501
|
Zika Virus and HIV/AIDS. GLOBAL VIROLOGY II - HIV AND NEUROAIDS 2017. [PMCID: PMC7122085 DOI: 10.1007/978-1-4939-7290-6_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The first documented cases of HIV/AIDS in the United States bewildered physicians as they presented an unusual disease spectrum. Two young men were diagnosed with Kaposi sarcoma and Pneumocystis carinii pneumonia, which was inexplicable at that time, as these health outcomes were rare among their age, race/ethnicity, and individuals not living in nursing homes. Subsequently, it was found that after infection with HIV, individuals were asymptomatic up to 4 weeks and if symptoms developed, they appeared as a simple type of flu. The progression and global proliferation of the HIV pandemic is mirrored by the spread of Zika virus (ZikaV). Humans were probably first infected with HIV in the Kinshasa region in the 1940s and ZikaV was first detected in humans in the Zika forest in the 1950s. Aedes aegypti and Aedes albopictus mosquitoes transmit ZikaV, an arbovirus, as well as other related arboviruses. In addition to mosquito transmission, ZikaV transmission occurs through sexual risk and blood transfusions. The latter two risk factors were prominent modes of transmission during the early stages of HIV/AIDS epidemic and sexual transmission risk remains prominent. In addition, injection drug use is a risk factor to become HIV infected. For HIV, blood transfusion risk was reduced after appropriate testing of blood supplies. Unlike HIV, ZikaV does not produce significant symptoms that require medical attention among four-fifths of infected individuals. Indeed, initially considered a relatively benign virus, the unexpected emergence of ZikaV in the Americas since 2015, and continuing as a virulent and pathological virus for children and adults, created a sense of fear and distress. These emotional responses parallel the HIV/AIDS epidemic. Clinicians, epidemiologists, and other scientists are currently increasingly laboring to discern the full spectrum of risk, relative to vector and population behaviors, and as with HIV, to develop vaccines and chemotherapy against ZikaV. NIH and Walter Reed ZikaV vaccines are on the way.
Collapse
|
502
|
Kaul KL, Sabatini LM, Tsongalis GJ, Caliendo AM, Olsen RJ, Ashwood ER, Bale S, Benirschke R, Carlow D, Funke BH, Grody WW, Hayden RT, Hegde M, Lyon E, Murata K, Pessin M, Press RD, Thomson RB. The Case for Laboratory Developed Procedures: Quality and Positive Impact on Patient Care. Acad Pathol 2017; 4:2374289517708309. [PMID: 28815200 PMCID: PMC5528950 DOI: 10.1177/2374289517708309] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/16/2022] Open
Abstract
An explosion of knowledge and technology is revolutionizing medicine and patient care. Novel testing must be brought to the clinic with safety and accuracy, but also in a timely and cost-effective manner, so that patients can benefit and laboratories can offer testing consistent with current guidelines. Under the oversight provided by the Clinical Laboratory Improvement Amendments, laboratories have been able to develop and optimize laboratory procedures for use in-house. Quality improvement programs, interlaboratory comparisons, and the ability of laboratories to adjust assays as needed to improve results, utilize new sample types, or incorporate new mutations, information, or technologies are positive aspects of Clinical Laboratory Improvement Amendments oversight of laboratory-developed procedures. Laboratories have a long history of successful service to patients operating under Clinical Laboratory Improvement Amendments. A series of detailed clinical examples illustrating the quality and positive impact of laboratory-developed procedures on patient care is provided. These examples also demonstrate how Clinical Laboratory Improvement Amendments oversight ensures accurate, reliable, and reproducible testing in clinical laboratories.
Collapse
Affiliation(s)
- Karen L. Kaul
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, USA
| | - Linda M. Sabatini
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, USA
| | - Gregory J. Tsongalis
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology, Dartmouth Hitchcock Medical Center and Norris Cotton Cancer Center, Lebanon, NH, USA
- Laboratory Medicine, Dartmouth Hitchcock Medical Center and Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Angela M. Caliendo
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Randall J. Olsen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | | | | | - Robert Benirschke
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, USA
| | - Dean Carlow
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Birgit H. Funke
- Laboratory for Molecular Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Wayne W. Grody
- Departments of Pathology and Laboratory Medicine, Pediatrics and Human Genetics, UCLA School of Medicine, Los Angeles, CA, USA
| | - Randall T. Hayden
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Madhuri Hegde
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Elaine Lyon
- Pathology Department, University of Utah School of Medicine/ARUP Laboratories, Salt Lake City, UT, USA
| | - Kazunori Murata
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melissa Pessin
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard D. Press
- Department of Pathology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Richard B. Thomson
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, USA
| |
Collapse
|
503
|
Krauer F, Riesen M, Reveiz L, Oladapo OT, Martínez-Vega R, Porgo TV, Haefliger A, Broutet NJ, Low N, WHO Zika Causality Working Group. Zika Virus Infection as a Cause of Congenital Brain Abnormalities and Guillain-Barré Syndrome: Systematic Review. PLoS Med 2017; 14:e1002203. [PMID: 28045901 PMCID: PMC5207634 DOI: 10.1371/journal.pmed.1002203] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/16/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The World Health Organization (WHO) stated in March 2016 that there was scientific consensus that the mosquito-borne Zika virus was a cause of the neurological disorder Guillain-Barré syndrome (GBS) and of microcephaly and other congenital brain abnormalities based on rapid evidence assessments. Decisions about causality require systematic assessment to guide public health actions. The objectives of this study were to update and reassess the evidence for causality through a rapid and systematic review about links between Zika virus infection and (a) congenital brain abnormalities, including microcephaly, in the foetuses and offspring of pregnant women and (b) GBS in any population, and to describe the process and outcomes of an expert assessment of the evidence about causality. METHODS AND FINDINGS The study had three linked components. First, in February 2016, we developed a causality framework that defined questions about the relationship between Zika virus infection and each of the two clinical outcomes in ten dimensions: temporality, biological plausibility, strength of association, alternative explanations, cessation, dose-response relationship, animal experiments, analogy, specificity, and consistency. Second, we did a systematic review (protocol number CRD42016036693). We searched multiple online sources up to May 30, 2016 to find studies that directly addressed either outcome and any causality dimension, used methods to expedite study selection, data extraction, and quality assessment, and summarised evidence descriptively. Third, WHO convened a multidisciplinary panel of experts who assessed the review findings and reached consensus statements to update the WHO position on causality. We found 1,091 unique items up to May 30, 2016. For congenital brain abnormalities, including microcephaly, we included 72 items; for eight of ten causality dimensions (all except dose-response relationship and specificity), we found that more than half the relevant studies supported a causal association with Zika virus infection. For GBS, we included 36 items, of which more than half the relevant studies supported a causal association in seven of ten dimensions (all except dose-response relationship, specificity, and animal experimental evidence). Articles identified nonsystematically from May 30 to July 29, 2016 strengthened the review findings. The expert panel concluded that (a) the most likely explanation of available evidence from outbreaks of Zika virus infection and clusters of microcephaly is that Zika virus infection during pregnancy is a cause of congenital brain abnormalities including microcephaly, and (b) the most likely explanation of available evidence from outbreaks of Zika virus infection and GBS is that Zika virus infection is a trigger of GBS. The expert panel recognised that Zika virus alone may not be sufficient to cause either congenital brain abnormalities or GBS but agreed that the evidence was sufficient to recommend increased public health measures. Weaknesses are the limited assessment of the role of dengue virus and other possible cofactors, the small number of comparative epidemiological studies, and the difficulty in keeping the review up to date with the pace of publication of new research. CONCLUSIONS Rapid and systematic reviews with frequent updating and open dissemination are now needed both for appraisal of the evidence about Zika virus infection and for the next public health threats that will emerge. This systematic review found sufficient evidence to say that Zika virus is a cause of congenital abnormalities and is a trigger of GBS.
Collapse
Affiliation(s)
- Fabienne Krauer
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Maurane Riesen
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Ludovic Reveiz
- Pan American Health Organization, Washington DC, United States of America
| | - Olufemi T. Oladapo
- UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction (HRP), Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Ruth Martínez-Vega
- Escuela de Microbiologia, Universidad Industrial de Santander, Santander, Colombia
| | - Teegwendé V. Porgo
- UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction (HRP), Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
- Department of Social and Preventative Medicine, Laval University, Québec, Canada
| | - Anina Haefliger
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Nathalie J. Broutet
- UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction (HRP), Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Nicola Low
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | | |
Collapse
|
504
|
Abreu M, Maiorano A, Tedeschi S, Yoshida K, Lin T, Solomon D. DESFECHOS DE PACIENTES COM LÚPUS E ARTRITE REUMATOIDE COM PRIMO‐INFECÇÃO POR DENGUE: UM RELATÓRIO DE SETE ANOS DE UMA SÉRIE DE CASOS E ESTUDO DE COORTE NO BRASIL. REVISTA BRASILEIRA DE REUMATOLOGIA 2017. [DOI: 10.1016/j.rbr.2017.07.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
505
|
Yun KW. Evaluation and Management of Neonates with Possible Congenital Zika Virus Infection. NEONATAL MEDICINE 2017. [DOI: 10.5385/nm.2017.24.3.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Ki Wook Yun
- Division of Infectious Diseases, Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
506
|
Abad-Franch F, Zamora-Perea E, Luz SLB. Mosquito-Disseminated Insecticide for Citywide Vector Control and Its Potential to Block Arbovirus Epidemics: Entomological Observations and Modeling Results from Amazonian Brazil. PLoS Med 2017; 14:e1002213. [PMID: 28095414 PMCID: PMC5240929 DOI: 10.1371/journal.pmed.1002213] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/30/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mosquito-borne viruses threaten public health worldwide. When the ratio of competent vectors to susceptible humans is low enough, the virus's basic reproductive number (R0) falls below 1.0 (each case generating, on average, <1.0 additional case) and the infection fades out from the population. Conventional mosquito control tactics, however, seldom yield R0 < 1.0. A promising alternative uses mosquitoes to disseminate a potent growth-regulator larvicide, pyriproxyfen (PPF), to aquatic larval habitats; this kills most mosquito juveniles and substantially reduces adult mosquito emergence. We tested mosquito-disseminated PPF in Manacapuru, a 60,000-inhabitant city (~650 ha) in Amazonian Brazil. METHODS AND FINDINGS We sampled juvenile mosquitoes monthly in 100 dwellings over four periods in February 2014-January 2016: 12 baseline months, 5 mo of citywide PPF dissemination, 3 mo of focal PPF dissemination around Aedes-infested dwellings, and 3 mo after dissemination ended. We caught 19,434 juvenile mosquitoes (66% Aedes albopictus, 28% Ae. aegypti) in 8,271 trap-months. Using generalized linear mixed models, we estimated intervention effects on juvenile catch and adult emergence while adjusting for dwelling-level clustering, unequal sampling effort, and weather-related confounders. Following PPF dissemination, Aedes juvenile catch decreased by 79%-92% and juvenile mortality increased from 2%-7% to 80%-90%. Mean adult Aedes emergence fell from 1,077 per month (range 653-1,635) at baseline to 50.4 per month during PPF dissemination (range 2-117). Female Aedes emergence dropped by 96%-98%, such that the number of females emerging per person decreased to 0.06 females per person-month (range 0.002-0.129). Deterministic models predict, under plausible biological-epidemiological scenarios, that the R0 of typical Aedes-borne viruses would fall from 3-45 at baseline to 0.004-0.06 during PPF dissemination. The main limitations of our study were that it was a before-after trial lacking truly independent replicates and that we did not measure mosquito-borne virus transmission empirically. CONCLUSIONS Mosquito-disseminated PPF has potential to block mosquito-borne virus transmission citywide, even under adverse scenarios. Our results signal new avenues for mosquito-borne disease prevention, likely including the effective control of Aedes-borne dengue, Zika, and chikungunya epidemics. Cluster-randomized controlled trials will help determine whether mosquito-disseminated PPF can, as our findings suggest, develop into a major tool for improving global public health.
