement may be achieved by combining angiogenesis inhibitors with 'antiangiogenic chemotherapy'.
Collapse
Affiliation(s)
- Judah Folkman
- Department of Surgery, Children's Hospital and Harvard Medical School, Hunnewell 103 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
522
|
Abstract
Many cancers are the pathological consequence of environmentally initiated disruptions to cellular genetic control mechanisms. For most cancers the relevant environmental carcinogens have not been identified, but one major exception is cutaneous malignant melanoma, for which the primary environmental agent is solar ultraviolet (UV) radiation. Hence, melanomagenesis represents a potential model of detrimental gene-environment interaction. Although the underlying genetic basis of melanoma is currently being elucidated, fundamental questions concerning UV and the mechanisms by which it operates remain unanswered. Significant progress has recently been made in creating UV-responsive, genetically tractable mouse models of melanoma that accurately recapitulate human disease. These models are providing novel insights into how the genome and environment interact in vivo.
Collapse
Affiliation(s)
- Glenn Merlino
- Laboratory of Molecular Biology, National Cancer Institute, Building 37, Room 5002, Bethesda, MD 20892-4264, USA.
| | | |
Collapse
|
523
|
Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 2003; 3:219-31. [PMID: 12676581 DOI: 10.1016/s1535-6108(03)00030-8] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tumor angiogenesis is postulated to be regulated by the balance between pro- and anti-angiogenic factors. We demonstrate that the critical step in establishing the angiogenic capability of human cells is the repression of the critical anti-angiogenic factor, thrombospondin-1 (Tsp-1). This repression is essential for tumor formation by mammary epithelial cells and kidney cells engineered to express SV40 early region proteins, hTERT, and H-RasV12. We have uncovered the signaling pathway leading from Ras to Tsp-1 repression. Ras induces the sequential activation of PI3 kinase, Rho, and ROCK, leading to activation of Myc through phosphorylation; phosphorylation of Myc via this mechanism enables it to repress Tsp-1 expression. We thus describe a novel mechanism by which the cooperative activity of the oncogenes, ras and myc, leads directly to angiogenesis and tumor formation.
Collapse
|
524
|
Abstract
Manipulation of the mouse genome allows emulation of the genetic defects that give rise to human cancers and evaluation of the cooperating nature of different mutations in the transformation of distinct cell types. Here we review the generation of mice with specific missense mutations in p53 (TP53) and disruption of the p53 pathway by deletion of p53 inhibitors. Missense mutations in the DNA binding domain result in viable mice with gain-of-function and dominant negative phenotypes. Loss of either of the p53 inhibitors mdm2 or mdm4 gives rise to a p53-dependent embryonic lethal phenotype. A cell can thus tolerate the absence of p53 function but not excess p53 function, a characteristic that is being exploited in the treatment of human cancers.
Collapse
Affiliation(s)
- John M Parant
- Department of Molecular Genetics, Section of Cancer Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-4095, USA
| | | |
Collapse
|
525
|
Gunther EJ, Moody SE, Belka GK, Hahn KT, Innocent N, Dugan KD, Cardiff RD, Chodosh LA. Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev 2003; 17:488-501. [PMID: 12600942 PMCID: PMC195997 DOI: 10.1101/gad.1051603] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aberrant activation of Wnt signaling is oncogenic and has been implicated in a variety of human cancers. We have developed a doxycycline-inducible Wnt1 transgenic mouse model to determine the dependence of established mammary adenocarcinomas on continued Wnt signaling. Using this model we show that targeted down-regulation of the Wnt pathway results in the rapid disappearance of essentially all Wnt-initiated invasive primary tumors as well as pulmonary metastases. Tumor regression does not require p53 and occurs even in highly aneuploid tumors. However, despite the dependence of primary mammary tumors and metastases on continued Wnt signaling and the dispensability of p53 for tumor regression, we find that a substantial fraction of tumors progress to a Wnt-independent state and that p53 suppresses this process. Specifically, loss of one p53 allele dramatically facilitates the progression of mammary tumors to a Wnt1-independent state both by impairing the regression of primary tumors following doxycycline withdrawal and by promoting the recurrence of fully regressed tumors in the absence of doxycycline. Thus, although p53 itself is dispensable for tumor regression, it nevertheless plays a critical role in the suppression of tumor recurrence. Our findings demonstrate that although even advanced stages of epithelial malignancy remain dependent upon continued Wnt signaling for maintenance and growth, loss of p53 facilitates tumor escape and the acquisition of oncogene independence.
