551
|
Liu H, Deng B, Zhou H, Wu Z, Chen Y, Weng G, Zhu S, Xu J, Wang H, Zhou Z, Tan EK, Wang Q. QEEG indices are associated with inflammatory and metabolic risk factors in Parkinson's disease dementia: An observational study. EClinicalMedicine 2022; 52:101615. [PMID: 36034410 PMCID: PMC9399166 DOI: 10.1016/j.eclinm.2022.101615] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Quantitative electroencephalography (QEEG) is a reliable and non-invasive diagnostic tool to quantify cortical synaptic injury or loss in the clinical assessment of neurodegenerative diseases, and may be able to differentiate various types of dementia. We investigated if QEEG indices can differentiate Parkinson's Disease (PD) with nondementia (PD-ND) from PD with dementia (PDD), and to determine if QEEG indices correlate with inflammation and lipid metabolism markers in PD. METHODS This clinical study collected data between July 1, 2018 and July 1, 2021 in Zhujiang Hospital of Southern Medical University in China and data was analysed. A total of 125 individuals comprising of 31 PDD, 47 patients with PD-ND and 47 healthy controls were included. We calculated the absolute spectral power (ASP) of frequency bands and the slow-to-fast frequency ratios of specific brain regions. Plasma levels of hypersensitive C-reactive protein (Hs-CRP), superoxide dismutase (SOD), and high-density lipoprotein cholesterol (HDL-C) were measured and correlations with QEEG indices were examined. FINDINGS A significantly higher ASP of delta frequency especially in the frontal region was observed in patients with PDD compared to PD-ND (P=0.004) and controls (P=0.000). Decreased HDL-C (OR=0.186, P=0.030), and increased Hs-CRP (OR =2.856, P=0.015) were associated with PDD. Frontal-delta ASP was negatively correlated with plasma HDL-C (r=-0.353, P=0.000) and SOD (r=-0.322, P=0.001), and positively correlated with Hs-CRP (r=0.342, P=0.000). INTERPRETATION We highlight novel correlations between QEEG indices and inflammation and lipid metabolism markers in PD-ND and PDD. QEEG indices, HDL-C and Hs-CRP are potentially useful for the evaluation of PDD. Our current findings suggest that peripheral inflammation might contribute to the pathogenesis of cognitive impairment and EEG slowing in PDD. The mechanism underlying frontal-delta ASP and its correlation with neuro-inflammatory and metabolic markers in PDD should be further investigated. FUNDING The National Natural Science Foundation of China (NO: 81873777, 82071414); the Scientific Research Foundation of Guangzhou (NO: 202206010005); the Science and Technology Program of Guangdong of China (NO: 2020A0505100037); the High-level Hospital Construction Research Project of Maoming People's Hospital (NO: xz2020009); the Science and Technology Program of Maoming City (NO: 2021S0026). Dr EK Tan is supported by the National Medical Research Council, Singapore.
Collapse
Affiliation(s)
- Hailing Liu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China
- Department of Neurology, Maoming People's Hospital, Maoming, Guangdong, China
| | - Bin Deng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Zhihuan Wu
- Department of Neurology, 1st People Hospital of Zhaoqing, Zhaoqing, China
| | - Yonghua Chen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Guomei Weng
- Department of Neurology, 1st People Hospital of Zhaoqing, Zhaoqing, China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haitao Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhidong Zhou
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China
| |
Collapse
|
552
|
Barreto-Diaz MA, Velázquez-Aponte RA, Wu-Wu A, Cassé C. Hormetic effect of an Ethanolic Graviola Leaf Extract on HGF-1 cells survival. BAOJ CANCER RESEARCH & THERAPY 2022; 6:1005. [PMID: 37547131 PMCID: PMC10403259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Plant-extracted compounds have been used for centuries in traditional pharmacopeia. Some of them have proven to be excellent drug alternatives for cancer treatment as they target metabolic pathways that are key to cancer cells such as apoptosis, energy-producing catabolic pathways, and the response to oxidative stress. Since some anticancer drugs have been shown to produce dose dependent biologically opposite effects, it is crucial to determine the range of doses for which the compounds have maximum therapeutic benefits. Annona muricata or Graviola is a tropical tree that is common in the Puerto Rican landscape. Although a plethora of studies conducted in vitro and in vivo studies have indeed reported that extracts prepared from the Graviola root, fruit, bark, and leaves possess antiproliferative activities in a large variety of cancer cells, the efficiency of Graviola extracts to curb the progression of head and neck cancers has been overlooked. Furthermore, the bioactivity of Graviola extracts on sane/non-cancerous cells has largely been ignored. The present work reports the in vitro antiproliferative/anticancer behavior of an ethanolic Graviola leaf extract on squamous cell carcinoma cell lines 9 and 25 vs. a sane/non-cancerous human gingival fibroblast cell line-1. Our results show that the Graviola extract induces cell death in the squamous cell carcinoma cell lines at all concentrations tested and a dose-dependent biphasic concentration-dependent/hormetic effect on the fibroblastic cells. This suggests that, at low doses, the phytochemicals present in the prepared Graviola extract could offer potential therapeutic avenues for curbing the progression of head and neck cancers.
Collapse
|
553
|
Kamel AS, Wahid A, Abdelkader NF, Ibrahim WW. Boosting amygdaloid GABAergic and neurotrophic machinery via dapagliflozin-enhanced LKB1/AMPK signaling in anxious demented rats. Life Sci 2022; 310:121002. [PMID: 36191679 DOI: 10.1016/j.lfs.2022.121002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022]
Abstract
Anxiety is a neuropsychiatric disturbance that is commonly manifested in various dementia forms involving Alzheimer's disease (AD). The mechanisms underlying AD-associated anxiety haven't clearly recognized the role of energy metabolism in anxiety represented by the amygdala's autophagic sensors; liver kinase B1 (LKB1)/adenosine monophosphate kinase (AMPK). Dapagliflozin (DAPA), a SGLT2 inhibitor, acts as an autophagic activator through LKB1 activation in several diseases including AD. Herein, the propitious yet undetected anxiolytic potential of DAPA as an autophagic enhancer was investigated in AD animal model with emphasis on amygdala's GABAergic neurotransmission and brain-derived neurotrophic factor (BDNF). Alzheimer's disease was induced by ovariectomy (OVX) along with seventy-days-D-galactose (D-Gal) administration (150 mg/kg/day, i.p). On the 43rd day of D-Gal injection, OVX/D-Gal-subjected rats received DAPA (1 mg/kg/day, p.o) alone or with dorsomorphin the AMPK inhibitor (DORSO, 25 μg/rat, i.v.). In the amygdala, LKB1/AMPK were activated by DAPA inducing GABAB2 receptor stimulation; an effect that was abrogated by DORSO. Dapagliflozin also replenished the amygdala GABA, NE, and 5-HT levels along with glutamate suppression. Moreover, DAPA triggered BDNF production with consequent activation of its receptor, TrkB through activating GABAB2-related downstream phospholipase C/diacylglycerol/protein kinase C (PLC/DAG/PKC) signaling. This may promote GABAA expression, verifying the crosstalk between GABAA and GABAB2. The DAPA's anxiolytic effect was visualized by improved behavioral traits in elevated plus maze together with amendment of amygdala' histopathological abnormalities. Thus, the present study highlighted DAPA's anxiolytic effect which was attributed to GABAB2 activation and its function to induce BDNF/TrkB and GABAA expression through PLC/DAG/PKC pathway in AMPK-dependent manner.
Collapse
Affiliation(s)
- Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Egypt
| | - Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
554
|
Yu ZH, Cao M, Wang YX, Yan SY, Qing LT, Wu CM, Li S, Li TY, Chen Q, Zhao J. Urolithin A Attenuates Helicobacter pylori-Induced Damage In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11981-11993. [PMID: 36106620 DOI: 10.1021/acs.jafc.2c03711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Urolithin A (UA) is a metabolite produced in the gut following the consumption of ellagic acid (EA) rich foods. EA has shown anti-inflammatory, antioxidant, and anticancer properties. Because EA is poorly absorbed in the gastrointestinal tract, urolithins are considered to play a major role in bioactivity. Helicobacter pylori (H. pylori) infection is the most common chronic bacterial infection all over the world. It is potentially hazardous to humans because of its relationship to various gastrointestinal diseases. In this study, we investigated the effect of UA on inflammation by H. pylori. The results indicated that UA attenuated H. pylori-induced inflammation in vitro and in vivo. UA also reduced the secretion of H. pylori virulence factors and tissue injuries in mice. Furthermore, UA decreased the relative abundance of Helicobacteraceae in feces of H. pylori-infected mice. In summary, taking UA effectively inhibited the injury caused by H. pylori.
Collapse
Affiliation(s)
- Zhi-Hao Yu
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Mei Cao
- Core Laboratory, School of Medicine, Sichuan Provincial People's Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan-Xiao Wang
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shi-Ying Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Li-Ting Qing
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Cheng-Meng Wu
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shu Li
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Tian-Yi Li
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qian Chen
- Irradiation Preservation Technology Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610101, China
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
555
|
Khalid W, Arshad MS, Ranjha MMAN, Różańska MB, Irfan S, Shafique B, Rahim MA, Khalid MZ, Abdi G, Kowalczewski PŁ. Functional constituents of plant-based foods boost immunity against acute and chronic disorders. Open Life Sci 2022; 17:1075-1093. [PMID: 36133422 PMCID: PMC9462539 DOI: 10.1515/biol-2022-0104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Plant-based foods are becoming an increasingly frequent topic of discussion, both scientific and social, due to the dissemination of information and exchange of experiences in the media. Plant-based diets are considered beneficial for human health due to the supply of many valuable nutrients, including health-promoting compounds. Replacing meat-based foods with plant-based products will provide many valuable compounds, including antioxidants, phenolic compounds, fibers, vitamins, minerals, and some ω3 fatty acids. Due to their high nutritional and functional composition, plant-based foods are beneficial in acute and chronic diseases. This article attempts to review the literature to present the most important data on nutrients of plant-based foods that can then help in the prevention of many diseases, such as different infections, such as coronavirus disease, pneumonia, common cold and flu, asthma, and bacterial diseases, such as bronchitis. A properly structured plant-based diet not only provides the necessary nutrients but also can help in the prevention of many diseases.