Collapse
Affiliation(s)
- Fernando Abad-Franch
- Laboratório de Triatomíneos e Epidemiologia da Doença de Chagas, Centro de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
| | - Elvira Zamora-Perea
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
| | - Sérgio L B Luz
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
| |
Collapse
|
507
|
Abstract
We have established a reverse genetic system for Zika virus (ZIKV). Five shuttle plasmids were constructed and assembled into the full-length cDNA clone of ZIKV genome. To ensure the stability of the cDNA clone, we used a low copy vector (pACYC177) and a set of unique restriction enzyme sites on the ZIKV genome to assemble the full-length cDNA clone. A T7 promoter was engineered in front of the viral 5' UTR for in vitro transcription. A hepatitis delta virus ribozyme (HDVr) sequence was engineered following the viral 3' UTR for generation of the authentic 3' end of the RNA transcript.
Collapse
|
508
|
|
509
|
Moreno VM, Espinoza B, Bichara D, Holechek SA, Castillo-Chavez C. Role of short-term dispersal on the dynamics of Zika virus in an extreme idealized environment. Infect Dis Model 2016; 2:21-34. [PMID: 29928727 PMCID: PMC5963318 DOI: 10.1016/j.idm.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 11/23/2022] Open
Abstract
In November 2015, El Salvador reported their first case of Zika virus (ZIKV) infection, an event followed by an explosive outbreak that generated over 6000 suspected cases in a period of two months. National agencies began implementing control measures that included vector control and recommending an increased use of repellents. Further, in response to the alarming and growing number of microcephaly cases in Brazil, the importance of avoiding pregnancies for two years was stressed. In this paper, we explore the role of mobility within communities characterized by extreme poverty, crime and violence. Specifically, the role of short term mobility between two idealized interconnected highly distinct communities is explored in the context of ZIKV outbreaks. We make use of a Lagrangian modeling approach within a two-patch setting in order to highlight the possible effects that short-term mobility, within highly distinct environments, may have on the dynamics of ZIKV outbreak when the overall goal is to reduce the number of cases not just in the most affluent areas but everywhere. Outcomes depend on existing mobility patterns, levels of disease risk, and the ability of federal or state public health services to invest in resource limited areas, particularly in those where violence is systemic. The results of simulations in highly polarized and simplified scenarios are used to assess the role of mobility. It quickly became evident that matching observed patterns of ZIKV outbreaks could not be captured without incorporating increasing levels of heterogeneity. The number of distinct patches and variations on patch connectivity structure required to match ZIKV patterns could not be met within the highly aggregated model that is used in the simulations.
Collapse
Affiliation(s)
- Victor M Moreno
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, P.O. Box 873901, Tempe, AZ 85287-3901, United States
| | - Baltazar Espinoza
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, P.O. Box 873901, Tempe, AZ 85287-3901, United States
| | - Derdei Bichara
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, P.O. Box 873901, Tempe, AZ 85287-3901, United States.,Department of Mathematics and Center for Computational and Applied Mathematics, California State University, Fullerton, CA 92831, United States
| | - Susan A Holechek
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, P.O. Box 873901, Tempe, AZ 85287-3901, United States.,Biodesign Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, United States.,School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Carlos Castillo-Chavez
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, P.O. Box 873901, Tempe, AZ 85287-3901, United States.,Departamento the Ingenieria Biomedica, Universidad de Los Andes, Bogota, Colombia.,Rector's Office, Yachay Tech University, Urcuqui, Ecuador
| |
Collapse
|
510
|
Abstract
Zika virus (ZIKV) originated and continues to circulate in a sylvatic transmission cycle between non-human primate hosts and arboreal mosquitoes in tropical Africa. Recently ZIKV invaded the Americas, where it poses a threat to human health, especially to pregnant women and their infants. Here we examine the risk that ZIKV will establish a sylvatic cycle in the Americas, focusing on Brazil. We review the natural history of sylvatic ZIKV and present a mathematical dynamic transmission model to assess the probability of establishment of a sylvatic ZIKV transmission cycle in non-human primates and/or other mammals and arboreal mosquito vectors in Brazil. Brazil is home to multiple species of primates and mosquitoes potentially capable of ZIKV transmission, though direct assessment of host competence (ability to mount viremia sufficient to infect a feeding mosquito) and vector competence (ability to become infected with ZIKV and disseminate and transmit upon subsequent feedings) of New World species is lacking. Modeling reveals a high probability of establishment of sylvatic ZIKV across a large range of biologically plausible parameters. Probability of establishment is dependent on host and vector population sizes, host birthrates, and ZIKV force of infection. Research on the host competence of New World monkeys or other small mammals to ZIKV, on vector competence of New World Aedes, Sabethes, and Haemagogus mosquitoes for ZIKV, and on the geographic range of potential New World hosts and vectors is urgently needed. A sylvatic cycle of ZIKV would make future elimination efforts in the Americas practically impossible, and paints a dire picture for the epidemiology of ZIKV and our ability to end the ongoing outbreak of congenital Zika syndrome.
Collapse
|
511
|
Chan K, Weaver SC, Wong PY, Lie S, Wang E, Guerbois M, Vayugundla SP, Wong S. Rapid, Affordable and Portable Medium-Throughput Molecular Device for Zika Virus. Sci Rep 2016; 6:38223. [PMID: 27934884 PMCID: PMC5146750 DOI: 10.1038/srep38223] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) has gained global attention as an etiologic agent of fetal microcephaly and Guillain-Barré syndrome. Existing immuno-based rapid tests often fail to distinguish between Zika and related flaviviruses that are common in affected regions of Central and South Americas and the Caribbean. The US CDC and qualified state health department laboratories can perform the reverse transcription polymerase chain reaction (RT-PCR) ZIKV test using highly sophisticated instruments with long turnaround times. The preliminary results of a portable and low-cost molecular diagnostics system for ZIKV infection are reported here. In less than 15 minutes, this low-cost platform can automatically perform high quality RNA extraction from up to 12 ZIKV-spiked urine samples simultaneously. It can also perform reverse transcription recombinase polymerase amplification reaction (RT-RPA) in ≤15 minutes. The fluorescent signal produced from probe-based RT-RPA or RT-PCR assays can be monitored using LEDs and a smartphone camera. In addition, the RT-RPA and RT-PCR assays do not cross-react with dengue and chikungunya viral RNA. This low-cost system lacks complicated, sensitive and high cost components, making it suitable for resource-limited settings. It has the potential to offer simple sample-to-answer molecular diagnostics and can inform healthcare workers of patients' diagnosis promptly.
Collapse
Affiliation(s)
- Kamfai Chan
- AI Biosciences, Inc., College Station, TX, 77845, USA
| | - Scott C. Weaver
- Institute for Human Infections and Immunity and Departments of Microbiology & Immunology and Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Pui-Yan Wong
- AI Biosciences, Inc., College Station, TX, 77845, USA
| | - Sherly Lie
- AI Biosciences, Inc., College Station, TX, 77845, USA
| | - Eryu Wang
- Institute for Human Infections and Immunity and Departments of Microbiology & Immunology and Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mathilde Guerbois
- Institute for Human Infections and Immunity and Departments of Microbiology & Immunology and Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | | | - Season Wong
- AI Biosciences, Inc., College Station, TX, 77845, USA
| |
Collapse
|
512
|
Zika Virus Testing Considerations: Lessons Learned from the First 80 Real-Time Reverse Transcription-PCR-Positive Cases Diagnosed in New York State. J Clin Microbiol 2016; 55:535-544. [PMID: 27927917 DOI: 10.1128/jcm.01232-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/28/2016] [Indexed: 12/28/2022] Open
Abstract
The performance and interpretation of laboratory tests for Zika virus (ZKV) continue to be evaluated. Serology is cross-reactive, laborious, and frequently difficult to interpret, and serum was initially solely recommended for molecular diagnosis. ZKV testing was initiated in January 2016 in New York State for symptomatic patients, pregnant women, their infants, and patients with Guillain-Barré syndrome who had traveled to areas with ZKV transmission. Subsequently, eligibility was expanded to pregnant women with sexual partners with similar travel histories. Serum and urine collected within 4 weeks of symptom onset or within 6 weeks of travel were tested with real-time reverse transcription-PCR (RT-PCR) assays targeting the ZKV envelope and NS2B genes. In this review of lessons learned from the first 80 positive cases in NYS, ZKV RNA was detected in urine only in 50 patients, in serum only in 19 patients, and in both samples concurrently in 11 patients, with average viral loads in urine a log higher than those in serum. Among 93 positive samples from the 80 patients, 41 were positive on both gene assays, 52 were positive on the envelope only, and none were positive on the NS2B only. Of the 80 infected patients, test results for 74 (93%) would have defined their infection status as not detected or equivocal if the requirement for positive results from two assay targets (two-target-positive requirement) in the initial federal guidance to public health laboratories was enforced, if urine was not tested, or if the extended eligibility time for molecular testing was not implemented. These changes facilitated more extensive molecular diagnosis of ZKV, reducing reliance on time-consuming and potentially inconclusive serology.
Collapse
|
513
|
Rajaganesh R, Murugan K, Panneerselvam C, Jayashanthini S, Aziz AT, Roni M, Suresh U, Trivedi S, Rehman H, Higuchi A, Nicoletti M, Benelli G. Fern-synthesized silver nanocrystals: Towards a new class of mosquito oviposition deterrents? Res Vet Sci 2016; 109:40-51. [DOI: 10.1016/j.rvsc.2016.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/07/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022]
|
514
|
Tian B, Qiu Z, Ma J, Zardán Gómez de la Torre T, Johansson C, Svedlindh P, Strömberg M. Attomolar Zika virus oligonucleotide detection based on loop-mediated isothermal amplification and AC susceptometry. Biosens Bioelectron 2016; 86:420-425. [DOI: 10.1016/j.bios.2016.06.085] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/16/2016] [Accepted: 06/28/2016] [Indexed: 01/22/2023]
|
515
|
Jamali Moghadam SR, Bayrami S, Jamali Moghadam S, Golrokhi R, Golsoorat Pahlaviani F, SeyedAlinaghi S. Zika virus: A review of literature. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
516
|
de Araújo TVB, Rodrigues LC, de Alencar Ximenes RA, de Barros Miranda-Filho D, Montarroyos UR, de Melo APL, Valongueiro S, de Albuquerque MDFPM, Souza WV, Braga C, Filho SPB, Cordeiro MT, Vazquez E, Di Cavalcanti Souza Cruz D, Pessanha Henriques CM, Albuquerque Bezerra LC, da Silva Castanha PM, Dhalia R, Marques-Júnior ETA, Martelli CMT. Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study. THE LANCET. INFECTIOUS DISEASES 2016; 16:1356-1363. [PMID: 27641777 PMCID: PMC7617035 DOI: 10.1016/s1473-3099(16)30318-8] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND The microcephaly epidemic, which started in Brazil in 2015, was declared a Public Health Emergency of International Concern by WHO in 2016. We report the preliminary results of a case-control study investigating the association between microcephaly and Zika virus infection during pregnancy. METHODS We did this case-control study in eight public hospitals in Recife, Brazil. Cases were neonates with microcephaly. Two controls (neonates without microcephaly), matched by expected date of delivery and area of residence, were selected for each case. Serum samples of cases and controls and cerebrospinal fluid samples of cases were tested for Zika virus-specific IgM and by quantitative RT-PCR. Laboratory-confirmed Zika virus infection during pregnancy was defined as detection of Zika virus-specific IgM or a positive RT-PCR result in neonates. Maternal serum samples were tested by plaque reduction neutralisation assay for Zika virus and dengue virus. We estimated crude odds ratios (ORs) and 95% CIs using a median unbiased estimator for binary data in an unconditional logistic regression model. We estimated ORs separately for cases with and without radiological evidence of brain abnormalities. FINDINGS Between Jan 15, 2016, and May 2, 2016, we prospectively recruited 32 cases and 62 controls. 24 (80%) of 30 mothers of cases had Zika virus infection compared with 39 (64%) of 61 mothers of controls (p=0·12). 13 (41%) of 32 cases and none of 62 controls had laboratory-confirmed Zika virus infection; crude overall OR 55·5 (95% CI 8·6-∞); OR 113·3 (95% CI 14·5-∞) for seven cases with brain abnormalities; and OR 24·7 (95% CI 2·9-∞) for four cases without brain abnormalities. INTERPRETATION Our data suggest that the microcephaly epidemic is a result of congenital Zika virus infection. We await further data from this ongoing study to assess other potential risk factors and to confirm the strength of association in a larger sample size. FUNDING Brazilian Ministry of Health, Pan American Health Organization, and Enhancing Research Activity in Epidemic Situations.