Collapse
Affiliation(s)
- Edward J Gunther
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | | | | | | | |
Collapse
|
526
|
Butler TL, Kassed CA, Pennypacker KR. Signal transduction and neurosurvival in experimental models of brain injury. Brain Res Bull 2003; 59:339-51. [PMID: 12507684 DOI: 10.1016/s0361-9230(02)00926-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain injury and neurodegenerative disease are linked by their primary pathological consequence-death of neurons. Current approaches for the treatment of neurodegeneration are limited. In this review, we discuss animal models of human brain injury and molecular biological data that have been obtained from their analysis. In particular, signal transduction pathways that are associated with neurosurvival following injury to the brain are presented and discussed.
Collapse
Affiliation(s)
- T L Butler
- Department of Pharmacology and Therapeutics, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | |
Collapse
|
527
|
Liou JS, Chen JS, Faller DV. Characterization of p21Ras-mediated apoptosis induced by protein kinase C inhibition and application to human tumor cell lines. J Cell Physiol 2003; 198:277-94. [PMID: 14603530 DOI: 10.1002/jcp.10409] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Suppression of PKC activity can selectively induce apoptosis in cells expressing a constitutively activated p21Ras protein. We demonstrate that continued expression of p21Ras activity is required in PKC-mediated apoptosis because farnesyltransferase inhibitors abrogated the loss of viability in p21Ras-transformed cells occurring following PKC inhibition. Studies utilizing gene transfer or viral vectors demonstrate that transient expression of oncogenic p21Ras activity is sufficient for induction of apoptosis by PKC inhibition, whereas physiologic activation of p21Ras by growth factor is not sufficient to induce apoptosis. Mechanistically, the p21Ras-mediated apoptosis induced by PKC inhibition is dependent upon mitochondrial dysregulation, with a concurrent loss of mitochondrial membrane potential (psim). Cyclosporine A, which prevented the loss of psim, also inhibited HMG-induced DNA fragmentation in cells expressing an activated p21Ras. Induction of apoptosis by PKC inhibition in human tumors with oncogenic p21Ras mutations was demonstrated. Inhibition of PKC caused increased apoptosis in MIA-PaCa-2, a human pancreatic tumor line containing a mutated Ki-ras allele, when compared to HS766T, a human pancreatic tumor line with normal Ki-ras alleles. Furthermore, PKC inhibition induced apoptosis in HCT116, a human colorectal tumor line containing an oncogenic Ki-ras allele but not in a subline (Hke3) in which the mutated Ki-ras allele had been disrupted. The PKC inhibitor 1-O-hexadecyl-2-O-methyl-rac-glycerol (HMG), significantly reduced p21Ras-mediated tumor growth in vivo in a nude mouse MIA-PaCa-2 xenograft model. Collectively these studies suggest the therapeutic feasibility of targeting PKC activity in tumors expressing an activated p21Ras oncoprotein.
Collapse
Affiliation(s)
- James S Liou
- Boston University School of Medicine, Cancer Research Center, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
528
|
Tilli MT, Furth PA. Conditional mouse models demonstrate oncogene-dependent differences in tumor maintenance and recurrence. Breast Cancer Res 2003; 5:202-5. [PMID: 12817992 PMCID: PMC165023 DOI: 10.1186/bcr614] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diversity in the pathophysiology of breast cancer frustrates therapeutic progress. We need to understand how mechanisms activated by specific combinations of oncogenes, tumor suppressors, and hormonal signaling pathways govern response to therapy and prognosis. A recent series of investigations conducted by Chodosh and colleagues offers new insights into the similarities and differences between specific oncogenic pathways. Expression of three oncogenes relevant to pathways activated in human breast cancers (c-myc, activated neu and Wnt1) were targeted to murine mammary epithelial cells using the same transgenic tetracycline-responsive conditional gene expression system. While the individual transgenic lines demonstrate similarly high rates of tumor penetrance, rates of oncogene-independent tumor maintenance and recurrence following initial regression are significantly different, and are modifiable by mutations in specific cooperating oncogenes or loss of tumor suppressor gene expression. The experiments make three notable contributions. First, they illustrate that rates of tumor regression and recurrence following initial regression are dependent upon the pathways activated by the initiating oncogene. The experiments also demonstrate that altered expression or mutation of specific cooperating oncogenes or tumor suppressor genes results in different rates of tumor regression and recurrence. Finally, they exemplify the power of conditional mouse models for elucidating how specific molecular mechanisms give rise to the complexity of human cancer.
