551
|
Li P, Wang Y, Liu X, Zhou Z, Wang J, Zhou H, Zheng L, Yang L. Atypical antipsychotics induce human osteoblasts apoptosis via Wnt/β-catenin signaling. BMC Pharmacol Toxicol 2019; 20:10. [PMID: 30755277 PMCID: PMC6373048 DOI: 10.1186/s40360-019-0287-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 01/22/2019] [Indexed: 01/13/2023] Open
Abstract
Background There is evidence that atypical antipsychotics (APs) increase risk of osteoporosis in schizophrenia patients, however the mechanism is unclear. The aim of the study was to explore the molecular mechanisms about Wnt/β-catenin signal pathway underlying the osteal side effects of APs. Methods We cultured human osteoblast cell line hFob1. 19 (OB) treatments with olanzapine, risperidone, amisulpride, aripiprazole or resveratrol in vitro. OB cells viability was detected by cell viability assay. OB cells apoptosis was analyzed by flow cytometry (FCM). Further apoptosis-related marker and β-catenin expression was analyzed by Western blot and Immunofluorescence analysis. Results Compared with the control group, proliferation of OB cells decreased and apoptosis rates of OB cells increased significantly in APs group (p < 0.05). There were a reduced level of Bcl-2, Mcl-1 (antiapoptotic marker) and an elevated level of Bax, Cleaved-Caspase3 (proapoptotic marker) in APs group (p < 0.05). Simultaneously, β-catenin expression decreased in cytoplasm and nucleus (p < 0.05). Compared with the just APs group, the apoptosis rates decreased and β-catenin expression increased significantly in resevratrol combined with APs group (p < 0.05). Correlation analysis showed positive correlation between β-catenin expression and the apoptotic rate in OB cells (r = − 0.515, p < 0.05). Conclusions APs cause OB cells apoptosis relating to Wnt/β-catenin signaling while resevratrol could reverse this phenomenon. Our study could lay the foundation for overcoming the APs-induced osteal side effects to improve the life quality of schizophrenia patients.
Collapse
Affiliation(s)
- Peifan Li
- Department of Psychiatry, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yiming Wang
- Department of Psychiatry, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China. .,Neuroelectrophysiological testing center, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China. .,Undergraduate mental health education and counseling center, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Xingde Liu
- Department of Cardiology, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Zhen Zhou
- Clinical research center, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jun Wang
- Clinical research center, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Haiyan Zhou
- Clinical research center, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Lei Zheng
- Department of Psychiatry, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Lixia Yang
- Department of Psychiatry, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China
| |
Collapse
|
552
|
Hu Q, Shi H, Zeng T, Liu H, Su Y, Cheng X, Ye J, Yin Y, Liu M, Zheng H, Wu X, Chi H, Zhou Z, Jia J, Sun Y, Teng J, Yang C. Increased neutrophil extracellular traps activate NLRP3 and inflammatory macrophages in adult-onset Still's disease. Arthritis Res Ther 2019; 21:9. [PMID: 30616678 PMCID: PMC6323819 DOI: 10.1186/s13075-018-1800-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Background Adult-onset Still’s disease (AOSD) is a systemic inflammatory disease characterized by neutrophilia and NLRP3 inflammasome and macrophage activation. We investigated the role of neutrophil extracellular traps (NETs) in the pathogenesis of AOSD, and explored the effect of NETs on activating NLRP3 inflammasome and proinflammatory macrophages. Methods The sera of 73 AOSD patients and 40 healthy controls were used to detect the level of cell-free DNA and NET-DNA complexes. NET formation ex vivo was analyzed using immunofluorescence and flow plates. The activation of NLRP3 inflammasome in THP-1 cells and proinflammatory macrophages stimulated with DNA purified from NETs was measured using RT-PCR, ELISA, Western blotting and flow cytometry. Results The levels of cell-free DNA and NET-DNA complexes were significantly increased in the circulation of patients with AOSD compared with healthy controls, and freshly isolated neutrophils from patients with AOSD were predisposed to high levels of spontaneous NET release. Interestingly, enhanced NET release was abrogated with NADPH oxidase inhibitors and a mitochondrial scavenger. Furthermore, DNA purified from AOSD NETs activated NLRP3 inflammasomes. NET DNA from AOSD also exerted a potent capacity to accelerate the activation of CD68+CD86+ macrophages and increased the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. Finally, the copy number of mitochondrial DNA (mtDNA) in NETs and plasma was significantly increased in AOSD patients, suggesting that mtDNA may be involved in the activation of NLRP3 and inflammatory macrophages. Conclusions These findings implicate accelerated NET formation in AOSD pathogenesis through activation of NLRP3 and proinflammatory macrophages, and identify a novel link between neutrophils and macrophages by NET formation in AOSD. Electronic supplementary material The online version of this article (10.1186/s13075-018-1800-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Ting Zeng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yufeng Yin
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Mengru Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Hui Zheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xinyao Wu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Huihui Chi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Zhuochao Zhou
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Jinchao Jia
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China.
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China.
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China.
| |
Collapse
|
553
|
Sarhan J, Liu BC, Muendlein HI, Weindel CG, Smirnova I, Tang AY, Ilyukha V, Sorokin M, Buzdin A, Fitzgerald KA, Poltorak A. Constitutive interferon signaling maintains critical threshold of MLKL expression to license necroptosis. Cell Death Differ 2019; 26:332-347. [PMID: 29786074 PMCID: PMC6329789 DOI: 10.1038/s41418-018-0122-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are critical determinants in immune-competence and autoimmunity, and are endogenously regulated by a low-level constitutive feedback loop. However, little is known about the functions and origins of constitutive IFN. Recently, lipopolysaccharide (LPS)-induced IFN was implicated as a driver of necroptosis, a necrotic form of cell death downstream of receptor-interacting protein (RIP) kinase activation and executed by mixed lineage kinase like-domain (MLKL) protein. We found that the pre-established IFN status of the cell, instead of LPS-induced IFN, is critical for the early initiation of necroptosis in macrophages. This pre-established IFN signature stems from cytosolic DNA sensing via cGAS/STING, and maintains the expression of MLKL and one or more unknown effectors above a critical threshold to allow for MLKL oligomerization and cell death. Finally, we found that elevated IFN-signaling in systemic lupus erythematosus (SLE) augments necroptosis, providing a link between pathological IFN and tissue damage during autoimmunity.
Collapse
Affiliation(s)
- Joseph Sarhan
- Medical Scientist Training Program (MSTP), Tufts University School of Medicine, Boston, MA, 02111, USA
- Graduate Program in Immunology, Tufts University Sackler School of Biomedical Sciences, Boston, MA, 02111, USA
| | - Beiyun C Liu
- Graduate Program in Immunology, Tufts University Sackler School of Biomedical Sciences, Boston, MA, 02111, USA
| | - Hayley I Muendlein
- Graduate Program in Genetics, Tufts University Sackler School of Biomedical Sciences, Boston, MA, 02111, USA
| | - Chi G Weindel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77808, USA
| | - Irina Smirnova
- Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Amy Y Tang
- Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Vladimir Ilyukha
- Petrozavodsk State University, Petrozavodsk, Republic of Karelia, 185910, Russia
| | - Maxim Sorokin
- National Research Center, Kurchatov Institute, Moscow, Russian Federation
| | - Anton Buzdin
- National Research Center, Kurchatov Institute, Moscow, Russian Federation
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Katherine A Fitzgerald
- Program in Innate Immunity, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Centre for Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, NTNU, 7491, Trondheim, Norway
| | - Alexander Poltorak
- Graduate Program in Immunology, Tufts University Sackler School of Biomedical Sciences, Boston, MA, 02111, USA.
- Graduate Program in Genetics, Tufts University Sackler School of Biomedical Sciences, Boston, MA, 02111, USA.
- Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA.
- Petrozavodsk State University, Petrozavodsk, Republic of Karelia, 185910, Russia.
| |
Collapse
|
554
|
Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ 2019; 26:99-114. [PMID: 30341423 PMCID: PMC6294779 DOI: 10.1038/s41418-018-0212-6] [Citation(s) in RCA: 747] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/17/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Pyroptosis and necroptosis represent two pathways of genetically encoded necrotic cell death. Although these cell death programmes can protect the host against microbial pathogens, their dysregulation has been implicated in a variety of autoimmune and auto-inflammatory conditions. The disease-promoting potential of necroptosis and pyroptosis is likely a consequence of their ability to induce a lytic cell death. This cell suicide mechanism, distinct from apoptosis, allows the release of immunogenic cellular content, including damage-associated molecular patterns (DAMPs), and inflammatory cytokines such as interleukin-1β (IL-1β), to trigger inflammation. In this Review, we discuss recent discoveries that have advanced our understanding on the primary functions of pyroptosis and necroptosis, including evidence for the specific cytokines and DAMPs responsible for driving inflammation. We compare the similar and unique aspects of pyroptotic- and necroptotic-induced membrane damage, and explore how these may functionally impact distinct intracellular organelles and signalling pathways. We also examine studies highlighting the crosstalk that can occur between necroptosis and pyroptosis signalling, and evidence supporting the physiological significance of this convergence. Ultimately, a better understanding of the similarities, unique aspects and crosstalk of pyroptosis and necroptosis will inform as to how these cell death pathways might be manipulated for therapeutic benefit.