Collapse
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Sajid Arshad
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | | | - Maria Barbara Różańska
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 60-624 Poznań, Poland
| | - Shafeeqa Irfan
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Bakhtawar Shafique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Abdul Rahim
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | | | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran
| | | |
Collapse
|
556
|
Sahashi H, Kato A, Yoshida M, Hayashi K, Naitoh I, Hori Y, Natsume M, Jinno N, Kachi K, Asano G, Toyohara T, Kito Y, Ammanamanchi S, Kataoka H. Urolithin A targets the AKT/WNK1 axis to induce autophagy and exert anti-tumor effects in cholangiocarcinoma. Front Oncol 2022; 12:963314. [PMID: 36212467 PMCID: PMC9539031 DOI: 10.3389/fonc.2022.963314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Urolithin A (UA; 3,8-dihydroxybenzo[c]chromen-6-one), a metabolite generated by intestinal bacteria during the biotransformation of ellagitannins, has gained considerable attention in treating several cancers. Cholangiocarcinoma (CCA) remains one of the most lethal cancers; it grows in a special environment constantly exposed to both blood and bile. Since UA is known to undergo enterohepatic recirculation, we hypothesized that UA might have significant antitumor effects in CCA. Here, we investigated the therapeutic potential of UA in CCA and aimed to elucidate its mechanisms, including autophagy. UA treatment inhibited cell proliferation and induced G2/M phase cell cycle arrest in CCA cells. UA also suppressed cell migration and invasion, but did not cause apoptosis. Furthermore, Western blotting and immunocytochemistry demonstrated increased LC3-II accumulation, while electron microscopy demonstrated induced autophagosomes after UA treatment, suggesting that UA upregulated autophagy in CCA cells. In xenograft mice treated with UA, tumor growth was inhibited with increased LC3-II levels. On the other hand, phospho-kinase array demonstrated downregulation of the AKT/WNK1 pathway. LC3-II expression was elevated in WNK1 knocked down cells, indicating that WNK1 is the key signal for regulating autophagy. Thus, UA exerted antitumor effects by suppressing the AKT/WNK1 signaling pathway and inducing autophagy. In conclusion, UA, a natural, well-tolerated compound, may be a promising therapeutic candidate for advanced CCA.
Collapse
Affiliation(s)
- Hidenori Sahashi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Akihisa Kato
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
- *Correspondence: Akihisa Kato,
| | - Michihiro Yoshida
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuki Hayashi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Itaru Naitoh
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yasuki Hori
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Natsume
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Naruomi Jinno
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kenta Kachi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Go Asano
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Tadashi Toyohara
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yusuke Kito
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Sudhakar Ammanamanchi
- Department of Internal Medicine, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
557
|
Ramírez-Pavez T, García-Peñaranda A, Garcia-Ibañez P, Yepes-Molina L, Carvajal M, Ruiz-Alcaraz AJ, Moreno DA, García-Peñarrubia P, Martínez-Esparza M. Potential of Sulforaphane and Broccoli Membrane Vesicles as Regulators of M1/M2 Human Macrophage Activity. Int J Mol Sci 2022; 23:ijms231911141. [PMID: 36232440 PMCID: PMC9570499 DOI: 10.3390/ijms231911141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
Macrophages have emerged as important therapeutic targets in many human diseases. The aim of this study was to analyze the effect of broccoli membrane vesicles and sulphoraphane (SFN), either free or encapsulated, on the activity of human monocyte-derived M1 and M2 macrophage primary culture. Our results show that exposure for 24 h to SFN 25 µM, free and encapsulated, induced a potent reduction on the activity of human M1 and M2 macrophages, downregulating proinflammatory and anti-inflammatory cytokines and phagocytic capability on C. albicans. The broccoli membrane vesicles do not represent inert nanocarriers, as they have low amounts of bioactive compounds, being able to modulate the cytokine production, depending on the inflammatory state of the cells. They could induce opposite effects to that of higher doses of SFN, reflecting its hormetic effect. These data reinforce the potential use of broccoli compounds as therapeutic agents not only for inflammatory diseases, but they also open new clinical possibilities for applications in other diseases related to immunodeficiency, autoimmunity, or in cancer therapy. Considering the variability of their biological effects in different scenarios, a proper therapeutic strategy with Brassica bioactive compounds should be designed for each pathology.
Collapse
Affiliation(s)
- Tamara Ramírez-Pavez
- Biochemistry and Molecular Biology (B) and Immunology Department, School of Medicine, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
| | - Andrea García-Peñaranda
- Biochemistry and Molecular Biology (B) and Immunology Department, School of Medicine, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - Lucía Yepes-Molina
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - Antonio J. Ruiz-Alcaraz
- Biochemistry and Molecular Biology (B) and Immunology Department, School of Medicine, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
| | - Diego A. Moreno
- Phytochemistry and Healthy Food Lab (LabFAS), Department of Food Science Technology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - Pilar García-Peñarrubia
- Biochemistry and Molecular Biology (B) and Immunology Department, School of Medicine, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
| | - María Martínez-Esparza
- Biochemistry and Molecular Biology (B) and Immunology Department, School of Medicine, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
- Correspondence: ; Tel.: +34-868883989
| |
Collapse
|
558
|
Cosentino M, Marino F. Understanding the Pharmacology of COVID-19 mRNA Vaccines: Playing Dice with the Spike? Int J Mol Sci 2022; 23:10881. [PMID: 36142792 PMCID: PMC9502275 DOI: 10.3390/ijms231810881] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) mRNA vaccines are the mainstays of mass vaccination campaigns in most Western countries. However, the emergency conditions in which their development took place made it impossible to fully characterize their effects and mechanism of action. Here, we summarize and discuss available evidence indicating that COVID-19 mRNA vaccines better reflect pharmaceutical drugs than conventional vaccines, as they do not contain antigens but an active SARS-CoV-2 S protein mRNA, representing at the same time an active principle and a prodrug, which upon intracellular translation results in the endogenous production of the SARS-CoV-2 S protein. Both vaccine-derived SARS-CoV-2 S protein mRNA and the resulting S protein exhibit a complex pharmacology and undergo systemic disposition. Defining COVID-19 mRNA vaccines as pharmaceutical drugs has straightforward implications for their pharmacodynamic, pharmacokinetic, clinical and post-marketing safety assessment. Only an accurate characterization of COVID-19 mRNA vaccines as pharmaceutical drugs will guarantee a safe, rational and individualized use of these products.
Collapse
Affiliation(s)
- Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
| | | |
Collapse
|
559
|
Sang S, Wang L, Liang T, Su M, Li H. Potential role of tea drinking in preventing hyperuricaemia in rats: biochemical and molecular evidence. Chin Med 2022; 17:108. [PMID: 36109783 PMCID: PMC9479443 DOI: 10.1186/s13020-022-00664-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lifestyle and diet play a significant role in hyperuricaemia. Accumulating evidence indicates that tea consumption is associated with hyperuricaemia and gout. However, diverse compounds in different types of tea make it quite difficult to determine the relevant molecular mechanism. Here, we compared the effects of six types of tea on hyperuricaemia induced by potassium oxonate (PO) and hypoxanthine in rats and investigated the possible underlying mechanisms. METHODS Rats were randomly assigned to ten groups: the control, hyperuricaemia model, benzbromarone positive control, traditional Chinese medicine Simiao San positive control, green tea, yellow tea, black tea, white tea, red tea, and cyan tea treatment groups. After 21 days, uric acid (UA), xanthine oxidase (XOD), alanine aminotransferase (ALT),blood urea nitrogen (BUN), and creatinine (CRE) were assessed. Serum levels of interleukin-1β (IL-1β) were measured with an enzyme-linked immunosorbent assay. Haematoxylin-eosin staining and immunohistochemistry were used to assess liver and kidney injury. RESULTS The levels of UA, CRE, and BUN in the treatment group were decreased to varying degrees. There was a significant reduction in UA, CRE, and BUN levels for yellow tea compared to the positive control drugs. Yellow tea suppressed XOD activity and alleviated hepatic and kidney injury. Network pharmacology and untargeted metabolomics indicated that ten yellow tea bioactive ingredients and 35 targets were responsible for preventing hyperuricaemia, which was mediated by 94 signalling pathways, including IL-1β and TNF. CONCLUSION These findings indicate that green tea cannot reduce the serum uric acid level of hyperuricaemic rats. Yellow tea can significantly improve hyperuricaemia by regulating the inflammatory response, autophagy, and apoptosis. This study provides a potential candidate for the treatment of hyperuricaemia and a basis for selecting therapeutic tea for patients with hyperuricaemia.
Collapse
Affiliation(s)
- Siyao Sang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lufei Wang
- MOE Key Laboratory of Contemporary Anthropology, Fudan University, 200438, Shanghai, China
| | - Taotao Liang
- Department of Haematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Tumour Hospital, Zhengzhou, 450008, China
| | - Mingjie Su
- MOE Key Laboratory of Contemporary Anthropology, Fudan University, 200438, Shanghai, China
- Human Phenome Institute, Fudan University, 200438, Shanghai, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, Fudan University, 200438, Shanghai, China.
- Human Phenome Institute, Fudan University, 200438, Shanghai, China.
- Fudan-Datong Institute of Chinese Origin, Shanxi Academy of Advanced Research and Innovation, 037006, Datong, China.
| |
Collapse
|
560
|
Wang Y, Wu S, Li Q, Lang W, Li W, Jiang X, Wan Z, Chen J, Wang H. Epigallocatechin-3-gallate: A phytochemical as a promising drug candidate for the treatment of Parkinson’s disease. Front Pharmacol 2022; 13:977521. [PMID: 36172194 PMCID: PMC9511047 DOI: 10.3389/fphar.2022.977521] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Epigallocatechin 3-gallate (EGCG), an abundant polyphenolic component derived from green tea extract, possesses versatile bioactivities that can combat many diseases. During the last decade, EGCG was shown to be effective in experimental models of Parkinson’s disease (PD). Several experimental studies have suggested that it has pleiotropic neuroprotective effects, which has enhanced the appeal of EGCG as a therapeutic strategy in PD. In this review, we compiled recent updates and knowledge of the molecular mechanisms underlying the neuroprotective effects of EGCG in PD. We focused on the effects of EGCG on apoptosis, oxidative stress, inflammation, ferroptosis, modulation of dopamine production, and the aggregation of α-synuclein. The review highlights the pharmacological features of EGCG and its therapeutic implications in PD. Taken together, the accumulated data indicate that EGCG is a promising neuroprotective compound for the treatment of PD.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Weihong Lang
- Department of Psychological Medicine, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Wenjing Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Xiaodong Jiang
- Department of Anatomy, College of Basic Medicine, Chifeng University Health Science Center, Chifeng, China
| | - Zhirong Wan
- Department of Neurology,Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
- *Correspondence: Jichao Chen, ; Hongquan Wang,
| | - Hongquan Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- *Correspondence: Jichao Chen, ; Hongquan Wang,
| |
Collapse
|
561
|
Li CZ, Hu TY. Nanotechnology Powered CRISPR-Cas Systems for Point of Care Diagnosis and Therapeutic. Research (Wash D C) 2022; 2022:9810237. [PMID: 36157513 PMCID: PMC9484831 DOI: 10.34133/2022/9810237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chen-zhong Li
- Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1324 Tulane Ave. New Orleans, LA 70112, USA
| | - Tony Y. Hu
- Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1324 Tulane Ave. New Orleans, LA 70112, USA
| |
Collapse
|
562
|
Autoimmune Diseases Induced or Exacerbated by COVID-19: A Single Center Experience. Autoimmune Dis 2022; 2022:9171284. [PMID: 36111059 PMCID: PMC9470368 DOI: 10.1155/2022/9171284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/17/2022] [Accepted: 08/12/2022] [Indexed: 12/03/2022] Open
Abstract
The association between infectious diseases and autoimmunity has long been reported. Specifically, during the coronavirus disease 2019 (COVID-19) pandemic, this relation was further emphasized. The interplay between the two disease processes remains interesting, yet incompletely defined. Herein, we report a case series of six patients presenting with autoimmune phenomena first developed or exacerbated following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We describe the disease course and discuss the possible mechanisms underlying the association between autoimmunity and COVID-19.