Collapse
Affiliation(s)
- Maddalena T Tilli
- Division of Human Genetics, University of Maryland, Baltimore, and Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | - Priscilla A Furth
- Division of Human Genetics, University of Maryland, Baltimore, and Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
529
|
Watanabe T, Kashida Y, Yasuhara K, Koujitani T, Hirose M, Mitsumori K. Rapid induction of uterine endometrial proliferative lesions in transgenic mice carrying a human prototype c-Ha-ras gene (rasH2 mice) given a single intraperitoneal injection of N-ethyl-N-nitrosourea. Cancer Lett 2002; 188:39-46. [PMID: 12406546 DOI: 10.1016/s0304-3835(02)00158-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In our previous study, uterine endometrial stromal sarcomas and atypical hyperplasias of the endometrial glands were induced in heterozygous p53 deficient mice (p53 (+/-) mice) of the CBA strain given a single dose of N-ethyl-N-nitrosourea (ENU). In order to clarify whether uterine tumors can be induced in transgenic mice carrying a human prototype c-Ha-ras gene (rasH2 mice) that are very susceptible to genotoxic carcinogens, rasH2 mice and their wild-type littermates received an intraperitoneal injection of 120 or 0mg/kg body weight of ENU followed by no further treatment for 22 weeks. Eighteen and 94% of ENU-treated rasH2 mice had uterine endometrial adenocarcinomas and atypical hyperplasias, respectively. Other malignant and benign tumors such as lung alveolar/bronchiolar adenomas and carcinomas, forestomach squamous cell papillomas and carcinomas, splenic hemangiomas/sarcomas, skin papillomas, malignant lymphomas and harderian gland adenomas were also observed in ENU-treated rasH2 mice. The result in the present study suggests that female rasH2 mice are very susceptible to uterine carcinogenesis, providing a useful model for ENU-induced uterine epithelial tumors.
Collapse
Affiliation(s)
- Takao Watanabe
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, 183-8509, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
530
|
Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B. Of mice and models: improved animal models for biomedical research. Physiol Genomics 2002; 11:115-32. [PMID: 12464688 DOI: 10.1152/physiolgenomics.00067.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability to engineer the mouse genome has profoundly transformed biomedical research. During the last decade, conventional transgenic and gene knockout technologies have become invaluable experimental tools for modeling genetic disorders, assigning functions to genes, evaluating drugs and toxins, and by and large helping to answer fundamental questions in basic and applied research. In addition, the growing demand for more sophisticated murine models has also become increasingly evident. Good state-of-principle knowledge about the enormous potential of second-generation conditional mouse technology will be beneficial for any researcher interested in using these experimental tools. In this review we will focus on practice, pivotal principles, and progress in the rapidly expanding area of conditional mouse technology. The review will also present an internet compilation of available tetracycline-inducible mouse models as tools for biomedical research (http://www.zmg.uni-mainz.de/tetmouse/).
Collapse
Affiliation(s)
- Ernesto Bockamp
- Laboratory of Molecular Mouse Genetics, Institute of Toxicology, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
531
|
Abstract
Pancreatic ductal adenocarcinoma is an aggressive and devastating disease, which is characterized by invasiveness, rapid progression and profound resistance to treatment. Advances in pathological classification and cancer genetics have improved our descriptive understanding of this disease; however, important aspects of pancreatic cancer biology remain poorly understood. What is the pathogenic role of specific gene mutations? What is the cell of origin? And how does the stroma contribute to tumorigenesis? A better understanding of pancreatic cancer biology should lead the way to more effective treatments.