Collapse
Affiliation(s)
- Daniel Frank
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia.
| |
Collapse
|
555
|
Hu Q, Zhou Q, Wu J, Wu X, Ren J. The Role of Mitochondrial DNA in the Development of Ischemia Reperfusion Injury. Shock 2019; 51:52-59. [PMID: 30286034 DOI: 10.1097/shk.0000000000001190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ischemia/reperfusion (I/R) injury is a common occurrence resulting from acute mesenteric ischemia, traumatic or septic shock, burns, and surgical procedures that can lead to multiple organ failure and high mortality in critically ill patients. Mitochondria are often considered the cellular power factory via their capacity for ATP generation. Recently, mitochondria have been further identified as vital regulators of cell death, inflammation, and oxidative stress, all of which can aggravate I/R injury. Studies have indicated that mitochondrial DNA (mtDNA) damage leads to mitochondrial dysfunction and aggravates I/R injury. mtDNA is emerging as an agonist of the innate immune system that influences inflammatory pathology during I/R injury. In addition, when mtDNA is released into the cytoplasm, extracellular milieu, or circulation, it can activate multiple pattern-recognition receptors to trigger type I interferon and pro-inflammatory responses. Here, we review the emerging role of mtDNA in I/R injury to highlight novel mechanistic insights and discuss the pathophysiological relevance of mitochondrial biology.
Collapse
Affiliation(s)
- Qiongyuan Hu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Lab for Trauma and Surgical Infection, Nanjing, China
| | - Quan Zhou
- Center for Reproductive Medicine, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China
| | - Jie Wu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Lab for Trauma and Surgical Infection, Nanjing, China
| | - Xiuwen Wu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Lab for Trauma and Surgical Infection, Nanjing, China
| | - Jianan Ren
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Lab for Trauma and Surgical Infection, Nanjing, China
| |
Collapse
|
556
|
Yabal M, Calleja DJ, Simpson DS, Lawlor KE. Stressing out the mitochondria: Mechanistic insights into NLRP3 inflammasome activation. J Leukoc Biol 2018; 105:377-399. [PMID: 30589456 DOI: 10.1002/jlb.mr0318-124r] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammasomes are multimeric protein complexes that induce the cleavage and release of bioactive IL-1β and cause a lytic form of cell death, termed pyroptosis. Due to its diverse triggers, ranging from infectious pathogens and host danger molecules to environmental irritants, the NOD-like receptor protein 3 (NLRP3) inflammasome remains the most widely studied inflammasome to date. Despite intense scrutiny, a universal mechanism for its activation remains elusive, although, recent research has focused on mitochondrial dysfunction or potassium (K+ ) efflux as key events. In this review, we give a general overview of NLRP3 inflammasome activation and explore the recently emerging noncanonical and alternative pathways to NLRP3 activation. We highlight the role of the NLRP3 inflammasome in the pathogenesis of metabolic disease that is associated with mitochondrial and oxidative stress. Finally, we interrogate the mechanisms proposed to trigger NLRP3 inflammasome assembly and activation. A greater understanding of how NLRP3 inflammasome activation is triggered may reveal new therapeutic targets for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Monica Yabal
- III. Medical Department for Hematology and Oncology, Kinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dale J Calleja
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Daniel S Simpson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kate E Lawlor
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
557
|
Bernardini JP, Brouwer JM, Tan IK, Sandow JJ, Huang S, Stafford CA, Bankovacki A, Riffkin CD, Wardak AZ, Czabotar PE, Lazarou M, Dewson G. Parkin inhibits BAK and BAX apoptotic function by distinct mechanisms during mitophagy. EMBO J 2018; 38:embj.201899916. [PMID: 30573668 DOI: 10.15252/embj.201899916] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022] Open
Abstract
The E3 ubiquitin ligase Parkin is a key effector of the removal of damaged mitochondria by mitophagy. Parkin determines cell fate in response to mitochondrial damage, with its loss promoting early onset Parkinson's disease and potentially also cancer progression. Controlling a cell's apoptotic response is essential to co-ordinate the removal of damaged mitochondria. We report that following mitochondrial damage-induced mitophagy, Parkin directly ubiquitinates the apoptotic effector protein BAK at a conserved lysine in its hydrophobic groove, a region that is crucial for BAK activation by BH3-only proteins and its homo-dimerisation during apoptosis. Ubiquitination inhibited BAK activity by impairing its activation and the formation of lethal BAK oligomers. Parkin also suppresses BAX-mediated apoptosis, but in the absence of BAX ubiquitination suggesting an indirect mechanism. In addition, we find that BAK-dependent mitochondrial outer membrane permeabilisation during apoptosis promotes PINK1-dependent Parkin activation. Hence, we propose that Parkin directly inhibits BAK to suppress errant apoptosis, thereby allowing the effective clearance of damaged mitochondria, but also promotes clearance of apoptotic mitochondria to limit their potential pro-inflammatory effect.
Collapse
Affiliation(s)
- Jonathan P Bernardini
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Vic., Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Vic., Australia
| | - Jason M Brouwer
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Vic., Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Vic., Australia
| | - Iris Kl Tan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Vic., Australia
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Vic., Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Vic., Australia
| | - Shuai Huang
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Vic., Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Vic., Australia
| | - Che A Stafford
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Vic., Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Vic., Australia
| | - Aleksandra Bankovacki
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Vic., Australia
| | - Christopher D Riffkin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Vic., Australia
| | - Ahmad Z Wardak
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Vic., Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Vic., Australia.,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Vic., Australia
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute Monash University, Clayton, Melbourne, Vic., Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Vic., Australia .,Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Vic., Australia
| |
Collapse
|
558
|
Gong YN, Crawford JC, Heckmann BL, Green DR. To the edge of cell death and back. FEBS J 2018; 286:430-440. [PMID: 30506628 DOI: 10.1111/febs.14714] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/28/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022]
Abstract
Programmed cell death plays a central role in maintaining homeostasis. Various studies have demonstrated that programmed cell death is not a one-way street; cells can survive even when the core cell death processes are underway. Cell death initiation, prevention, and recovery function in a coordinated fashion to establish and maintain a homeostatic environment. In this review, we discuss how dying cells can be rescued from death's grip and the subsequent physiological consequences. We suggest a fundamental question to be answered-at least at the single cell level is, can we predict if a certain cell is more or less likely to survive or die? And importantly, what physiological and pathological consequences, as well as therapeutic approaches can we delineate from this ability to predict cell death versus survival.
Collapse
Affiliation(s)
- Yi-Nan Gong
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
559
|
Yu Y, Liu Y, An W, Song J, Zhang Y, Zhao X. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis. J Clin Invest 2018; 129:546-555. [PMID: 30561388 DOI: 10.1172/jci121842] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Innate immune activation contributes to the transition from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH). Stimulator of IFN genes (STING, also referred to Tmem173) is a universal receptor that recognizes released DNA and triggers innate immune activation. In this work, we investigated the role of STING in the progression of NASH in mice. Both methionine- and choline-deficient diet (MCD) and high-fat diet (HFD) were used to induce NASH in mice. Strikingly, STING deficiency attenuated steatosis, fibrosis, and inflammation in livers in both murine models of NASH. Additionally, STING deficiency increased fasting glucose levels in mice independently of insulin, but mitigated HFD-induced insulin resistance and weight gain and reduced levels of cholesterol, triglycerides, and LDL in serum; it also enhanced levels of HDL. The mitochondrial DNA (mtDNA) from hepatocytes of HFD-fed mice induced TNF-α and IL-6 expression in cultured Kupffer cells (KCs), which was attenuated by STING deficiency or pretreatment with BAY11-7082 (an NF-κB inhibitor). Finally, chronic exposure to 5,6-dimethylxanthenone-4-acetic acid (DMXAA, a STING agonist) led to hepatic steatosis and inflammation in WT mice, but not in STING-deficient mice. We proposed that STING functions as an mtDNA sensor in the KCs of liver under lipid overload and induces NF-κB-dependent inflammation in NASH.
Collapse
Affiliation(s)
- Yongsheng Yu
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yu Liu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Weishuai An
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jingwen Song
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuefan Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xianxian Zhao
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
560
|
Liu H, Golji J, Brodeur LK, Chung FS, Chen JT, deBeaumont RS, Bullock CP, Jones MD, Kerr G, Li L, Rakiec DP, Schlabach MR, Sovath S, Growney JD, Pagliarini RA, Ruddy DA, MacIsaac KD, Korn JM, McDonald ER. Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. Nat Med 2018; 25:95-102. [PMID: 30559422 DOI: 10.1038/s41591-018-0302-5] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022]
Abstract
Interferons (IFNs) are cytokines that play a critical role in limiting infectious and malignant diseases 1-4 . Emerging data suggest that the strength and duration of IFN signaling can differentially impact cancer therapies, including immune checkpoint blockade 5-7 . Here, we characterize the output of IFN signaling, specifically IFN-stimulated gene (ISG) signatures, in primary tumors from The Cancer Genome Atlas. While immune infiltration correlates with the ISG signature in some primary tumors, the existence of ISG signature-positive tumors without evident infiltration of IFN-producing immune cells suggests that cancer cells per se can be a source of IFN production. Consistent with this hypothesis, analysis of patient-derived tumor xenografts propagated in immune-deficient mice shows evidence of ISG-positive tumors that correlates with expression of human type I and III IFNs derived from the cancer cells. Mechanistic studies using cell line models from the Cancer Cell Line Encyclopedia that harbor ISG signatures demonstrate that this is a by-product of a STING-dependent pathway resulting in chronic tumor-derived IFN production. This imposes a transcriptional state on the tumor, poising it to respond to the aberrant accumulation of double-stranded RNA (dsRNA) due to increased sensor levels (MDA5, RIG-I and PKR). By interrogating our functional short-hairpin RNA screen dataset across 398 cancer cell lines, we show that this ISG transcriptional state creates a novel genetic vulnerability. ISG signature-positive cancer cells are sensitive to the loss of ADAR, a dsRNA-editing enzyme that is also an ISG. A genome-wide CRISPR genetic suppressor screen reveals that the entire type I IFN pathway and the dsRNA-activated kinase, PKR, are required for the lethality induced by ADAR depletion. Therefore, tumor-derived IFN resulting in chronic signaling creates a cellular state primed to respond to dsRNA accumulation, rendering ISG-positive tumors susceptible to ADAR loss.