Collapse
Affiliation(s)
| | | | - Ricardo Arraes de Alencar Ximenes
- Federal University of Pernambuco and University of Pernambuco. Av. Professor Moraes Rego, 1235 - Cidade Universitária, Recife - PE, 50670-901
| | | | | | - Ana Paula Lopes de Melo
- Federal University of Pernambuco, Av. Professor Moraes Rego, 1235 - Cidade Universitária, Recife - PE, 50670-901
| | - Sandra Valongueiro
- Federal University of Pernambuco, Av. Professor Moraes Rego, 1235 - Cidade Universitária, Recife - PE, 50670-901
| | | | - Wayner Vieira Souza
- The Research Center Aggeu Magalhães (CPqAM) / Oswaldo Cruz Foundation (Fiocruz). Av. Professor Moraes Rego s/n - Cidade Universitária, Recife - PE, 50740-465
| | - Cynthia Braga
- The Research Center Aggeu Magalhães (CPqAM) / Oswaldo Cruz Foundation (Fiocruz). Av. Professor Moraes Rego s/n - Cidade Universitária, Recife - PE, 50740-465
| | - Sinval Pinto Brandão Filho
- The Research Center Aggeu Magalhães (CPqAM) / Oswaldo Cruz Foundation (Fiocruz). Av. Professor Moraes Rego s/n - Cidade Universitária, Recife - PE, 50740-465
| | - Marli Tenório Cordeiro
- The Research Center Aggeu Magalhães (CPqAM) / Oswaldo Cruz Foundation (Fiocruz). Av. Professor Moraes Rego s/n - Cidade Universitária, Recife - PE, 50740-465
| | - Enrique Vazquez
- Pan American Health Organization (PAHO-WHO) Lote 19 - Avenida das Nações - SEN - Asa Norte, Brasília - DF, 70312-970
| | | | | | | | - Priscila Mayrelle da Silva Castanha
- The Research Center Aggeu Magalhães (CPqAM) / Oswaldo Cruz Foundation (Fiocruz). Av. Professor Moraes Rego s/n - Cidade Universitária, Recife - PE, 50740-465
| | - Rafael Dhalia
- The Research Center Aggeu Magalhães (CPqAM) / Oswaldo Cruz Foundation (Fiocruz). Av. Professor Moraes Rego s/n - Cidade Universitária, Recife - PE, 50740-465
| | - Ernesto Torres Azevedo Marques-Júnior
- The Research Center Aggeu Magalhães (CPqAM) / Oswaldo Cruz Foundation (Fiocruz); University of Pittsburgh. Pittsburgh, USA. Av. Professor Moraes Rego s/n - Cidade Universitária, Recife - PE, 50740-465
| | - Celina Maria Turchi Martelli
- The Research Center Aggeu Magalhães (CPqAM) / Oswaldo Cruz Foundation (Fiocruz). Av. Professor Moraes Rego s/n - Cidade Universitária, Recife - PE, 50740-465
| |
Collapse
|
517
|
Theall KP, Wallace M, Wesson DM. Zika: A Missed Opportunity to Protect Women's Health and Prevent Unwanted Pregnancies. Womens Health Issues 2016; 27:2-4. [PMID: 27876484 DOI: 10.1016/j.whi.2016.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Katherine P Theall
- Department of Global Community Health and Behavioral Sciences, Tulane School of Public Health Tropical Medicine, New Orleans, Louisiana; Mary Amelia Douglas-Whited Community Women's Health Education Center, New Orleans, Louisiana.
| | - Maeve Wallace
- Department of Global Community Health and Behavioral Sciences, Tulane School of Public Health Tropical Medicine, New Orleans, Louisiana
| | - Dawn M Wesson
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| |
Collapse
|
518
|
Roundy CM, Azar SR, Rossi SL, Weaver SC, Vasilakis N. Insect-Specific Viruses: A Historical Overview and Recent Developments. Adv Virus Res 2016; 98:119-146. [PMID: 28433051 DOI: 10.1016/bs.aivir.2016.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arthropod-borne viruses (arboviruses) have in recent years become a tremendous global health concern resulting in substantial human morbidity and mortality. With the widespread utilization of molecular technologies such as next-generation sequencing and the advancement of bioinformatics tools, a new age of viral discovery has commenced. Many of the novel agents being discovered in recent years have been isolated from mosquitoes and exhibit a highly restricted host range. Strikingly, these insect-specific viruses have been found to be members of viral families traditionally associated with human arboviral pathogens, including but not limited to the families Flaviviridae, Togaviridae, Reoviridae, and Bunyaviridae. These agents therefore present novel opportunities in the fields of viral evolution and viral/vector interaction and have tremendous potential as agents for biocontrol of vectors and or viruses of medical importance.
Collapse
Affiliation(s)
- Christopher M Roundy
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Sasha R Azar
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Shannan L Rossi
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Scott C Weaver
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
519
|
Xu X, Vaughan K, Weiskopf D, Grifoni A, Diamond MS, Sette A, Peters B. Identifying Candidate Targets of Immune Responses in Zika Virus Based on Homology to Epitopes in Other Flavivirus Species. PLOS CURRENTS 2016; 8. [PMID: 28018746 PMCID: PMC5145810 DOI: 10.1371/currents.outbreaks.9aa2e1fb61b0f632f58a098773008c4b] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: The current outbreak of Zika virus has resulted in a massive effort to accelerate the development of ZIKV-specific diagnostics and vaccines. These efforts would benefit greatly from the definition of the specific epitope targets of immune responses in ZIKV, but given the relatively recent emergence of ZIKV as a pandemic threat, few such data are available. Methods: We used a large body of epitope data for other Flaviviruses that was available from the IEDB for a comparative analysis against the ZIKV proteome in order to project targets of immune responses in ZIKV. Results: We found a significant level of overlap between known antigenic sites from other Flavivirus proteins with residues on the ZIKV polyprotein. The E and NS1 proteins shared functional antibody epitope sites, whereas regions of T cell reactivity were conserved within NS3 and NS5 for ZIKV. Discussion: Our epitope based analysis provides guidance for which regions of the ZIKV polyprotein are most likely unique targets of ZIKV-specific antibodies, and which targets in ZIKV are most likely to be cross-reactive with other Flavivirus species. These data may therefore provide insights for the development of antibody- and T cell-based ZIKV-specific diagnostics, therapeutics and prophylaxis.
Collapse
Affiliation(s)
- Xiaojun Xu
- Division of Vaccine Discovery, La Jolla Institute for Allergy And Immunology, San Diego, California, USA
| | - Kerrie Vaughan
- Division of Vaccine Discovery, La Jolla Institute for Allergy And Immunology, San Diego, California, USA
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy And Immunology, San Diego, California, USA
| | | | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA; The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy And Immunology, San Diego, California, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy And Immunology, San Diego, California, USA
| |
Collapse
|
520
|
Rajah MM, Pardy RD, Condotta SA, Richer MJ, Sagan SM. Zika Virus: Emergence, Phylogenetics, Challenges, and Opportunities. ACS Infect Dis 2016; 2:763-772. [PMID: 27704772 DOI: 10.1021/acsinfecdis.6b00161] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Zika virus (ZIKV) is an emerging arthropod-borne pathogen that has recently gained notoriety due to its rapid and ongoing geographic expansion and its novel association with neurological complications. Reports of ZIKV-associated Guillain-Barré syndrome as well as fetal microcephaly place emphasis on the need to develop preventative measures and therapeutics to combat ZIKV infection. Thus, it is imperative that models to study ZIKV replication and pathogenesis and the immune response are developed in conjunction with integrated vector control strategies to mount an efficient response to the pandemic. This paper summarizes the current state of knowledge on ZIKV, including the clinical features, phylogenetic analyses, pathogenesis, and the immune response to infection. Potential challenges in developing diagnostic tools, treatment, and prevention strategies are also discussed.
Collapse
Affiliation(s)
- Maaran M. Rajah
- Department of Microbiology and
Immunology and ‡Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, Canada H3A 2B4
| | - Ryan D. Pardy
- Department of Microbiology and
Immunology and ‡Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, Canada H3A 2B4
| | - Stephanie A. Condotta
- Department of Microbiology and
Immunology and ‡Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, Canada H3A 2B4
| | - Martin J. Richer
- Department of Microbiology and
Immunology and ‡Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, Canada H3A 2B4
| | - Selena M. Sagan
- Department of Microbiology and
Immunology and ‡Microbiome and Disease Tolerance Centre (MDTC), McGill University, Montréal, Québec, Canada H3A 2B4
| |
Collapse
|
521
|
In vivo protection against ZIKV infection and pathogenesis through passive antibody transfer and active immunisation with a prMEnv DNA vaccine. NPJ Vaccines 2016; 1:16021. [PMID: 29263859 PMCID: PMC5707885 DOI: 10.1038/npjvaccines.2016.21] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/09/2016] [Accepted: 10/09/2016] [Indexed: 12/24/2022] Open
Abstract
Significant concerns have been raised owing to the rapid global spread of infection and disease caused by the mosquito-borne Zika virus (ZIKV). Recent studies suggest that ZIKV can also be transmitted sexually, further increasing the exposure risk for this virus. Associated with this spread is a dramatic increase in cases of microcephaly and additional congenital abnormalities in infants of ZIKV-infected mothers, as well as a rise in the occurrence of Guillain Barre' syndrome in infected adults. Importantly, there are no licensed therapies or vaccines against ZIKV infection. In this study, we generate and evaluate the in vivo efficacy of a novel, synthetic, DNA vaccine targeting the pre-membrane+envelope proteins (prME) of ZIKV. Following initial in vitro development and evaluation studies of the plasmid construct, mice and non-human primates were immunised with this prME DNA-based immunogen through electroporation-mediated enhanced DNA delivery. Vaccinated animals were found to generate antigen-specific cellular and humoral immunity and neutralisation activity. In mice lacking receptors for interferon (IFN)-α/β (designated IFNAR-/-) immunisation with this DNA vaccine induced, following in vivo viral challenge, 100% protection against infection-associated weight loss or death in addition to preventing viral pathology in brain tissue. In addition, passive transfer of non-human primate anti-ZIKV immune serum protected IFNAR-/- mice against subsequent viral challenge. This study in NHP and in a pathogenic mouse model supports the importance of immune responses targeting prME in ZIKV infection and suggests that additional research on this vaccine approach may have relevance for ZIKV control and disease prevention in humans.
Collapse
|
522
|
Lichinchi G, Zhao BS, Wu Y, Lu Z, Qin Y, He C, Rana TM. Dynamics of Human and Viral RNA Methylation during Zika Virus Infection. Cell Host Microbe 2016; 20:666-673. [PMID: 27773536 PMCID: PMC5155635 DOI: 10.1016/j.chom.2016.10.002] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 11/24/2022]
Abstract
Infection with the flavivirus Zika (ZIKV) causes neurological, immunological, and developmental defects through incompletely understood mechanisms. We report that ZIKV infection affects viral and human RNAs by altering the topology and function of N6-adenosine methylation (m6A), a modification affecting RNA structure and function. m6A nucleosides are abundant in ZIKV RNA, with twelve m6A peaks identified across full-length ZIKV RNA. m6A in ZIKV RNA is controlled by host methyltransferases METTL3 and METTL14 and demethylases ALKBH5 and FTO, and knockdown of methyltransferases increases, while silencing demethylases decreases, ZIKV production. YTHDF family proteins, which regulate the stability of m6A-modified RNA, bind to ZIKV RNA, and their silencing increases ZIKV replication. Profiling of the m6A methylome of host mRNAs reveals that ZIKV infection alters m6A location in mRNAs, methylation motifs, and target genes modified by methyltransferases. Our results identify a mechanism by which ZIKV interacts with and alters host cell functions.