Collapse
Affiliation(s)
- Nabeel Bardeesy
- Department of Adult Oncology, Dana-Farber Cancer Institute and Departments of Medicine and Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
532
|
Sippel RS, Chen H. Activation of the ras/raf-1 signal transduction pathway in carcinoid tumor cells results in morphologic transdifferentiation. Surgery 2002; 132:1035-9; discussion 1039. [PMID: 12490852 DOI: 10.1067/msy.2002.128877] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Recent studies of neuroendocrine tumor cell lines suggest that ras/raf-1 activation could be detrimental to tumorigenesis. The mechanism by which it alters neuroendocrine tumor cells is unclear. We hypothesize that activation of the ras/raf signal transduction pathway may alter gastrointestinal carcinoid cells by inducing morphologic transdifferentiation. METHODS Pancreatic carcinoid (BON) cells were transduced in a stable manner with an estrogen inducible raf-1 fusion protein (creating "BON-raf cells"). BON and BON-raf cells were then treated with either control or 1 micromol/L estradiol (E2). Western blots were used to confirm the phosphorylation of extracellular signal-regulated kinase 1/2. Morphologic changes were evaluated using light and electron microscopy. RESULTS Western blots using antibodies against phosphorylated and unphosphorylated extracellular signal-regulated kinase 1/2. confirmed that phosphorylation was only present in the BON-raf E2 cells. BON cells treated with control and E2 and BON-raf cells treated with control all looked identical in culture. After treatment with E2 to induce raf-1, the BON-raf cells underwent dramatic morphologic changes. Under light and electron microscopy the cells became flatter and developed much sharper cellular borders mimicking cellular differentiation. CONCLUSIONS Activation of the ras/raf-1 signal transduction pathway leads to prominent phenotypic changes that resemble differentiation of gastrointestinal carcinoid cells in vitro.
Collapse
Affiliation(s)
- Rebecca S Sippel
- Department of Surgery, The University of Wisconsin Medical School, H4/750 Clinical Science Center, 600 Highland Avenue, Madison, WI 53792, USA
| | | |
Collapse
|
533
|
Abstract
A mouse model has been developed to study lymphangiogenesis dissociated from angiogenesis. bFGF implanted in a mouse cornea at a concentration below the threshold to induce angiogenesis potently induces lymphangiogenesis. This model has permitted a study of cellular and molecular mechanisms of lymphangiogenesis.
Collapse
Affiliation(s)
- Lynn Chang
- Department of Surgery, Harvard Medical School, and Surgical Research Laboratory, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
534
|
Abstract
Cutaneous cancers represent a major public health concern due to the very high incidence, associated medical costs, substantial mortality, and cosmetic deformities associated with treatment. Considerable progress in basic research has provided new insights into the underlying genetic basis of the major human cutaneous cancers, malignant melanoma, basal cell carcinoma, and squamous cell carcinoma. In turn, these genetic insights have illuminated biochemical pathways that promise to provide new approaches to the prevention and treatment of cutaneous neoplasms. This review will detail the evolving genetic information and indicate how this information is being used to refine experimental models that serve to both define the biochemistry of cancer pathogenesis and test novel approaches to cancer therapy. Combined with preventive measures to reduce exposure to sunlight, these advances are likely to reduce this major public health burden in the coming decade.
Collapse
Affiliation(s)
- Andrzej Dlugosz
- Department of Dermatology and Comprehensive Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
535
|
Moody SE, Sarkisian CJ, Hahn KT, Gunther EJ, Pickup S, Dugan KD, Innocent N, Cardiff RD, Schnall MD, Chodosh LA. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2002; 2:451-61. [PMID: 12498714 DOI: 10.1016/s1535-6108(02)00212-x] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To determine the impact of tumor progression on the reversibility of Neu-induced tumorigenesis, we have used the tetracycline regulatory system to conditionally express activated Neu in the mammary epithelium of transgenic mice. When induced with doxycycline, bitransgenic MMTV-rtTA/TetO-NeuNT mice develop multiple invasive mammary carcinomas, essentially all of which regress to a clinically undetectable state following transgene deinduction. This demonstrates that Neu-initiated tumorigenesis is reversible. Strikingly, extensive lung metastases arising from Neu-induced mammary tumors also rapidly and fully regress following the abrogation of Neu expression. However, despite the near universal dependence of both primary tumors and metastases on Neu transgene expression, most animals bearing fully regressed Neu-induced tumors ultimately develop recurrent tumors that have progressed to a Neu-independent state.