Collapse
Affiliation(s)
- Huayang Liu
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Javad Golji
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Lauren K Brodeur
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Franklin S Chung
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Julie T Chen
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Rosalie S deBeaumont
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Caroline P Bullock
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Michael D Jones
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Grainne Kerr
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Basel, Switzerland
| | - Li Li
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Daniel P Rakiec
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Michael R Schlabach
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Sosathya Sovath
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Joseph D Growney
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Raymond A Pagliarini
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - David A Ruddy
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Kenzie D MacIsaac
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Joshua M Korn
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - E Robert McDonald
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA, USA.
| |
Collapse
|
561
|
Liu X, Li B, Zhang Z, Wei Y, Xu Z, Qin S, Liu N, Zhao R, Peng J, Yang G, Qi M, Liu T, Xie M, Liu S, Gao X, Lu C, Zhu L, Long X, Kang H, Sun T, Zhou H, Wei M, Yang G, Yang C. Synthesis and Discovery Novel Anti-Cancer Stem Cells Compounds Derived from the Natural Triterpenoic Acids. J Med Chem 2018; 61:10814-10833. [PMID: 30433783 DOI: 10.1021/acs.jmedchem.8b01445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cancer stem cells (CSCs) have been reported to be involved in tumorigenesis, tumor recurrence, cancer invasion, metastasis, and drug-resistance. Therefore, the development of drug molecules targeting CSCs has become an attractive therapeutic approach. However, the molecules which can selectively ablate CSCs are extremely rare. To explore the leading compounds targeting CSCs, 52 analogues of triterpenoic acids were synthesized in this study, whose biological activities were evaluated. On the basis of the results of tumorsphere assay, two compounds 48 and 51, derived from oleanolic acid, exhibited suppressive effect on elimination of different type of CSCs. Meanwhile, compounds 48 and 51 could significantly inhibit the growth of several tumors both in vitro and in vivo. Furthermore, treatment of cancer cells with both of two compounds would dramatically increase the level of ROS, which might eliminate the CSCs. Collectively, the leading compounds 48 and 51 were promising anti-CSCs agents that merited further validation as a novel class of chemotherapeutics.
Collapse
Affiliation(s)
- Xinhua Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Benlong Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Zhen Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Yujiao Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Zhongxin Xu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Shuanglin Qin
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
- School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Ning Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Rui Zhao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Junya Peng
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Min Qi
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research , Tianjin International Joint Academy of Biomedicine , Tianjin 300457 , People's Republic of China
| | - Tongtong Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Maodun Xie
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Shuangwei Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Xian Gao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Cheng Lu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Lijun Zhu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Xinyu Long
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Hong Kang
- Tianjin Key Laboratory of Molecular Drug Research , Tianjin International Joint Academy of Biomedicine , Tianjin 300457 , People's Republic of China
| | - Tao Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Honggang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Mingming Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , Tianjin 300071 , People's Republic of China
| |
Collapse
|
562
|
Abstract
Mitochondria are functionally versatile organelles. In addition to their conventional role of meeting the cell's energy requirements, mitochondria also actively regulate innate immune responses against infectious and sterile insults. Components of mitochondria, when released or exposed in response to dysfunction or damage, can be directly recognized by receptors of the innate immune system and trigger an immune response. In addition, despite initiation that may be independent from mitochondria, numerous innate immune responses are still subject to mitochondrial regulation as discrete steps of their signaling cascades occur on mitochondria or require mitochondrial components. Finally, mitochondrial metabolites and the metabolic state of the mitochondria within an innate immune cell modulate the precise immune response and shape the direction and character of that cell's response to stimuli. Together, these pathways result in a nuanced and very specific regulation of innate immune responses by mitochondria.
Collapse
Key Words
- ASC, Apoptosis Associated Speck like protein containing CARD
- ASK1, apoptosis signal-regulating kinase 1
- ATP, adenosine tri-phosphate
- CAPS, cryopyrin associated periodic syndromes
- CARD, caspase activation and recruitment domain
- CL, cardiolipin
- CLR, C-type lectin receptor
- CREB, cAMP response element binding protein
- Cgas, cyclic GMP-AMP synthase
- DAMP, damage associated molecular pattern
- ESCIT, evolutionarily conserved signaling intermediate in the toll pathway
- ETC, electron transport chain
- FPR, formyl peptide receptor
- HIF, hypoxia-inducible factor
- HMGB1, high mobility group box protein 1
- IFN, interferon
- IL, interleukin
- IRF, interferon regulatory factor
- JNK, cJUN NH2-terminal kinase
- LPS, lipopolysaccharide
- LRR, leucine rich repeat
- MAPK, mitogen-activated protein kinase
- MARCH5, membrane-associated ring finger (C3HC4) 5
- MAVS, mitochondrial antiviral signaling
- MAVS, mitochondrial antiviral signaling protein
- MFN1/2, mitofusin
- MOMP, mitochondrial outer membrane permeabilization
- MPT, mitochondrial permeability transition
- MyD88, myeloid differentiation primary response 88
- NADH, nicotinamide adenine dinucleotide
- NBD, nucleotide binding domain
- NFκB, Nuclear factor κ B
- NLR, NOD like receptor
- NOD, nucleotide-binding oligomerization domain
- NRF2, nuclear factor erythroid 2-related factor 2
- PAMP, pathogen associated molecular pattern
- PPAR, peroxisome proliferator-accelerated receptor
- PRRs, pathogen recognition receptors
- RIG-I, retinoic acid inducible gene I
- RLR, retinoic acid inducible gene like receptor
- ROS, reactive oxygen species
- STING, stimulator of interferon gene
- TAK1, transforming growth factor-β-activated kinase 1
- TANK, TRAF family member-associated NFκB activator
- TBK1, TANK Binding Kinase 1
- TCA, Tri-carboxylic acid
- TFAM, mitochondrial transcription factor A
- TLR, Toll Like Receptor
- TRAF6, tumor necrosis factor receptor-associated factor 6
- TRIF, TIR-domain-containing adapter-inducing interferon β
- TUFM, Tu translation elongation factor.
- fMet, N-formylated methionine
- mROS, mitochondrial ROS
- mtDNA, mitochondrial DNA
- n-fp, n-formyl peptides
Collapse
|
563
|
Malsin ES, Kamp DW. The mitochondria in lung fibrosis: friend or foe? Transl Res 2018; 202:1-23. [PMID: 30036495 DOI: 10.1016/j.trsl.2018.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 02/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) and other forms of lung fibrosis are age-associated diseases with increased deposition of mesenchymal collagen that promotes respiratory malfunction and eventual death from respiratory failure. Our understanding of the pathobiology underlying pulmonary fibrosis is incomplete and current therapies available to slow or treat lung fibrosis are limited. Evidence reviewed herein demonstrates key involvement of mitochondrial dysfunction in diverse pulmonary cell populations, including alveolar epithelial cells (AEC), fibroblasts, and macrophages and/or immune cells that collectively advances the development of pulmonary fibrosis. The mitochondria have an important role in regulating whether fibrogenic stimuli results in the return of normal healthy function ("friend") or the development of pulmonary fibrosis ("foe"). In particular, we summarize the evidence suggesting that AEC mitochondrial dysfunction is important in mediating lung fibrosis signaling via mechanisms involving imbalances in the levels of reactive oxygen species, endoplasmic reticulum stress response, mitophagy, apoptosis and/or senescence, and inflammatory signaling. Further, we review the emerging evidence suggesting that dysfunctional mitochondria in AECs and other cell types play crucial roles in modulating nearly all aspects of the 9 hallmarks of aging in the context of pulmonary fibrosis as well as some novel molecular pathways that have recently been identified. Finally, we discuss the potential translational aspects of these studies as well as the key knowledge gaps necessary for better informing our understanding of the pathobiology of the mitochondria in mediating pulmonary fibrosis. We reason that targeting deficient mitochondria-derived pathways may provide innovative future treatment strategies that are urgently needed for lung fibrosis.
Collapse
Affiliation(s)
- Elizabeth S Malsin
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center and Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David W Kamp
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center and Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
564
|
Banoth B, Cassel SL. Mitochondria in innate immune signaling. Transl Res 2018; 202:52-68. [PMID: 30165038 DOI: 10.1016/j.trsl.2018.07.014.mitochondria] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 05/25/2023]
Abstract
Mitochondria are functionally versatile organelles. In addition to their conventional role of meeting the cell's energy requirements, mitochondria also actively regulate innate immune responses against infectious and sterile insults. Components of mitochondria, when released or exposed in response to dysfunction or damage, can be directly recognized by receptors of the innate immune system and trigger an immune response. In addition, despite initiation that may be independent from mitochondria, numerous innate immune responses are still subject to mitochondrial regulation as discrete steps of their signaling cascades occur on mitochondria or require mitochondrial components. Finally, mitochondrial metabolites and the metabolic state of the mitochondria within an innate immune cell modulate the precise immune response and shape the direction and character of that cell's response to stimuli. Together, these pathways result in a nuanced and very specific regulation of innate immune responses by mitochondria.