Collapse
|
563
|
Nanomaterial-Based Electrochemical Nanodiagnostics for Human and Gut Metabolites Diagnostics: Recent Advances and Challenges. BIOSENSORS 2022; 12:bios12090733. [PMID: 36140118 PMCID: PMC9496054 DOI: 10.3390/bios12090733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
Metabolites are the intermediatory products of metabolic processes catalyzed by numerous enzymes found inside the cells. Detecting clinically relevant metabolites is important to understand their physiological and biological functions along with the evolving medical diagnostics. Rapid advances in detecting the tiny metabolites such as biomarkers that signify disease hallmarks have an immense need for high-performance identifying techniques. Low concentrations are found in biological fluids because the metabolites are difficult to dissolve in an aqueous medium. Therefore, the selective and sensitive study of metabolites as biomarkers in biological fluids is problematic. The different non-electrochemical and conventional methods need a long time of analysis, long sampling, high maintenance costs, and costly instrumentation. Hence, employing electrochemical techniques in clinical examination could efficiently meet the requirements of fully automated, inexpensive, specific, and quick means of biomarker detection. The electrochemical methods are broadly utilized in several emerging and established technologies, and electrochemical biosensors are employed to detect different metabolites. This review describes the advancement in electrochemical sensors developed for clinically associated human metabolites, including glucose, lactose, uric acid, urea, cholesterol, etc., and gut metabolites such as TMAO, TMA, and indole derivatives. Different sensing techniques are evaluated for their potential to achieve relevant degrees of multiplexing, specificity, and sensitivity limits. Moreover, we have also focused on the opportunities and remaining challenges for integrating the electrochemical sensor into the point-of-care (POC) devices.
Collapse
|
564
|
Şener G, Karakadıoglu G, Ozbeyli D, Ede S, Yanardag R, Sacan O, Aykac A. Petroselinum crispum extract ameliorates scopolamine-induced cognitive dysfunction: role on apoptosis, inflammation and oxidative stress. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
565
|
Mishra DK, Awasthi H, Srivastava D, Fatima Z. Phytochemical: a treatment option for heavy metal induced neurotoxicity. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:513-530. [PMID: 35749142 DOI: 10.1515/jcim-2020-0325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals are known to be carcinogenic, mutagenic, and teratogenic. Some heavy metals are necessary while present in the growing medium in moderate concentrations known to be essential heavy metals as they required for the body functioning as a nutrient. But there are some unwanted metals and are also toxic to the environment and create a harmful impact on the body, which termed to be non-essential heavy metals. Upon exposure, the heavy metals decrease the major antioxidants of cells and enzymes with the thiol group and affect cell division, proliferation, and apoptosis. It interacts with the DNA repair mechanism and initiates the production of reactive oxygen species (ROS). It subsequently binds to the mitochondria and may inhibit respiratory and oxidative phosphorylation in even low concentrations. This mechanism leads to damage antioxidant repair mechanism of neuronal cells and turns into neurotoxicity. Now, phytochemicals have led to good practices in the health system. Phytochemicals that are present in the fruits and herbs can preserve upon free radical damage. Thus, this review paper summarized various phytochemicals which can be utilized as a treatment option to reverse the effect of the toxicity caused by the ingestion of heavy metals in our body through various environmental or lifestyles ways.
Collapse
Affiliation(s)
| | - Himani Awasthi
- Amity Institute of Pharmacy, Amity University, Lucknow, India
| | | | - Zeeshan Fatima
- Amity Institute of Pharmacy, Amity University, Lucknow, India
| |
Collapse
|
566
|
Solanki R, Jodha B, Prabina KE, Aggarwal N, Patel S. Recent advances in phytochemical based nano-drug delivery systems to combat breast cancer: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
567
|
da Rosa MM, de Amorim LC, Alves JVDO, Aguiar IFDS, Oliveira FGDS, da Silva MV, dos Santos MTC. The promising role of natural products in Alzheimer's disease. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
568
|
Emami Kazemabad MJ, Asgari Toni S, Tizro N, Dadkhah PA, Amani H, Akhavan Rezayat S, Sheikh Z, Mohammadi M, Alijanzadeh D, Alimohammadi F, Shahrokhi M, Erabi G, Noroozi M, Karimi MA, Honari S, Deravi N. Pharmacotherapeutic potential of pomegranate in age-related neurological disorders. Front Aging Neurosci 2022; 14:955735. [PMID: 36118710 PMCID: PMC9476556 DOI: 10.3389/fnagi.2022.955735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Age-related neurological disorders [AND] include neurodegenerative diseases [NDDs] such as Alzheimer's disease [AD] and Parkinson's disease [PD], which are the most prevalent types of dementia in the elderly. It also includes other illnesses such as migraine and epilepsy. ANDs are multifactorial, but aging is their major risk factor. The most frequent and vital pathological features of AND are oxidative stress, inflammation, and accumulation of misfolded proteins. As AND brain damage is a significant public health burden and its incidence is increasing, much has been done to overcome it. Pomegranate (Punica granatum L.) is one of the polyphenol-rich fruits that is widely mentioned in medical folklore. Pomegranate is commonly used to treat common disorders such as diarrhea, abdominal pain, wound healing, bleeding, dysentery, acidosis, microbial infections, infectious and noninfectious respiratory diseases, and neurological disorders. In the current review article, we aimed to summarize the data on the pharmacotherapeutic potentials of pomegranate in ANDs.
Collapse
Affiliation(s)
| | - Sara Asgari Toni
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Tizro
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parisa Alsadat Dadkhah
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hanieh Amani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Akhavan Rezayat
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Zahra Sheikh
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Mohammadi
- Student Research Committee, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Dorsa Alijanzadeh
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnoosh Alimohammadi
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Masoud Noroozi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Honari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
569
|
Khan MI, Siddiqui S, Barkat MA, Alhodieb FS, Ashfaq F, Barkat HA, Alanezi AA, Arshad M. Moringa oleifera leaf extract induces osteogenic-like differentiation of human osteosarcoma SaOS2 cells. J Tradit Complement Med 2022; 12:608-618. [PMID: 36325245 PMCID: PMC9618397 DOI: 10.1016/j.jtcme.2022.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Moringa oleifera is known as a ‘natural nutrition of the tropics’ because it provides vital nutritional supplements and a variety of pharmacological benefits. The focus of this study was to elucidate the dose dependent effects of Moringa oleifera leaf (MOL) extract on the growth of the human osteoblast-like osteosarcoma SaOS-2 cell line and primary osteoblast cells. Methods Trypan blue & tetrazolium assay, intracellular ROS generation, chromatin condensation, cell cycle analysis, alkaline phosphatase (ALP), mineralization, and osteogenic gene expression were tested on both treated and untreated osteosarcoma SaOS-2 cells. Results As revealed by cell viability assay, growth activity was observed at concentrations 25 and 50 μg/mL of MOL extract, whereas 100 and 200 μg/mL doses decreased the proliferation activity, resulting in ROS production and chromatin condensation. Cell cycle study revealed that MOL extract at 50 and 100 μg/mL concentrations arrested the cells in the G2/M phase. Low doses increased the ALP levels, mineralization, and expression of the bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (Runx2) genes in osteoblast-like SaOS-2 cells, however, high doses inhibited the proliferation properties of MOL extract. Through AutoDock Vina and iGEMDOCK 2.1, the interaction of active components of MOL, such as β-sitosterol, quercetin and kaempferol, with BMP2 and Runx2 proteins revealed a reasonable binding affinity. Moreover, these components did not show any Lipinski's rule of five violation and showed predictable pharmacokinetic properties. Conclusion The results of the biphasic dose-response of MOL extract on the growth activity of osteoblast-like SaOS-2 cells and in silico binding interface, may provide a therapeutic and/or preventive implication in prospective drug development. Low doses of Moringa oleifera leaf (MOL) extract increased the cell viability of SaOS-2 cells and primary osteoblasts. High doses decreased the growth, resulting in ROS production and chromatin condensation and cell cycle arrest. Small doses increased the ALP levels, mineralization, and BMP2 and Runx2 genes expression, and vice versa. In silico analysis showed good binding interaction of active components of MOL with BMP2 and Runx2 proteins. The biphasic dose-response of MOL and in silico analysis may provide an implication for prospective drug development.
Collapse
|
570
|
Xu Z, Li S, Li K, Wang X, Li X, An M, Yu X, Long X, Zhong R, Liu Q, Wang X, Yang Y, Tian N. Urolithin A ameliorates diabetic retinopathy via activation of the Nrf2/HO-1 pathway. Endocr J 2022; 69:971-982. [PMID: 35321989 DOI: 10.1507/endocrj.ej21-0490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a progressive microvascular complication of diabetes mellitus and is characterised by excessive inflammation and oxidative stress. Urolithin A (UA), a major metabolite of ellagic acid, exerts anti-inflammatory and antioxidant functions in various human diseases. This study, for the first time, uncovered the role of UA in DR pathogenesis. Streptozotocin-induced diabetic rats were used to determine the effects of UA on blood glucose levels, retinal structures, inflammation, and oxidative stress. High glucose (HG)-induced human retinal endothelial cells (HRECs) were used to elucidate the anti-inflammatory and antioxidant mechanisms of UA in DR in vitro. The in vivo experiments demonstrated that UA injection reduced blood glucose levels, decreased albumin and vascular endothelial growth factor concentrations, and ameliorated the injured retinal structures caused by DR. UA administration also inhibited inflammation and oxidative damage in the retinal tissues of diabetic rats. Similar anti-inflammatory and antioxidant effects of UA were observed in HRECs induced by HG. Furthermore, we found that UA elevated the levels of nuclear Nrf2 and HO-1 both in vivo and in vitro. Nrf2 silencing reversed the inhibitory effects of UA on inflammation and oxidative stress during DR progression. Together, our findings indicate that UA can ameliorate DR by repressing inflammation and oxidative stress via the Nrf2/HO-1 pathway, which suggests that UA could be an effective drug for clinical DR treatment.
