501
|
Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS. Tell me more: roles of NPRs in plant immunity. TRENDS IN PLANT SCIENCE 2013; 18:402-11. [PMID: 23683896 DOI: 10.1016/j.tplants.2013.04.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/22/2013] [Accepted: 04/04/2013] [Indexed: 05/08/2023]
Abstract
Plants and animals maintain evolutionarily conserved innate immune systems that give rise to durable resistances. Systemic acquired resistance (SAR) confers plant-wide immunity towards a broad spectrum of pathogens. Numerous studies have revealed that NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR) is a key regulator of SAR. Here, we review the mechanisms of NPR1 action in concert with its paralogues NPR3 and NPR4 and other SAR players. We provide insights into the mechanisms of salicylic acid (SA) perception. We discuss the binding of NPR3 and NPR4 with SA that modulates NPR1 coactivator capacity, leading to diverse immune outputs. Finally, we highlight the function of NPR1 as a bona fide SA receptor and propose a possible model of SA perception in planta.
Collapse
|
502
|
Fang M, Xia J, Wu X, Kong H, Wang H, Xie W, Xu Y. Adenosine signaling inhibits CIITA-mediated MHC class II transactivation in lung fibroblast cells. Eur J Immunol 2013; 43:2162-73. [PMID: 23681904 DOI: 10.1002/eji.201343461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/09/2013] [Accepted: 05/13/2013] [Indexed: 01/28/2023]
Abstract
Efficient antigen presentation by major histocompatibility complex (MHC) molecules represents a critical process in adaptive immunity. Class II transactivator (CIITA) is considered the master regulator of MHC class II (MHC II) transcription. Previously, we have shown that CIITA expression is upregulated in smooth muscle cells deficient in A2b adenosine receptor. Here, we report that treatment with the adenosine receptor agonist adenosine-5'N-ethylcarboxamide (NECA) attenuated MHC II transcription in lung fibro-blast cells as a result of CIITA repression. Further analysis revealed that NECA preferentially abrogated CIITA transcription through promoters III and IV. Blockade with a selective A2b receptor antagonist MRS-1754 restored CIITA-dependent MHC II transactivation. Forskolin, an adenylyl cyclase activator, achieved the same effect as NECA. A2b signaling repressed CIITA transcription by altering histone modifications and recruitment of key factors on the CIITA promoters in a STAT1-dependent manner. MRS-1754 blocked the antagonism of transforming growth factor beta (TGF-β) in CIITA induction by interferon gamma (IFN-γ), alluding to a potential dialogue between TGF-β and adenosine signaling pathways. Finally, A2b signaling attenuated STAT1 phosphorylation and stimulated TGF-β synthesis. In conclusion, we have identified an adenosine-A2b receptor-adenylyl cyclase axis that influences CIITA-mediated MHC II transactivation in lung fibroblast cells and as such have provided invaluable insights into the development of novel immune-modulatory strategies.
Collapse
Affiliation(s)
- Mingming Fang
- Department of Surgery, Jiangsu Jiankang Vocational College, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
503
|
An automated algorithm for extracting functional immunologic V-genes from genomes in jawed vertebrates. Immunogenetics 2013; 65:691-702. [DOI: 10.1007/s00251-013-0715-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
|
504
|
Extensive diversification of IgH subclass-encoding genes and IgM subclass switching in crocodilians. Nat Commun 2013; 4:1337. [PMID: 23299887 DOI: 10.1038/ncomms2317] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 11/22/2012] [Indexed: 01/01/2023] Open
Abstract
Crocodilians are a group of reptiles that are closely related to birds and are thought to possess a strong immune system. Here we report that the IgH locus in the Siamese crocodile and the Chinese alligator contains multiple μ genes, in contrast to other tetrapods. Both the μ2 and μ3 genes are expressed through class-switch recombination involving the switch region and germline transcription. Both IgM1 and IgM2 are present in the serum as polymers, which implies that IgM class switching may have significant roles in humoural immunity. The crocodilian α genes are the first IgA-encoding genes identified in reptiles, and these genes show an inverted transcriptional orientation similar to that of birds. The identification of both α and δ genes in crocodilians suggests that the IgH loci of modern living mammals, reptiles and birds share a common ancestral organization.
Collapse
|
505
|
Nagata S, Nishiyama S, Ikazaki Y. Bacterial lipopolysaccharides stimulate production of XCL1, a calcium-dependent lipopolysaccharide-binding serum lectin, in Xenopus laevis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:94-102. [PMID: 23454582 DOI: 10.1016/j.dci.2013.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/16/2013] [Accepted: 02/18/2013] [Indexed: 06/01/2023]
Abstract
Xenopus laevis serum lectin XCL1 is a newly identified molecule of the XCGL (or X-lectin) family, a unique group of Ca(2+)-dependent lectins that have a fibrinogen-like domain. The XCL1 protein was purified from lipopolysaccharide (LPS)-stimulated frog sera by sequential affinity chromatography on heparin-acrylic beads and galactose-Sepharose. XCL1 comprises multiple oligomeric proteins consisting of 37-kDa subunit polypeptides, as revealed by sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE) and Western blot analyses using the monoclonal antibody (mAb) produced against the recombinant XCL1 polypeptide. In the presence of Ca(2+), the protein bound to Escherichia coli, Staphylococcus aureus, LPS and galactose and the bound XCL1 was competitively eluted using ribose and xylose, and the elution was as efficient as that using EDTA, whereas elution using hexoses, GalNAc or GlcNAc was less effective. In reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses, XCL1 expression was ubiquitously detected in frog tissues, with relatively high levels in hematopoietic tissues including the spleen, liver and kidney. Intraperitoneal injection of E. coli, S. aureus or 100-300μg S-type LPS from various bacteria induced several-fold increases in serum XCL1 concentrations on day 3, and the elevated levels retained up to day 12. It also caused a remarkable increase of the splenic XCL1 expression on day 3, followed by a rapid decline to nearly nonstimulated control levels by day 7. The R-type LPS with shortened polysaccharide chains was less effective in inducing the serum XCL1 response, indicating that the sugar chains of LPS were important, if not essential, for the stimulation of XCL1 production. These results suggest that XCL1 is a pathogen recognition molecule involved in antimicrobial innate immunity in Xenopus.
Collapse
Affiliation(s)
- Saburo Nagata
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Mejirodai 2-8-1, Bunkyoku, Tokyo 112-8681, Japan.
| | | | | |
Collapse
|
506
|
Li R, Wang T, Bird S, Zou J, Dooley H, Secombes CJ. B cell receptor accessory molecule CD79α: characterisation and expression analysis in a cartilaginous fish, the spiny dogfish (Squalus acanthias). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1404-15. [PMID: 23454429 PMCID: PMC4034164 DOI: 10.1016/j.fsi.2013.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/08/2013] [Accepted: 02/18/2013] [Indexed: 05/16/2023]
Abstract
CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5' flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies.