Collapse
Key Words
- ASC, Apoptosis Associated Speck like protein containing CARD
- ASK1, apoptosis signal-regulating kinase 1
- ATP, adenosine tri-phosphate
- CAPS, cryopyrin associated periodic syndromes
- CARD, caspase activation and recruitment domain
- CL, cardiolipin
- CLR, C-type lectin receptor
- CREB, cAMP response element binding protein
- Cgas, cyclic GMP-AMP synthase
- DAMP, damage associated molecular pattern
- ESCIT, evolutionarily conserved signaling intermediate in the toll pathway
- ETC, electron transport chain
- FPR, formyl peptide receptor
- HIF, hypoxia-inducible factor
- HMGB1, high mobility group box protein 1
- IFN, interferon
- IL, interleukin
- IRF, interferon regulatory factor
- JNK, cJUN NH2-terminal kinase
- LPS, lipopolysaccharide
- LRR, leucine rich repeat
- MAPK, mitogen-activated protein kinase
- MARCH5, membrane-associated ring finger (C3HC4) 5
- MAVS, mitochondrial antiviral signaling
- MAVS, mitochondrial antiviral signaling protein
- MFN1/2, mitofusin
- MOMP, mitochondrial outer membrane permeabilization
- MPT, mitochondrial permeability transition
- MyD88, myeloid differentiation primary response 88
- NADH, nicotinamide adenine dinucleotide
- NBD, nucleotide binding domain
- NFκB, Nuclear factor κ B
- NLR, NOD like receptor
- NOD, nucleotide-binding oligomerization domain
- NRF2, nuclear factor erythroid 2-related factor 2
- PAMP, pathogen associated molecular pattern
- PPAR, peroxisome proliferator-accelerated receptor
- PRRs, pathogen recognition receptors
- RIG-I, retinoic acid inducible gene I
- RLR, retinoic acid inducible gene like receptor
- ROS, reactive oxygen species
- STING, stimulator of interferon gene
- TAK1, transforming growth factor-β-activated kinase 1
- TANK, TRAF family member-associated NFκB activator
- TBK1, TANK Binding Kinase 1
- TCA, Tri-carboxylic acid
- TFAM, mitochondrial transcription factor A
- TLR, Toll Like Receptor
- TRAF6, tumor necrosis factor receptor-associated factor 6
- TRIF, TIR-domain-containing adapter-inducing interferon β
- TUFM, Tu translation elongation factor.
- fMet, N-formylated methionine
- mROS, mitochondrial ROS
- mtDNA, mitochondrial DNA
- n-fp, n-formyl peptides
Collapse
Affiliation(s)
- Balaji Banoth
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Suzanne L Cassel
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
565
|
STING Signaling Promotes Apoptosis, Necrosis, and Cell Death: An Overview and Update. Mediators Inflamm 2018; 2018:1202797. [PMID: 30595664 PMCID: PMC6286756 DOI: 10.1155/2018/1202797] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/12/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
STING is a newly identified intracellular sensor of foreign and endogenous DNA. STING has been recognized as an activator of immune responses by TBK1/IRF3 and NF-κB pathways, and it is suggested to play critical roles in host defense, autoimmune diseases, and tumor immunity. Recent studies have revealed that the outcome of STING activation could vary between distinct cell types and scenarios. STING activation in certain cell types triggered cell death including apoptosis and necrosis. This effect could be critical for preventing unnecessary or excessive inflammatory events and maintaining host immune homeostasis. This review is dedicated to summarize recent evidences in the field of STING-mediated cell death and to demonstrate dual outcomes of STING signaling. Besides canonical immune responses represented by IFN and TNF productions, STING signaling can also induce cell death events in a variety of cell types. The double-faced characteristics of STING signaling requires further exploration and precious regulation before tailoring clinical strategies for associated diseases.
Collapse
|
566
|
Karatepe K, Zhu H, Zhang X, Guo R, Kambara H, Loison F, Liu P, Yu H, Ren Q, Luo X, Manis J, Cheng T, Ma F, Xu Y, Luo HR. Proteinase 3 Limits the Number of Hematopoietic Stem and Progenitor Cells in Murine Bone Marrow. Stem Cell Reports 2018; 11:1092-1105. [PMID: 30392974 PMCID: PMC6235012 DOI: 10.1016/j.stemcr.2018.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) undergo self-renewal and differentiation to guarantee a constant supply of short-lived blood cells. Both intrinsic and extrinsic factors determine HSPC fate, but the underlying mechanisms remain elusive. Here, we report that Proteinase 3 (PR3), a serine protease mainly confined to granulocytes, is also expressed in HSPCs. PR3 deficiency intrinsically suppressed cleavage and activation of caspase-3, leading to expansion of the bone marrow (BM) HSPC population due to decreased apoptosis. PR3-deficient HSPCs outcompete the long-term reconstitution potential of wild-type counterparts. Collectively, our results establish PR3 as a physiological regulator of HSPC numbers. PR3 inhibition is a potential therapeutic target to accelerate and increase the efficiency of BM reconstitution during transplantation. Proteinase 3 (PR3) is expressed in hematopoietic stem and progenitor cells (HSPCs) Deficiency of PR3 leads to expansion of HSPCs in murine bone marrow PR3 regulates spontaneous HSPC apoptosis by cleaving and activating caspase-3
Collapse
Affiliation(s)
- Kutay Karatepe
- Department of Lab Medicine, The Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Haiyan Zhu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Xiaoyu Zhang
- Department of Lab Medicine, The Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Rongxia Guo
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Hiroto Kambara
- Department of Lab Medicine, The Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Fabien Loison
- Department of Lab Medicine, The Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Peng Liu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Hongbo Yu
- VA Boston Healthcare System, Department of Pathology and Laboratory Medicine, 1400 VFW Parkway, West Roxbury, MA 02132, USA
| | - Qian Ren
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Xiao Luo
- Department of Lab Medicine, The Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - John Manis
- Department of Lab Medicine, The Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Tao Cheng
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Fengxia Ma
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Yuanfu Xu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China.
| | - Hongbo R Luo
- Department of Lab Medicine, The Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA.
| |
Collapse
|
567
|
Abstract
In mammals, cytosolic detection of nucleic acids is critical in initiating innate antiviral responses against invading pathogens (like bacteria, viruses, fungi and parasites). These programs are mediated by multiple cytosolic and endosomal sensors and adaptor molecules (c-GAS/STING axis and TLR9/MyD88 axis, respectively) and lead to the production of type I interferons (IFNs), pro-inflammatory cytokines, and chemokines. While the identity and role of multiple pattern recognition receptors (PRRs) have been elucidated, such immune surveillance systems must be tightly regulated to limit collateral damage and prevent aberrant responses to self- and non-self-nucleic acids. In this review, we discuss recent advances in our understanding of how cytosolic sensing of DNA is controlled during inflammatory immune responses.
Collapse
Affiliation(s)
- Takayuki Abe
- Department of Systems Biology, Columbia University, New York, NY, United States; Department of Microbiology and Immunology, Columbia University, New York, NY, United States
| | - Sagi D Shapira
- Department of Systems Biology, Columbia University, New York, NY, United States; Department of Microbiology and Immunology, Columbia University, New York, NY, United States.
| |
Collapse
|
568
|
Kim EH, Wong SW, Martinez J. Programmed Necrosis and Disease:We interrupt your regular programming to bring you necroinflammation. Cell Death Differ 2018; 26:25-40. [PMID: 30349078 DOI: 10.1038/s41418-018-0179-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Compared to the tidy and immunologically silent death during apoptosis, necrosis seems like a chaotic and unorganized demise. However, we now recognize that there is a method to its madness, as many forms of necrotic cell death are indeed programmed and function beyond lytic cell death to support homeostasis and immunity. Inherently more immunogenic than their apoptotic counterpart, programmed necrosis, such as necroptosis, pyroptosis, ferroptosis, and NETosis, releases inflammatory cytokines and danger-associated molecular patterns (DAMPs), skewing the milieu to a pro-inflammatory state. Moreover, impaired clearance of dead cells often leads to inflammation. Importantly, these pathways have all been implicated in inflammatory and autoimmune diseases, therefore careful understanding of their molecular mechanisms can have long lasting effects on how we interpret their role in disease and how we translate these mechanisms into therapy.
Collapse
Affiliation(s)
- Eui Ho Kim
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Sing-Wai Wong
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.,Oral and Craniofacial Biomedicine Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
569
|
Heckmann BL, Tummers B, Green DR. Crashing the computer: apoptosis vs. necroptosis in neuroinflammation. Cell Death Differ 2018; 26:41-52. [PMID: 30341422 DOI: 10.1038/s41418-018-0195-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death (PCD) plays critical roles in development, homeostasis, and both control and progression of a plethora of diseases, including cancer and neurodegenerative pathologies. Besides classical apoptosis, several different forms of PCD have now been recognized, including necroptosis. The way a cell dies determines the reaction of the surrounding environment, and immune activation in response to cell death proceeds in a manner dependent on which death pathways are activated. Apoptosis and necroptosis are major mechanisms of cell death that typically result in opposing immune responses. Apoptotic death usually leads to immunologically silent responses whereas necroptotic death releases molecules that promote inflammation, a process referred to as necroinflammation. Diseases of the nervous system, in particular neurodegenerative diseases, are characterized by neuronal death and progressive neuroinflammation. The mechanisms of neuronal death are not well defined and significant cross-talk between pathways has been suggested. Moreover, it has been proposed that the dying of neurons is a catalyst for activating immune cells in the brain and sustaining inflammatory output. In the current review we discuss the effects of apoptotis and necroptosis on inflammatory immune activation, and evaluate the roles of each cell death pathway in a variety of pathologies with specific focus on neurodegeneration. A putative model is proposed for the regulation of neuronal death and neuroinflammation that features a role for both the apoptotic and necroptotic pathways in disease establishment and progression.
Collapse
Affiliation(s)
- Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
570
|
Comparing the effects of different cell death programs in tumor progression and immunotherapy. Cell Death Differ 2018; 26:115-129. [PMID: 30341424 DOI: 10.1038/s41418-018-0214-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022] Open
Abstract
Our conception of programmed cell death has expanded beyond apoptosis to encompass additional forms of cell suicide, including necroptosis and pyroptosis; these cell death modalities are notable for their diverse and emerging roles in engaging the immune system. Concurrently, treatments that activate the immune system to combat cancer have achieved remarkable success in the clinic. These two scientific narratives converge to provide new perspectives on the role of programmed cell death in cancer therapy. This review focuses on our current understanding of the relationship between apoptosis and antitumor immune responses and the emerging evidence that induction of alternate death pathways such as necroptosis could improve therapeutic outcomes.