Collapse
Affiliation(s)
- Zepeng Xu
- Department of Ophthalmology, Wuyi Hospital of Traditional Chinese Medicine, Guangdong Province, 529000, China
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Songtao Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Kunmeng Li
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xiaoyu Wang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xiaojie Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Meixia An
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, Guangdong Province, 510630, China
| | - Xiaoyi Yu
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xinguang Long
- Department of Ophthalmology, Wuyi Hospital of Traditional Chinese Medicine, Guangdong Province, 529000, China
| | - Ruiying Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Qiuhong Liu
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xiaochuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Yan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Ni Tian
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| |
Collapse
|
571
|
Dentoni G, Castro-Aldrete L, Naia L, Ankarcrona M. The Potential of Small Molecules to Modulate the Mitochondria-Endoplasmic Reticulum Interplay in Alzheimer's Disease. Front Cell Dev Biol 2022; 10:920228. [PMID: 36092728 PMCID: PMC9459385 DOI: 10.3389/fcell.2022.920228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting a growing number of elderly individuals. No disease-modifying drugs have yet been identified despite over 30 years of research on the topic, showing the need for further research on this multifactorial disease. In addition to the accumulation of amyloid β-peptide (Aβ) and hyperphosphorylated tau (p-tau), several other alterations have been associated with AD such as calcium (Ca2+) signaling, glucose-, fatty acid-, cholesterol-, and phospholipid metabolism, inflammation, and mitochondrial dysfunction. Interestingly, all these processes have been associated with the mitochondria-endoplasmic reticulum (ER) contact site (MERCS) signaling hub. We and others have hypothesized that the dysregulated MERCS function may be one of the main pathogenic pathways driving AD pathology. Due to the variety of biological processes overseen at the MERCS, we believe that they constitute unique therapeutic targets to boost the neuronal function and recover neuronal homeostasis. Thus, developing molecules with the capacity to correct and/or modulate the MERCS interplay can unleash unique therapeutic opportunities for AD. The potential pharmacological intervention using MERCS modulators in different models of AD is currently under investigation. Here, we survey small molecules with the potential to modulate MERCS structures and functions and restore neuronal homeostasis in AD. We will focus on recently reported examples and provide an overview of the current challenges and future perspectives to develop MERCS modulators in the context of translational research.
Collapse
Affiliation(s)
| | | | | | - Maria Ankarcrona
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Science and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
572
|
Mehdi A, Lamiae B, Samira B, Ramchoun M, Abdelouahed K, Tamas F, Hicham B. Pomegranate ( Punica granatum L.) Attenuates Neuroinflammation Involved in Neurodegenerative Diseases. Foods 2022; 11:2570. [PMID: 36076756 PMCID: PMC9455244 DOI: 10.3390/foods11172570] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Food scientists have studied the many health benefits of polyphenols against pernicious human diseases. Evidence from scientific studies has shown that earlier healthy lifestyle changes, particularly in nutrition patterns, can reduce the burden of age-related diseases. In this context, a large number of plant-derived components belonging to the class of polyphenols have been reported to possess neuroprotective benefits. In this review, we examined studies on the effect of dietary polyphenols, notably from Punica granatum L., on neurodegenerative disease, including Alzheimer's disease, which is symptomatically characterized by impairment of cognitive functions. Clinical trials are in favor of the role of some polyphenols in maintaining neuronal homeostasis and attenuating clinical presentations of the disease. However, discrepancies in study design often bring inconsistent findings on the same component and display differences in their effectiveness due to interindividual variability, bioavailability in the body after administration, molecular structures, cross-blood-brain barrier, and signaling pathways such as nuclear factor kappa B (NF-κB). Based on preclinical and clinical trials, it appears that pomegranate may prove valuable in treating neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). Therefore, due to the lack of information on human clinical trials, future in-depth studies, focusing on human beings, of several bioactive components of pomegranate's polyphenols and their synergic effects should be carried out to evaluate their curative treatment.
Collapse
Affiliation(s)
- Alami Mehdi
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Benchagra Lamiae
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Boulbaroud Samira
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Khalil Abdelouahed
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Fulop Tamas
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Berrougui Hicham
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| |
Collapse
|
573
|
Mousavi M, Abedimanesh N, Mohammadnejad K, Sharini E, Nikkhah M, Eskandari MR, Motlagh B, Mohammadnejad J, Khodabandehloo H, Fathi M, Talebi M. Betanin alleviates oxidative stress through the Nrf2 signaling pathway in the liver of STZ-induced diabetic rats. Mol Biol Rep 2022; 49:9345-9354. [DOI: 10.1007/s11033-022-07781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 10/15/2022]
|
574
|
Thiruvengadam M, Chung IM, Samynathan R, Chandar SRH, Venkidasamy B, Sarkar T, Rebezov M, Gorelik O, Shariati MA, Simal-Gandara J. A comprehensive review of beetroot ( Beta vulgaris L.) bioactive components in the food and pharmaceutical industries. Crit Rev Food Sci Nutr 2022; 64:708-739. [PMID: 35972148 DOI: 10.1080/10408398.2022.2108367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Beetroot is rich in various bioactive phytochemicals, which are beneficial for human health and exert protective effects against several disease conditions like cancer, atherosclerosis, etc. Beetroot has various therapeutic applications, including antioxidant, antibacterial, antiviral, and analgesic functions. Besides the pharmacological effects, food industries are trying to preserve beetroots or their phytochemicals using various food preservation methods, including drying and freezing, to preserve their antioxidant capacity. Beetroot is a functional food due to valuable active components such as minerals, amino acids, phenolic acid, flavonoid, betaxanthin, and betacyanin. Due to its stability, nontoxic and non-carcinogenic and nonpoisonous capabilities, beetroot has been used as an additive or preservative in food processing. Beetroot and its bioactive compounds are well reported to possess antioxidant, anti-inflammatory, antiapoptotic, antimicrobial, antiviral, etc. In this review, we provided updated details on (i) food processing, preservation and colorant methods using beetroot and its phytochemicals, (ii) synthesis and development of several nanoparticles using beetroot and its bioactive compounds against various diseases, (iii) the role of beetroot and its phytochemicals under disease conditions with molecular mechanisms. We have also discussed the role of other phytochemicals in beetroot and their health benefits. Recent technologies in food processing are also updated. We also addressed on molecular docking-assisted biological activity and screening for bioactive chemicals. Additionally, the role of betalain from different sources and its therapeutic effects have been listed. To the best of our knowledge, little or no work has been carried out on the impact of beetroot and its nanoformulation strategies for phytocompounds on antimicrobial, antiviral effects, etc. Moreover, epigenetic alterations caused by phytocompounds of beetroot under several diseases were not reported much. Thus, extensive research must be carried out to understand the molecular effects of beetroot in the near future.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | | | | | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Maksim Rebezov
- Department of Scientific Advisers, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and management (The First Cossack University), Moscow, Russia Federation
| | - Olga Gorelik
- Faculty of Biotechnology and Food Engineering, Ural State Agrarian University, Yekaterinburg, Russian Federation
- Ural Federal Agrarian Research Center of the Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and management (The First Cossack University), Moscow, Russia Federation
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| |
Collapse
|
575
|
Gandhi GR, Antony PJ, Ceasar SA, Vasconcelos ABS, Montalvão MM, Farias de Franca MN, Resende ADS, Sharanya CS, Liu Y, Hariharan G, Gan RY. Health functions and related molecular mechanisms of ellagitannin-derived urolithins. Crit Rev Food Sci Nutr 2022; 64:280-310. [PMID: 35959701 DOI: 10.1080/10408398.2022.2106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ellagitannins are vital bioactive polyphenols that are widely distributed in a variety of plant-based foods. The main metabolites of ellagitannins are urolithins, and current research suggests that urolithins provide a variety of health benefits. This review focused on the role of the gut bacteria in the conversion of ellagitannins to urolithins. Based on the results of in vitro and in vivo studies, the health benefits of urolithins, including antioxidant, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, anti-aging, cardiovascular protective, neuroprotective, kidney protective, and muscle mass protective effects, were thoroughly outlined, with a focus on their associated molecular mechanisms. Finally, we briefly commented on urolithins' safety. Overall, urolithins' diverse health benefits indicate the potential utilization of ellagitannins and urolithins in the creation of functional foods and nutraceuticals to treat and prevent some chronic diseases.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamaserry, Kochi, India
| | | | | | - Alan Bruno Silva Vasconcelos
- Postgraduate Program of Physiological Sciences (PROCFIS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Monalisa Martins Montalvão
- Postgraduate Program of Physiological Sciences (PROCFIS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Mariana Nobre Farias de Franca
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP, Sergipe, Brazil
| | - Ayane de Sá Resende
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP, Sergipe, Brazil
| | | | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Govindasamy Hariharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous) affiliated to the Bharathidasan University, Tiruchirapalli, India
| | - Ren-You Gan
- Nepal Jesuit Society, St. Xavier's College, Jawalakhel, Lalitpur Dt. Kathmandu, Nepal
| |
Collapse
|
576
|
Abdelghany AK, El-Nahass ES, Ibrahim MA, El-Kashlan AM, Emeash HH, Khalil F. Neuroprotective role of medicinal plant extracts evaluated in a scopolamine-induced rat model of Alzheimer's disease. Biomarkers 2022; 27:773-783. [PMID: 35950787 DOI: 10.1080/1354750x.2022.2112975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BackgroundAlzheimer's disease is a debilitating neurological brain disease with memory impairment among the first signs. Scopolamine (SCO), a muscarinic receptor antagonist that disrupts cognition and memory acquisition, is considered a psychopharmacological AD model. We investigate the effectiveness of medicinal plants in mitigating the SCO-induced neurobehavioural damage in rats.Materials and MethodsAnimals were injected with Scopolamine hydrobromide trihydrate (2.2 mg/kg IP.) daily for 2 months. Each treatment group was administered one of four medicinal spice extracts (Nigella sativa, 400 mg/kg; rosemary, 200 mg/kg; sage, 600 mg/kg and ginseng;200 mg/kg 90 minutes after SCO injection. Animals were subjected to cognitive-behavioral tests (NOR, Y-maze, and MWM). After the experiment, we extracted the brains for histopathological examination and biochemical assessment for oxidative stress (levels of TT, CAT and TBARS) and gene expression of acetylcholinesterase and brain monoamines.ResultsAs expected, SCO treatment impaired memory and cognition, increased oxidative stress, decreased neurotransmitters, and caused severe neurodegenerative changes in the brain.ConclusionSurprisingly, these effects were measurably moderated by the administration of all four plant extracts, indicating a neuroprotective action that we suggest could alleviate AD disease manifestations.