Collapse
Affiliation(s)
- Ronggai Li
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Steve Bird
- Department of Biological Sciences, School of Science and Engineering, University of Waikato, New Zealand
| | - Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Helen Dooley
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Christopher J. Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
- Corresponding author. Tel.: +44 1224 278272; fax: +44 (0)1224 272396.
| |
Collapse
|
507
|
Dishaw LJ, Litman GW. Changing views of the evolution of immunity. Front Immunol 2013; 4:122. [PMID: 23734152 PMCID: PMC3659336 DOI: 10.3389/fimmu.2013.00122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 01/09/2023] Open
Affiliation(s)
- Larry J Dishaw
- Division of Molecular Genetics, Department of Pediatrics, University of South Florida Tampa, FL, USA
| | | |
Collapse
|
508
|
Tomaru U, Kasahara M. Thymoproteasome: Role in Thymic Selection and Clinical Significance as a Diagnostic Marker for Thymic Epithelial Tumors. Arch Immunol Ther Exp (Warsz) 2013; 61:357-65. [DOI: 10.1007/s00005-013-0234-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/26/2013] [Indexed: 11/24/2022]
|
509
|
Deng L, Luo M, Velikovsky A, Mariuzza RA. Structural Insights into the Evolution of the Adaptive Immune System. Annu Rev Biophys 2013; 42:191-215. [DOI: 10.1146/annurev-biophys-083012-130422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lu Deng
- Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892
| | - Ming Luo
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850;
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Alejandro Velikovsky
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Roy A. Mariuzza
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
510
|
Crouch K, Smith LE, Williams R, Cao W, Lee M, Jensen A, Dooley H. Humoral immune response of the small-spotted catshark, Scyliorhinus canicula. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1158-1169. [PMID: 23439398 DOI: 10.1016/j.fsi.2013.01.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/19/2013] [Accepted: 01/27/2013] [Indexed: 06/01/2023]
Abstract
Cartilaginous fishes are the oldest group in which an adaptive immune system based on immunoglobulin-superfamily members is found. This manuscript compares humoral immune function in small-spotted catshark (Scyliorhinus canicula) with that described for spiny dogfish (Squalus acanthias), another member of the Squalomorphi superorder, and nurse shark, the model for humoral immunity in elasmobranchs and a member of the Galeomorphi superorder. Although small-spotted catshark and nurse shark are separated by over 200 million years we found that immunoglobulin isoforms are well conserved between the two species. However, the plasma protein profile of small-spotted catshark was most similar to that of spiny dogfish, with low levels of pentameric IgM, and IgNAR present as a multimer in plasma rather than a monomer. We show that an antigen-specific monomeric IgM response, with a profile similar to that described previously for nurse sharks, can be raised in small-spotted catshark. Lacking polyclonal or monoclonal antibody reagents for detecting catshark IgNAR we investigated phage-display and recombinant Fc-fusion protein expression as alternative methods to look for an antigen-specific response for this isotype. However, we could find no evidence of an antigen-specific IgNAR in the animals tested using either of these techniques. Thus, unlike nurse sharks where antigen-specific monomeric IgM and IgNAR appear together, it seems there may be a temporal or complete 'uncoupling' of these isotypes during a humoral response in the small-spotted catshark.
Collapse
Affiliation(s)
- Kathryn Crouch
- Global Biotherapeutics Technologies, Pfizer Inc., Foresterhill, Aberdeen AB25 2ZS, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
511
|
|
512
|
Sunyer JO. Fishing for mammalian paradigms in the teleost immune system. Nat Immunol 2013; 14:320-6. [PMID: 23507645 PMCID: PMC4203445 DOI: 10.1038/ni.2549] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 01/17/2013] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed a renaissance in the study of fish immune systems. Such studies have greatly expanded the knowledge of the evolution and diversification of vertebrate immune systems. Several findings in those studies have overturned old paradigms about the immune system and led to the discovery of novel aspects of mammalian immunity. Here I focus on how findings pertaining to immunity in teleost (bony) fish have led to major new insights about mammalian B cell function in innate and adaptive immunity. Additionally, I illustrate how the discovery of the most ancient mucosal immunoglobulin described thus far will help resolve unsettled paradigms of mammalian mucosal immunity.
Collapse
Affiliation(s)
- J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
513
|
Abstract
Sera of camelids contain both conventional heterotetrameric antibodies and unique functional heavy (H)-chain antibodies (HCAbs). The H chain of these homodimeric antibodies consists of one antigen-binding domain, the VHH, and two constant domains. HCAbs fail to incorporate light (L) chains owing to the deletion of the first constant domain and a reshaped surface at the VHH side, which normally associates with L chains in conventional antibodies. The genetic elements composing HCAbs have been identified, but the in vivo generation of these antibodies from their dedicated genes into antigen-specific and affinity-matured bona fide antibodies remains largely underinvestigated. However, the facile identification of antigen-specific VHHs and their beneficial biochemical and economic properties (size, affinity, specificity, stability, production cost) supported by multiple crystal structures have encouraged antibody engineering of these single-domain antibodies for use as a research tool and in biotechnology and medicine.
Collapse
Affiliation(s)
- Serge Muyldermans
- Research Group Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
514
|
Pinto RD, Randelli E, Buonocore F, Pereira PJB, dos Santos NMS. Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) MHC class I heavy chain and β2-microglobulin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:234-254. [PMID: 23116964 DOI: 10.1016/j.dci.2012.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
In this work, the gene and cDNA of sea bass (Dicentrarchus labrax) β2-microglobulin (Dila-β2m) and several cDNAs of MHC class I heavy chain (Dila-UA) were characterized. While Dila-β2m is single-copy, numerous Dila-UA transcripts were identified per individual with variability at the peptide-binding domain (PBD), but also with unexpected diversity from the connective peptide (CP) through the 3' untranslated region (UTR). Phylogenetic analysis segregates Dila-β2m and Dila-UA into each subfamily cluster, placing them in the fish class and branching Dila-MHC-I with lineage U. The α1 domains resemble those of the recently proposed L1 trans-species lineage. Although no Dila-specific α1, α2 or α3 sub-lineages could be observed, two highly distinct sub-lineages were identified at the CP/TM/CYT regions. The three-dimensional homology model of sea bass MHC-I complex is consistent with other characterized vertebrate structures. Furthermore, basal tissue-specific expression profiles were determined for both molecules, and expression of β2m was evaluated after poly I:C stimulus. Results suggest these molecules are orthologues of other β2m and teleost classical MHC-I and their basic structure is evolutionarily conserved, providing relevant information for further studies on antigen presentation in this fish species.
Collapse
Affiliation(s)
- Rute D Pinto
- Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, Porto, Portugal.
| | | | | | | | | |
Collapse
|
515
|
Findly RC, Zhao X, Noe J, Camus AC, Dickerson HW. B cell memory following infection and challenge of channel catfish with Ichthyophthirius multifiliis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:302-311. [PMID: 23041614 DOI: 10.1016/j.dci.2012.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/13/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
B cell responses in channel catfish to infection with the parasitic ciliate Ichthyophthirius multifiliis were followed for 3 years. High titers of serum IgM antibodies recognizing I. multifiliis immobilization antigens were present 5weeks after immunizing infection, but by 1 year titers were at low or undetectable levels. Two to three years after infection the numbers of antibody secreting cells recognizing immobilization antigens in skin and head kidney of immune fish had decreased to the level found in uninfected controls. Challenge of immune fish showed they remained immune and that the numbers of antibody secreting cells recognizing immobilization antigens increased in skin but not head kidney. This suggests that antigen-specific memory B cells persisted for 3 years after infection and upon challenge differentiated into antibody secreting cells that localized in skin. Our results suggest that humoral immunity in channel catfish is maintained through IgM(+) memory B cells.
Collapse
Affiliation(s)
- R Craig Findly
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
516
|
Haase D, Roth O, Kalbe M, Schmiedeskamp G, Scharsack JP, Rosenstiel P, Reusch TBH. Absence of major histocompatibility complex class II mediated immunity in pipefish, Syngnathus typhle: evidence from deep transcriptome sequencing. Biol Lett 2013; 9:20130044. [PMID: 23445951 DOI: 10.1098/rsbl.2013.0044] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The major histocompatibility complex (MHC)-mediated adaptive immune system is the hallmark of gnathostome immune defence. Recent work suggests that cod-like fishes (Gadidae) lack important components of the MHC class II mediated immunity. Here, we report a putative independent loss of functionality of this pathway in another species, the pipefish Syngnathus typhle, that belongs to a distantly related fish family (Syngnathidae). In a deep transcriptome sequencing approach comprising several independent normalized and non-normalized expressed sequence tag (EST) libraries with approximately 7.5 × 10(8) reads, sequenced with two next generation platforms (454 and Illumina), we were unable to identify MHC class IIα/β genes as well as genes encoding associated receptors. Along with the recent findings in cod, our results suggest that immune systems of the Euteleosts may be more variable than previously assumed.