Collapse
|
571
|
Chen Y, Zhou Z, Min W. Mitochondria, Oxidative Stress and Innate Immunity. Front Physiol 2018; 9:1487. [PMID: 30405440 PMCID: PMC6200916 DOI: 10.3389/fphys.2018.01487] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022] Open
Abstract
Canonical functions of mitochondria include the regulation of cellular survival, orchestration of anabolic and metabolic pathways, as well as reactive oxygen species (ROS) signaling. Recent discoveries, nevertheless, have demonstrated that mitochondria are also critical elements to stimulate innate immune signaling cascade that is able to intensify the inflammation upon cytotoxic stimuli beyond microbial infection. Here we review the expanding research field of mitochondria and oxidative stress in innate immune system to highlight the new mechanistic insights and discuss the pathological relevance of mitochondrial dysregulation induced aberrant innate immune responses in a growing list of sterile inflammatory diseases.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Zhongyang Zhou
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wang Min
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
572
|
Mihm S. Danger-Associated Molecular Patterns (DAMPs): Molecular Triggers for Sterile Inflammation in the Liver. Int J Mol Sci 2018; 19:ijms19103104. [PMID: 30309020 PMCID: PMC6213769 DOI: 10.3390/ijms19103104] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/21/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
Inflammatory liver diseases in the absence of pathogens such as intoxication by xenobiotics, cholestatic liver injury, hepatic ischemia-reperfusion injury (I/R), non-alcoholic steatohepatitis (NASH), or alcoholic liver disease (ALD) remain threatening conditions demanding specific therapeutic options. Caused by various different noxae, all these conditions have been recognized to be triggered by danger- or death-associated molecular patterns (DAMPs), discompartmentalized self-structures released by dying cells. These endogenous, ectopic molecules comprise proteins, nucleic acids, adenosine triphosphate (ATP), or mitochondrial compounds, among others. This review resumes the respective modes of their release—passively by necrotic hepatocytes or actively by viable or apoptotic parenchymal cells—and their particular roles in sterile liver pathology. It addresses their sensors and the initial inflammatory responses they provoke. It further addresses a resulting second wave of parenchymal death that might be of different mode, boosting the release of additional, second-line DAMPs. Thus, triggering a more complex and pronounced response. Initial and secondary inflammatory responses comprise the activation of Kupffer cells (KCs), the attraction and activation of monocytes and neutrophil granulocytes, and the induction of type I interferons (IFNs) and their effectors. A thorough understanding of pathophysiology is a prerequisite for identifying rational therapeutic targets.
Collapse
Affiliation(s)
- Sabine Mihm
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, 37075 Goettingen, Germany.
| |
Collapse
|
573
|
|
574
|
Afreen S, Weiss JM, Strahm B, Erlacher M. Concise Review: Cheating Death for a Better Transplant. Stem Cells 2018; 36:1646-1654. [DOI: 10.1002/stem.2901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/05/2018] [Accepted: 07/15/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Sehar Afreen
- Faculty of Medicine, Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg; University of Freiburg; Freiburg Germany
- Faculty of Biology; University of Freiburg; Freiburg Germany
| | - Julia Miriam Weiss
- Faculty of Medicine, Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg; University of Freiburg; Freiburg Germany
| | - Brigitte Strahm
- Faculty of Medicine, Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg; University of Freiburg; Freiburg Germany
| | - Miriam Erlacher
- Faculty of Medicine, Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg; University of Freiburg; Freiburg Germany
- German Cancer Consortium (DKTK); Freiburg Germany
- German Cancer Research Center (DKFZ); Heidelberg Germany
| |
Collapse
|
575
|
|
576
|
Baek JH, Gomez IG, Wada Y, Roach A, Mahad D, Duffield JS. Deletion of the Mitochondrial Complex-IV Cofactor Heme A:Farnesyltransferase Causes Focal Segmental Glomerulosclerosis and Interferon Response. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2745-2762. [PMID: 30268775 DOI: 10.1016/j.ajpath.2018.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 01/31/2023]
Abstract
Mutations in mitochondrial DNA as well as nuclear-encoded mitochondrial proteins have been reported to cause tubulointerstitial kidney diseases and focal segmental glomerulosclerosis (FSGS). Recently, genes and pathways affecting mitochondrial turnover and permeability have been implicated in adult-onset FSGS. Furthermore, dysfunctioning mitochondria may be capable of engaging intracellular innate immune-sensing pathways. To determine the impact of mitochondrial dysfunction in FSGS and secondary innate immune responses, we generated Cre/loxP transgenic mice to generate a loss-of-function deletion mutation of the complex IV assembly cofactor heme A:farnesyltransferase (COX10) restricted to cells of the developing nephrons. These mice develop severe, early-onset FSGS with innate immune activation and die prematurely with kidney failure. Mutant kidneys showed loss of glomerular and tubular epithelial function, epithelial apoptosis, and, in addition, a marked interferon response. In vitro modeling of Cox10 deletion in primary kidney epithelium compromises oxygen consumption, ATP generation, and induces oxidative stress. In addition, loss of Cox10 triggers a selective interferon response, which may be caused by the leak of mitochondrial DNA into the cytosol activating the intracellular DNA sensor, stimulator of interferon genes. This new animal model provides a mechanism to study mitochondrial dysfunction in vivo and demonstrates a direct link between mitochondrial dysfunction and intracellular innate immune response.
Collapse
Affiliation(s)
- Jea-Hyun Baek
- Research and Development, Biogen Inc., Cambridge, Massachusetts.
| | - Ivan G Gomez
- Research and Development, Biogen Inc., Cambridge, Massachusetts; Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington
| | - Yukihiro Wada
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Allie Roach
- Research and Development, Biogen Inc., Cambridge, Massachusetts; Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington
| | - Don Mahad
- Centre for Clinical Brain Sciences, Anne Rowling Regenerative Neurology Clinic and Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeremy S Duffield
- Research and Development, Biogen Inc., Cambridge, Massachusetts; Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
577
|
Abstract
The role of mitochondria as a signaling platform downstream of the RNA sensors RIG-I and MDA5 is well defined. Now, a recent study in Nature by Dhir et al. (2018) identifies mitochondrial dsRNA as an immunogenic ligand, adding another intriguing aspect to the role of mitochondria in innate immunity.
Collapse
Affiliation(s)
- Andreas Linder
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany; Department of Medicine II, University Hospital, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany; Center for Integrated Protein Science Munich, Munich 81377, Germany.
| |
Collapse
|
578
|
Atkin-Smith GK, Duan M, Chen W, Poon IKH. The induction and consequences of Influenza A virus-induced cell death. Cell Death Dis 2018; 9:1002. [PMID: 30254192 PMCID: PMC6156503 DOI: 10.1038/s41419-018-1035-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022]
Abstract
Infection with Influenza A virus (IAV) causes significant cell death within the upper and lower respiratory tract and lung parenchyma. In severe infections, high levels of cell death can exacerbate inflammation and comprise the integrity of the epithelial cell barrier leading to respiratory failure. IAV infection of airway and alveolar epithelial cells promotes immune cell infiltration into the lung and therefore, immune cell types such as macrophages, monocytes and neutrophils are readily exposed to IAV and infection-induced death. Although the induction of cell death through apoptosis and necrosis following IAV infection is a well-known phenomenon, the molecular determinants responsible for inducing cell death is not fully understood. Here, we review the current understanding of IAV-induced cell death and critically evaluate the consequences of cell death in aiding either the restoration of lung homoeostasis or the progression of IAV-induced lung pathologies.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
579
|
Zhao Q, Zhou X, Curbo S, Karlsson A. Metformin downregulates the mitochondrial carrier SLC25A10 in a glucose dependent manner. Biochem Pharmacol 2018; 156:444-450. [PMID: 30222970 DOI: 10.1016/j.bcp.2018.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
Metformin, a commonly used agent in the treatment of type 2 diabetes, is also associated with reduced risk of cancer development and improvement in cancer survival. Although much is known about metformin, the mechanisms behind its anti-cancer properties are not fully understood. In this study we addressed the role of a mitochondrial transporter commonly upregulated in cancer cells, SLC25A10, for cell survival and metabolism in the presence of metformin. SLC25A10 is a carrier in the mitochondrial inner membrane that transports malate and succinate out of the mitochondria, in exchange of phosphate and sulfate. We show that metformin treatment results in decreased gene expression of the SLC25A10 carrier both in lung cancer A549 mock cells and A549 SLC25A10 knockdown (siSLC25A10) cells. The decrease was even more pronounced when cells were grown at low glucose concentrations. The expression levels of key enzymes in glucose metabolism showed slightly altered mean values for all genes tested in both control cells and siSLC25A10 cells upon metformin treatment. The gene expression of the metabolic regulator glutamic-oxaloacetic transaminase 1 decreased in wild type cells upon metformin treatment whereas there was a trend of increased expression in the siSLC25A10 cells upon metformin treatment. In addition, the gene expression of the cyclin-dependent kinase inhibitor 1A was markedly increased in the siSLC25A10 compared to control A549 cells, and with even larger increases in the presence of metformin and at low glucose concentration. Our data show that in siSLC25A10 cell lines, metformin significantly alters the SLC25A10 carrier at both mRNA and protein levels and can thereby affect the supply of nutrients and the metabolic state of cancer cells.