Collapse
Affiliation(s)
- Susan E Moody
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
536
|
Edinger M, Cao YA, Hornig YS, Jenkins DE, Verneris MR, Bachmann MH, Negrin RS, Contag CH. Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer 2002; 38:2128-36. [PMID: 12387838 DOI: 10.1016/s0959-8049(02)00410-0] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Malignant disease is the final manifestation of complex molecular and cellular events leading to uncontrolled cellular proliferation and eventually tissue destruction and metastases. While the in vitro examination of cultured tumour cells permits the molecular dissection of early pathways in tumorigenesis on cellular and subcellular levels, only interrogation of these processes within the complexity of organ systems of the living animal can reveal the full range of pathophysiological changes that occur in neoplastic disease. Such analyses require technologies that facilitate the study of biological processes in vivo, and several approaches have been developed over the last few years. These strategies, in the nascent field of in vivo molecular and cellular imaging, combine molecular biology with imaging modalities as a means to real-time acquisition of functional information about disease processes in living systems. In this review, we will summarise recent developments in in vivo bioluminescence imaging (BLI) and discuss the potential of this imaging strategy for the future of cancer research.
Collapse
Affiliation(s)
- M Edinger
- Division of Bone Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
537
|
Teng PI, Dichiara MR, Kömüves LG, Abe K, Quertermous T, Topper JN. Inducible and selective transgene expression in murine vascular endothelium. Physiol Genomics 2002; 11:99-107. [PMID: 12388791 DOI: 10.1152/physiolgenomics.00059.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have developed a system utilizing the murine Tie2 promoter/enhancer coupled with the "tetracycline-on" regulatory elements to create a model that allows regulated and selective expression of a beta-galactosidase (betaGal) reporter transgene in the adult murine vascular endothelium. Two independent lines of viable and fertile mice were characterized, and they exhibit minimal betaGal expression under basal conditions. In response to exogenous doxycycline (Dox), selective expression of betaGal was demonstrated in the vascular endothelium of all tissues examined. En face analyses of the aorta and its principle branches indicate that the vast majority of lumenal endothelial cells express the transgene. Inducible betaGal expression also extends to the endocardium and the microvasculature of all organs. There is no evidence of specific transgene expression in nonendothelial cell types. Induction of the betaGal was effectively achieved after 3 days of oral Dox treatment and persisted for over 3 mo with continuous administration. This model can now be widely applied to study the role of specific genes in the phenotype of adult murine vasculature.
Collapse
Affiliation(s)
- Peter I Teng
- Millennium Pharmaceuticals, South San Francisco 94080, USA
| | | | | | | | | | | |
Collapse
|
538
|
Chan J, Robinson ES, Yeh IT, McCarrey JR. Absence of ras gene mutations in UV-induced malignant melanomas correlates with a dermal origin of melanocytes in Monodelphis domestica. Cancer Lett 2002; 184:73-80. [PMID: 12104050 DOI: 10.1016/s0304-3835(01)00783-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The South American opossum, Monodelphis domestica, has been used as a model system to study ultraviolet (UV)-induced genetic alterations that lead to the development of melanoma. Suckling young of Monodelphis exposed to multiple doses of UVB radiation can develop benign or malignant melanomas later as adults. Point mutations predominantly at codon 61 of the N-ras gene have been found in melanomas from sun-exposed body sites in humans. To determine if similar mutations are associated with UV-induced melanoma in Monodelphis, the nucleotide sequence of a Monodelphis N-ras cDNA was determined, and the occurrence of ras mutations in melanomas from UV-irradiated opossums was investigated. Single-strand conformation polymorphism analysis revealed no mutations in either the Monodelphis N-ras or H-ras genes in any of 24 primary malignant melanoma samples analyzed in this study. The disparate association of ras mutations with melanoma in humans and Monodelphis may be explained by differences in nucleotide sequence at codon 61 of the N-ras gene as well as differences in skin architecture between the two species. These results support the contention that a mutationally activated N-ras gene contributes to the vertical growth phase, which is specific to the progression of malignant melanoma in humans.
Collapse
Affiliation(s)
- Jeannie Chan
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78227, USA.