Collapse
Affiliation(s)
- David Haase
- Evolutionary Ecology of Marine Fishes, Helmholtz-Centre for Ocean Research Kiel (GEOMAR), 24105 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
517
|
Abstract
All multicellular organisms protect themselves against pathogens using sophisticated immune defenses. Functionally interconnected humoral and cellular facilities maintain immune homeostasis in the absence of overt infection and regulate the initiation and termination of immune responses directed against pathogens. Immune responses of invertebrates, such as flies, are innate and usually stereotyped; those of vertebrates, encompassing species as diverse as jawless fish and humans, are additionally adaptive, enabling more rapid and efficient immune reactivity upon repeated encounters with a pathogen. Many of the attributes historically defining innate and adaptive immunity are in fact common to both, blurring their functional distinction and emphasizing shared ancestry and co-evolution. These findings provide indications of the evolutionary forces underlying the origin of somatic diversification of antigen receptors and contribute to our understanding of the complex phenotypes of human immune disorders. Moreover, informed by phylogenetic considerations and inspired by improved knowledge of functional networks, new avenues emerge for innovative therapeutic strategies.
Collapse
|
518
|
Fillatreau S, Six A, Magadan S, Castro R, Sunyer JO, Boudinot P. The astonishing diversity of Ig classes and B cell repertoires in teleost fish. Front Immunol 2013; 4:28. [PMID: 23408183 PMCID: PMC3570791 DOI: 10.3389/fimmu.2013.00028] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/24/2013] [Indexed: 12/17/2022] Open
Abstract
With lymphoid tissue anatomy different than mammals, and diverse adaptations to all aquatic environments, fish constitute a fascinating group of vertebrate to study the biology of B cell repertoires in a comparative perspective. Fish B lymphocytes express immunoglobulin (Ig) on their surface and secrete antigen-specific antibodies in response to immune challenges. Three antibody classes have been identified in fish, namely IgM, IgD, and IgT, while IgG, IgA, and IgE are absent. IgM and IgD have been found in all fish species analyzed, and thus seem to be primordial antibody classes. IgM and IgD are normally co-expressed from the same mRNA through alternative splicing, as in mammals. Tetrameric IgM is the main antibody class found in serum. Some species of fish also have IgT, which seems to exist only in fish and is specialized in mucosal immunity. IgM/IgD and IgT are expressed by two different sub-populations of B cells. The tools available to investigate B cell responses at the cellular level in fish are limited, but the progress of fish genomics has started to unravel a rich diversity of IgH and immunoglobulin light chain locus organization, which might be related to the succession of genome remodelings that occurred during fish evolution. Moreover, the development of deep sequencing techniques has allowed the investigation of the global features of the expressed fish B cell repertoires in zebrafish and rainbow trout, in steady state or after infection. This review provides a description of the organization of fish Ig loci, with a particular emphasis on their heterogeneity between species, and presents recent data on the structure of the expressed Ig repertoire in healthy and infected fish.
Collapse
Affiliation(s)
- Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum, Leibniz Institute Berlin, Germany
| | | | | | | | | | | |
Collapse
|
519
|
Lu XJ, Hang XY, Yin L, He YQ, Chen J, Shi YH, Li CH. Sequencing of the first ayu (Plecoglossus altivelis) macrophage transcriptome and microarray development for investigation the effect of LECT2 on macrophages. FISH & SHELLFISH IMMUNOLOGY 2013; 34:497-504. [PMID: 23257205 DOI: 10.1016/j.fsi.2012.11.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 06/01/2023]
Abstract
Macrophages play an important role in first-line host defense of innate immune in fishes. However, it is difficult to investigate cellular mechanism of immune response in fish species with little genomic information available. Here we present the first use of RNA-Sequencing to study the macrophage transcriptome of ayu, Plecoglossus altivelis, which is an economically important fish in East Asia. De novo assembly generated 49,808 non-redundant consensus sequences, among which 23,490 transcripts found respective coding sequences. 15,707 transcripts are predicted to be involved in known metabolic or signaling pathways. The sequences were then used to develop a microarray for measurement the effect of recombinant LECT2 on ayu macrophages. LECT2 altered expression of a variety of genes mainly implicated in actin cytoskeleton, pattern recognition receptors and cytokines. Meanwhile, LECT2 enhanced phagocytosis, bacterial killing, and respiratory burst in ayu macrophages, which supported the thought derived from the microarray data that LECT2 activates macrophages. In conclusion, our results contribute to understanding the specific regulation mechanism of LECT2 in macrophage activation, and the combination of transcriptome analysis and microarray assay is a good method for screening a special tissue or cell response to a stimulus or pathogen in non-model fish species.
Collapse
Affiliation(s)
- Xin-Jiang Lu
- School of Marine Sciences, Ningbo University, Ningbo City, Zhejiang Province 315211, China
| | | | | | | | | | | | | |
Collapse
|
520
|
Parham P, Moffett A. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat Rev Immunol 2013; 13:133-44. [PMID: 23334245 DOI: 10.1038/nri3370] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, in which they have progressively co-evolved with MHC class I molecules. The emergence of the MHC-C gene in hominids drove the evolution of a system of NK cell receptors for MHC-C molecules that is most elaborate in chimpanzees. By contrast, the human system of MHC-C receptors seems to have been subject to different selection pressures that have acted in competition on the immunological and reproductive functions of MHC class I molecules. We suggest that this compromise facilitated the development of the bigger brains that enabled archaic and modern humans to migrate out of Africa and populate other continents.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
521
|
Abstract
The discovery of naturally occurring, heavy-chain only antibodies in Camelidae, and their further development into small recombinant nanobodies, presents attractive alternatives in drug delivery and imaging. Easily expressed in microorganisms and amenable to engineering, nanobody derivatives are soluble, stable, versatile, and have unique refolding capacities, reduced aggregation tendencies, and high-target binding capabilities. This review outlines the current state of the art in nanobodies, focusing on their structural features and properties, production, technology, and the potential for modulating immune functions and for targeting tumors, toxins, and microbes.
Collapse
Affiliation(s)
- Christina G Siontorou
- Department of Industrial Management and Technology, University of Piraeus, Piraeus, Greece
| |
Collapse
|
522
|
Ge Q, Zhao Y. Evolution of thymus organogenesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:85-90. [PMID: 22266420 DOI: 10.1016/j.dci.2012.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/06/2012] [Accepted: 01/06/2012] [Indexed: 05/31/2023]
Abstract
The thymus is the primary organ for functional T lymphocyte development in jawed vertebrates. A new study in the jawless fish, lampreys, indicates the existence of a primitive thymus in these surviving representatives of the most ancient vertebrates, providing strong evidence of co-evolution of T cells and thymus. This review summarizes the wealth of data that have been generated towards understanding the evolution of the thymus in the vertebrates. Progress in identifying genetic networks and cellular mechanisms that control thymus organogenesis in mammals and their evolution in lower species may inspire the development of new strategies for medical interventions targeting faulty thymus functions.
Collapse
Affiliation(s)
- Qing Ge
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China.
| | | |
Collapse
|
523
|
Curado S, Kumari S, Dustin ML. "Cell biology meets physiology: functional organization of vertebrate plasma membranes"--the immunological synapse. CURRENT TOPICS IN MEMBRANES 2013; 72:313-46. [PMID: 24210434 PMCID: PMC4878826 DOI: 10.1016/b978-0-12-417027-8.00009-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immunological synapse (IS) is an excellent example of cell-cell communication, where signals are exchanged between two cells, resulting in a well-structured line of defense during adaptive immune response. This process has been the focus of several studies that aimed at understanding its formation and subsequent events and has led to the realization that it relies on a well-orchestrated molecular program that only occurs when specific requirements are met. The development of more precise and controllable T cell activation systems has led to new insights including the role of mechanotransduction in the process of formation of the IS and T cell activation. Continuous advances in our understanding of the IS formation, particularly in the context of T cell activation and differentiation, as well the development of new T cell activation systems are being applied to the establishment and improvement of immune therapeutical approaches.