Collapse
Affiliation(s)
- Asmaa K Abdelghany
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - El-Shymaa El-Nahass
- Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University
| | - Akram M El-Kashlan
- Biochemistry Department, Faculty of Pharmacy, University of Sadat City, Monufia, Egypt
| | - H H Emeash
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma Khalil
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
577
|
Bhidayasiri R, Phuenpathom W, Tan AH, Leta V, Phumphid S, Chaudhuri KR, Pal PK. Management of dysphagia and gastroparesis in Parkinson's disease in real-world clinical practice - Balancing pharmacological and non-pharmacological approaches. Front Aging Neurosci 2022; 14:979826. [PMID: 36034128 PMCID: PMC9403060 DOI: 10.3389/fnagi.2022.979826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 12/23/2022] Open
Abstract
Gastrointestinal (GI) issues are commonly experienced by patients with Parkinson's disease (PD). Those that affect the lower GI tract, such as constipation, are the most frequently reported GI problems among patients with PD. Upper GI issues, such as swallowing dysfunction (dysphagia) and delayed gastric emptying (gastroparesis), are also common in PD but are less well recognized by both patients and clinicians and, therefore, often overlooked. These GI issues may also be perceived by the healthcare team as less of a priority than management of PD motor symptoms. However, if left untreated, both dysphagia and gastroparesis can have a significant impact on the quality of life of patients with PD and on the effectiveness on oral PD medications, with negative consequences for motor control. Holistic management of PD should therefore include timely and effective management of upper GI issues by utilizing both non-pharmacological and pharmacological approaches. This dual approach is key as many pharmacological strategies have limited efficacy in this setting, so non-pharmacological approaches are often the best option. Although a multidisciplinary approach to the management of GI issues in PD is ideal, resource constraints may mean this is not always feasible. In 'real-world' practice, neurologists and PD care teams often need to make initial assessments and treatment or referral recommendations for their patients with PD who are experiencing these problems. To provide guidance in these cases, this article reviews the published evidence for diagnostic and therapeutic management of dysphagia and gastroparesis, including recommendations for timely and appropriate referral to GI specialists when needed and guidance on the development of an effective management plan.
Collapse
Affiliation(s)
- Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Warongporn Phuenpathom
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Valentina Leta
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, Parkinson’s Foundation Centre of Excellence, King’s College London, London, United Kingdom
| | - Saisamorn Phumphid
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - K. Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, Parkinson’s Foundation Centre of Excellence, King’s College London, London, United Kingdom
| | - Pramod Kumar Pal
- National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
578
|
Chavda VP, Jogi G, Paiva-Santos AC, Kaushik A. Biodegradable and removable implants for controlled drug delivery and release application. Expert Opin Drug Deliv 2022; 19:1177-1181. [PMID: 35929995 DOI: 10.1080/17425247.2022.2110065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Conventional drug delivery route has several limitations such as hepatic first-pass metabolism, gastric issues, hypersensitivity reactions, etc. Additionally, such approaches are not found to be patient compliant, especially for chronic diseases. Conversely, implantable, polymeric drug delivery systems provide prolonged as well as controlled release of drug from the device implanted in the body. This editorial summarizes various types of implantable drug delivery systems along with their associated advantages and challenges. Additionally, recent advances in this field such as shape memory-based polymeric implants and 3-D printed implants are also discussed carefully and critically.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad - 380009, Gujarat, India
| | - Gargi Jogi
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad - 380009, Gujarat, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ajeet Kaushik
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India.,NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, Florida, USA
| |
Collapse
|
579
|
Alos HC, Billones JB, Castillo AL, Vasquez RD. Alpinumisoflavone against cancer pro-angiogenic targets: In silico, In vitro, and In ovo evaluation. Daru 2022; 30:273-288. [PMID: 35925539 PMCID: PMC9715906 DOI: 10.1007/s40199-022-00445-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/16/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Breast cancer is currently the world's most predominant malignancy. In cancer progression, angiogenesis is a requirement for tumor growth and metastasis.Alpinumisoflavone (AIF), a bioactive isoflavonoid, exhibited good binding affinity with the angiogenesis pathway's druggable target through molecular docking. OBJECTIVES To confirm AIF's angiogenesis inhibitory activity, cytotoxic potential toward breast cancer cells, and druggability. METHODS Antiangiogenic activity was evaluated in six pro-angiogenic proteins in vitro, duck chorioallantoic membrane (CAM) in ovo, molecular docking and druggability in silico. RESULTS Findings showed that AIF significantly inhibited (p = < 0.001) the HER2(IC50 = 2.96 µM), VEGFR-2(IC50 = 4.80 µM), MMP-9(IC50 = 23.00 µM), FGFR4(IC50 = 57.65 µM), EGFR(IC50 = 92.06 µM) and RET(IC50 = > 200 µM) activity in vitro.AIF at 25 µM-200 µM significantly inhibited (p = < 0.001) the total number of branch points (IC50 = 14.25 μM) and mean length of tubule complexes (IC50 = 3.52 μM) of duck CAM comparable (p = > 0.001) with the positive control 200 µM celecoxib on both parameters.AIF inhibited the growth of the estrogen-receptor-positive (ER +) human breast cancer cells (MCF-7) by 44.92 ± 1.79% at 100 µM while presenting less toxicity to human dermal fibroblast neonatal (HDFn) normal cells.The positive control 100 µM doxorubicin showed 86.66 ± 0.93% and 92.97 ± 1.27% inhibition with MCF-7 (IC50 = 3.62 μM) and HDFn, (IC50 = 27.16 μM) respectively.In docking, AIF has the greatest in silico binding affinity on HER2 (-10.9 kcal/mol) among the key angiogenic molecules tested. In silico rat oral LD50 calculation indicates that AIF is moderate to slightly toxic at 146.4 mg/kg with 1.1 g/kg and 20.1 mg/kg upper and lower 95% confidence limits. Lastly, it sufficiently complies with Lipinski's, Veber's, Egan's, Ghose's, and Muegge's Rule, supporting its oral drug-like property. CONCLUSION This study revealed that AIF possesses characteristics of a phytoestrogen compound with significant binding affinity, inhibitory activity against pro-angiogenic proteins, and cytotoxic potential against ER + breast cancer cells.The acceptable and considerable safety and drug-likeness profiles of AIF are worthy of further confirmation in vivo and advanced pre-clinical studies so that AIF can be elevated as a promising molecule for breast cancer therapy.
Collapse
|
580
|
Abstract
In the last years, the use of natural phytochemical compounds as protective agents in the prevention and treatment of obesity and the related-metabolic syndrome has gained much attention worldwide. Different studies have shown health benefits for many vegetables such Opuntia ficus-indica and Beta vulgaris and their pigments collectively referred as betalains. Betalains exert antioxidative, anti-inflammation, lipid lowering, antidiabetic and anti-obesity effects. This review summarizes findings in the literature and highlights the therapeutic potential of betalains and their natural source as valid alternative for supplementation in obesity-related disorders treatment. Further research is needed to establish the mechanisms through which these natural pigments exert their beneficial effects and to translate the promising findings from animal models to humans.
Collapse
Affiliation(s)
- Pasquale Calvi
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy.,Dipartment of Biomedicine, Neuroscience and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Simona Terzo
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy
| | - Antonella Amato
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy
| |
Collapse
|
581
|
Bird Cherry (Prunus padus) Fruit Extracts Inhibit Lipid Peroxidation in PC Liposomes: Spectroscopic, HPLC, and GC–MS Studies. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The antioxidant potential of bird cherry fruit of water, methanol, ethanol, and acetone extracts and their antioxidant efficiency against oxidation of PC liposomes using spectroscopic and chromatographic methods were investigated. The chromatographic methods quantified and specified the presence of phenolic and flavonoid compounds in the investigated extracts. The characteristic peaks in the UV spectrum at 275 nm and 370 nm confirmed the presence of phenols and flavonoids and their derivatives. Their presence was also confirmed by FTIR spectra, which revealed the presence of its functional groups. The total luminescence spectra with maxima at 314–318 nm, 325–355 nm, and 428–435 nm were ascribed to the presence of phenolic acids and tocopherols. The antioxidant properties of extracts and its inhibition properties against lipid peroxidation in PC liposomes were determined by fluorogenic probes DCF-H and C11-BODIPY581/591. The measured antioxidant properties against generated free radicals in aqueous and lipogenic phases revealed differences between extracts depending on their physicochemical properties with the greatest potential for acetone extract and sirup. The presented quantitative analysis indicated that cherry bird extracts possess significant amounts of phenolics and flavonoids, thus having the opportunity to be used as a natural antioxidant agent source with a large potential for application in pharmaceutical and food industries.
Collapse
|
582
|
Marino A, Battaglini M, Moles N, Ciofani G. Natural Antioxidant Compounds as Potential Pharmaceutical Tools against Neurodegenerative Diseases. ACS OMEGA 2022; 7:25974-25990. [PMID: 35936442 PMCID: PMC9352343 DOI: 10.1021/acsomega.2c03291] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 06/01/2023]
Abstract
Natural antioxidants are a very large diversified family of molecules classified by activity (enzymatic or nonenzymatic), chemical-physical properties (e.g., hydrophilic or lipophilic), and chemical structure (e.g., vitamins, polyphenols, etc.). Research on natural antioxidants in various fields, such as pharmaceutics, nutraceutics, and cosmetics, is among the biggest challenges for industry and science. From a biomedical point of view, the scavenging activity of reactive oxygen species (ROS) makes them a potential tool for the treatment of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, dementia, and amyotrophic lateral sclerosis (ALS). In addition to the purified phytochemical compounds, a variety of natural extracts characterized by a complex mixture of antioxidants and anti-inflammatory molecules have been successfully exploited to rescue preclinical models of these diseases. Extracts derived from Ginkgo biloba, grape, oregano, curcumin, tea, and ginseng show multitherapeutic effects by synergically acting on different biochemical pathways. Furthermore, the reduced toxicity associated with many of these compounds limits the occurrence of side effects. The support of nanotechnology for improving brain delivery, controlling release, and preventing rapid degradation and excretion of these compounds is of fundamental importance. This review reports on the most promising results obtained on in vitro systems, in vivo models, and in clinical trials, by exploiting natural-derived antioxidant compounds and extracts, in their free form or encapsulated in nanocarriers.