| | | | | | | |
Collapse
|
539
|
Abstract
Because of subtle differences between mouse and human skin, mice have traditionally not been an ideal model to study melanoma development. Understanding of the molecular mechanisms of melanoma predisposition, however, has been greatly improved by modeling various pathway defects in the mouse. This review analyzes the latest developments in mouse models of melanoma, and summarizes what these may indicate about the development of this neoplasm in humans. Mutations of genes involved in human melanoma have been recapitulated with some unexpected results, particularly with respect to the role of the two transcripts (Ink4a and Arf) encoded by the Cdkn2a locus. Both the Ink4a/pRb and Arf/p53 pathways are involved in melanoma development in mice, and possible mechanisms of cross-talk between the two pathways are discussed. We also know from mouse models that Ras/mitogen-activated protein kinase pathway activation is very important in melanoma development, either through direct activation of Ras (e.g., Hras G12V), or via activation of Ras-effector pathways by other oncogenes (e.g., Ret, Hgf/Sf). Ras can cooperate with the Arf/p53 pathway, and probably the Ink4a/Rb pathway, to induce melanoma. These three growth regulation pathways (Ink4a/pRb, Arf/p53, and Ras/mitogen-activated protein kinase) seem to represent three major "axes" of melanoma development in mice. Finally, we summarize experiments using genetically modified mice that have given indications of the intensity and timing of ultraviolet radiation exposure that may be most responsible for melanoma development.
Collapse
Affiliation(s)
- Graeme J Walker
- Queensland Cancer Fund Research Unit, Joint Experimental Oncology Program, Queensland Institute of Medical Research, Post Office Royal Brisbane Hospital, Brisbane, 4029, QLD, Australia
| | | |
Collapse
|
540
|
Affiliation(s)
- Alan N Houghton
- Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
541
|
Abstract
Deregulated expression of c-MYC occurs in a broad range of human cancers and is often associated with poor prognosis, indicating a key role for this oncogene in tumour progression. However, as established human tumours often bear multiple genetic lesions, it is difficult to determine whether c-MYC is instrumental in the initiation/progression of the tumour, or indeed whether inactivating c-MYC would lead to tumour regression. Regulatable transgenic mouse models of oncogenesis have shed light on these issues and provide hope for effective cancer therapies.
Collapse
Affiliation(s)
- Stella Pelengaris
- Molecular Medicine Research Centre, University of Warwick, Coventry CV4 7AL, UK.
| | | | | |
Collapse
|
542
|
Abstract
Angiogenesis inhibitors are a new class of drugs, for which the general rules involving conventional chemotherapy might not apply. The successful translation of angiogenesis inhibitors to clinical application depends partly on the transfer of expertise from scientists who are familiar with the biology of angiogenesis to clinicians. What are the most common questions that clinicians ask as they begin to test angiogenesis inhibitors in cancer clinical trials?
Collapse
Affiliation(s)
- Robert Kerbel
- Molecular and Cellular Biology Research, Sunnybrook and Women's College Health Sciences Centre, S-218, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.
| | | |
Collapse
|
543
|
Abstract
Drug resistance has always been a concern in cancer treatment, often blamed on the genetic complexity and instability of tumor cells. While studies of cancer cell lines have implicated an array of potential mechanisms, it has been difficult to translate these insights into clinically meaningful improvements in cancer treatment. The successful deployment of molecularly targeted therapeutics in some cancers has led to widespread optimism that this approach will become broadly applicable. Despite their early promise in the clinic, the novel therapeutics are often plagued with the age old problem of acquired drug resistance. Progress in understanding why certain patients respond and why some develop resistance can be made rapidly through studies of the drug target in tumor tissue from patient. One important lesson is that many cancers, even in the most advanced stages, continue to rely on a limited number of critical oncogenic signals for maintenance of the malignant phenotype. This article reviews the mechanisms of drug resistance to a variety of cancer therapeutics and provides an approach for how measures of drug target activity can be incorporated into clinical trial design.
Collapse
Affiliation(s)
- Ingo K Mellinghoff
- Departments of Medicine and Molecular Biology Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | |
Collapse
|
544
|
Udagawa T, Fernandez A, Achilles EG, Folkman J, D'Amato RJ. Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. FASEB J 2002; 16:1361-70. [PMID: 12205027 DOI: 10.1096/fj.01-0813com] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Some human tumor lines do not form visible tumors when inoculated into immunosuppressed mice. The fate of these human tumor lines was followed by transfecting them with green fluorescence protein before inoculating them into mice. Although the tumor lines failed to grow progressively, they formed small dormant microscopic foci maintained at constant mass by balanced proliferation and apoptosis. Transfecting the cells with either VEGF165 or activated c-Ha-ras induced loss of dormancy, which correlated with a shift in the angiogenic balance toward increased vascularity with reduced tumor cell apoptosis. These results support a model in which loss of dormancy is controlled in part by a switch to an angiogenic phenotype. These tumor lines may serve as models for investigating the cellular mechanisms controlling dormancy and identifying those factors that promote the loss of balanced proliferation and apoptosis. Finally, these models may prove useful in the design and testing of therapies directed toward eradicating dormant tumors and preventing tumor recurrence.