Collapse
Affiliation(s)
- Gianluigi Lichinchi
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Program for RNA Biology and Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Boxuan Simen Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Yinga Wu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Program for RNA Biology and Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhike Lu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Yue Qin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Tariq M Rana
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Program for RNA Biology and Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
523
|
Rezza G. Vaccines against chikungunya, Zika and other emerging Aedes mosquito-borne viruses: unblocking existing bottlenecks. Future Virol 2016. [DOI: 10.2217/fvl-2016-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of Aedes mosquito-borne viral diseases is a global public health challenge. Since mosquito control programs are not highly efficient for outbreak containment, vaccines are essential to limit disease burden. Besides yellow fever vaccines, a vaccine against dengue is now available, while research on vaccines against Zika has just started. Several vaccine candidates against chikungunya are undergoing preclinical studies, and few of them have been tested in Phase II trials. To overcome hurdles and speed-up the development of vaccines against these viral diseases, several actions should be planned: first, the ‘animal rule’ could be considered for regulatory purposes; second, public–private partnership should be stimulated; third, countries, international organizations and donors commitment should be strengthened, and potential markets identified.
Collapse
Affiliation(s)
- Giovanni Rezza
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00142 Roma, Italy
| |
Collapse
|
524
|
Fritzell C, Raude J, Adde A, Dusfour I, Quenel P, Flamand C. Knowledge, Attitude and Practices of Vector-Borne Disease Prevention during the Emergence of a New Arbovirus: Implications for the Control of Chikungunya Virus in French Guiana. PLoS Negl Trop Dis 2016; 10:e0005081. [PMID: 27802275 PMCID: PMC5089683 DOI: 10.1371/journal.pntd.0005081] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/28/2016] [Indexed: 11/25/2022] Open
Abstract
Background During the last decade, French Guiana has been affected by major dengue fever outbreaks. Although this arbovirus has been a focus of many awareness campaigns, very little information is available about beliefs, attitudes and behaviors regarding vector-borne diseases among the population of French Guiana. During the first outbreak of the chikungunya virus, a quantitative survey was conducted among high school students to study experiences, practices and perceptions related to mosquito-borne diseases and to identify socio-demographic, cognitive and environmental factors that could be associated with the engagement in protective behaviors. Methodology/Principal Findings A cross-sectional survey was administered in May 2014, with a total of 1462 students interviewed. Classrooms were randomly selected using a two-stage selection procedure with cluster samples. A multiple correspondence analysis (MCA) associated with a hierarchical cluster analysis and with an ordinal logistic regression was performed. Chikungunya was less understood and perceived as a more dreadful disease than dengue fever. The analysis identified three groups of individual protection levels against mosquito-borne diseases: “low” (30%), “moderate” (42%) and “high” (28%)”. Protective health behaviors were found to be performed more frequently among students who were female, had a parent with a higher educational status, lived in an individual house, and had a better understanding of the disease. Conclusions/Significance This study allowed us to estimate the level of protective practices against vector-borne diseases among students after the emergence of a new arbovirus. These results revealed that the adoption of protective behaviors is a multi-factorial process that depends on both sociocultural and cognitive factors. These findings may help public health authorities to strengthen communication and outreach strategies, thereby increasing the adoption of protective health behaviors, particularly in high-risk populations. Although dengue fever has been a focus of many awareness campaigns in Latin America, very little information is available about beliefs, attitudes and behaviors regarding vector-borne diseases among the population of French Guiana. At the initial onset of the first chikungunya outbreak, a quantitative survey was conducted among 1462 high school students aiming to study experiences, practices and perceptions related to mosquito-borne diseases and to identify factors that could be associated with protective behaviors. Chikungunya was less understood and perceived as a more dreadful disease than dengue fever. Students were clustered in three different groups according to their level of protection: “low” (30%), “moderate” (42%) and “high” (28%). Protective health behaviors were found to be performed more frequently among students who were female, lived with a parent who had a higher educational status, lived in an individual house, and had a better understanding of the disease. The results revealed that the adoption of protective behaviors is a multi-factorial process that depends on both socio-economic and cognitive factors. These findings may help the public health authorities to strengthen their communication and outreach strategy, thereby increasing the adoption of protective health behaviors, particularly in endemic countries and high-risk populations.
Collapse
Affiliation(s)
- Camille Fritzell
- Unité d’épidémiologie, Institut Pasteur de la Guyane, Cayenne, Guyane
| | - Jocelyn Raude
- UMR “Emergence des Pathologies Virales” (Aix-Marseille University, IRD 190, INSERM 1207, EHESP), Marseille, France; UMR “Processus Infectieux en Milieu Insulaire Tropical” (INSERM 1187, CNRS 9192, IRD 249, Université de La Réunion), Réunion, France
| | - Antoine Adde
- Unité d’épidémiologie, Institut Pasteur de la Guyane, Cayenne, Guyane
- Unité d’entomologie médicale, Institut Pasteur de la Guyane, Cayenne, Guyane
| | - Isabelle Dusfour
- Unité d’entomologie médicale, Institut Pasteur de la Guyane, Cayenne, Guyane
| | - Philippe Quenel
- Inserm UMR 1085-IRSET Institut de recherche sur la santé, l’environnement et le travail, EHESP, Rennes, France
| | - Claude Flamand
- Unité d’épidémiologie, Institut Pasteur de la Guyane, Cayenne, Guyane
- * E-mail:
| |
Collapse
|
525
|
Patterson J, Sammon M, Garg M. Dengue, Zika and Chikungunya: Emerging Arboviruses in the New World. West J Emerg Med 2016; 17:671-679. [PMID: 27833670 PMCID: PMC5102589 DOI: 10.5811/westjem.2016.9.30904] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/19/2016] [Accepted: 09/08/2016] [Indexed: 11/15/2022] Open
Abstract
The arboviruses that cause dengue, chikungunya, and Zika illnesses have rapidly expanded across the globe in recent years, with large-scale outbreaks occurring in Western Hemisphere territories in close proximity to the United States (U.S.). In March 2016, the Centers for Disease Control and Protection (CDC) expanded its vector surveillance maps for A. aegypti and A. albopictus, the mosquito vectors for these arboviruses. They have now been shown to inhabit a larger portion of the U.S., including the heavily populated northeast corridor. Emergency physicians need to further familiarize themselves with these diseases, which have classically been considered only in returning travelers but may soon be encountered in the U.S. even in the absence of travel. In this paper, we discuss the presentation and treatment of dengue, Zika, and chikungunya, as well as special challenges presented to the emergency physician in evaluating a patient with a suspected arbovirus infection.
Collapse
Affiliation(s)
- Jessica Patterson
- Temple University Hospital and School of Medicine, Department of Emergency Medicine, Philadelphia, Pennsylvania
| | - Maura Sammon
- Temple University Hospital and School of Medicine, Department of Emergency Medicine, Philadelphia, Pennsylvania
| | - Manish Garg
- Temple University Hospital and School of Medicine, Department of Emergency Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
526
|
Murakami M, Hori K, Kitagawa Y, Oikawa Y, Kamimura K, Takegami T. An Ecological Survey of Mosquitoes and the Distribution of Japanese Encephalitis Virus in Ishikawa Prefecture, Japan, between 2010 and 2014. Jpn J Infect Dis 2016; 70:362-367. [PMID: 27795474 DOI: 10.7883/yoken.jjid.2016.263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Japanese encephalitis virus (JEV) is a flavivirus, responsible for over 30,000 annual cases of encephalitis worldwide, with a mortality rate of approximately 30%. Therefore, it is important to examine the distribution of mosquitos carrying JEV in the fields, even though recently, the number of Japanese encephalitis cases has been approximately 5 per year in Japan. We report the seasonal dynamics of mosquitoes between 2010 and 2014 in Ishikawa Prefecture, Japan. We collected 39,308 female adult mosquitoes, 98.2% of which were classified as Culex tritaeniorhynchus Giles. We identified JEV genomic RNA belonging to genotype 1 from the homogenate of Cx. tritaeniorhynchus, collected during our study using reverse transcription-PCR and nucleotide sequencing techniques. Our results indicate that mosquito vectors for JEV are distributed not only in areas in Ishikawa, but also throughout Japan, and the results suggest that we must be careful regarding JEV outbreaks in Japan in the future.
Collapse
Affiliation(s)
| | - Kiyoe Hori
- Department of Life Science, Medical Research Institute, Kanazawa Medical University
| | - Yoko Kitagawa
- Department of Life Science, Medical Research Institute, Kanazawa Medical University
| | | | | | - Tsutomu Takegami
- Department of Life Science, Medical Research Institute, Kanazawa Medical University
| |
Collapse
|
527
|
Diaz JH. Preparing the United States for Zika Virus: Pre-emptive Vector Control and Personal Protection. Wilderness Environ Med 2016; 27:450-457. [PMID: 28340908 DOI: 10.1016/j.wem.2016.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/26/2016] [Accepted: 07/29/2016] [Indexed: 10/20/2022]
Abstract
Discovered in 1947 in a monkey in the Zika forest of Uganda, Zika virus was dismissed as a cause of a mild illness that was confined to Africa and Southeast Asia and transmitted by Aedes mosquitoes. In 2007, Zika virus appeared outside of its endemic borders in an outbreak on the South Pacific Island of Yap. In 2013, Zika virus was associated with a major neurological complication, Guillain-Barré syndrome, in a larger outbreak in the French Polynesian Islands. From the South Pacific, Zika invaded Brazil in 2015 and caused another severe neurological complication, fetal microcephaly. The mosquito-borne transmission of Zika virus can be propagated by sexual transmission and, possibly, by blood transfusions, close personal contacts, and organ transplants, like other flaviviruses. Since these combined mechanisms of infectious disease transmission could result in catastrophic incidences of severe neurological diseases in adults and children, the public should know what to expect from Zika virus, how to prevent infection, and what the most likely failures in preventive measures will be. With federal research funding stalled, a Zika vaccine is far away. The only national strategies to prepare the United States for Zika virus invasion now are effective vector control measures and personal protection from mosquito bites. In addition to a basic knowledge of Aedes mosquito vectors and their biting behaviors, an understanding of simple household vector control measures, and the selection of the best chemical and physical mosquito repellents will be required to repel the Zika threat.
Collapse
Affiliation(s)
- James H Diaz
- Program in Environmental and Occupational Health Sciences, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA.
| |
Collapse
|
528
|
Grubaugh ND, Rückert C, Armstrong PM, Bransfield A, Anderson JF, Ebel GD, Brackney DE. Transmission bottlenecks and RNAi collectively influence tick-borne flavivirus evolution. Virus Evol 2016; 2:vew033. [PMID: 28058113 PMCID: PMC5210029 DOI: 10.1093/ve/vew033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arthropod-borne RNA viruses exist within hosts as heterogeneous populations of viral variants and, as a result, possess great genetic plasticity. Understanding the micro-evolutionary forces shaping these viruses can provide insights into how they emerge, adapt, and persist in new and changing ecological niches. While considerable attention has been directed toward studying the population dynamics of mosquito-borne viruses, little is known about tick-borne virus populations. Therefore, using a mouse and Ixodes scapularis tick transmission model, we examined Powassan virus (POWV; Flaviviridae, Flavivirus) populations in and between both the vertebrate host and arthropod vector. We found that genetic bottlenecks, RNAi-mediated diversification, and selective constraints collectively influence POWV evolution. Together, our data provide a mechanistic explanation for the slow, long-term evolutionary trends of POWV, and suggest that all arthropod-borne viruses encounter similar selective pressures at the molecular level (i.e. RNAi), yet evolve much differently due to their unique rates and modes of transmission.