Collapse
Affiliation(s)
- Silvia Curado
- Skirball Institute of Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, 540 First Ave, New York, NY 10016, USA and Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, Headington, Oxfordshire, OX3 7FY, UK
| | - Sudha Kumari
- Skirball Institute of Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, 540 First Ave, New York, NY 10016, USA and Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, Headington, Oxfordshire, OX3 7FY, UK
| | - Michael L. Dustin
- Skirball Institute of Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, 540 First Ave, New York, NY 10016, USA and Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, Headington, Oxfordshire, OX3 7FY, UK
| |
Collapse
|
524
|
|
525
|
Castro R, Jouneau L, Pham HP, Bouchez O, Giudicelli V, Lefranc MP, Quillet E, Benmansour A, Cazals F, Six A, Fillatreau S, Sunyer O, Boudinot P. Teleost fish mount complex clonal IgM and IgT responses in spleen upon systemic viral infection. PLoS Pathog 2013; 9:e1003098. [PMID: 23326228 PMCID: PMC3542120 DOI: 10.1371/journal.ppat.1003098] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 11/09/2012] [Indexed: 01/12/2023] Open
Abstract
Upon infection, B-lymphocytes expressing antibodies specific for the intruding pathogen develop clonal responses triggered by pathogen recognition via the B-cell receptor. The constant region of antibodies produced by such responding clones dictates their functional properties. In teleost fish, the clonal structure of B-cell responses and the respective contribution of the three isotypes IgM, IgD and IgT remain unknown. The expression of IgM and IgT are mutually exclusive, leading to the existence of two B-cell subsets expressing either both IgM and IgD or only IgT. Here, we undertook a comprehensive analysis of the variable heavy chain (VH) domain repertoires of the IgM, IgD and IgT in spleen of homozygous isogenic rainbow trout (Onchorhynchus mykiss) before, and after challenge with a rhabdovirus, the Viral Hemorrhagic Septicemia Virus (VHSV), using CDR3-length spectratyping and pyrosequencing of immunoglobulin (Ig) transcripts. In healthy fish, we observed distinct repertoires for IgM, IgD and IgT, respectively, with a few amplified μ and τ junctions, suggesting the presence of IgM- and IgT-secreting cells in the spleen. In infected animals, we detected complex and highly diverse IgM responses involving all VH subgroups, and dominated by a few large public and private clones. A lower number of robust clonal responses involving only a few VH were detected for the mucosal IgT, indicating that both IgM(+) and IgT(+) spleen B cells responded to systemic infection but at different degrees. In contrast, the IgD response to the infection was faint. Although fish IgD and IgT present different structural features and evolutionary origin compared to mammalian IgD and IgA, respectively, their implication in the B-cell response evokes these mouse and human counterparts. Thus, it appears that the general properties of antibody responses were already in place in common ancestors of fish and mammals, and were globally conserved during evolution with possible functional convergences.
Collapse
Affiliation(s)
- Rosario Castro
- Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | - Luc Jouneau
- Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | - Hang-Phuong Pham
- UPMC Univ Paris 06, UMR 7211, “Integrative Immunology” Team, Paris, France; CNRS, UMR 7211, “Immunology, Immunopathology, Immunotherapy,” Paris, France
| | - Olivier Bouchez
- UMR INRA 0444 Laboratoire de Génétique Cellulaire, GeT-PlaGe Core Facility, Castanet Tolosan, France
| | - Véronique Giudicelli
- IMGT, the International ImMunoGeneTics Information System, Laboratoire d'ImmunoGénétique Moléculaire LIGM, IGH, UPR CNRS 1142 and Université Montpellier 2, Montpellier, France
| | - Marie-Paule Lefranc
- IMGT, the International ImMunoGeneTics Information System, Laboratoire d'ImmunoGénétique Moléculaire LIGM, IGH, UPR CNRS 1142 and Université Montpellier 2, Montpellier, France
| | - Edwige Quillet
- Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | | | - Frédéric Cazals
- INRIA Sophia-Antipolis - Méditerranée, Algorithms-Biology-Structure, Sophia-Antipolis, France
| | - Adrien Six
- UPMC Univ Paris 06, UMR 7211, “Integrative Immunology” Team, Paris, France; CNRS, UMR 7211, “Immunology, Immunopathology, Immunotherapy,” Paris, France
| | - Simon Fillatreau
- Deutsches RheumaForschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| |
Collapse
|
526
|
Nydam ML, De Tomaso AW. The fester locus in Botryllus schlosseri experiences selection. BMC Evol Biol 2012; 12:249. [PMID: 23259925 PMCID: PMC3549757 DOI: 10.1186/1471-2148-12-249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/19/2012] [Indexed: 11/14/2022] Open
Abstract
Background Allorecognition, the ability of an organism to distinguish self from non-self, occurs throughout the entire tree of life. Despite the prevalence and importance of allorecognition systems, the genetic basis of allorecognition has rarely been characterized outside the well-known MHC (Major Histocompatibility Complex) in vertebrates and SI (Self-Incompatibility) in plants. Where loci have been identified, their evolutionary history is an open question. We have previously identified the genes involved in self/non-self recognition in the colonial ascidian Botryllus schlosseri, and we can now begin to investigate their evolution. In B. schlosseri, colonies sharing 1 or more alleles of a gene called FuHC (Fusion Histocompatibility) will fuse. Protein products of a locus called fester, located ~300 kb from FuHC, have been shown to play multiple roles in the histocompatibility reaction, as activating and/or inhibitory receptors. We test whether the proteins encoded by this locus are evolving neutrally or are experiencing balancing, directional, or purifying selection. Results Nearly all of the variation in the fester locus resides within populations. The 13 housekeeping genes (12 nuclear genes and mitochondrial cytochrome oxidase I) have substantially more structure among populations within groups and among groups than fester. All polymorphism statistics (Tajima's D, Fu and Li's D* and F*) are significantly negative for the East Coast A-type alleles, and Fu and Li's F* statistic is significantly negative for the West Coast A-type alleles. These results are likely due to selection rather than demography, given that 10 of the housekeeping loci have no populations with significant values for any of the polymorphism statistics. The majority of codons in the fester proteins have ω values < 1, but 15–27 codons have > 95% posterior probability of ω values > 1. Conclusion Fester proteins are evolving non-neutrally. The polymorphism statistics are consistent with either purifying selection or directional selection. The ω statistics show that the majority of the protein is experiencing purifying selection (ω < 1), but that 15–27 codons are undergoing either balancing or directional selection: ω > 1 is compatible with either scenario. The distribution of variation within and among populations points towards balancing selection and away from directional selection. While these data do not provide unambiguous support for a specific type of selection, they contribute to our evolutionary understanding of a critical biological process by determining the forces that affect loci involved in allorecognition.
Collapse
Affiliation(s)
- Marie L Nydam
- Division of Science and Mathematics, Centre College, Danville, KY 40422, USA.
| | | |
Collapse
|
527
|
Ottinger CA, Honeyfield DC, Densmore CL, Iwanowicz LR. Impact of thiamine deficiency on T-cell dependent and T-cell independent antibody production in lake trout. JOURNAL OF AQUATIC ANIMAL HEALTH 2012; 24:258-273. [PMID: 23134222 DOI: 10.1080/08997659.2012.713890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Lake trout Salvelinus namaycush on thiamine-replete and thiamine-depleted diets were evaluated for the effects of thiamine status on in vivo responses to the T-dependent antigen trinitophenol (TNP)-keyhole limpet hemocyanin (TNP-KLH), the T-independent antigen trinitrophenol-lipolysaccaharide (TNP-LPS), or Dulbecco's phosphate-buffered saline (DPBS; negative control fish). Plasma antibody concentrations were evaluated for possible differences in total anti-TNP activity as well as differences in response kinetics. Associations between anti-TNP activity and muscle and liver thiamine concentrations as well as ratios of muscle-to-liver thiamine to anti-TNP activity were also examined. Thiamine-depleted lake trout that were injected with TNP-LPS exhibited significantly more anti-TNP activity than thiamine-replete fish. The depleted fish injected with TNP-LPS also exhibited significantly different response kinetics relative to thiamine-replete lake trout. No differences in activity or kinetics were observed between the thiamine-replete and -depleted fish injected with TNP-KLH or in the DPBS negative controls. Anti-TNP activity in thiamine-depleted lake trout injected with TNP-KLH was positively associated with muscle thiamine pyrophosphate (thiamine diphosphate; TPP) concentration. A negative association was observed between the ratio of muscle-to-liver TPP and T-independent responses. No significant associations between anti-TNP activity and tissue thiamine concentration were observed in the thiamine-replete fish. We demonstrated that thiamine deficiency leads to alterations in both T-dependent and T-independent immune responses in lake trout.