Collapse
Affiliation(s)
- Attilio Marino
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Matteo Battaglini
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Nadia Moles
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- Politecnico
di Torino, Department of Mechanical
and Aerospace Engineering, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Gianni Ciofani
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
583
|
Rudiansyah M, Abdalkareem Jasim S, S Azizov B, Samusenkov V, Kamal Abdelbasset W, Yasin G, Mohammad HJ, Jawad MA, Mahmudiono T, Hosseini-Fard SR, Mirzaei R, Karampoor S. The emerging microbiome-based approaches to IBD therapy: From SCFAs to urolithin A. J Dig Dis 2022; 23:412-434. [PMID: 36178158 DOI: 10.1111/1751-2980.13131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic gastrointestinal inflammatory conditions which can be life-threatening, affecting both children and adults. Crohn's disease and ulcerative colitis are the two main forms of IBD. The pathogenesis of IBD is complex and involves genetic background, environmental factors, alteration in gut microbiota, aberrant immune responses (innate and adaptive), and their interactions, all of which provide clues to the identification of innovative diagnostic or prognostic biomarkers and the development of novel treatments. Gut microbiota provide significant benefits to its host, most notably via maintaining immunological homeostasis. Furthermore, changes in gut microbial populations may promote immunological dysregulation, resulting in autoimmune diseases, including IBD. Investigating the interaction between gut microbiota and immune system of the host may lead to a better understanding of the pathophysiology of IBD as well as the development of innovative immune- or microbe-based therapeutics. In this review we summarized the most recent findings on innovative therapeutics for IBD, including microbiome-based therapies such as fecal microbiota transplantation, probiotics, live biotherapeutic products, short-chain fatty acids, bile acids, and urolithin A.
Collapse
Affiliation(s)
- Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat, Ulin Hospital, Banjarmasin, Indonesia
| | - Saade Abdalkareem Jasim
- Al-Maarif University College Medical Laboratory Techniques Department Al-Anbar-Ramadi, Ramadi, Iraq
| | - Bakhadir S Azizov
- Department of Therapeutic Disciplines No.1, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Ghulam Yasin
- Department of Botany University of Bahauddin Zakariya University, Multan, Pakistan
| | | | | | - Trias Mahmudiono
- Department of Nutrition Faculty of Public Health Universitas, Airlangga, Indonesia
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
584
|
Duan J, Pan J, Sun M, Fang Y. Comparative Multiomics Study of the Effects of Ellagic Acid on the Gut Environment in Young and Adult Mice. Food Res Int 2022; 161:111819. [DOI: 10.1016/j.foodres.2022.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
|
585
|
Ibrahim N, Abbas H, El-Sayed NS, Gad HA. Rosmarinus officinalis L. hexane extract: phytochemical analysis, nanoencapsulation, and in silico, in vitro, and in vivo anti-photoaging potential evaluation. Sci Rep 2022; 12:13102. [PMID: 35907916 PMCID: PMC9338973 DOI: 10.1038/s41598-022-16592-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
A shift towards natural anti-aging ingredients has spurred the research to valorize traditionally used plants. In this context, Rosmarinus officinalis L. was evaluated for its photoprotective, antioxidant, anti-inflammatory, and anti-wrinkling properties. GC/MS and LC-ESI-HRMS based phytochemical profiling of rosemary leaves hexane extract resulted in the identification of 47 and 31 compounds, respectively and revealed rich content in triterpenoids, monoterpenoids and phenolic diterpenes. In vitro assays confirmed the antioxidant, anti-aging, and wound healing potential of rosemary extract along with a good safety profile, encouraging further development. A systematic molecular modelling study was conducted to elucidate the mechanistic background of rosemary anti-aging properties through the inhibitory effects of its major constituents against key anti-aging targets viz. elastase, collagenase, and hyaluronidase. Development of rosemary extract lipid nanocapsules-based mucoadhesive gels was performed to improve skin contact, permeation, and bioavailability prior to in vivo testing. The developed formulae demonstrated small particle size (56.55–66.13 nm), homogenous distribution (PDI of 0.207–0.249), and negatively charged Zeta potential (− 13.4 to − 15.6). In UVB-irradiated rat model, topical rosemary hexane extract-loaded lipid nanocapsules-based gel provided photoprotection, restored the antioxidant biochemical state, improved epidermal and dermal histological features, and decreased the level of inflammatory and wrinkling markers. The use of rosemary hexane extract in anti-aging and photoprotective cosmeceuticals represents a safe, efficient, and cost-effective approach.
Collapse
Affiliation(s)
- Nehal Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nesrine S El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba A Gad
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt. .,Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia.
| |
Collapse
|
586
|
Hassan NA, Alshamari AK, Hassan AA, Elharrif MG, Alhajri AM, Sattam M, Khattab RR. Advances on Therapeutic Strategies for Alzheimer's Disease: From Medicinal Plant to Nanotechnology. Molecules 2022; 27:4839. [PMID: 35956796 PMCID: PMC9369981 DOI: 10.3390/molecules27154839] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic dysfunction of neurons in the brain leading to dementia. It is characterized by gradual mental failure, abnormal cognitive functioning, personality changes, diminished verbal fluency, and speech impairment. It is caused by neuronal injury in the cerebral cortex and hippocampal area of the brain. The number of individuals with AD is growing at a quick rate. The pathology behind AD is the progress of intraneuronal fibrillary tangles, accumulation of amyloid plaque, loss of cholinergic neurons, and decrease in choline acetyltransferase. Unfortunately, AD cannot be cured, but its progression can be delayed. Various FDA-approved inhibitors of cholinesterase enzyme such as rivastigmine, galantamine, donepezil, and NDMA receptor inhibitors (memantine), are available to manage the symptoms of AD. An exhaustive literature survey was carried out using SciFinder's reports from Alzheimer's Association, PubMed, and Clinical Trials.org. The literature was explored thoroughly to obtain information on the various available strategies to prevent AD. In the context of the present scenario, several strategies are being tried including the clinical trials for the treatment of AD. We have discussed pathophysiology, various targets, FDA-approved drugs, and various drugs in clinical trials against AD. The goal of this study is to shed light on current developments and treatment options, utilizing phytopharmaceuticals, nanomedicines, nutraceuticals, and gene therapy.
Collapse
Affiliation(s)
- Nasser A. Hassan
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (A.M.A.); (M.S.)
- Synthetic Unit, Department of Photochemistry, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt;
| | - Asma K. Alshamari
- Department of Chemistry, College of Science, Ha’il University, Ha’il 81451, Saudi Arabia;
| | - Allam A. Hassan
- Department of Chemistry, Faculty of Science, Suez University, Suez 43221, Egypt;
- Department of Chemistry, College of Science, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohamed G. Elharrif
- Department of Basic Medical Sciences, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Abdullah M. Alhajri
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (A.M.A.); (M.S.)
| | - Mohammed Sattam
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (A.M.A.); (M.S.)
| | - Reham R. Khattab
- Synthetic Unit, Department of Photochemistry, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt;
| |
Collapse
|
587
|
Sun X, Xue L, Wang Z, Xie A. Update to the Treatment of Parkinson's Disease Based on the Gut-Brain Axis Mechanism. Front Neurosci 2022; 16:878239. [PMID: 35873830 PMCID: PMC9299103 DOI: 10.3389/fnins.2022.878239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal (GI) symptoms represented by constipation were significant non-motor symptoms of Parkinson’s disease (PD) and were considered early manifestations and aggravating factors of the disease. This paper reviewed the research progress of the mechanism of the gut-brain axis (GBA) in PD and discussed the roles of α-synuclein, gut microbiota, immune inflammation, neuroendocrine, mitochondrial autophagy, and environmental toxins in the mechanism of the GBA in PD. Treatment of PD based on the GBA theory has also been discussed, including (1) dietary therapy, such as probiotics, vitamin therapy, Mediterranean diet, and low-calorie diet, (2) exercise therapy, (3) drug therapy, including antibiotics; GI peptides; GI motility agents, and (4) fecal flora transplantation can improve the flora. (5) Vagotomy and appendectomy were associated but not recommended.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xue
- Recording Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zechen Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
588
|
Manickam P, Mariappan SA, Murugesan SM, Hansda S, Kaushik A, Shinde R, Thipperudraswamy SP. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. BIOSENSORS 2022; 12:bios12080562. [PMID: 35892459 PMCID: PMC9330886 DOI: 10.3390/bios12080562] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 05/05/2023]
Abstract
Artificial intelligence (AI) is a modern approach based on computer science that develops programs and algorithms to make devices intelligent and efficient for performing tasks that usually require skilled human intelligence. AI involves various subsets, including machine learning (ML), deep learning (DL), conventional neural networks, fuzzy logic, and speech recognition, with unique capabilities and functionalities that can improve the performances of modern medical sciences. Such intelligent systems simplify human intervention in clinical diagnosis, medical imaging, and decision-making ability. In the same era, the Internet of Medical Things (IoMT) emerges as a next-generation bio-analytical tool that combines network-linked biomedical devices with a software application for advancing human health. In this review, we discuss the importance of AI in improving the capabilities of IoMT and point-of-care (POC) devices used in advanced healthcare sectors such as cardiac measurement, cancer diagnosis, and diabetes management. The role of AI in supporting advanced robotic surgeries developed for advanced biomedical applications is also discussed in this article. The position and importance of AI in improving the functionality, detection accuracy, decision-making ability of IoMT devices, and evaluation of associated risks assessment is discussed carefully and critically in this review. This review also encompasses the technological and engineering challenges and prospects for AI-based cloud-integrated personalized IoMT devices for designing efficient POC biomedical systems suitable for next-generation intelligent healthcare.
Collapse
Affiliation(s)
- Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Sivagangai 630003, Tamil Nadu, India; (S.A.M.); (S.M.M.)
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; (S.H.); (S.P.T.)
- Correspondence:
| | - Siva Ananth Mariappan
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Sivagangai 630003, Tamil Nadu, India; (S.A.M.); (S.M.M.)
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; (S.H.); (S.P.T.)
| | - Sindhu Monica Murugesan
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Sivagangai 630003, Tamil Nadu, India; (S.A.M.); (S.M.M.)
| | - Shekhar Hansda
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; (S.H.); (S.P.T.)
- Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Sivagangai 630003, Tamil Nadu, India
| | - Ajeet Kaushik
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun 248001, Uttarakhand, India;
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, USA
| | - Ravikumar Shinde
- Department of Zoology, Shri Pundlik Maharaj Mahavidyalaya Nandura, Buldana 443404, Maharashtra, India;
| | - S. P. Thipperudraswamy
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; (S.H.); (S.P.T.)