Collapse
Affiliation(s)
- Nathan D Grubaugh
- Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA
| | - Claudia Rückert
- Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA
| | - Philip M Armstrong
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - Angela Bransfield
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - John F Anderson
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - Gregory D Ebel
- Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA
| | - Doug E Brackney
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| |
Collapse
|
529
|
Shukla S, Hong SY, Chung SH, Kim M. Rapid Detection Strategies for the Global Threat of Zika Virus: Current State, New Hypotheses, and Limitations. Front Microbiol 2016; 7:1685. [PMID: 27822207 PMCID: PMC5075579 DOI: 10.3389/fmicb.2016.01685] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
The current scenario regarding the widespread Zika virus (ZIKV) has resulted in numerous diagnostic studies, specifically in South America and in locations where there is frequent entry of travelers returning from ZIKV-affected areas, including pregnant women with or without clinical symptoms of ZIKV infection. The World Health Organization, WHO, announced that millions of cases of ZIKV are likely to occur in the USA in the near future. This situation has created an alarming public health emergency of international concern requiring the detection of this life-threatening viral candidate due to increased cases of newborn microcephaly associated with ZIKV infection. Hence, this review reports possible methods and strategies for the fast and reliable detection of ZIKV with particular emphasis on current updates, knowledge, and new hypotheses that might be helpful for medical professionals in poor and developing countries that urgently need to address this problem. In particular, we emphasize liposome-based biosensors. Although these biosensors are currently among the less popular tools for human disease detection, they have become useful tools for the screening and detection of pathogenic bacteria, fungi, and viruses because of their versatile advantageous features compared to other sensing devices. This review summarizes the currently available methods employed for the rapid detection of ZIKV and suggests an innovative approach involving the application of a liposome-based hypothesis for the development of new strategies for ZIKV detection and their use as effective biomedicinal tools.
Collapse
Affiliation(s)
- Shruti Shukla
- Department of Food Science and Technology, Yeungnam University Gyeongsan-si, South Korea
| | - Sung-Yong Hong
- School of Biosystem and Biomedical Science, College of Health Sciences, Korea University Seoul, South Korea
| | - Soo Hyun Chung
- School of Biosystem and Biomedical Science, College of Health Sciences, Korea University Seoul, South Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University Gyeongsan-si, South Korea
| |
Collapse
|
530
|
Gyawali N, Bradbury RS, Taylor-Robinson AW. Do neglected Australian arboviruses pose a global epidemic threat? Aust N Z J Public Health 2016; 40:596. [DOI: 10.1111/1753-6405.12582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Narayan Gyawali
- School of Medical & Applied Sciences; Central Queensland University
| | | | | |
Collapse
|
531
|
Palacios E, Clavijo-Prado C, Ruiz A, Arias Antun A, Julián Duran E. Longitudinal extensive transverse myelitis and Zika virus: A diagnostic challenge in a hospital in Colombia. Neurologia 2016; 34:204-206. [PMID: 27776956 DOI: 10.1016/j.nrl.2016.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 11/26/2022] Open
Affiliation(s)
- E Palacios
- Grupo de Neurología, Fundación Universitaria de Ciencias de la Salud, Hospital de San José, Bogotá D.C., Colombia; Programa de Neurología, Hospital de San José, Bogotá D.C., Colombia
| | - C Clavijo-Prado
- Grupo de Neurología, Fundación Universitaria de Ciencias de la Salud, Hospital de San José, Bogotá D.C., Colombia.
| | - A Ruiz
- Grupo de Neurología, Fundación Universitaria de Ciencias de la Salud, Hospital de San José, Bogotá D.C., Colombia
| | - A Arias Antun
- Grupo de Neurología, Fundación Universitaria de Ciencias de la Salud, Hospital de San José, Bogotá D.C., Colombia
| | - E Julián Duran
- Grupo de Neurología, Fundación Universitaria de Ciencias de la Salud, Hospital de San José, Bogotá D.C., Colombia
| |
Collapse
|
532
|
Ekins S, Liebler J, Neves BJ, Lewis WG, Coffee M, Bienstock R, Southan C, Andrade CH. Illustrating and homology modeling the proteins of the Zika virus. F1000Res 2016; 5:275. [PMID: 27746901 DOI: 10.12688/f1000research.8213.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/29/2016] [Indexed: 12/28/2022] Open
Abstract
The Zika virus (ZIKV) is a flavivirus of the family Flaviviridae, which is similar to dengue virus, yellow fever and West Nile virus. Recent outbreaks in South America, Latin America, the Caribbean and in particular Brazil have led to concern for the spread of the disease and potential to cause Guillain-Barré syndrome and microcephaly. Although ZIKV has been known of for over 60 years there is very little in the way of knowledge of the virus with few publications and no crystal structures. No antivirals have been tested against it either in vitro or in vivo. ZIKV therefore epitomizes a neglected disease. Several suggested steps have been proposed which could be taken to initiate ZIKV antiviral drug discovery using both high throughput screens as well as structure-based design based on homology models for the key proteins. We now describe preliminary homology models created for NS5, FtsJ, NS4B, NS4A, HELICc, DEXDc, peptidase S7, NS2B, NS2A, NS1, E stem, glycoprotein M, propeptide, capsid and glycoprotein E using SWISS-MODEL. Eleven out of 15 models pass our model quality criteria for their further use. While a ZIKV glycoprotein E homology model was initially described in the immature conformation as a trimer, we now describe the mature dimer conformer which allowed the construction of an illustration of the complete virion. By comparing illustrations of ZIKV based on this new homology model and the dengue virus crystal structure we propose potential differences that could be exploited for antiviral and vaccine design. The prediction of sites for glycosylation on this protein may also be useful in this regard. While we await a cryo-EM structure of ZIKV and eventual crystal structures of the individual proteins, these homology models provide the community with a starting point for structure-based design of drugs and vaccines as well as a for computational virtual screening.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, NC, USA; Collaborations Pharmaceuticals Inc., Fuquay-Varina, NC, USA; Collaborative Drug Discovery Inc, Burlingame, CA, USA
| | | | - Bruno J Neves
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, GO, Brazil
| | - Warren G Lewis
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Megan Coffee
- The International Rescue Committee, New York, NY, USA
| | | | | | - Carolina H Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, GO, Brazil
| |
Collapse
|
533
|
Abstract
After a 40-year hiatus, the International Congress of Entomology (ICE 2016) convened in Orlando, Florida (September 25-30, 2016). One of the symposia at ICE 2016, the Zika Symposium, covered multiple aspects of the Zika epidemic, including epidemiology, sexual transmission, genetic tools for reducing transmission, and particularly vector competence. While there was a consensus among participants that the yellow fever mosquito, Aedes aegypti, is a vector of the Zika virus, there is growing evidence indicating that the range of mosquito vectors might be wider than anticipated. In particular, three independent groups from Canada, China, and Brazil presented and discussed laboratory and field data strongly suggesting that the southern house mosquito, Culex quinquefasciatus, also known as the common mosquito, is highly likely to be a vector in certain environments.
Collapse
Affiliation(s)
- Walter S Leal
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, USA
| |
Collapse
|
534
|
Towers S, Brauer F, Castillo-Chavez C, Falconar AKI, Mubayi A, Romero-Vivas CME. Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission. Epidemics 2016; 17:50-55. [PMID: 27846442 DOI: 10.1016/j.epidem.2016.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND In 2015, the Zika arbovirus (ZIKV) began circulating in the Americas, rapidly expanding its global geographic range in explosive outbreaks. Unusual among mosquito-borne diseases, ZIKV has been shown to also be sexually transmitted, although sustained autochthonous transmission due to sexual transmission alone has not been observed, indicating the reproduction number (R0) for sexual transmission alone is less than 1. Critical to the assessment of outbreak risk, estimation of the potential attack rates, and assessment of control measures, are estimates of the basic reproduction number, R0. METHODS We estimated the R0 of the 2015 ZIKV outbreak in Barranquilla, Colombia, through an analysis of the exponential rise in clinically identified ZIKV cases (n=359 to the end of November, 2015). FINDINGS The rate of exponential rise in cases was ρ=0.076days-1, with 95% CI [0.066,0.087] days-1. We used a vector-borne disease model with additional direct transmission to estimate the R0; assuming the R0 of sexual transmission alone is less than 1, we estimated the total R0=3.8 [2.4,5.6], and that the fraction of cases due to sexual transmission was 0.23 [0.01,0.47] with 95% confidence. INTERPRETATION This is among the first estimates of R0 for a ZIKV outbreak in the Americas, and also among the first quantifications of the relative impact of sexual transmission.
Collapse
Affiliation(s)
| | - Fred Brauer
- University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
535
|
Pascoalino BS, Courtemanche G, Cordeiro MT, Gil LHVG, Freitas-Junior L. Zika antiviral chemotherapy: identification of drugs and promising starting points for drug discovery from an FDA-approved library. F1000Res 2016; 5:2523. [PMID: 27909576 PMCID: PMC5112578 DOI: 10.12688/f1000research.9648.1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 12/14/2022] Open
Abstract
Background The recent epidemics of Zika virus (ZIKV) implicated it as the cause of serious and potentially lethal congenital conditions such microcephaly and other central nervous system defects, as well as the development of the Guillain-Barré syndrome in otherwise healthy patients. Recent findings showed that anti-Dengue antibodies are capable of amplifying ZIKV infection by a mechanism similar to antibody-dependent enhancement, increasing the severity of the disease. This scenario becomes potentially catastrophic when the global burden of Dengue and the advent of the newly approved anti-Dengue vaccines in the near future are taken into account. Thus, antiviral chemotherapy should be pursued as a priority strategy to control the spread of the virus and prevent the complications associated with Zika. Methods Here we describe a fast and reliable cell-based, high-content screening assay for discovery of anti-ZIKV compounds. This methodology has been used to screen the National Institute of Health Clinical Collection compound library, a small collection of FDA-approved drugs. Results and conclusion From 725 FDA-approved compounds triaged, 29 (4%) were found to have anti-Zika virus activity, of which 22 had confirmed (76% of confirmation) by dose-response curves. Five candidates presented selective activity against ZIKV infection and replication in a human cell line. These hits have abroad spectrum of chemotypes and therapeutic uses, offering valuable opportunities for selection of leads for antiviral drug discovery.
Collapse
Affiliation(s)
- Bruno S. Pascoalino
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas-SP, 10000, Brazil
- Present Address: Instituto Butantan, São Paulo-SP, 1500, Brazil
| | | | - Marli T. Cordeiro
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz -Fiocruz, Recife/PE, Brazil
| | - Laura H. V. G. Gil
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz -Fiocruz, Recife/PE, Brazil
| | - Lucio Freitas-Junior
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas-SP, 10000, Brazil
- Present Address: Instituto Butantan, São Paulo-SP, 1500, Brazil
| |
Collapse
|
536
|
Sex, Mosquitoes and Epidemics: An Evaluation of Zika Disease Dynamics. Bull Math Biol 2016; 78:2228-2242. [DOI: 10.1007/s11538-016-0219-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
|
537
|
Melo CFOR, de Oliveira DN, Lima EDO, Guerreiro TM, Esteves CZ, Beck RM, Padilla MA, Milanez GP, Arns CW, Proença-Modena JL, Souza-Neto JA, Catharino RR. A Lipidomics Approach in the Characterization of Zika-Infected Mosquito Cells: Potential Targets for Breaking the Transmission Cycle. PLoS One 2016; 11:e0164377. [PMID: 27723844 PMCID: PMC5056752 DOI: 10.1371/journal.pone.0164377] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/24/2016] [Indexed: 12/22/2022] Open
Abstract
Recent outbreaks of Zika virus in Oceania and Latin America, accompanied by unexpected clinical complications, made this infection a global public health concern. This virus has tropism to neural tissue, leading to microcephaly in newborns in a significant proportion of infected mothers. The clinical relevance of this infection, the difficulty to perform accurate diagnosis and the small amount of data in literature indicate the necessity of studies on Zika infection in order to characterize new biomarkers of this infection and to establish new targets for viral control in vertebrates and invertebrate vectors. Thus, this study aims at establishing a lipidomics profile of infected mosquito cells compared to a control group to define potential targets for viral control in mosquitoes. Thirteen lipids were elected as specific markers for Zika virus infection (Brazilian strain), which were identified as putatively linked to the intracellular mechanism of viral replication and/or cell recognition. Our findings bring biochemical information that may translate into useful targets for breaking the transmission cycle.