Collapse
|
528
|
Harada Y, Sawada H. Self-incompatibilty in gamete recognition: single self-recognizing determinants and multiple, non-self-recognizing ones function in the same individual. Mol Reprod Dev 2012. [PMID: 23184500 DOI: 10.1002/mrd.22134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The frameworks (key mechanisms) of the self/non-self-discrimination systems that are found in various organisms have not been actively selected for, but have evolved by genetic drift such that the genetic frequency of random, advantageous mutations has increased within the genomes of these species by natural selection. The passive nature of this process leads to an important conclusion: in the self/non-self-discrimination system, the number of self-recognizing determinants becomes one compared to multiple non-self-recognizing determinants. Thus, the number of determinants is defined not by the character of the determinant, but by the system framework.
Collapse
Affiliation(s)
- Yoshito Harada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan.
| | | |
Collapse
|
529
|
R4 regulators of G protein signaling (RGS) identify an ancient MHC-linked synteny group. Immunogenetics 2012; 65:145-56. [PMID: 23129146 DOI: 10.1007/s00251-012-0661-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Regulators of G protein signaling (RGS) are key regulators of G protein signaling. RGS proteins of the R4 RGS group are composed of a mere RGS domain and are mainly involved in immune response modulation. In both human and mouse, most genes encoding the R4 RGS proteins are located in the same region of chromosome 1. We show here that the RGS1/RGS16 neighborhood constitutes a synteny group well conserved across tetrapods and closely linked to the MHC paralogon of chromosome 1. Genes located in the RGS1/RGS16 region have paralogs close to the MHC on chromosome 6 or close to the other MHC paralogons. In amphioxus, a cephalochordate, these genes possess orthologs that are located in the same scaffolds as a number of markers defining the proto-MHC in this species (Abi-Rached et al., Nat Genet 31:100-115, 2002). We therefore propose that the RGS1/RGS16 region provides useful markers to investigate the origins and the evolution of the MHC. In addition, we show that some genes of the region appear to have immune functions not only in human, but also in Xenopus.
Collapse
|
530
|
Fallarino F, Grohmann U, Puccetti P. Indoleamine 2,3-dioxygenase: from catalyst to signaling function. Eur J Immunol 2012; 42:1932-7. [PMID: 22865044 DOI: 10.1002/eji.201242572] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Control of tryptophan metabolism by indoleamine 2,3-dioxygenase (IDO) in dendritic cells (DCs) is a highly versatile regulator of innate and adaptive immune responses. In acute reactions, the otherwise inflammatory cytokine interferon γ (IFN-γ) acts in a feedback fashion to induce IDO's enzymatic function--and thus prevent potentially harmful, exaggerated responses--through the combined effects of tryptophan starvation and tryptophan catabolites acting via the aryl hydrocarbon receptor of T cells. IDO, however, is also involved in the maintenance of stable tolerance to self in noninflammatory contexts, thus restraining autoimmunity. Exposure, indeed, of mouse plasmacytoid DCs (pDCs) to transforming growth factor β (TGF-β) provides IDO with regulatory effects that are distinct, in nature, from its enzymic activity. Once phosphorylated, IDO mediates signaling events culminating in self-amplification and maintenance of a stably regulatory condition in pDCs. Therefore, IDO has dual immunoregulatory functions driven by distinct cytokines. Firstly, the IFN-γ-IDO axis is crucial in generating and sustaining the function of regulatory T cells. Secondly, a nonenzymic function of IDO--as a signaling molecule--contributes to TGF-β-driven tolerance. The latter function is part of a regulatory circuit in pDCs whereby--in response to TGF-β--the kinase Fyn mediates tyrosine phosphorylation of IDO-associated immunoreceptor tyrosine-based inhibitory motifs, resulting in downstream effects that regulate gene expression and preside over a proper, homeostatic balance between immunity and tolerance. All these aspects are covered in this review.
Collapse
Affiliation(s)
- Francesca Fallarino
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy.
| | | | | |
Collapse
|
531
|
Vaccarelli G, Antonacci R, Tasco G, Yang F, Giordano L, El Ashmaoui HM, Hassanane MS, Massari S, Casadio R, Ciccarese S. Generation of diversity by somatic mutation in theCamelus dromedariusT-cell receptor gamma variable domains. Eur J Immunol 2012; 42:3416-28. [DOI: 10.1002/eji.201142176] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 08/20/2012] [Accepted: 09/03/2012] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Gianluca Tasco
- Biocomputing Group; CIRI-Health Science and Technologies/Department of Biology; University of Bologna; Bologna Italy
| | - Fengtang Yang
- Cytogenetics Core Facility,; Wellcome Trust Sanger Institute; Hinxton Cambridge UK
| | - Luca Giordano
- Department of Biosciences,; Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Hassan M. El Ashmaoui
- Cell Biology Department National Research Center; Dokki Giza Egypt
- King Abdulaziz University; Biological Sciences; Jeddah Saudi Arabia
| | | | - Serafina Massari
- Department of Biological and Environmental Science e Technologies; University of Salento; Lecce Italy
| | - Rita Casadio
- Biocomputing Group; CIRI-Health Science and Technologies/Department of Biology; University of Bologna; Bologna Italy
| | | |
Collapse
|
532
|
Das S, Hirano M, Tako R, McCallister C, Nikolaidis N. Evolutionary genomics of immunoglobulin-encoding Loci in vertebrates. Curr Genomics 2012; 13:95-102. [PMID: 23024601 PMCID: PMC3308330 DOI: 10.2174/138920212799860652] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/13/2011] [Accepted: 01/14/2012] [Indexed: 11/22/2022] Open
Abstract
Immunoglobulins (or antibodies) are an essential element of the jawed vertebrate adaptive immune response system. These molecules have evolved over the past 500 million years and generated highly specialized proteins that recognize an extraordinarily large number of diverse substances, collectively known as antigens. During vertebrate evolution the diversification of the immunoglobulin-encoding loci resulted in differences in the genomic organization, gene content, and ratio of functional genes and pseudogenes. The tinkering process in the immunoglobulin-encoding loci often gave rise to lineage-specific characteristics that were formed by selection to increase species adaptation and fitness. Immunoglobulin loci and their encoded antibodies have been shaped repeatedly by contrasting evolutionary forces, either to conserve the prototypic structure and mechanism of action or to generate alternative and diversified structures and modes of function. Moreover, evolution favored the development of multiple mechanisms of primary and secondary antibody diversification, which are used by different species to effectively generate an almost infinite collection of diverse antibody types. This review summarizes our current knowledge on the genomics and evolution of the immunoglobulin-encoding loci and their protein products in jawed vertebrates.
Collapse
Affiliation(s)
- Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, School of Medicine, Emory University, USA
| | | | | | | | | |
Collapse
|
533
|
McCurley N, Hirano M, Das S, Cooper MD. Immune related genes underpin the evolution of adaptive immunity in jawless vertebrates. Curr Genomics 2012; 13:86-94. [PMID: 23024600 PMCID: PMC3308329 DOI: 10.2174/138920212799860670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/30/2011] [Accepted: 12/05/2011] [Indexed: 12/17/2022] Open
Abstract
The study of immune related genes in lampreys and hagfish provides a unique perspective on the evolutionary genetic underpinnings of adaptive immunity and the evolution of vertebrate genomes. Separated from their jawed cousins at the stem of the vertebrate lineage, these jawless vertebrates have many of the gene families and gene regulatory networks associated with the defining morphological and physiological features of vertebrates. These include genes vital for innate immunity, inflammation, wound healing, protein degradation, and the development, signaling and trafficking of lymphocytes. Jawless vertebrates recognize antigen by using leucine-rich repeat (LRR) based variable lymphocyte receptors (VLRs), which are very different from the immunoglobulin (Ig) based T cell receptor (TCR) and B cell receptor (BCR) used for antigen recognition by jawed vertebrates. The somatically constructed VLR genes are expressed in monoallelic fashion by T-like and B-like lymphocytes. Jawless and jawed vertebrates thus share many of the genes that provide the molecular infrastructure and physiological context for adaptive immune responses, yet use entirely different genes and mechanisms of combinatorial assembly to generate diverse repertoires of antigen recognition receptors.