Collapse
Affiliation(s)
- Qian Zhao
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Xiaoshan Zhou
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Sophie Curbo
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Anna Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, 141 86 Stockholm, Sweden
| |
Collapse
|
580
|
Emerging Proviral Roles of Caspases during Lytic Replication of Gammaherpesviruses. J Virol 2018; 92:JVI.01011-17. [PMID: 30021896 DOI: 10.1128/jvi.01011-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Due to their roles in the regulation of programmed cell death and inflammation, the cellular caspase proteases are considered antiviral factors. However, recent studies have revealed examples of proviral functions for caspases. Here, we review a growing body of literature on the role of caspases in promoting the replication of human gammaherpesviruses. We propose that gammaherpesviruses have evolved ways to redirect these enzymes and to use their activation to support viral replication and immune evasion.
Collapse
|
581
|
Vanpouille-Box C, Demaria S, Formenti SC, Galluzzi L. Cytosolic DNA Sensing in Organismal Tumor Control. Cancer Cell 2018; 34:361-378. [PMID: 30216189 DOI: 10.1016/j.ccell.2018.05.013] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/11/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
Abstract
Besides constituting a first layer of defense against microbial challenges, the detection of cytosolic DNA is fundamental for mammalian organisms to control malignant transformation and tumor progression. The accumulation of DNA in the cytoplasm can initiate the proliferative inactivation (via cellular senescence) or elimination (via regulated cell death) of neoplastic cell precursors. Moreover, cytosolic DNA sensing is intimately connected to the secretion of cytokines that support innate and adaptive antitumor immunity. Here, we discuss the molecular mechanisms whereby cytosolic DNA enables cell-intrinsic and -extrinsic oncosuppression, and their relevance for the development of novel therapeutic approaches that reinstate anticancer immunosurveillance.
Collapse
Affiliation(s)
- Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, 525 East 68th Street, Box #169, New York, NY 10065, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, 525 East 68th Street, Box #169, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, 525 East 68th Street, Box #169, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, 525 East 68th Street, Box #169, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Université Paris Descartes/Paris V, Paris, France.
| |
Collapse
|
582
|
|
583
|
Riley JS, Quarato G, Cloix C, Lopez J, O'Prey J, Pearson M, Chapman J, Sesaki H, Carlin LM, Passos JF, Wheeler AP, Oberst A, Ryan KM, Tait SW. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J 2018; 37:e99238. [PMID: 30049712 PMCID: PMC6120664 DOI: 10.15252/embj.201899238] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022] Open
Abstract
During apoptosis, pro-apoptotic BAX and BAK are activated, causing mitochondrial outer membrane permeabilisation (MOMP), caspase activation and cell death. However, even in the absence of caspase activity, cells usually die following MOMP Such caspase-independent cell death is accompanied by inflammation that requires mitochondrial DNA (mtDNA) activation of cGAS-STING signalling. Because the mitochondrial inner membrane is thought to remain intact during apoptosis, we sought to address how matrix mtDNA could activate the cytosolic cGAS-STING signalling pathway. Using super-resolution imaging, we show that mtDNA is efficiently released from mitochondria following MOMP In a temporal manner, we find that following MOMP, BAX/BAK-mediated mitochondrial outer membrane pores gradually widen. This allows extrusion of the mitochondrial inner membrane into the cytosol whereupon it permeablises allowing mtDNA release. Our data demonstrate that mitochondrial inner membrane permeabilisation (MIMP) can occur during cell death following BAX/BAK-dependent MOMP Importantly, by enabling the cytosolic release of mtDNA, inner membrane permeabilisation underpins the immunogenic effects of caspase-independent cell death.
Collapse
Affiliation(s)
- Joel S Riley
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Catherine Cloix
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jonathan Lopez
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jim O'Prey
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Matthew Pearson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - James Chapman
- Ageing Research Laboratories, Newcastle University Institute for Ageing, LLHW Centre for Ageing and Vitality, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leo M Carlin
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - João F Passos
- Ageing Research Laboratories, Newcastle University Institute for Ageing, LLHW Centre for Ageing and Vitality, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ann P Wheeler
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Stephen Wg Tait
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
584
|
Cosentino K, García-Sáez AJ. MIM through MOM: the awakening of Bax and Bak pores. EMBO J 2018; 37:embj.2018100340. [PMID: 30135068 DOI: 10.15252/embj.2018100340] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Katia Cosentino
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
585
|
Yang K, Huang R, Fujihira H, Suzuki T, Yan N. N-glycanase NGLY1 regulates mitochondrial homeostasis and inflammation through NRF1. J Exp Med 2018; 215:2600-2616. [PMID: 30135079 PMCID: PMC6170171 DOI: 10.1084/jem.20180783] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/05/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022] Open
Abstract
Yang et al. show that NGLY1, a deglycosylation enzyme, regulates mitochondrial homeostasis and mitophagy through transcription factor NRF1. In the absence of NGLY1, cellular clearance of damaged mitochondria by mitophagy is impaired, resulting in chronic activation of innate immune nucleic acid–sensing pathways. Mutations in the NGLY1 (N-glycanase 1) gene, encoding an evolutionarily conserved deglycosylation enzyme, are associated with a rare congenital disorder leading to global developmental delay and neurological abnormalities. The molecular mechanism of the NGLY1 disease and its function in tissue and immune homeostasis remain unknown. Here, we find that NGLY1-deficient human and mouse cells chronically activate cytosolic nucleic acid–sensing pathways, leading to elevated interferon gene signature. We also find that cellular clearance of damaged mitochondria by mitophagy is impaired in the absence of NGLY1, resulting in severely fragmented mitochondria and activation of cGAS–STING as well as MDA5–MAVS pathways. Furthermore, we show that NGLY1 regulates mitochondrial homeostasis through transcriptional factor NRF1. Remarkably, pharmacological activation of a homologous but nonglycosylated transcriptional factor NRF2 restores mitochondrial homeostasis and suppresses immune gene activation in NGLY1-deficient cells. Together, our findings reveal novel functions of the NGLY1–NRF1 pathway in mitochondrial homeostasis and inflammation and uncover an unexpected therapeutic strategy using pharmacological activators of NRF2 for treating mitochondrial and immune dysregulation.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ryan Huang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, Institute of Physical and Chemical Research (RIKEN) Cluster for Pioneering Research, Saitama, Japan.,Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, Institute of Physical and Chemical Research (RIKEN) Cluster for Pioneering Research, Saitama, Japan
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX .,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
586
|
Abstract
Although serum from Parkinson’s disease (PD) patients displays elevated levels of numerous pro-inflammatory cytokines including IL-6, TNFα, IL-1β, and IFNβ1, whether inflammation contributes to or is a consequence of neuronal loss remains unknown1. Mutations in Parkin, an E3 ubiquitin ligase, and PINK1, a ubiquitin kinase, cause early-onset PD2,3. Working in the same biochemical pathway, PINK1 and Parkin remove damaged mitochondria from cells in culture and in animal models via a selective form of autophagy, called mitophagy4. The role of mitophagy in vivo, however, is unclear in part because mice lacking PINK1 or Parkin have no substantial PD-relevant phenotypes5–7. As mitochondrial stress can lead to the release of damage-associated molecular patterns (DAMPs) that can activate innate immunity8–12, mitophagy may mitigate inflammation. Here we report a strong inflammatory phenotype in both Parkin−/− and PINK1−/− mice following exhaustive exercise (EE) and in Parkin−/−;Mutator mice, which accumulate mitochondrial DNA mutations with age13,14. Inflammation resulting from both EE and mtDNA mutation is completely rescued by concurrent loss of STING, a central regulator of the type I Interferon response to cytosolic DNA15,16. The loss of dopaminergic (DA) neurons from the substantia nigra pars compacta (SNc) and the motor defect observed in aged Parkin−/−;Mutator mice are also rescued by loss of STING, suggesting that inflammation facilitates this phenotype. Humans with mono- and biallelic Parkin mutations also display elevated cytokines. These results support a role for PINK1- and Parkin-mediated mitophagy in restraining innate immunity.
Collapse
|
587
|
Wu L, Cao J, Cai WL, Lang SM, Horton JR, Jansen DJ, Liu ZZ, Chen JF, Zhang M, Mott BT, Pohida K, Rai G, Kales SC, Henderson MJ, Hu X, Jadhav A, Maloney DJ, Simeonov A, Zhu S, Iwasaki A, Hall MD, Cheng X, Shadel GS, Yan Q. KDM5 histone demethylases repress immune response via suppression of STING. PLoS Biol 2018; 16:e2006134. [PMID: 30080846 PMCID: PMC6095604 DOI: 10.1371/journal.pbio.2006134] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/16/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS) stimulator of interferon genes (STING) senses pathogen-derived or abnormal self-DNA in the cytosol and triggers an innate immune defense against microbial infection and cancer. STING agonists induce both innate and adaptive immune responses and are a new class of cancer immunotherapy agents tested in multiple clinical trials. However, STING is commonly silenced in cancer cells via unclear mechanisms, limiting the application of these agonists. Here, we report that the expression of STING is epigenetically suppressed by the histone H3K4 lysine demethylases KDM5B and KDM5C and is activated by the opposing H3K4 methyltransferases. The induction of STING expression by KDM5 blockade triggered a robust interferon response in a cytosolic DNA-dependent manner in breast cancer cells. This response resulted in resistance to infection by DNA and RNA viruses. In human tumors, KDM5B expression is inversely associated with STING expression in multiple cancer types, with the level of intratumoral CD8+ T cells, and with patient survival in cancers with a high level of cytosolic DNA, such as human papilloma virus (HPV)-positive head and neck cancer. These results demonstrate a novel epigenetic regulatory pathway of immune response and suggest that KDM5 demethylases are potential targets for antipathogen treatment and anticancer immunotherapy.