Collapse
Affiliation(s)
| | - Diogo Noin de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, 13083-877, Brazil
| | - Estela de Oliveira Lima
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, 13083-877, Brazil
| | - Tatiane Melina Guerreiro
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, 13083-877, Brazil
| | - Cibele Zanardi Esteves
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, 13083-877, Brazil
| | - Raissa Marques Beck
- Animal viruses Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, 13083-862, Brazil
| | - Marina Aiello Padilla
- Animal viruses Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, 13083-862, Brazil
| | - Guilherme Paier Milanez
- Emerging viruses study Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, 13083-862, Brazil
| | - Clarice Weis Arns
- Animal viruses Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, 13083-862, Brazil
| | - José Luiz Proença-Modena
- Emerging viruses study Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, 13083-862, Brazil
| | - Jayme Augusto Souza-Neto
- Vector Functional Genomics & Microbiology Laboratory, UNESP Institute of Biotechnology, São Paulo State University, Alameda das Tecomarias s/n, Botucatu, 18607-440, Brazil
- Department of Bioprocesses and Biotechnology, Faculty of Agronomical Sciences, São Paulo State University, Rua José Barbosa 1780, Botucatu, 18610-307, Brazil
| | - Rodrigo Ramos Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, 13083-877, Brazil
| |
Collapse
|
538
|
Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, Carter A, Casey DC, Charlson FJ, Chen AZ, Coggeshall M, Cornaby L, Dandona L, Dicker DJ, Dilegge T, Erskine HE, Ferrari AJ, Fitzmaurice C, Fleming T, Forouzanfar MH, Fullman N, Gething PW, Goldberg EM, Graetz N, Haagsma JA, Hay SI, Johnson CO, Kassebaum NJ, Kawashima T, Kemmer L, Khalil IA, Kinfu Y, Kyu HH, Leung J, Liang X, Lim SS, Lopez AD, Lozano R, Marczak L, Mensah GA, Mokdad AH, Naghavi M, Nguyen G, Nsoesie E, Olsen H, Pigott DM, Pinho C, Rankin Z, Reinig N, Salomon JA, Sandar L, Smith A, Stanaway J, Steiner C, Teeple S, Thomas BA, Troeger C, Wagner JA, Wang H, Wanga V, Whiteford HA, Zoeckler L, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abraham B, Abubakar I, Abu-Raddad LJ, Abu-Rmeileh NME, Ackerman IN, Adebiyi AO, Ademi Z, Adou AK, Afanvi KA, Agardh EE, Agarwal A, Kiadaliri AA, Ahmadieh H, Ajala ON, Akinyemi RO, Akseer N, Al-Aly Z, Alam K, Alam NKM, Aldhahri SF, Alegretti MA, Alemu ZA, Alexander LT, Alhabib S, Ali R, Alkerwi A, Alla F, Allebeck P, Al-Raddadi R, Alsharif U, Altirkawi KA, Alvis-Guzman N, Amare AT, et alVos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, Carter A, Casey DC, Charlson FJ, Chen AZ, Coggeshall M, Cornaby L, Dandona L, Dicker DJ, Dilegge T, Erskine HE, Ferrari AJ, Fitzmaurice C, Fleming T, Forouzanfar MH, Fullman N, Gething PW, Goldberg EM, Graetz N, Haagsma JA, Hay SI, Johnson CO, Kassebaum NJ, Kawashima T, Kemmer L, Khalil IA, Kinfu Y, Kyu HH, Leung J, Liang X, Lim SS, Lopez AD, Lozano R, Marczak L, Mensah GA, Mokdad AH, Naghavi M, Nguyen G, Nsoesie E, Olsen H, Pigott DM, Pinho C, Rankin Z, Reinig N, Salomon JA, Sandar L, Smith A, Stanaway J, Steiner C, Teeple S, Thomas BA, Troeger C, Wagner JA, Wang H, Wanga V, Whiteford HA, Zoeckler L, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abraham B, Abubakar I, Abu-Raddad LJ, Abu-Rmeileh NME, Ackerman IN, Adebiyi AO, Ademi Z, Adou AK, Afanvi KA, Agardh EE, Agarwal A, Kiadaliri AA, Ahmadieh H, Ajala ON, Akinyemi RO, Akseer N, Al-Aly Z, Alam K, Alam NKM, Aldhahri SF, Alegretti MA, Alemu ZA, Alexander LT, Alhabib S, Ali R, Alkerwi A, Alla F, Allebeck P, Al-Raddadi R, Alsharif U, Altirkawi KA, Alvis-Guzman N, Amare AT, Amberbir A, Amini H, Ammar W, Amrock SM, Andersen HH, Anderson GM, Anderson BO, Antonio CAT, Aregay AF, Ärnlöv J, Artaman A, Asayesh H, Assadi R, Atique S, Avokpaho EFGA, Awasthi A, Quintanilla BPA, Azzopardi P, Bacha U, Badawi A, Balakrishnan K, Banerjee A, Barac A, Barker-Collo SL, Bärnighausen T, Barregard L, Barrero LH, Basu A, Bazargan-Hejazi S, Beghi E, Bell B, Bell ML, Bennett DA, Bensenor IM, Benzian H, Berhane A, Bernabé E, Betsu BD, Beyene AS, Bhala N, Bhatt S, Biadgilign S, Bienhoff K, Bikbov B, Biryukov S, Bisanzio D, Bjertness E, Blore J, Borschmann R, Boufous S, Brainin M, Brazinova A, Breitborde NJK, Brown J, Buchbinder R, Buckle GC, Butt ZA, Calabria B, Campos-Nonato IR, Campuzano JC, Carabin H, Cárdenas R, Carpenter DO, Carrero JJ, Castañeda-Orjuela CA, Rivas JC, Catalá-López F, Chang JC, Chiang PPC, Chibueze CE, Chisumpa VH, Choi JYJ, Chowdhury R, Christensen H, Christopher DJ, Ciobanu LG, Cirillo M, Coates MM, Colquhoun SM, Cooper C, Cortinovis M, Crump JA, Damtew SA, Dandona R, Daoud F, Dargan PI, das Neves J, Davey G, Davis AC, Leo DD, Degenhardt L, Gobbo LCD, Dellavalle RP, Deribe K, Deribew A, Derrett S, Jarlais DCD, Dharmaratne SD, Dhillon PK, Diaz-Torné C, Ding EL, Driscoll TR, Duan L, Dubey M, Duncan BB, Ebrahimi H, Ellenbogen RG, Elyazar I, Endres M, Endries AY, Ermakov SP, Eshrati B, Estep K, Farid TA, Farinha CSES, Faro A, Farvid MS, Farzadfar F, Feigin VL, Felson DT, Fereshtehnejad SM, Fernandes JG, Fernandes JC, Fischer F, Fitchett JRA, Foreman K, Fowkes FGR, Fox J, Franklin RC, Friedman J, Frostad J, Fürst T, Futran ND, Gabbe B, Ganguly P, Gankpé FG, Gebre T, Gebrehiwot TT, Gebremedhin AT, Geleijnse JM, Gessner BD, Gibney KB, Ginawi IAM, Giref AZ, Giroud M, Gishu MD, Giussani G, Glaser E, Godwin WW, Gomez-Dantes H, Gona P, Goodridge A, Gopalani SV, Gotay CC, Goto A, Gouda HN, Grainger R, Greaves F, Guillemin F, Guo Y, Gupta R, Gupta R, Gupta V, Gutiérrez RA, Haile D, Hailu AD, Hailu GB, Halasa YA, Hamadeh RR, Hamidi S, Hammami M, Hancock J, Handal AJ, Hankey GJ, Hao Y, Harb HL, Harikrishnan S, Haro JM, Havmoeller R, Hay RJ, Heredia-Pi IB, Heydarpour P, Hoek HW, Horino M, Horita N, Hosgood HD, Hoy DG, Htet AS, Huang H, Huang JJ, Huynh C, Iannarone M, Iburg KM, Innos K, Inoue M, Iyer VJ, Jacobsen KH, Jahanmehr N, Jakovljevic MB, Javanbakht M, Jayaraman SP, Jayatilleke AU, Jee SH, Jeemon P, Jensen PN, Jiang Y, Jibat T, Jimenez-Corona A, Jin Y, Jonas JB, Kabir Z, Kalkonde Y, Kamal R, Kan H, Karch A, Karema CK, Karimkhani C, Kasaeian A, Kaul A, Kawakami N, Keiyoro PN, Kemp AH, Keren A, Kesavachandran CN, Khader YS, Khan AR, Khan EA, Khang YH, Khera S, Khoja TAM, Khubchandani J, Kieling C, Kim P, Kim CI, Kim D, Kim YJ, Kissoon N, Knibbs LD, Knudsen AK, Kokubo Y, Kolte D, Kopec JA, Kosen S, Kotsakis GA, Koul PA, Koyanagi A, Kravchenko M, Defo BK, Bicer BK, Kudom AA, Kuipers EJ, Kumar GA, Kutz M, Kwan GF, Lal A, Lalloo R, Lallukka T, Lam H, Lam JO, Langan SM, Larsson A, Lavados PM, Leasher JL, Leigh J, Leung R, Levi M, Li Y, Li Y, Liang J, Liu S, Liu Y, Lloyd BK, Lo WD, Logroscino G, Looker KJ, Lotufo PA, Lunevicius R, Lyons RA, Mackay MT, Magdy M, Razek AE, Mahdavi M, Majdan M, Majeed A, Malekzadeh R, Marcenes W, Margolis DJ, Martinez-Raga J, Masiye F, Massano J, McGarvey ST, McGrath JJ, McKee M, McMahon BJ, Meaney PA, Mehari A, Mejia-Rodriguez F, Mekonnen AB, Melaku YA, Memiah P, Memish ZA, Mendoza W, Meretoja A, Meretoja TJ, Mhimbira FA, Millear A, Miller TR, Mills EJ, Mirarefin M, Mitchell PB, Mock CN, Mohammadi A, Mohammed S, Monasta L, Hernandez JCM, Montico M, Mooney MD, Moradi-Lakeh M, Morawska L, Mueller UO, Mullany E, Mumford JE, Murdoch ME, Nachega JB, Nagel G, Naheed A, Naldi L, Nangia V, Newton JN, Ng M, Ngalesoni FN, Nguyen QL, Nisar MI, Pete PMN, Nolla JM, Norheim OF, Norman RE, Norrving B, Nunes BP, Ogbo FA, Oh IH, Ohkubo T, Olivares PR, Olusanya BO, Olusanya JO, Ortiz A, Osman M, Ota E, PA M, Park EK, Parsaeian M, de Azeredo Passos VM, Caicedo AJP, Patten SB, Patton GC, Pereira DM, Perez-Padilla R, Perico N, Pesudovs K, Petzold M, Phillips MR, Piel FB, Pillay JD, Pishgar F, Plass D, Platts-Mills JA, Polinder S, Pond CD, Popova S, Poulton RG, Pourmalek F, Prabhakaran D, Prasad NM, Qorbani M, Rabiee RHS, Radfar A, Rafay A, Rahimi K, Rahimi-Movaghar V, Rahman M, Rahman MHU, Rahman SU, Rai RK, Rajsic S, Ram U, Rao P, Refaat AH, Reitsma MB, Remuzzi G, Resnikoff S, Reynolds A, Ribeiro AL, Blancas MJR, Roba HS, Rojas-Rueda D, Ronfani L, Roshandel G, Roth GA, Rothenbacher D, Roy A, Sagar R, Sahathevan R, Sanabria JR, Sanchez-Niño MD, Santos IS, Santos JV, Sarmiento-Suarez R, Sartorius B, Satpathy M, Savic M, Sawhney M, Schaub MP, Schmidt MI, Schneider IJC, Schöttker B, Schwebel DC, Scott JG, Seedat S, Sepanlou SG, Servan-Mori EE, Shackelford KA, Shaheen A, Shaikh MA, Sharma R, Sharma U, Shen J, Shepard DS, Sheth KN, Shibuya K, Shin MJ, Shiri R, Shiue I, Shrime MG, Sigfusdottir ID, Silva DAS, Silveira DGA, Singh A, Singh JA, Singh OP, Singh PK, Sivonda A, Skirbekk V, Skogen JC, Sligar A, Sliwa K, Soljak M, Søreide K, Sorensen RJD, Soriano JB, Sposato LA, Sreeramareddy CT, Stathopoulou V, Steel N, Stein DJ, Steiner TJ, Steinke S, Stovner L, Stroumpoulis K, Sunguya BF, Sur P, Swaminathan S, Sykes BL, Szoeke CEI, Tabarés-Seisdedos R, Takala JS, Tandon N, Tanne D, Tavakkoli M, Taye B, Taylor HR, Ao BJT, Tedla BA, Terkawi AS, Thomson AJ, Thorne-Lyman AL, Thrift AG, Thurston GD, Tobe-Gai R, Tonelli M, Topor-Madry R, Topouzis F, Tran BX, Truelsen T, Dimbuene ZT, Tsilimbaris M, Tura AK, Tuzcu EM, Tyrovolas S, Ukwaja KN, Undurraga EA, Uneke CJ, Uthman OA, van Gool CH, Varakin YY, Vasankari T, Venketasubramanian N, Verma RK, Violante FS, Vladimirov SK, Vlassov VV, Vollset SE, Wagner GR, Waller SG, Wang L, Watkins DA, Weichenthal S, Weiderpass E, Weintraub RG, Werdecker A, Westerman R, White RA, Williams HC, Wiysonge CS, Wolfe CDA, Won S, Woodbrook R, Wubshet M, Xavier D, Xu G, Yadav AK, Yan LL, Yano Y, Yaseri M, Ye P, Yebyo HG, Yip P, Yonemoto N, Yoon SJ, Younis MZ, Yu C, Zaidi Z, Zaki MES, Zeeb H, Zhou M, Zodpey S, Zuhlke LJ, Murray CJL. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388:1545-1602. [PMID: 27733282 PMCID: PMC5055577 DOI: 10.1016/s0140-6736(16)31678-6] [Show More Authors] [Citation(s) in RCA: 4834] [Impact Index Per Article: 537.