Collapse
Affiliation(s)
- Taturo Udagawa
- Department of Surgery, Division of Surgical Research, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
545
|
Abstract
Most human tumors harbor multiple genetic alterations, including dominant mutant oncogenes. It is often not clear which of these oncogenes are continuously required and which, when inactivated, may inhibit tumorigenesis. Recently, we developed a vector that mediates suppression of gene expression through RNA interference. Here, we use a retroviral version of this vector to specifically and stably inhibit expression of only the oncogenic K-RAS(V12) allele in human tumor cells. Loss of expression of K-RAS(V12) leads to loss of anchorage-independent growth and tumorigenicity. These results indicate that viral delivery of small interfering RNAs can be used for tumor-specific gene therapy to reverse the oncogenic phenotype of cancer cells.
Collapse
Affiliation(s)
- Thijn R Brummelkamp
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | |
Collapse
|
546
|
Weber W, Fux C, Daoud-el Baba M, Keller B, Weber CC, Kramer BP, Heinzen C, Aubel D, Bailey JE, Fussenegger M. Macrolide-based transgene control in mammalian cells and mice. Nat Biotechnol 2002; 20:901-7. [PMID: 12205509 DOI: 10.1038/nbt731] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterologous mammalian gene regulation systems for adjustable expression of multiple transgenes are necessary for advanced human gene therapy and tissue engineering, and for sophisticated in vivo gene-function analyses, drug discovery, and biopharmaceutical manufacturing. The antibiotic-dependent interaction between the repressor (E) and operator (ETR) derived from an Escherichia coli erythromycin-resistance regulon was used to design repressible (E(OFF)) and inducible (E(ON)) mammalian gene regulation systems (E.REX) responsive to clinically licensed macrolide antibiotics (erythromycin, clarithromycin, and roxithromycin). The E(OFF) system consists of a chimeric erythromycin-dependent transactivator (ET), constructed by fusing the prokaryotic repressor E to a eukaryotic transactivation domain that binds and activates transcription from ETR-containing synthetic eukaryotic promoters (P(ETR)). Addition of macrolide antibiotic results in repression of transgene expression. The E(ON) system is based on E binding to artificial ETR-derived operators cloned adjacent to constitutive promoters, resulting in repression of transgene expression. In the presence of macrolides, gene expression is induced. Control of transgene expression in primary cells, cell lines, and microencapsulated human cells transplanted into mice was demonstrated using the E.REX (E(OFF) and E(ON)) systems. The macrolide-responsive E.REX technology was functionally compatible with the streptogramin (PIP-regulated and tetracycline (TET-regulated expression systems, and therefore may be combined for multiregulated multigene therapeutic interventions in mammalian cells and tissues.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
547
|
Pruitt K, Pruitt WM, Bilter GK, Westwick JK, Der CJ. Raf-independent deregulation of p38 and JNK mitogen-activated protein kinases are critical for Ras transformation. J Biol Chem 2002; 277:31808-17. [PMID: 12082106 DOI: 10.1074/jbc.m203964200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated Ras, but not Raf, causes transformation of RIE-1 epithelial cells, supporting the importance of Raf-independent pathways in mediating Ras transformation. The p38 and JNK mitogen-activated protein kinase cascades are activated by Ras via Raf-independent effector function. Therefore, we determined whether p38 and JNK activation are involved in Ras transformation of RIE-1 epithelial cells. Rather surprisingly, we found that pharmacologic inhibition of p38, together with Raf activation of ERK, was sufficient to mimic the morphologic and growth transformation caused by oncogenic Ras. p38 inhibition together with ERK activation also caused the same alterations in cyclin D1 and p21(CIP1) expression caused by Ras and induced an autocrine growth factor loop important for transformation. Finally, in contrast to p38, we found that JNK activation promoted Ras transformation, and that Ras deregulation of p38 and JNK was not mediated by activation of the Rac small GTPase. We conclude that a key action of Raf-independent effector pathways important for Ras transformation may involve inhibition of p38 and activation of JNK.