Collapse
Affiliation(s)
- Lizhen Wu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jian Cao
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Wesley L. Cai
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Sabine M. Lang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - John R. Horton
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Daniel J. Jansen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Zongzhi Z. Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jocelyn F. Chen
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Meiling Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Bryan T. Mott
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Katherine Pohida
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Stephen C. Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mark J. Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Shu Zhu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Xiaodong Cheng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gerald S. Shadel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
588
|
Sack MN. Mitochondrial fidelity and metabolic agility control immune cell fate and function. J Clin Invest 2018; 128:3651-3661. [PMID: 30059015 DOI: 10.1172/jci120845] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Remodeling of mitochondrial metabolism plays an important role in regulating immune cell fate, proliferation, and activity. Furthermore, given their bacterial ancestry, disruption in mitochondrial fidelity leading to extravasation of their content initiates and amplifies innate immune surveillance with a myriad of physiologic and pathologic consequences. Investigations into the role of mitochondria in the immune system have come to the fore, and appreciation of mitochondrial function and quality control in immune regulation has enhanced our understanding of disease pathogenesis and identified new targets for immune modulation. This mitochondria-centered Review focuses on the role of mitochondrial metabolism and fidelity, as well as the role of the mitochondria as a structural platform, for the control of immune cell polarity, activation, and signaling. Mitochondria-linked disease and mitochondrially targeted therapeutic strategies to manage these conditions are also discussed.
Collapse
|
589
|
Dhir A, Dhir S, Borowski LS, Jimenez L, Teitell M, Rötig A, Crow YJ, Rice GI, Duffy D, Tamby C, Nojima T, Munnich A, Schiff M, de Almeida CR, Rehwinkel J, Dziembowski A, Szczesny RJ, Proudfoot NJ. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 2018; 560:238-242. [PMID: 30046113 DOI: 10.1038/s41586-018-0363-0] [Citation(s) in RCA: 432] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/06/2018] [Indexed: 11/09/2022]
Abstract
Mitochondria are descendants of endosymbiotic bacteria and retain essential prokaryotic features such as a compact circular genome. Consequently, in mammals, mitochondrial DNA is subjected to bidirectional transcription that generates overlapping transcripts, which are capable of forming long double-stranded RNA structures1,2. However, to our knowledge, mitochondrial double-stranded RNA has not been previously characterized in vivo. Here we describe the presence of a highly unstable native mitochondrial double-stranded RNA species at single-cell level and identify key roles for the degradosome components mitochondrial RNA helicase SUV3 and polynucleotide phosphorylase PNPase in restricting the levels of mitochondrial double-stranded RNA. Loss of either enzyme results in massive accumulation of mitochondrial double-stranded RNA that escapes into the cytoplasm in a PNPase-dependent manner. This process engages an MDA5-driven antiviral signalling pathway that triggers a type I interferon response. Consistent with these data, patients carrying hypomorphic mutations in the gene PNPT1, which encodes PNPase, display mitochondrial double-stranded RNA accumulation coupled with upregulation of interferon-stimulated genes and other markers of immune activation. The localization of PNPase to the mitochondrial inter-membrane space and matrix suggests that it has a dual role in preventing the formation and release of mitochondrial double-stranded RNA into the cytoplasm. This in turn prevents the activation of potent innate immune defence mechanisms that have evolved to protect vertebrates against microbial and viral attack.
Collapse
Affiliation(s)
- Ashish Dhir
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Somdutta Dhir
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lukasz S Borowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Laura Jimenez
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Teitell
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Agnès Rötig
- INSERM UMR1163, Institut Imagine, Paris, France
| | - Yanick J Crow
- INSERM UMR1163, Institut Imagine, Paris, France.,Paris Descartes University, Sorbonne-Paris-Cité, Institut Imagine, Paris, France.,Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Darragh Duffy
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France.,INSERM U1223, Paris, France
| | | | - Takayuki Nojima
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | | | - Jan Rehwinkel
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland. .,Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | |
Collapse
|
590
|
Zhou W, Whiteley AT, de Oliveira Mann CC, Morehouse BR, Nowak RP, Fischer ES, Gray NS, Mekalanos JJ, Kranzusch PJ. Structure of the Human cGAS-DNA Complex Reveals Enhanced Control of Immune Surveillance. Cell 2018; 174:300-311.e11. [PMID: 30007416 PMCID: PMC6084792 DOI: 10.1016/j.cell.2018.06.026] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/01/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA is critical for immune responses to pathogen replication, cellular stress, and cancer. Existing structures of the mouse cGAS-DNA complex provide a model for enzyme activation but do not explain why human cGAS exhibits severely reduced levels of cyclic GMP-AMP (cGAMP) synthesis compared to other mammals. Here, we discover that enhanced DNA-length specificity restrains human cGAS activation. Using reconstitution of cGAMP signaling in bacteria, we mapped the determinant of human cGAS regulation to two amino acid substitutions in the DNA-binding surface. Human-specific substitutions are necessary and sufficient to direct preferential detection of long DNA. Crystal structures reveal why removal of human substitutions relaxes DNA-length specificity and explain how human-specific DNA interactions favor cGAS oligomerization. These results define how DNA-sensing in humans adapted for enhanced specificity and provide a model of the active human cGAS-DNA complex to enable structure-guided design of cGAS therapeutics.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Aaron T Whiteley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Carina C de Oliveira Mann
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Benjamin R Morehouse
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Radosław P Nowak
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Eric S Fischer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Philip J Kranzusch
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
591
|
Harris J, Deen N, Zamani S, Hasnat MA. Mitophagy and the release of inflammatory cytokines. Mitochondrion 2018; 41:2-8. [DOI: 10.1016/j.mito.2017.10.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 01/06/2023]
|
592
|
Lai JH, Wang MY, Huang CY, Wu CH, Hung LF, Yang CY, Ke PY, Luo SF, Liu SJ, Ho LJ. Infection with the dengue RNA virus activates TLR9 signaling in human dendritic cells. EMBO Rep 2018; 19:embr.201846182. [PMID: 29880709 DOI: 10.15252/embr.201846182] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 01/03/2023] Open
Abstract
Toll-like receptors (TLRs) are important sensors that recognize pathogen-associated molecular patterns. Generally, TLR9 is known to recognize bacterial or viral DNA but not viral RNA and initiate an immune response. Herein, we demonstrate that infection with dengue virus (DENV), an RNA virus, activates TLR9 in human dendritic cells (DCs). DENV infection induces release of mitochondrial DNA (mtDNA) into the cytosol and activates TLR9 signaling pathways, leading to production of interferons (IFNs). The DENV-induced mtDNA release involves reactive oxygen species generation and inflammasome activation. DENV infection disrupts the association between transcription factor A mitochondria (TFAM) and mtDNA and activates the mitochondrial permeability transition pores. The side-by-side comparison of TLR9 and cyclic GMP-AMP synthase (cGAS) knockdown reveals that both cGAS and TLR9 comparably contribute to DENV-induced immune activation. The significance of TLR9 in DENV-induced immune response is also confirmed in examination with the bone marrow-derived DCs prepared from Tlr9-knockout mice. Our study unravels a previously unrecognized phenomenon in which infection with an RNA virus, DENV, activates TLR9 signaling by inducing mtDNA release in human DCs.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan .,Graduate Institute of Clinical Research, National Defense Medical Center, Taipei, Taiwan
| | - Mei-Yi Wang
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan
| | - Chuan-Yueh Huang
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan
| | - Chien-Hsiang Wu
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan
| | - Li-Feng Hung
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan
| | - Chia-Ying Yang
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan
| | - Po-Yuan Ke
- Department of Biochemistry & Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Shue-Fen Luo
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan
| |
Collapse
|
593
|
Wilson CH, Kumar S. Caspases in metabolic disease and their therapeutic potential. Cell Death Differ 2018; 25:1010-1024. [PMID: 29743560 PMCID: PMC5988802 DOI: 10.1038/s41418-018-0111-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
Caspases, a family of cysteine-dependent aspartate-specific proteases, are central to the maintenance of cellular and organismal homoeostasis by functioning as key mediators of the inflammatory response and/or apoptosis. Both metabolic inflammation and apoptosis play a central role in the pathogenesis of metabolic disease such as obesity and the progression of nonalcoholic steatohepatisis (NASH) to more severe liver disease. Obesity and nonalcoholic fatty liver disease (NAFLD) are the leading global health challenges associated with the development of numerous comorbidities including insulin resistance, type-2 diabetes and early mortality. Despite the high prevalence, current treatment strategies including lifestyle, dietary, pharmaceutical and surgical interventions, are often limited in their efficacy to manage or treat obesity, and there are currently no clinical therapies for NAFLD/NASH. As mediators of inflammation and cell death, caspases are attractive therapeutic targets for the treatment of these metabolic diseases. As such, pan-caspase inhibitors that act by blocking apoptosis have reached phase I/II clinical trials in severe liver disease. However, there is still a lack of knowledge of the specific and differential functions of individual caspases. In addition, cross-talk between alternate cell death pathways is a growing concern for long-term caspase inhibition. Evidence is emerging of the important cell-death-independent, non-apoptotic functions of caspases in metabolic homoeostasis that may be of therapeutic value. Here, we review the current evidence for roles of caspases in metabolic disease and discuss their potential targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Claire H Wilson
- Centre for Cancer Biology, University of South Australia & SA Pathology, Adelaide, SA, 5001, Australia.