- Central Instrument Facility, CSIR-Central Electrochemical Research Institute, Karaikudi, Sivagangai 630003, Tamil Nadu, India
| |
Collapse
|
589
|
García-Fernández A, Vivo-Llorca G, Sancho M, García-Jareño AB, Ramírez-Jiménez L, Barber-Cano E, Murguía JR, Orzáez M, Sancenón F, Martínez-Máñez R. Nanodevices for the Efficient Codelivery of CRISPR-Cas9 Editing Machinery and an Entrapped Cargo: A Proposal for Dual Anti-Inflammatory Therapy. Pharmaceutics 2022; 14:pharmaceutics14071495. [PMID: 35890389 PMCID: PMC9322049 DOI: 10.3390/pharmaceutics14071495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
In this article, we report one of the few examples of nanoparticles capable of simultaneously delivering CRISPR-Cas9 gene-editing machinery and releasing drugs for one-shot treatments. Considering the complexity of inflammation in diseases, the synergistic effect of nanoparticles for gene-editing/drug therapy is evaluated in an in vitro inflammatory model as proof of concept. Mesoporous silica nanoparticles (MSNs), able to deliver the CRISPR/Cas9 machinery to edit gasdermin D (GSDMD), a key protein involved in inflammatory cell death, and the anti-inflammatory drug VX-765 (GSDMD45CRISPR-VX-MSNs), were prepared. Nanoparticles allow high cargo loading and CRISPR-Cas9 plasmid protection and, thus, achieve the controlled codelivery of CRISPR-Cas9 and the drug in cells. Nanoparticles exhibit GSDMD gene editing by downregulating inflammatory cell death and achieving a combined effect on decreasing the inflammatory response by the codelivery of VX-765. Taken together, our results show the potential of MSNs as a versatile platform by allowing multiple combinations for gene editing and drug therapy to prepare advanced nanodevices to meet possible biomedical needs.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain; (G.V.-L.); (J.R.M.); (F.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Correspondence: (A.G.-F.); (M.O.); (R.M.-M.)
| | - Gema Vivo-Llorca
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain; (G.V.-L.); (J.R.M.); (F.S.)
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
| | - Mónica Sancho
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (L.R.-J.); (E.B.-C.)
| | - Alicia Belén García-Jareño
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (L.R.-J.); (E.B.-C.)
| | - Laura Ramírez-Jiménez
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (L.R.-J.); (E.B.-C.)
| | - Eloísa Barber-Cano
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (L.R.-J.); (E.B.-C.)
| | - José Ramón Murguía
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain; (G.V.-L.); (J.R.M.); (F.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
| | - Mar Orzáez
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (L.R.-J.); (E.B.-C.)
- Correspondence: (A.G.-F.); (M.O.); (R.M.-M.)
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain; (G.V.-L.); (J.R.M.); (F.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, UPV-IIS La Fe, 46026 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain; (G.V.-L.); (J.R.M.); (F.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, UPV-IIS La Fe, 46026 Valencia, Spain
- Correspondence: (A.G.-F.); (M.O.); (R.M.-M.)
| |
Collapse
|
590
|
Han F, Jiang B, Lü MH, Wang ZP, Liu W, Zhang YX, Xu J. Hybrids of polyphenolic acids and xanthone, the potential preventive and therapeutic effects on PD: Design, synthesis, in vitro anti-aggregation of α-synuclein, and disaggregation against the existed α-synuclein oligomer and fibril. Bioorg Med Chem 2022; 66:116818. [PMID: 35584603 DOI: 10.1016/j.bmc.2022.116818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
Abstract
The misfolding and aggregation of α-Syn are the central mechanism linking and facilitating the other pathological mechanisms of PD. Maintaining α-Syn proteostasis by suitable inhibitors is an effective means to prevent PD. Disintegrating the neurotoxic oligomers and fibrils into the normal functional α-Syn by inhibitors is a more efficient way for PD treatment. This work synthesized two series hybrids of polyphenolic acids and xanthone. The hybrids possess a sheet-like conjugated skeleton and higher binding energies with α-Syn residues. Some compounds present well α-Syn aggregation inhibitory activities in vitro (IC50 down to 2.58 μM). The inhibitory action goes throughout the aggregation process from lag to the stationary phase by stabilizing α-Syn proteostasis conformation and preventing β-sheets aggregation. The candidate compounds with appropriate LogP values (2.02-3.11) present good disintegration abilities against the existed α-Syn oligomers and fibrils. The preliminary mechanism studies suggest that the inhibitors could quickly and randomly bind to the specific site closed to the β-sheet domain in the fibril, resulting in unstable and collapse of the protein fibril, yielding a complex system with aggregates of different sizes and monomers.
Collapse
Affiliation(s)
- Feng Han
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Bing Jiang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Ming-Huan Lü
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Zhen-Ping Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Wei Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Yun-Xiao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China.
| | - Ji Xu
- Deparment of Pharmacology, School of Basic Medical Science, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China.
| |
Collapse
|
591
|
Otocka-Kmiecik A. Effect of Carotenoids on Paraoxonase-1 Activity and Gene Expression. Nutrients 2022; 14:nu14142842. [PMID: 35889799 PMCID: PMC9318174 DOI: 10.3390/nu14142842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
Paraoxonase 1 (PON1) is an antioxidant enzyme attached to HDL with an anti-atherogenic potential. It protects LDL and HDL from lipid peroxidation. The enzyme is sensitive to various modulating factors, such as genetic polymorphisms as well as pharmacological, dietary (including carotenoids), and lifestyle interventions. Carotenoids are nutritional pigments with antioxidant activity. The aim of this review was to gather evidence on their effect on the modulation of PON1 activity and gene expression. Carotenoids administered as naturally occurring nutritional mixtures may present a synergistic beneficial effect on PON1 status. The effect of carotenoids on the enzyme depends on age, ethnicity, gender, diet, and PON1 genetic variation. Carotenoids, especially astaxanthin, β-carotene, and lycopene, increase PON1 activity. This effect may be explained by their ability to quench singlet oxygen and scavenge free radicals. β-carotene and lycopene were additionally shown to upregulate PON1 gene expression. The putative mechanisms of such regulation involve PON1 CpG-rich region methylation, Ca(2+)/calmodulin-dependent kinase II (CaMKKII) pathway induction, and upregulation via steroid regulatory element-binding protein-2 (SREBP-2). More detailed and extensive research on the mechanisms of PON1 modulation by carotenoids may lead to the development of new targeted therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Aneta Otocka-Kmiecik
- Department of Experimental Physiology, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland
| |
Collapse
|
592
|
Oxidation during Fresh Plant Processing: A Race against Time. Processes (Basel) 2022. [DOI: 10.3390/pr10071335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oxidation is a major concern in the food and cosmetics industry; however, little information is available in the literature about its effect during the production of herbal medicines. The impact of oxidation on herbal mother tincture (MT) manufacturing was investigated by performing an oxidative stress test, in which cryogenically ground fresh plants (Echinacea purpurea, Mentha piperita, Ginkgo biloba, and Hypericum perforatum) were exposed to air in a time-controlled manner before extraction. The effect of oxidation on the resulting extracts was evaluated using UV–Vis spectroscopy and potassium permanganate antioxidant assay. Furthermore, a tyrosinase enzymatic assay was performed on MTs to evaluate the behavior of the absorbance spectra of phenolic compounds during oxidation. Additionally, several commercially available herbal mother tinctures were examined for oxidative changes. The exposure of the fresh plant material to air for 30 min decreased the antioxidant activity in all four tested plants by 10% to 44%. This decrease occurred along with an intensity diminution and flattening of the typical UV–Vis absorption spectra of the MTs. The results have shown that the impact of oxidation during MT manufacturing is a serious issue and could be monitored by means of simple UV–Vis spectra recording.
Collapse
|
593
|
Szewczyk J, Aguilar-Ferrer D, Coy E. Polydopamine films: Electrochemical growth and sensing applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
594
|
Sarker U, Lin YP, Oba S, Yoshioka Y, Hoshikawa K. Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:104-123. [PMID: 35487123 DOI: 10.1016/j.plaphy.2022.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 05/23/2023]
Abstract
Climate change causes environmental variation worldwide, which is one of the most serious threats to global food security. In addition, more than 2 billion people in the world are reported to suffer from serious malnutrition, referred to as 'hidden hunger.' Dependence on only a few crops could lead to the loss of genetic diversity and high fragility of crop breeding in systems adapting to global scale climate change. The exploitation of underutilized species and genetic resources, referred to as orphan crops, could be a useful approach for resolving the issue of adaptability to environmental alteration, biodiversity preservation, and improvement of nutrient quality and quantity to ensure food security. Moreover, the use of these alternative crops will help to increase the human health benefits and the income of farmers in developing countries. In this review, we highlight the potential of orphan crops, especially amaranths, for use as vegetables and health-promoting nutritional components. This review highlights promising diversified sources of amaranth germplasms, their tolerance to abiotic stresses, and their nutritional, phytochemical, and antioxidant values for vegetable purposes. Betalains (betacyanins and betaxanthins), unique antioxidant components in amaranth vegetables, are also highlighted regarding their chemodiversity across amaranth germplasms and their stability and degradation. In addition, we discuss the physiological functions, antioxidant, antilipidemic, anticancer, and antimicrobial activities, as well as the biosynthesis pathway, molecular, biochemical, genetics, and genomic mechanisms of betalains in detail.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Ya-Ping Lin
- World Vegetable Center, P.O. Box 42, Shanhua, Tainan, 74199, Taiwan
| | - Shinya Oba
- Faculty of Applied Biological Science, Gifu University, Gifu, 501-1193, Japan
| | - Yosuke Yoshioka
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Ibaraki, Japan; Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Ken Hoshikawa
- World Vegetable Center, P.O. Box 42, Shanhua, Tainan, 74199, Taiwan; Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan; Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1, Tsukuba, Ibaraki, 305-8686, Japan.
| |
Collapse
|
595
|
Nath A, Bhattacharjee R, Nandi A, Sinha A, Kar S, Manoharan N, Mitra S, Mojumdar A, Panda PK, Patro S, Dutt A, Ahuja R, Verma SK, Suar M. Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome. Biomed Pharmacother 2022; 151:113122. [PMID: 35594718 DOI: 10.1016/j.biopha.2022.113122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022] Open
Abstract
The Host-microbiome interactions that exist inside the gut microbiota operate in a synergistic and abnormal manner. Additionally, the normal homeostasis and functioning of gut microbiota are frequently disrupted by the intervention of Multi-Drug Resistant (MDR) pathogens. CRISPR-Cas (CRISPR-associated protein with clustered regularly interspersed short palindromic repeats) recognized as a prokaryotic immune system has emerged as an effective genome-editing tool to edit and delete specific microbial genes for the expulsion of bacteria through bactericidal action. In this review, we demonstrate many functioning CRISPR-Cas systems against the anti-microbial resistance of multiple pathogens, which infiltrate the gastrointestinal tract. Moreover, we discuss the advancement in the development of a phage-delivered CRISPR-Cas system for killing a gut MDR pathogen. We also discuss a combinatorial approach to use bacteriophage as a delivery system for the CRISPR-Cas gene for targeting a pathogenic community in the gut microbiome to resensitize the drug sensitivity. Finally, we discuss engineered phage as a plausible potential option for the CRISPR-Cas system for pathogenic killing and improvement of the efficacy of the system.