Collapse
Affiliation(s)
- Nathanael McCurley
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
534
|
Hammond JA, Guethlein LA, Norman PJ, Parham P. Natural selection on marine carnivores elaborated a diverse family of classical MHC class I genes exhibiting haplotypic gene content variation and allelic polymorphism. Immunogenetics 2012; 64:915-33. [PMID: 23001684 DOI: 10.1007/s00251-012-0651-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/07/2012] [Indexed: 12/12/2022]
Abstract
Pinnipeds, marine carnivores, diverged from terrestrial carnivores ~45 million years ago, before their adaptation to marine environments. This lifestyle change exposed pinnipeds to different microbiota and pathogens, with probable impact on their MHC class I genes. Investigating this question, genomic sequences were determined for 71 MHC class I variants: 27 from harbor seal and 44 from gray seal. These variants form three MHC class I gene lineages, one comprising a pseudogene. The second, a candidate nonclassical MHC class I gene, comprises a nonpolymorphic transcribed gene related to dog DLA-79 and giant panda Aime-1906. The third is the diversity lineage, which includes 62 of the 71 seal MHC class I variants. All are transcribed, and they minimally represent six harbor and 12 gray seal MHC class I genes. Besides species-specific differences in gene number, seal MHC class I haplotypes exhibit gene content variation and allelic polymorphism. Patterns of sequence variation, and of positions for positively selected sites, indicate the diversity lineage genes are the seals' classical MHC class I genes. Evidence that expansion of diversity lineage genes began before gray and harbor seals diverged is the presence in both species of two distinctive sublineages of diversity lineage genes. Pointing to further expansion following the divergence are the presence of species-specific genes and greater MHC class I diversity in gray seals than harbor seals. The elaboration of a complex variable family of classical MHC class I genes in pinnipeds contrasts with the single, highly polymorphic classical MHC class I gene of dog and giant panda, terrestrial carnivores.
Collapse
Affiliation(s)
- John A Hammond
- Department of Structural Biology, Stanford University School of Medicine, Fairchild D-159 299 Campus Drive West, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
535
|
Wang T, Sun Y, Shao W, Cheng G, Li L, Cao Z, Yang Z, Zou H, Zhang W, Han B, Hu Y, Ren L, Hu X, Guo Y, Fei J, Hammarström L, Li N, Zhao Y. Evidence of IgY subclass diversification in snakes: evolutionary implications. THE JOURNAL OF IMMUNOLOGY 2012; 189:3557-65. [PMID: 22933626 DOI: 10.4049/jimmunol.1200212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mammalian IgG and IgE are thought to have evolved from IgY of nonmammalian tetrapods; however, no diversification of IgY subclasses has been reported in reptiles or birds, which are phylogenetically close to mammals. To our knowledge, we report the first evidence of the presence of multiple IgY-encoding (υ) genes in snakes. Two υ genes were identified in the snake Elaphe taeniura, and three υ genes were identified in the Burmese python (Python molurus bivittatus). Although four of the υ genes displayed a conventional four-H chain C region exon structure, one of the υ genes in the Burmese python lacked the H chain C region 2 exon, thus exhibiting a structure similar to that of the mammalian γ genes. We developed mouse mAbs specific for the IgY1 and IgY2 of E. taeniura and showed that both were expressed in serum; each had two isoforms: one full-length and one truncated at the C terminus. The truncation was not caused by alternative splicing or transcriptional termination. We also identified the μ and δ genes, but no α gene, in both snakes. This study provides valuable clues for our understanding of Ig gene evolution in tetrapods.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100094, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
536
|
Chigaev A, Sklar LA. Aspects of VLA-4 and LFA-1 regulation that may contribute to rolling and firm adhesion. Front Immunol 2012; 3:242. [PMID: 22876249 PMCID: PMC3410440 DOI: 10.3389/fimmu.2012.00242] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/18/2012] [Indexed: 01/21/2023] Open
Abstract
Very Late Antigen-4 (CD49d/CD29, alpha4 beta1) and Lymphocyte Function-associated Antigen-1 (CD11a/CD18, alphaL beta2) integrins are representatives of a large family of adhesion receptors widely expressed on immune cells. They participate in cell recruitment to sites of inflammation, as well as multiple immune cell interactions. A unique feature of integrins is that integrin-dependent cell adhesion can be rapidly and reversibly modulated in response to cell signaling, because of a series of conformational changes within the molecule, which include changes in the affinity of the ligand binding pocket, molecular extension (unbending) and others. Here, we provide a concise comparative analysis of the conformational regulation of the two integrins with specific attention to the physiological differences between these molecules. We focus on recent data obtained using a novel technology, based on small fluorescent ligand-mimicking probes for the detection of integrin conformation in real-time on live cells at natural receptor abundance.
Collapse
Affiliation(s)
- Alexandre Chigaev
- Department of Pathology and Cancer Center, University of New Mexico Health Sciences Center, Albuquerque NM, USA
| | | |
Collapse
|
537
|
The biochemistry of activation-induced deaminase and its physiological functions. Semin Immunol 2012; 24:255-63. [DOI: 10.1016/j.smim.2012.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/18/2012] [Indexed: 01/26/2023]
|
538
|
Kasahara M, Yoshida S. Immunogenetics of the NKG2D ligand gene family. Immunogenetics 2012; 64:855-67. [PMID: 22843249 DOI: 10.1007/s00251-012-0638-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/18/2012] [Indexed: 12/31/2022]
Abstract
NKG2D ligands (NKG2DLs) are a group of major histocompatibility complex (MHC) class I-like molecules, the expression of which is induced by cellular stresses such as infection, tumorigenesis, heat shock, tissue damage, and DNA damage. They act as a molecular danger signal alerting the immune system for infected or neoplastic cells. Mammals have two families of NKG2DL genes: the MHC-encoded MIC gene family and the ULBP gene family encoded outside the MHC region in most mammals. Rodents such as mice and rats lack the MIC family of ligands. Interestingly, some mammals have NKG2DL-like molecules named MILL that are phylogenetically related to MIC, but do not function as NKG2DLs. In this paper, we review our current knowledge of the MIC, ULBP, and MILL gene families in representative mammalian species and discuss the origin and evolution of the NKG2DL gene family.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, North-15 West-7, Sapporo 060-8638, Japan.