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia & SA Pathology, Adelaide, SA, 5001, Australia.
| |
Collapse
|
594
|
DNase II activated by the mitochondrial apoptotic pathway regulates RIP1-dependent non-apoptotic hepatocyte death via the TLR9/IFN-β signaling pathway. Cell Death Differ 2018; 26:470-486. [PMID: 29855540 DOI: 10.1038/s41418-018-0131-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 12/24/2022] Open
Abstract
Cell death, including apoptotic and non-apoptotic cell death, is frequently observed in liver disease. Upon activation of the mitochondrial apoptotic pathway, mitochondria release not only apoptogenic cytochrome c but also mitochondrial DNA (mtDNA) into the cytosol. The impact of DNase II, a lysosomal acid DNase that degrades mtDNA, on hepatocyte death remains unclear. Administration of ABT-737, a Bcl-xL inhibitor, upregulated DNase II activity in murine hepatocyte cell line BNL CL.2 cells and induced apoptosis. In cells treated with DNase II siRNA, ABT-737 led to accumulation of mtDNA in the cytosol and increased expression of interferon (IFN)-β and induction of propidium iodide (PI)-positive cells, in addition to apoptosis. Induced PI-positive cells were suppressed by RIP1 inhibitor, Necrostatin-1, but not by pan-caspase inhibitor, ZVAD-FMK, suggesting non-apoptotic cell death. Both the increase in IFN-β and the induction of non-apoptotic cell death were abolished by administering a TLR9 antagonist, ODN2088, or by the removal of mtDNA from cells with ethidium bromide. Hepatocyte-specific Mcl-1 knockout mice developed hepatocyte apoptosis accompanied by upregulated DNase II activity in their livers. Further knockout of DNase II induced IFN-β expression and RIP1-dependent non-apoptotic hepatocyte death, both of which were suppressed by the administration of ODN2088. Mice fed a high-fat diet (HFD), an obesity-associated fatty liver model, showed increased expression of IFN-β with suppression of DNase II activity in their livers and developed not only hepatocyte apoptosis but also non-apoptotic hepatocyte death. Hepatocyte-specific knockout of DNase II exacerbated HFD-induced non-apoptotic hepatocyte death and liver fibrosis. In conclusion, without DNase II, apoptotic stimulation on hepatocytes induces TLR9-dependent IFN-β production and RIP1-dependent non-apoptotic cell death originating from mtDNA. In fatty livers, DNase II activity is suppressed in contrast to simple inactivation of Bcl-xL or Mcl-1, and both apoptotic and non-apoptotic hepatocyte death can develop, leading to the progression of liver fibrosis.
Collapse
|
595
|
Durante M, Formenti SC. Radiation-Induced Chromosomal Aberrations and Immunotherapy: Micronuclei, Cytosolic DNA, and Interferon-Production Pathway. Front Oncol 2018; 8:192. [PMID: 29911071 PMCID: PMC5992419 DOI: 10.3389/fonc.2018.00192] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Radiation-induced chromosomal aberrations represent an early marker of late effects, including cell killing and transformation. The measurement of cytogenetic damage in tissues, generally in blood lymphocytes, from patients treated with radiotherapy has been studied for many years to predict individual sensitivity and late morbidity. Acentric fragments are lost during mitosis and create micronuclei (MN), which are well correlated to cell killing. Immunotherapy is rapidly becoming a most promising new strategy for metastatic tumors, and combination with radiotherapy is explored in several pre-clinical studies and clinical trials. Recent evidence has shown that the presence of cytosolic DNA activates immune response via the cyclic GMP-AMP synthase/stimulator of interferon genes pathway, which induces type I interferon transcription. Cytosolic DNA can be found after exposure to ionizing radiation either as MN or as small fragments leaking through nuclear envelope ruptures. The study of the dependence of cytosolic DNA and MN on dose and radiation quality can guide the optimal combination of radiotherapy and immunotherapy. The role of densely ionizing charged particles is under active investigation to define their impact on the activation of the interferon pathway.
Collapse
Affiliation(s)
- Marco Durante
- Trento Institute for Fundamental and Applied Physics (TIFPA), National Institute for Nuclear Physics (INFN), University of Trento, Trento, Italy
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
596
|
Regulation of macrophage immunometabolism in atherosclerosis. Nat Immunol 2018; 19:526-537. [PMID: 29777212 DOI: 10.1038/s41590-018-0113-3] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
After activation, cells of the myeloid lineage undergo robust metabolic transitions, as well as discrete epigenetic changes, that can dictate both ongoing and future inflammatory responses. In atherosclerosis, in which macrophages play central roles in the initiation, growth, and ultimately rupture of arterial plaques, altered metabolism is a key feature that dictates macrophage function and subsequent disease progression. This Review explores how factors central to the plaque microenvironment (for example, altered cholesterol metabolism, oxidative stress, hypoxia, apoptotic and necrotic cells, and hyperglycemia) shape the metabolic rewiring of macrophages in atherosclerosis as well as how these metabolic shifts in turn alter macrophage immune-effector and tissue-reparative functions. Finally, this overview offers insight into the challenges and opportunities of harnessing metabolism to modulate aberrant macrophage responses in disease.
Collapse
|
597
|
Grazioli S, Pugin J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front Immunol 2018; 9:832. [PMID: 29780380 PMCID: PMC5946030 DOI: 10.3389/fimmu.2018.00832] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
Abstract
Over the recent years, much has been unraveled about the pro-inflammatory properties of various mitochondrial molecules once they are leaving the mitochondrial compartment. On entering the cytoplasm or the extracellular space, mitochondrial DAMPs (also known as mitochondrial alarmins) can become pro-inflammatory and initiate innate and adaptive immune responses by activating cell surface and intracellular receptors. Current evidence indicates that uncontrolled and excessive release of mitochondrial DAMPs is associated with severity, has prognosis value in human diseases, and contributes to the dysregulated process observed in numerous inflammatory and autoimmune conditions, as well as in ischemic heart disease and cancer. Herein, we review that the expanding research field of mitochondrial DAMPs in innate immune responses and the current knowledge on the association between mitochondrial DAMPs and human diseases.
Collapse
Affiliation(s)
- Serge Grazioli
- Pediatric Intensive Care Unit, Department of Pediatrics, University Hospital of Geneva, University of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jérôme Pugin
- Intensive Care Unit, Department of Anesthesiology, Faculty of Medicine, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
598
|
Galluzzi L, Vanpouille-Box C. BAX and BAK at the Gates of Innate Immunity. Trends Cell Biol 2018; 28:343-345. [DOI: 10.1016/j.tcb.2018.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
|
599
|
Caspase-Dependent Suppression of Type I Interferon Signaling Promotes Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication. J Virol 2018. [PMID: 29514903 DOI: 10.1128/jvi.00078-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An important component of lytic infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is the ability of the virus to evade the innate immune response, specifically type I interferon (IFN) responses that are triggered by recognition of viral nucleic acids. Inhibition of type I IFN responses by the virus promotes viral replication. Here, we report that KSHV uses a caspase-dependent mechanism to block type I IFN, in particular IFN-β, responses during lytic infection. Inhibition of caspases during KSHV reactivation resulted in increased TBK1/IKKε-dependent phosphorylation of IRF3 as well as elevated levels of IFN-β transcription and secretion. The increased secretion of IFN-β upon caspase inhibition reduced viral gene expression, viral DNA replication, and virus production. Blocking IFN-β production or signaling restored viral replication. Overall, our results show that caspase-mediated regulation of pathogen sensing machinery is an important mechanism exploited by KSHV to evade innate immune responses.IMPORTANCE KSHV is the causative agent of Kaposi's sarcoma (KS), an AIDS-defining tumor that is one of the most common causes of cancer death in sub-Saharan Africa. In this study, we examined the role of a set of cellular proteases, called caspases, in the regulation of immune responses during KSHV infection. We demonstrate that caspases prevent the induction and secretion of the antiviral factor IFN-β during replicative KSHV infection. The reduced IFN-β production allows for high viral gene expression and viral replication. Therefore, caspases are important for maintaining KSHV replication. Overall, our results suggest that KSHV utilizes caspases to evade innate immune responses, and that inhibiting caspases could boost the innate immune response to this pathogen and potentially be a new antiviral strategy.
Collapse
|
600
|
Scherlinger M, Sisirak V, Richez C, Lazaro E, Duffau P, Blanco P. New Insights on Platelets and Platelet-Derived Microparticles in Systemic Lupus Erythematosus. Curr Rheumatol Rep 2018; 19:48. [PMID: 28718063 DOI: 10.1007/s11926-017-0678-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Current knowledge on the role of platelets and platelet-derived microparticles (PMPs) on the immune system has been fast-growing. Systemic lupus erythematosus (SLE) is a systemic auto-immune disorder characterized by a loss of tolerance toward nuclear auto-antigens. Although recent studies allowed a better understanding of SLE pathogenesis, there is an urgent need for the development of new treatments and the identification of new biomarkers to assess the disease activity. We describe here the state-of-the-art knowledge linking platelets and PMPs to SLE. RECENT FINDINGS Platelet system activation is a key event in the pathogenesis of SLE. Circulating immune complexes, anti-phospholipid antibodies, and infectious agents such as virus are the main activators of platelets in SLE. Platelet activation can be monitored through different ways such as P-selectin expression, mean platelet volume, or circulating PMP levels, suggesting their potential use as biomarkers. Upon activation, platelets promote type I interferon production, NETosis, dendritic cell activation, and T and B lymphocyte activation, all essential events contributing to the development of SLE. Of interest, platelets also play a fundamental role in SLE organ disease such as the development of cardiovascular, thrombotic, and renal diseases. Finally, we review current knowledge on drugs targeting platelet activation and their potential impact on SLE pathogenesis. Platelets play a major role in SLE pathogenesis and organ disease and represent a great potential for novel biomarkers and drug development.
Collapse
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France.,Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Vanja Sisirak
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Christophe Richez
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France.,Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Estibaliz Lazaro
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France
| | - Pierre Duffau
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,Service de médecine interne, FHU ACRONIM, Hôpital Saint André, Centre Hospitalier Universitaire, 1 rue Jean Burguet, 33076, Bordeaux, France
| | - Patrick Blanco
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France. .,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France. .,Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France.
| |
Collapse
|