Collapse
Affiliation(s)
- Arijit Nath
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Rahul Bhattacharjee
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Sulagna Kar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | | | - Shirsajit Mitra
- KaviKrishna Laboratory, Indian Institute of Technology, Guwahati, Assam, India
| | - Abhik Mojumdar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Swadheena Patro
- KIIT School of Dental Sciences, KIIT University. Bhubaneswar 751024, Odisha
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, UNAM, CDMX, Mexico
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
596
|
Panahishokouh M, Noroozian M, Mohammadian F, Khanavi M, Mirimoghaddam M, Savar SM, Nikoosokhan M, Honarmand H, Mohebbi N. Evaluation of the Effectiveness of an Herbal Formulation of Boswellia sacra Flueck. In Improving Cognitive and Behavioral Symptoms in Patients with Cognitive Impairment and Alzheimer's Disease. J Res Pharm Pract 2022; 11:91-98. [PMID: 37304222 PMCID: PMC10252576 DOI: 10.4103/jrpp.jrpp_73_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/12/2022] [Indexed: 06/13/2023] Open
Abstract
Objective This study aimed to assess the efficacy of an herbal formulation based on Boswellia sacra in improving cognitive and behavioral symptoms in patients with mild cognitive impairment (MCI) and mild-to-moderate stages of Alzheimer's disease (AD). Methods A 3-month, parallel-group, placebo-controlled trial was implemented from October 2021 to April 2022. Patients with MCI and mild-to-moderate stages of AD aged above 50 years (n = 60; 40 women, 20 men) enrolled in the study using clinical diagnosis and a score of 10-30 on the mini-mental state examination (MMSE) test. They were assigned into two groups; one receiving a herbal formulation) include B. sacra, Melissa officinalis, Piper longum, Cinnamomum verum, and Physalis alkekengi) three times a day and the other receiving a placebo for 3 months. The main efficacy measures were the changes in cognitive domains based on the MMSE and changes in behavioral and psychiatric symptoms based on neuropsychiatric inventory (NPI) scores compared with baseline. Side effects were also recorded. Findings Results of this study showed significant differences between the two groups after 3 months in terms of all the assessed variables, including the overall result of the mean score of MMSE and NPI tests (P ≤ 0.001). The herbal formulation had the most considerable effects on the domains of orientation, attention, working memory, delay recall, and language of the MMSE test. Conclusion Herbal formulation based on B. sacra was significantly effective compared to a placebo in improving cognitive and behavioral symptoms in patients with MCI and mild-to-moderate AD.
Collapse
Affiliation(s)
- Mahsa Panahishokouh
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Noroozian
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadian
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Khanavi
- Department of Pharmacognosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Mirimoghaddam
- Department of Pharmacognosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehrdad Savar
- Research Center for Rational Use of Drugs, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Nikoosokhan
- Bahar Sepinood Company, Tehran University Science and Technology Park, College of Agriculture, Alborz, Iran
| | - Hooshyar Honarmand
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Niayesh Mohebbi
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
597
|
Christiansen CB, Mellbye FB, Hermansen K, Jeppesen PB, Gregersen S. Effects of Aronia melanocarpa on Cardiometabolic Diseases: A Systematic Review of Quasi-Design Studies and Randomized Controlled Trials. Rev Diabet Stud 2022; 18:76-92. [PMID: 35831939 PMCID: PMC10044047 DOI: 10.1900/rds.2022.18.76] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES: Aronia melanocarpa (Aronia) is a shrub with small berries, chokeberries. Chokeberries are claimed to possess health benefits due to a high content of polyphenols. Aronia is known to be extremely antioxidant; however, evidence for its health benefits is not established.
This review gives an overview of the impact of Aronia on cardiometabolic risk factors and diseases. METHODS: Seventeen studies on cardiometabolic risk factors and diseases were identified through a systematic search on PubMed, Embase, and Cochrane. Inclusion criteria were studies with
Aronia as intervention, performed in individuals with cardiometabolic disease or risk factors, e. g., type 2 diabetes (T2D), cardiovascular disease, hypertension, dyslipidaemia, impaired glucose tolerance, overweight, central obesity and smoking. Four of these studies were applicable for a
quantitative analysis. RESULTS: Aronia did not influence body weight, circulating triglycerides, total cholesterol, high-density lipoprotein (HDL) cholesterol, or blood pressure. The quantitative analysis revealed a mean reduction in blood glucose of 0.44 mmol/l (P=0.0001) in the treatment
group compared with the control group suggesting that Aronia treatment may have a beneficial impact on blood glucose. In addition, treatment durations of 6 weeks to 3 months tended to decrease low-density lipoprotein (LDL) cholesterol, while shorter treatment durations had no effect on LDL
cholesterol. The quantitative analysis did not provide data on long-term effects of Aronia on lipids. CONCLUSIONS: More long-term high-quality randomized controlled studies are needed to clarify if dietary supplementation with Aronia has beneficial effects on cardiometabolic diseases.
Collapse
Affiliation(s)
- Christine B. Christiansen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Fredrik B. Mellbye
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Kjeld Hermansen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Per B. Jeppesen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Søren Gregersen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| |
Collapse
|
598
|
Neuroprotective and Anti-inflammatory Effects of Pioglitazone on Traumatic Brain Injury. Mediators Inflamm 2022; 2022:9860855. [PMID: 35757108 PMCID: PMC9232315 DOI: 10.1155/2022/9860855] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is still a major cause of concern for public health, and out of all the trauma-related injuries, it makes the highest contribution to death and disability worldwide. Patients of TBI continue to suffer from brain injury through an intricate flow of primary and secondary injury events. However, when treatment is provided in a timely manner, there is a significant window of opportunity to avoid a few of the serious effects. Pioglitazone (PG), which has a neuroprotective impact and can decrease inflammation after TBI, activates peroxisome proliferator-activated receptor-gamma (PPARγ). The objective of the study is to examine the existing literature to assess the neuroprotective and anti-inflammatory impact of PG in TBI. It also discusses the part played by microglia and cytokines in TBI. According to the findings of this study, PG has the ability to enhance neurobehavior, decrease brain edema and neuronal injury following TBI. To achieve the protective impact of PG the following was required: (1) stimulating PPARγ; (2) decreasing oxidative stress; (3) decreasing nuclear factor kappa B (NF-κB), interleukin 6 (IL-6), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), and C-C motif chemokine ligand 20 (CCL20) expression; (4) limiting the increase in the number of activated microglia; and (5) reducing mitochondrial dysfunction. The findings indicate that when PIG is used clinically, it may serve as a neuroprotective anti-inflammatory approach in TBI.
Collapse
|
599
|
Faridzadeh A, Salimi Y, Ghasemirad H, Kargar M, Rashtchian A, Mahmoudvand G, Karimi MA, Zerangian N, Jahani N, Masoudi A, Sadeghian Dastjerdi B, Salavatizadeh M, Sadeghsalehi H, Deravi N. Neuroprotective Potential of Aromatic Herbs: Rosemary, Sage, and Lavender. Front Neurosci 2022; 16:909833. [PMID: 35873824 PMCID: PMC9297920 DOI: 10.3389/fnins.2022.909833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hundreds of millions of people around the world suffer from neurological disorders or have experienced them intermittently, which has significantly reduced their quality of life. The common treatments for neurological disorders are relatively expensive and may lead to a wide variety of side effects including sleep attacks, gastrointestinal side effects, blood pressure changes, etc. On the other hand, several herbal medications have attracted colossal popularity worldwide in the recent years due to their availability, affordable prices, and few side effects. Aromatic plants, sage (Salvia officinalis), lavender (Lavandula angustifolia), and rosemary (Salvia Rosmarinus) have already shown anxiolytics, anti-inflammatory, antioxidant, and neuroprotective effects. They have also shown potential in treating common neurological disorders, including Alzheimer's disease, Parkinson's disease, migraine, and cognitive disorders. This review summarizes the data on the neuroprotective potential of aromatic herbs, sage, lavender, and rosemary.
Collapse
Affiliation(s)
- Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasaman Salimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamidreza Ghasemirad
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Meraj Kargar
- Student Research Committee, Afzalipour Faculty of Medicine Kerman University of Medical Sciences, Kerman, Iran
| | - Ava Rashtchian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasibeh Zerangian
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Jahani
- Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anahita Masoudi
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Bahare Sadeghian Dastjerdi
- Student Research Committee, Department of Midwifery, Faculty of Nursing and Midwifery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marieh Salavatizadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Niloofar Deravi
| |
Collapse
|
600
|
Olechno E, Puścion-Jakubik A, Zujko ME. Chokeberry (A. melanocarpa (Michx.) Elliott)—A Natural Product for Metabolic Disorders? Nutrients 2022; 14:nu14132688. [PMID: 35807867 PMCID: PMC9268775 DOI: 10.3390/nu14132688] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Abnormal metabolism of substances in the body can result in metabolic disorders which include obesity, cardiovascular diseases, diabetes, hypertension, chronic kidney disease, liver disease, or cancer. Foods rich in antioxidants can help to prevent and treat various types of disorders. Chokeberry fruits are rich in polyphenols, especially cyanidins, and therefore, can show a beneficial health effect. The aim of this study was to summarize and systematize reports about the effects of chokeberry on various metabolic parameters. Studies from 2000 to 2021, published in the PubMed and Google Scholar databases, were reviewed. The review of studies shows that chokeberry may have a positive effect in dyslipidemia and hypertension and may increase the body’s antioxidant defense mechanisms. The anti-inflammatory effect, in turn, may translate into a reduction in the risk of metabolic disorders over a longer period of use. Changes in glucose levels were reported by studies in which the intervention lasted more than 10 weeks in patients with carbohydrate metabolism disorders. The effects of protecting the liver, inhibiting platelet aggregation, lowering uric acid levels, and having a protective effect on the kidneys require additional confirmation in human clinical trials. Consumption of chokeberry fruit did not impact on anthropometric measurements; however, it seems that chokeberry fruit can be recommended in many metabolic disorders due to the richness of bioactive ingredients.
Collapse
Affiliation(s)
- Ewa Olechno
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland; (E.O.); (M.E.Z.)
| | - Anna Puścion-Jakubik
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-85-748-54-69
| | - Małgorzata Elżbieta Zujko
- Department of Food Biotechnology, Faculty of Health Science, Medical University of Białystok, Szpitalna 37 Street, 15-295 Białystok, Poland; (E.O.); (M.E.Z.)
| |
Collapse
|