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Non-fatal outcomes of disease and injury increasingly detract from the ability of the world's population to live in full health, a trend largely attributable to an epidemiological transition in many countries from causes affecting children, to non-communicable diseases (NCDs) more common in adults. For the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015), we estimated the incidence, prevalence, and years lived with disability for diseases and injuries at the global, regional, and national scale over the period of 1990 to 2015. METHODS We estimated incidence and prevalence by age, sex, cause, year, and geography with a wide range of updated and standardised analytical procedures. Improvements from GBD 2013 included the addition of new data sources, updates to literature reviews for 85 causes, and the identification and inclusion of additional studies published up to November, 2015, to expand the database used for estimation of non-fatal outcomes to 60 900 unique data sources. Prevalence and incidence by cause and sequelae were determined with DisMod-MR 2.1, an improved version of the DisMod-MR Bayesian meta-regression tool first developed for GBD 2010 and GBD 2013. For some causes, we used alternative modelling strategies where the complexity of the disease was not suited to DisMod-MR 2.1 or where incidence and prevalence needed to be determined from other data. For GBD 2015 we created a summary indicator that combines measures of income per capita, educational attainment, and fertility (the Socio-demographic Index [SDI]) and used it to compare observed patterns of health loss to the expected pattern for countries or locations with similar SDI scores. FINDINGS We generated 9·3 billion estimates from the various combinations of prevalence, incidence, and YLDs for causes, sequelae, and impairments by age, sex, geography, and year. In 2015, two causes had acute incidences in excess of 1 billion: upper respiratory infections (17·2 billion, 95% uncertainty interval [UI] 15·4-19·2 billion) and diarrhoeal diseases (2·39 billion, 2·30-2·50 billion). Eight causes of chronic disease and injury each affected more than 10% of the world's population in 2015: permanent caries, tension-type headache, iron-deficiency anaemia, age-related and other hearing loss, migraine, genital herpes, refraction and accommodation disorders, and ascariasis. The impairment that affected the greatest number of people in 2015 was anaemia, with 2·36 billion (2·35-2·37 billion) individuals affected. The second and third leading impairments by number of individuals affected were hearing loss and vision loss, respectively. Between 2005 and 2015, there was little change in the leading causes of years lived with disability (YLDs) on a global basis. NCDs accounted for 18 of the leading 20 causes of age-standardised YLDs on a global scale. Where rates were decreasing, the rate of decrease for YLDs was slower than that of years of life lost (YLLs) for nearly every cause included in our analysis. For low SDI geographies, Group 1 causes typically accounted for 20-30% of total disability, largely attributable to nutritional deficiencies, malaria, neglected tropical diseases, HIV/AIDS, and tuberculosis. Lower back and neck pain was the leading global cause of disability in 2015 in most countries. The leading cause was sense organ disorders in 22 countries in Asia and Africa and one in central Latin America; diabetes in four countries in Oceania; HIV/AIDS in three southern sub-Saharan African countries; collective violence and legal intervention in two north African and Middle Eastern countries; iron-deficiency anaemia in Somalia and Venezuela; depression in Uganda; onchoceriasis in Liberia; and other neglected tropical diseases in the Democratic Republic of the Congo. INTERPRETATION Ageing of the world's population is increasing the number of people living with sequelae of diseases and injuries. Shifts in the epidemiological profile driven by socioeconomic change also contribute to the continued increase in years lived with disability (YLDs) as well as the rate of increase in YLDs. Despite limitations imposed by gaps in data availability and the variable quality of the data available, the standardised and comprehensive approach of the GBD study provides opportunities to examine broad trends, compare those trends between countries or subnational geographies, benchmark against locations at similar stages of development, and gauge the strength or weakness of the estimates available. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
539
|
Valerio Sallent L, Roure Díez S, Fernández Rivas G. Zika virus infection or the future of infectious diseases. MEDICINA CLINICA (ENGLISH ED.) 2016; 147:300-305. [PMID: 32289076 PMCID: PMC7140246 DOI: 10.1016/j.medcle.2016.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/03/2016] [Indexed: 11/23/2022]
Abstract
Zika virus belongs to the Flaviridae, an extended phylogenetic family containing dengue or yellow fever, viruses whose shared main vector are Aedes aegypti mosquitoes. The virus originally came from Central African simian reservoirs and, from there, expanded rapidly across the Pacific to South America. The disease is an example of exantematic fever usually mild. Mortality is very low and mainly limited to secondary Guillain-Barré or foetal microcephaly cases. Diagnostic confirmation requires a RT-PCR in blood up to the 5th day from the onset or in urine up to the 10-14th day. Specific IgM are identifiable from the 5th symptomatic day. Clinically, a suspected case should comply with: (a) a journey to epidemic areas; (b) a clinically compatible appearance with fever and skin rash, and (c) a generally normal blood count/basic biochemistry. There is some evidence that causally relates Zika virus infection with foetal microcephaly. While waiting for definitive data, all pregnant women coming from Central or South America should be tested for Zika virus.
Collapse
Affiliation(s)
- Lluís Valerio Sallent
- PROSICS Metropolitana Nord, Institut Català de la Salut, Universitat Autònoma de Barcelona, Santa Coloma de Gramenet, Spain
| | - Sílvia Roure Díez
- PROSICS Metropolitana Nord, Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Institut Català de la Salut, Badalona, Barcelona, Spain
| | - Gema Fernández Rivas
- Servicio de Microbiología, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Institut Català de la Salut, Badalona, Barcelona, Spain
| |
Collapse
|
540
|
Muñoz ÁG, Thomson MC, Goddard L, Aldighieri S. Analyzing climate variations at multiple timescales can guide Zika virus response measures. Gigascience 2016; 5:1-6. [PMID: 27716414 PMCID: PMC5053076 DOI: 10.1186/s13742-016-0146-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/11/2016] [Indexed: 11/30/2022] Open
Abstract
Background The emergence of Zika virus (ZIKV) in Latin America and the Caribbean in 2014–2016 occurred during a period of severe drought and unusually high temperatures, conditions that have been associated with the 2015–2016 El Niño event, and/or climate change; however, no quantitative assessment has been made to date. Analysis of related flaviviruses transmitted by the same vectors suggests that ZIKV dynamics are sensitive to climate seasonality and longer-term variability and trends. A better understanding of the climate conditions conducive to the 2014–2016 epidemic may permit the development of climate-informed short and long-term strategies for ZIKV prevention and control. Results Using a novel timescale-decomposition methodology, we demonstrate that the extreme climate anomalies observed in most parts of South America during the current epidemic are not caused exclusively by El Niño or climate change, but by a combination of climate signals acting at multiple timescales. In Brazil, the dry conditions present in 2013–2015 are primarily explained by year-to-year variability superimposed on decadal variability, but with little contribution of long-term trends. In contrast, the warm temperatures of 2014–2015 resulted from the compound effect of climate change, decadal and year-to-year climate variability. Conclusions ZIKV response strategies made in Brazil during the drought concurrent with the 2015-2016 El Niño event, may require revision in light of the likely return of rainfall associated with the borderline La Niña event expected in 2016–2017. Temperatures are likely to remain warm given the importance of long term and decadal scale climate signals.
Collapse
Affiliation(s)
- Ángel G Muñoz
- Atmospheric and Oceanic Sciences/Geophysical Fluid Dynamics Laboratory, Princeton University, Forrestal Campus. Forrestal Road 201, Princeton, NJ, USA.,International Research Institute for Climate and Society, Earth Institute, Columbia University, New York, NY, USA.,Latin American Observatory for Climate Events, Centro de Modelado Científico, Universidad del Zulia, Maracaibo, Venezuela
| | - Madeleine C Thomson
- International Research Institute for Climate and Society, Earth Institute, Columbia University, New York, NY, USA.,Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York, NY, USA.,World Health Organization Collaborating Centre on Early Warning Systems for Malaria and other Climate Sensitive Diseases, New York, NY, USA
| | - Lisa Goddard
- International Research Institute for Climate and Society, Earth Institute, Columbia University, New York, NY, USA
| | - Sylvain Aldighieri
- International Health Regulations/Epidemic Alert and Response, and Water Borne Diseases, Communicable Diseases and Health Analysis Department, Pan American Health Organization, Washington DC, USA
| |
Collapse
|
541
|
Zika virus is arriving at the American continent. ASIAN PAC J TROP MED 2016; 9:1019-1021. [DOI: 10.1016/j.apjtm.2016.07.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/12/2016] [Accepted: 07/14/2016] [Indexed: 11/30/2022] Open
|
542
|
Transfusion-Transmitted Diseases. Transfus Med 2016. [DOI: 10.1002/9781119236504.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
543
|
Mishra B, Behera B. The mysterious Zika virus: Adding to the tropical flavivirus mayhem. J Postgrad Med 2016; 62:249-254. [PMID: 27763483 PMCID: PMC5105211 DOI: 10.4103/0022-3859.191006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/01/2016] [Accepted: 05/28/2016] [Indexed: 11/04/2022] Open
Abstract
Until now, known as the demure cousin of dengue virus (DENV) inhabiting Africa, Zika virus (ZIKV) has reinvented itself to cause explosive epidemics captivating the Western hemisphere. The outbreak causing potential for ZIKV was realized when it made its way from Africa to Yap Island Micronesia in 2007, and in French Polynesia in 2013. From there, it moved on to Brazil in 2015. Now ZIKV has infected people in more than 33 countries in Central and South America and the Caribbean. Moreover the epidemiological and subsequent virological association with microcephaly cases in Brazil has prompted the World Health Organization to declare a public health emergency of International Concern. ZIKV shares not only its vector Aedes aegypti with dengue and chikungunya but also the geographic distribution and clinical features, which makes the laboratory confirmation mandatory for definitive diagnosis. The serological cross-reactivity with other Flavivirus, particularly with DENV makes laboratory confirmation challenging and will place additional burden on health systems to establish molecular diagnostic facilities. The evidence of additional nonvector modes of transmission, such as perinatal, sexual as well as transfusion has made preventative strategies more difficult. As ZIKV disease continues to mystify us with several unanswered questions, it calls for coordinated effort of global scientific community to address the ever growing arboviral threat to mankind.