Collapse
Affiliation(s)
- Kevin Pruitt
- University of North Carolina, Lineberger Comprehensive Cancer Center, Department of Pharmacology, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
548
|
Fan QW, Zhang C, Shokat KM, Weiss WA. Chemical genetic blockade of transformation reveals dependence on aberrant oncogenic signaling. Curr Biol 2002; 12:1386-94. [PMID: 12194819 DOI: 10.1016/s0960-9822(02)01070-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Our understanding of protein kinase inhibition in the treatment of cancer is clearly limited by the lack of inhibitors that selectively block a single kinase implicated in neoplastic transformation. One approach to developing specific inhibitors is to engineer in protein kinases silent mutations that allow selective inhibition while retaining kinase activity. Because it is implicated in a large number of malignancies, EGFR provides an attractive target for such selective kinase inhibition. RESULTS We generated an inhibitor-sensitized allele of the transforming receptor tyrosine kinase v-erbB. Transformation of immortalized rodent fibroblasts by sensitized versions of v-erbB (v-erbB-as1) was blocked by 1-napthyl PP1 (NaPP1), a cell-permeable ATP-competitive inhibitor. NaPP1 also reversed morphological transformation by v-erbB-as1. Signaling through MAP kinase and PI(3) kinase was initially blocked by inhibitor treatment and then recovered to levels comparable to those in nontransformed cells. Surprisingly, NaPP1-treated v-erbB-as1 cells failed to re-enter the cell cycle, showed decreased levels of D- and A-type cyclins, and showed increased levels of p27. To extend this result, we showed that NaPP1 treatment of v-Src-as1 cells also led to cell cycle arrest. Arrested cells could be rescued with a conditional allele of Raf or by transduction of a constitutive allele of cyclin D1. CONCLUSIONS These data suggest that mammalian cells can become dependent on aberrant oncogenic signaling; this dependency renders them incapable of returning to a normal, proliferative phenotype.
Collapse
Affiliation(s)
- Qi-Wen Fan
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
549
|
Ngan ESW, Ma ZQ, Chua SS, DeMayo FJ, Tsai SY. Inducible expression of FGF-3 in mouse mammary gland. Proc Natl Acad Sci U S A 2002; 99:11187-92. [PMID: 12169667 PMCID: PMC123231 DOI: 10.1073/pnas.172366199] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factor-3 (FGF-3) is a crucial developmental regulator. Aberrant activation of this gene by mouse mammary tumor virus insertion results in pregnancy-responsive mammary tumorigenesis. To characterize better FGF-3 function in postnatal mammary gland development and cancer initiation/progression, we used a mifepristone (RU486)-inducible regulatory system to express conditionally FGF-3 in the mammary epithelium of transgenic mice. Ectopic overexpression of FGF-3 in pubescent mammary glands elicited severe perturbations in early mammary gland development leading to mammary hyperplasia. Ductal elongation was retarded, multiple cysts persisted in the virgin ducts, and ductal epithelium was expanded and multilayered. The altered ductal architecture and the persistence of hyperplastic multilayered epithelium reflect a defect in growth regulation, which resulted from an imbalance between mitogenic and apoptotic signals. By altering the duration of RU486 treatment, we showed that the persistence of mitogenic signal elicited by FGF-3 is crucial for the initiation, progression, and maintenance of the hyperplastic characteristic of the mammary epithelium. The manifestations elicited by FGF-3 could be reversed by RU486 withdrawal. In addition, synergism between the stimulus from estrogen and FGF-3 mitogenic pathways was evident and likely contributes to the pregnancy-dependent tumorigenesis of FGF-3. Taken together, the mifepristone-inducible regulatory system provides a powerful means for understanding the diverse roles of FGF-3 and its interactions with hormones in mammary gland tumorigenesis.
Collapse
Affiliation(s)
- Elly S W Ngan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
550
|
Abstract
The laboratory mouse is one of the most powerful tools for both gene discovery and validation in cancer genetics. Recent technological advances in engineering the mouse genome with chromosome translocations, latent alleles, and tissue-specific and temporally regulated mutations have provided more exacting models of human disease. The marriage of mouse tumor models with rapidly evolving methods to profile genetic and epigenetic alterations in tumors, and to finely map genetic modifier loci, will continue to provide insight into the key pathways leading to tumorigenesis. These discoveries hold great promise for identifying relevant drug targets for treating human cancer.
Collapse
Affiliation(s)
- Laurie Jackson-Grusby
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts, MA 02142, USA.
| |
Collapse
|