| | | |
Collapse
|
539
|
Dorus S, Skerget S, Karr TL. Proteomic discovery of diverse immunity molecules in mammalian spermatozoa. Syst Biol Reprod Med 2012; 58:218-28. [DOI: 10.3109/19396368.2012.700442] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
540
|
Boehm T, Iwanami N, Hess I. Evolution of the immune system in the lower vertebrates. Annu Rev Genomics Hum Genet 2012; 13:127-49. [PMID: 22703179 DOI: 10.1146/annurev-genom-090711-163747] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolutionary emergence of vertebrates was accompanied by the invention of adaptive immunity. This is characterized by extraordinarily diverse repertoires of somatically assembled antigen receptors and the facility of antigen-specific memory, leading to more rapid and efficient secondary immune responses. Adaptive immunity emerged twice during early vertebrate evolution, once in the lineage leading to jawless fishes (such as lamprey and hagfish) and, independently, in the lineage leading to jawed vertebrates (comprising the overwhelming majority of extant vertebrates, from cartilaginous fishes to mammals). Recent findings on the immune systems of jawless and jawed fishes (here referred to as lower vertebrates) impact on the identification of general principles governing the structure and function of adaptive immunity and its coevolution with innate defenses. The discovery of conserved features of adaptive immunity will guide attempts to generate synthetic immunological functionalities and thus provide new avenues for intervening with faulty immune functions in humans.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| | | | | |
Collapse
|
541
|
Freudenberg J, Gregersen PK, Freudenberg-Hua Y. A simple method for analyzing exome sequencing data shows distinct levels of nonsynonymous variation for human immune and nervous system genes. PLoS One 2012; 7:e38087. [PMID: 22701602 PMCID: PMC3368947 DOI: 10.1371/journal.pone.0038087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/03/2012] [Indexed: 11/29/2022] Open
Abstract
To measure the strength of natural selection that acts upon single nucleotide variants (SNVs) in a set of human genes, we calculate the ratio between nonsynonymous SNVs (nsSNVs) per nonsynonymous site and synonymous SNVs (sSNVs) per synonymous site. We transform this ratio with a respective factor f that corrects for the bias of synonymous sites towards transitions in the genetic code and different mutation rates for transitions and transversions. This method approximates the relative density of nsSNVs (rdnsv) in comparison with the neutral expectation as inferred from the density of sSNVs. Using SNVs from a diploid genome and 200 exomes, we apply our method to immune system genes (ISGs), nervous system genes (NSGs), randomly sampled genes (RSGs), and gene ontology annotated genes. The estimate of rdnsv in an individual exome is around 20% for NSGs and 30-40% for ISGs and RSGs. This smaller rdnsv of NSGs indicates overall stronger purifying selection. To quantify the relative shift of nsSNVs towards rare variants, we next fit a linear regression model to the estimates of rdnsv over different SNV allele frequency bins. The obtained regression models show a negative slope for NSGs, ISGs and RSGs, supporting an influence of purifying selection on the frequency spectrum of segregating nsSNVs. The y-intercept of the model predicts rdnsv for an allele frequency close to 0. This parameter can be interpreted as the proportion of nonsynonymous sites where mutations are tolerated to segregate with an allele frequency notably greater than 0 in the population, given the performed normalization of the observed nsSNV to sSNV ratio. A smaller y-intercept is displayed by NSGs, indicating more nonsynonymous sites under strong negative selection. This predicts more monogenically inherited or de-novo mutation diseases that affect the nervous system.
Collapse
Affiliation(s)
- Jan Freudenberg
- Robert S. Boas Center for Human Genetics and Genomics, The Feinstein Institute for Medical Research, Northshore LIJ Healthsystem, Manhasset, New York, United States of America.
| | | | | |
Collapse
|
542
|
Sunyer JO. Evolutionary and functional relationships of B cells from fish and mammals: insights into their novel roles in phagocytosis and presentation of particulate antigen. Infect Disord Drug Targets 2012; 12:200-12. [PMID: 22394174 PMCID: PMC3420344 DOI: 10.2174/187152612800564419] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 02/25/2012] [Indexed: 05/23/2023]
Abstract
The evolutionary origins of Ig-producing B cells appear to be linked to the emergence of fish in this planet. There are three major classes of living fish species, which from most primitive to modern they are referred to as agnathan (e.g., lampreys), Chondrichthyes (e.g., sharks), and teleost fish (e.g., rainbow trout). Agnathans do not have immunoglobulin- producing B cells, however these fish contain a subset of lymphocytes-like cells producing type B variable lymphocyte receptors (VLRBs) that appear to act as functional analogs of immunoglobulins. Chondrichthyes fish represent the most primitive living species containing bona-fide immunoglobulin-producing B cells. Their B cells are known to secrete three types of antibodies, IgM, IgW and IgNAR. Teleost fish are also called bony fish since they represent the most ancient living species containing true bones. Teleost B cells produce three different immunoglobulin isotypes, IgM, IgD and the recently described IgT. While teleost IgM is the principal player in systemic immunity, IgT appears to be a teleost immunoglobulin class specialized in mucosal immune responses. Thus far, three major B cell lineages have been described in teleost, those expressing either IgT or IgD, and the most common lineage which co-expresses IgD and IgM. A few years ago, the study of teleost fish B cells revealed for the first time in vertebrates the existence of B cell subsets with phagocytic and intracellular bactericidal capacities. This finding represented a paradigm shift as professional phagocytosis was believed to be exclusively performed by some cells of the myeloid lineage (i.e., macrophages, monocytes, neutrophils). This phagocytic capacity was also found in amphibians and reptiles, suggesting that this innate capacity was evolutionarily conserved in certain B cell subsets of vertebrates. Recently, the existence of subsets of B cells with phagocytic and bactericidal abilities have also been confirmed in mammals. Moreover, it has been shown that phagocytic B-1 B cells have a potent ability to present particulate antigen to CD4+ T cells. Thus, studies carried out originally on fish B cells have lead to the discovery of new innate and adaptive roles of B cells in mammals. This review will concentrate on the evolutionary and functional relationships of fish and mammalian B cells, focusing mainly on the newly discovered roles of these cells in phagocytosis, intracellular killing and presentation of particulate antigen.
Collapse
Affiliation(s)
- J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
543
|
Pone EJ, Xu Z, White CA, Zan H, Casali P. B cell TLRs and induction of immunoglobulin class-switch DNA recombination. Front Biosci (Landmark Ed) 2012; 17:2594-615. [PMID: 22652800 DOI: 10.2741/4073] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) are a family of conserved pattern recognition receptors (PRRs). Engagement of B cell TLRs by microbe-associated molecular patterns (MAMPs) induces T-independent (TI) antibody responses and plays an important role in the early stages of T-dependent (TD) antibody responses before specific T cell help becomes available. The role of B cell TLRs in the antibody response is magnified by the synergy of B cell receptor (BCR) crosslinking and TLR engagement in inducing immunoglobulin (Ig) class switch DNA recombination (CSR), which crucially diversifies the antibody biological effector functions. Dual BCR/TLR engagement induces CSR to all Ig isotypes, as directed by cytokines, while TLR engagement alone induces marginal CSR. Integration of BCR and TLR signaling results in activation of the canonical and non-canonical NF-κB pathways, induction of activation-induced cytidine deaminase (AID) and germline transcription of IgH switch (S) regions. A critical role of B cell TLRs in CSR and the antibody response is emphasized by the emergence of several TLR ligands as integral components of vaccines that greatly boost humoral immunity in a B cell-intrinsic fashion.
Collapse
Affiliation(s)
- Egest J Pone
- Institute for Immunology, School of Medicine, University of California, Irvine, CA 92697-4120, USA
| | | | | | | | | |
Collapse
|
544
|
Parra ZE, Lillie M, Miller RD. A model for the evolution of the mammalian t-cell receptor α/δ and μ loci based on evidence from the duckbill Platypus. Mol Biol Evol 2012; 29:3205-14. [PMID: 22593227 PMCID: PMC3457774 DOI: 10.1093/molbev/mss128] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The specific recognition of antigen by T cells is critical to the generation of adaptive immune responses in vertebrates. T cells recognize antigen using a somatically diversified T-cell receptor (TCR). All jawed vertebrates use four TCR chains called α, β, γ, and δ, which are expressed as either a αβ or γδ heterodimer. Nonplacental mammals (monotremes and marsupials) are unusual in that their genomes encode a fifth TCR chain, called TCRµ, whose function is not known but is also somatically diversified like the conventional chains. The origins of TCRµ are also unclear, although it appears distantly related to TCRδ. Recent analysis of avian and amphibian genomes has provided insight into a model for understanding the evolution of the TCRδ genes in tetrapods that was not evident from humans, mice, or other commonly studied placental (eutherian) mammals. An analysis of the genes encoding the TCRδ chains in the duckbill platypus revealed the presence of a highly divergent variable (V) gene, indistinguishable from immunoglobulin heavy (IgH) chain V genes (VH) and related to V genes used in TCRµ. They are expressed as part of TCRδ repertoire (VHδ) and similar to what has been found in frogs and birds. This, however, is the first time a VHδ has been found in a mammal and provides a critical link in reconstructing the evolutionary history of TCRµ. The current structure of TCRδ and TCRµ genes in tetrapods suggests ancient and possibly recurring translocations of gene segments between the IgH and TCRδ genes, as well as translocations of TCRδ genes out of the TCRα/δ locus early in mammals, creating the TCRµ locus.