Collapse
Affiliation(s)
- B Mishra
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - B Behera
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
544
|
Gebre Y, Forbes N, Gebre T. Zika virus infection, transmission, associated neurological disorders and birth abnormalities: A review of progress in research, priorities and knowledge gaps. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
545
|
Liu ZY, Li XF, Jiang T, Deng YQ, Ye Q, Zhao H, Yu JY, Qin CF. Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization. eLife 2016; 5. [PMID: 27692070 PMCID: PMC5101012 DOI: 10.7554/elife.17636] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/30/2016] [Indexed: 12/23/2022] Open
Abstract
Viral replicase recruitment and long-range RNA interactions are essential for RNA virus replication, yet the mechanism of their interplay remains elusive. Flaviviruses include numerous important human pathogens, e.g., dengue virus (DENV) and Zika virus (ZIKV). Here, we revealed a highly conserved, conformation-tunable cis-acting element named 5′-UAR-flanking stem (UFS) in the flavivirus genomic 5′ terminus. We demonstrated that the UFS was critical for efficient NS5 recruitment and viral RNA synthesis in different flaviviruses. Interestingly, stabilization of the DENV UFS impaired both genome cyclization and vRNA replication. Moreover, the UFS unwound in response to genome cyclization, leading to the decreased affinity of NS5 for the viral 5′ end. Thus, we propose that the UFS is switched by genome cyclization to regulate dynamic RdRp binding for vRNA replication. This study demonstrates that the UFS enables communication between flavivirus genome cyclization and RdRp recruitment, highlighting the presence of switch-like mechanisms among RNA viruses. DOI:http://dx.doi.org/10.7554/eLife.17636.001 Flaviviruses include a large family of viruses that are harmful to human health, such as dengue virus, West Nile virus and Zika virus. Understanding the details of the life cycle of these viruses is important for better controlling and treating the diseases that they cause. The genetic information of flaviviruses is stored in single-stranded molecules of RNA. To form new copies of a virus, the RNA must be replicated in a process that involves two critical steps. First, an enzyme called viral RNA polymerase NS5 must be recruited to a specific end of the RNA strand (known as the 5′ end). Then, the ends of the RNA strand bind together to form a circular loop. However, little is known about whether these two processes are linked, or how they are regulated. Using bioinformatics, biochemical and reverse genetics approaches, Liu et al. have now identified a new section of RNA in the 5′ end of the flavivirus RNA, named the 5′-UAR-flanking stem (or UFS for short), which is critical for viral replication. The UFS plays an important role in efficiently recruiting the NS5 viral RNA polymerase to the 5′ end of the flavivirus RNA. After the RNA forms a circle, the UFS unwinds. This makes the NS5 polymerase less likely to bind to the 5′ end of the RNA. Stabilizing the structure of the UFS impairs the ability of the RNA strand to form a circle, and hence reduces the ability of the RNA to replicate. Thus, the UFS links and enables communication between the processes that form the flavivirus RNA into a circle and that recruit the viral RNA polymerase to the RNA. The structural basis of the interaction between the flavivirus RNA 5′ end, including the UFS element, and the viral RNA polymerase now deserves further investigation. It will be also important to explore whether other types of viruses regulate their replication via a similar mechanism. DOI:http://dx.doi.org/10.7554/eLife.17636.002
Collapse
Affiliation(s)
- Zhong-Yu Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Xiao-Feng Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Tao Jiang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Yong-Qiang Deng
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Qing Ye
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hui Zhao
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jiu-Yang Yu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cheng-Feng Qin
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| |
Collapse
|
546
|
Leyva M, French-Pacheco L, Quintana F, Montada D, Castex M, Hernandez A, Marquetti MDC. Melaleuca quinquenervia (Cav.) S.T. Blake (Myrtales: Myrtaceae): Natural alternative for mosquito control. ASIAN PAC J TROP MED 2016; 9:979-984. [DOI: 10.1016/j.apjtm.2016.07.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/23/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022] Open
|
547
|
Zhao B, Hou Y, Wang J, Kokoza VA, Saha TT, Wang XL, Lin L, Zou Z, Raikhel AS. Determination of juvenile hormone titers by means of LC-MS/MS/MS and a juvenile hormone-responsive Gal4/UAS system in Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 77:69-77. [PMID: 27530057 PMCID: PMC5028310 DOI: 10.1016/j.ibmb.2016.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 05/16/2023]
Abstract
In anautogenous mosquitoes, juvenile hormone III (JH) plays an essential role in female post-eclosion (PE) development, preparing them for subsequent blood feeding and egg growth. We re-examined the JH titer during the reproductive cycle of female Aedes aegypti mosquitoes. Using liquid chromatography coupled with triple tandem mass spectrometry (LC-MS/MS/MS), we have shown that it reaches its peak at 48-54 h PE in the female hemolymph and at 72 h PE in whole body extracts. This method represents an effective assay for determination of JH titers. The 2.1-kb 5' promoter region of the Early Trypsin (ET) gene, which is specifically expressed in the female midgut under the control of JH during the PE phase, was utilized to genetically engineer the Ae. aegypti mosquito line with the ET-Gal4 activator. We then established the ET-GAL4>UAS-enhanced green fluorescent protein (EGFP) system in Ae. aegypti. In ET-Gal4>UAS-EGFP female mosquitoes, the intensity of the midgut-specific EGFP signal was observed to correspond to the ET gene transcript level and follow the JH titer during the PE phase. The EGFP signal and the EGFP transcript level were significantly diminished in midguts of transgenic female mosquitoes after RNA interference depletion of the JH receptor Methoprene-tolerant (Met), providing evidence of the control of ET gene expression by Met. Topical JH application caused premature enhancement of the EGFP signal and the EGFP transcript level in midguts of newly eclosed ET-Gal4>UAS-EGFP female mosquitoes, in which endogenous JH titer is still low. Hence, this novel ET-Gal4>UAS system permits JH-dependent gene overexpression in the midgut of Ae. aegypti female mosquitoes prior to a blood meal.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Yuan Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianjun Wang
- Department of Entomology, University of California, Riverside, CA, 92521, USA; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Vladimir A Kokoza
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Tusar T Saha
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Xue-Li Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Lin
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Alexander S Raikhel
- Department of Entomology, University of California, Riverside, CA, 92521, USA; The Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
548
|
Rosenberg AZ, Yu W, Hill DA, Reyes CA, Schwartz DA. Placental Pathology of Zika Virus: Viral Infection of the Placenta Induces Villous Stromal Macrophage (Hofbauer Cell) Proliferation and Hyperplasia. Arch Pathol Lab Med 2016; 141:43-48. [PMID: 27681334 DOI: 10.5858/arpa.2016-0401-oa] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT -The placenta is an important component in understanding the fetal response to intrauterine Zika virus infection, but the pathologic changes in this organ remain largely unknown. Hofbauer cells are fetal-derived macrophages normally present in the chorionic villous stroma. They have been implicated in a variety of physiological and pathologic processes, in particular involving infectious agents. OBJECTIVES -To characterize the fetal and maternal responses and viral localization in the placenta following Zika virus transmission to an 11 weeks' gestation fetus. The clinical course was notable for prolonged viremia in the mother and extensive neuronal necrosis in the fetus. The fetus was delivered at 21 weeks' gestation after pregnancy termination. DESIGN -The placenta was evaluated by using immunohistochemistry for inflammatory cells (macrophages/monocytes [Hofbauer cells], B and T lymphocytes) and proliferating cells, and an RNA probe to Zika virus. The fetal brain and the placenta were previously found to be positive for Zika virus RNA by reverse transcription-polymerase chain reaction. RESULTS -The placenta demonstrated prominently enlarged, hydropic chorionic villi with hyperplasia and focal proliferation of Hofbauer cells. The degree of Hofbauer cell hyperplasia gave an exaggerated immature appearance to the villi. No acute or chronic villitis, villous necrosis, remote necroinflammatory abnormalities, chorioamnionitis, funisitis, or hemorrhages were present. An RNA probe to Zika virus was positive in villous stromal cells, presumably Hofbauer cells. CONCLUSIONS -Zika virus placental infection induces proliferation and prominent hyperplasia of Hofbauer cells in the chorionic villi but does not elicit villous necrosis or a maternal or fetal lymphoplasmacellular or acute inflammatory cell reaction.
Collapse
Affiliation(s)
| | | | | | | | - David A Schwartz
- From the Department of Pathology, Children's National Medical Center, Washington, DC (Drs Rosenberg, Yu, Hill, and Reyes); and the Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia (Dr Schwartz)
| |
Collapse
|
549
|
Rescue of the 1947 Zika Virus Prototype Strain with a Cytomegalovirus Promoter-Driven cDNA Clone. mSphere 2016; 1:mSphere00246-16. [PMID: 27704051 PMCID: PMC5040786 DOI: 10.1128/msphere.00246-16] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022] Open
Abstract
The study of ZIKV, which has become increasingly important with the recent association of this virus with microcephaly and Guillain-Barré syndrome, would benefit from an efficient strategy to genetically manipulate the virus. This work describes a model system to produce infectious virus in cell culture. We created a plasmid carrying the prototype 1947 Uganda MR766 ZIKV genome that both was stable in bacteria and could produce high levels of infectious virus in mammalian cells through direct delivery of this DNA. Furthermore, growth properties of this rescued virus closely resembled those of the viral isolate from which it was derived. This model system will provide a simple and effective means to study how ZIKV genetics impact viral replication and pathogenesis. The recent Zika virus (ZIKV) outbreak has been linked to severe pathogenesis. Here, we report the construction of a plasmid carrying a cytomegalovirus (CMV) promoter-expressed prototype 1947 Uganda MR766 ZIKV cDNA that can initiate infection following direct plasmid DNA transfection of mammalian cells. Incorporation of a synthetic intron in the nonstructural protein 1 (NS1) region of the ZIKV polyprotein reduced viral cDNA-associated toxicity in bacteria. High levels of infectious virus were produced following transfection of the plasmid bearing the wild-type MR766 ZIKV genome, but not one with a disruption to the viral nonstructural protein 5 (NS5) polymerase active site. Multicycle growth curve and plaque assay experiments indicated that the MR766 virus resulting from plasmid transfection exhibited growth characteristics that were more similar to its parental isolate than previously published 2010 Cambodia and 2015 Brazil cDNA-rescued ZIKV. This ZIKV infectious clone will be useful for investigating the genetic determinants of ZIKV infection and pathogenesis and should be amenable to construction of diverse infectious clones expressing reporter proteins and representing a range of ZIKV isolates. IMPORTANCE The study of ZIKV, which has become increasingly important with the recent association of this virus with microcephaly and Guillain-Barré syndrome, would benefit from an efficient strategy to genetically manipulate the virus. This work describes a model system to produce infectious virus in cell culture. We created a plasmid carrying the prototype 1947 Uganda MR766 ZIKV genome that both was stable in bacteria and could produce high levels of infectious virus in mammalian cells through direct delivery of this DNA. Furthermore, growth properties of this rescued virus closely resembled those of the viral isolate from which it was derived. This model system will provide a simple and effective means to study how ZIKV genetics impact viral replication and pathogenesis.
Collapse
|
550
|
Vaníčková L, Canale A, Benelli G. Sexual chemoecology of mosquitoes (Diptera, Culicidae): Current knowledge and implications for vector control programs. Parasitol Int 2016; 66:190-195. [PMID: 27692501 DOI: 10.1016/j.parint.2016.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/29/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022]
Abstract
Mosquitoes (Diptera: Culicidae) act as vectors of medical and veterinary importance, due to their ability to transmit many pathogens and parasites. Renewed interest has been recently devoted to the potential of sterile insect technique (SIT) for mosquito suppression. However, the success of the SIT is mostly dependent on the ability of sterile males to compete for mates with the wild ones in the field. Nevertheless, little is known on the sexual chemical ecology of mosquitoes, with special reference to the role of chemical signals in males. We reviewed the current knowledge on mosquito sexual chemical ecology and other key cues affecting courtship and mating behavior. The information available on the aggregation and sex pheromones in mosquito males is rather limited. To the best of our knowledge, the components of the aggregation pheromone stimulating swarming mechanisms have been fully characterized only for Aedes aegypti, while evidence for aggregation pheromones in other mosquito species remains elusive. Further research on this issue is needed, as well as to dissect the relative importance of visual (with special reference to swarming landmarks), vibrational, olfactory and tactile cues perceived during swarming and mate. On the other hand, more knowledge is available for cuticular hydrocarbons, which modulate mating behavior in several species of economic importance. These compounds, coupled with volatile aggregation components, have potential interest for the development of monitoring and trapping systems. In addition, the analyses of cuticular hydrocarbons are essential for discrimination between closely related mosquito species and/or populations.
Collapse
Affiliation(s)
- Lucie Vaníčková
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, Brno CZ-616 00, Czech Republic; Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Angelo Canale
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|