Collapse
Affiliation(s)
- Zuly E Parra
- Department of Biology, Center for Evolutionary & Theoretical Immunology, University of New Mexico
| | | | | |
Collapse
|
545
|
Dishaw LJ, Flores-Torres JA, Mueller MG, Karrer CR, Skapura DP, Melillo D, Zucchetti I, De Santis R, Pinto MR, Litman GW. A Basal chordate model for studies of gut microbial immune interactions. Front Immunol 2012; 3:96. [PMID: 22563328 PMCID: PMC3342567 DOI: 10.3389/fimmu.2012.00096] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/12/2012] [Indexed: 12/23/2022] Open
Abstract
Complex symbiotic interactions at the surface of host epithelia govern most encounters between host and microbe. The epithelium of the gut is a physiologically ancient structure that is comprised of a single layer of cells and is thought to possess fully developed immunological capabilities. Ciona intestinalis (sea squirt), which is a descendant of the last common ancestor of all vertebrates, is a potentially valuable model for studying barrier defenses and gut microbial immune interactions. A variety of innate immunological phenomena have been well characterized in Ciona, of which many are active in the gut tissues. Interactions with gut microbiota likely involve surface epithelium, secreted immune molecules including variable region-containing chitin-binding proteins, and hemocytes from a densely populated laminar tissue space. The microbial composition of representative gut luminal contents has been characterized by molecular screening and a potentially relevant, reproducible, dysbiosis can be induced via starvation. The dialog between host and microbe in the gut can be investigated in Ciona against the background of a competent innate immune system and in the absence of the integral elements and processes that are characteristic of vertebrate adaptive immunity.
Collapse
Affiliation(s)
- Larry J Dishaw
- Department of Pediatrics, USF/ACH Children's Research Institute, University of South Florida College of Medicine St. Petersburg, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
546
|
Fernando C, Szathmáry E, Husbands P. Selectionist and evolutionary approaches to brain function: a critical appraisal. Front Comput Neurosci 2012; 6:24. [PMID: 22557963 PMCID: PMC3337445 DOI: 10.3389/fncom.2012.00024] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 04/05/2012] [Indexed: 01/05/2023] Open
Abstract
We consider approaches to brain dynamics and function that have been claimed to be Darwinian. These include Edelman’s theory of neuronal group selection, Changeux’s theory of synaptic selection and selective stabilization of pre-representations, Seung’s Darwinian synapse, Loewenstein’s synaptic melioration, Adam’s selfish synapse, and Calvin’s replicating activity patterns. Except for the last two, the proposed mechanisms are selectionist but not truly Darwinian, because no replicators with information transfer to copies and hereditary variation can be identified in them. All of them fit, however, a generalized selectionist framework conforming to the picture of Price’s covariance formulation, which deliberately was not specific even to selection in biology, and therefore does not imply an algorithmic picture of biological evolution. Bayesian models and reinforcement learning are formally in agreement with selection dynamics. A classification of search algorithms is shown to include Darwinian replicators (evolutionary units with multiplication, heredity, and variability) as the most powerful mechanism for search in a sparsely occupied search space. Examples are given of cases where parallel competitive search with information transfer among the units is more efficient than search without information transfer between units. Finally, we review our recent attempts to construct and analyze simple models of true Darwinian evolutionary units in the brain in terms of connectivity and activity copying of neuronal groups. Although none of the proposed neuronal replicators include miraculous mechanisms, their identification remains a challenge but also a great promise.
Collapse
Affiliation(s)
- Chrisantha Fernando
- School of Electronic Engineering and Computer Science, Queen Mary, University of London London, UK
| | | | | |
Collapse
|
547
|
Affiliation(s)
- Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
548
|
Flajnik MF, Tlapakova T, Criscitiello MF, Krylov V, Ohta Y. Evolution of the B7 family: co-evolution of B7H6 and NKp30, identification of a new B7 family member, B7H7, and of B7's historical relationship with the MHC. Immunogenetics 2012; 64:571-90. [PMID: 22488247 DOI: 10.1007/s00251-012-0616-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/20/2012] [Indexed: 12/21/2022]
Abstract
The B7 family of genes is essential in the regulation of the adaptive immune system. Most B7 family members contain both variable (V)- and constant (C)-type domains of the immunoglobulin superfamily (IgSF). Through in silico screening of the Xenopus genome and subsequent phylogenetic analysis, we found novel genes belonging to the B7 family, one of which is the recently discovered B7H6. Humans and rats have a single B7H6 gene; however, many B7H6 genes were detected in a single large cluster in the Xenopus genome. The B7H6 expression patterns also varied in a species-specific manner. Human B7H6 binds to the activating natural killer receptor, NKp30. While the NKp30 gene is single-copy and maps to the MHC in most vertebrates, many Xenopus NKp30 genes were found in a cluster on a separate chromosome that does not harbor the MHC. Indeed, in all species so far analyzed from sharks to mammals, the number of NKp30 and B7H6 genes correlates well, suggestive of receptor-ligand co-evolution. Furthermore, we identified a Xenopus-specific B7 homolog (B7HXen) and revealed its close linkage to B2M, which we have demonstrated previously to have been originally encoded in the MHC. Thus, our study provides further proof that the B7 precursor was included in the proto MHC. Additionally, the comparative analysis revealed a new B7 family member, B7H7, which was previously designated in the literature as an unknown gene, HHLA2.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
549
|
Boehm T, Hess I, Swann JB. Evolution of lymphoid tissues. Trends Immunol 2012; 33:315-21. [PMID: 22483556 DOI: 10.1016/j.it.2012.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/16/2012] [Accepted: 02/16/2012] [Indexed: 01/04/2023]
Abstract
Lymphoid organs are integral parts of all vertebrate adaptive immune systems. Primary lymphoid tissues exhibit a remarkable functional dichotomy: T cells develop in specialized thymopoietic tissues located in the pharynx, whereas B cells develop in distinct areas of general hematopoietic areas, such as the kidney or bone marrow. Among secondary lymphoid tissues, the spleen is present in all vertebrates, whereas lymph nodes represent an innovation particular to mammals and some birds. A comparative analysis of anatomical, functional and genomic features thus reveals the core components of adaptive immune systems. Such information has guided recent attempts at reconstructing lymphopoietic functions in vivo and in the future might inspire the development of new strategies for medical interventions restoring and modulating immune functions.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, D-79108 Freiburg, Germany.
| | | | | |
Collapse
|
550
|
Li R, Dooley H, Wang T, Secombes CJ, Bird S. Characterisation and expression analysis of B-cell activating factor (BAFF) in spiny dogfish (Squalus acanthias): cartilaginous fish BAFF has a unique extra exon that may impact receptor binding. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:707-717. [PMID: 22155638 DOI: 10.1016/j.dci.2011.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/23/2011] [Accepted: 11/28/2011] [Indexed: 05/31/2023]
Abstract
B-cell activating factor (BAFF), also known as tumour necrosis factor (TNF) ligand superfamily member 13B, is an important immune regulator with critical roles in B-cell survival, proliferation, differentiation and immunoglobulin secretion. A BAFF gene has been cloned from spiny dogfish (Squalus acanthias) and its expression studied. The dogfish BAFF encodes for an anchored type-II transmembrane protein of 288 aa with a putative furin protease cleavage site and TNF family signature as seen in BAFFs from other species. The identity of dogfish BAFF has also been confirmed by conserved cysteine residues, and phylogenetic tree analysis. The dogfish BAFF gene has an extra exon not seen in teleost fish, birds and mammals that encodes for 29 aa and may impact on receptor binding. The dogfish BAFF is highly expressed in immune tissues, such as spleen, and is up-regulated by PWM in peripheral blood leucocytes, suggesting a potentially important role in the immune system.
Collapse
Affiliation(s)
- Ronggai Li
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK
| | | | | | | | | |
Collapse
|