551
|
Okada H, Ogawa T, Tanaka K, Kanazawa T, Takashima Y. Cytoplasm-Responsive Delivery Systems for siRNA Using Cell-Penetrating Peptide Nanomicelles. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50001-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
552
|
Zheng HN, Ma YZ, Xiao SJ. Periodical assembly of repetitive RNA sequences synthesized by rolling circle transcription with short DNA staple strands to RNA–DNA hybrid nanowires. Chem Commun (Camb) 2014; 50:2100-3. [DOI: 10.1039/c3cc48808j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
553
|
Scarborough RJ, Lévesque MV, Perreault JP, Gatignol A. Design and evaluation of clinically relevant SOFA-HDV ribozymes targeting HIV RNA. Methods Mol Biol 2014; 1103:31-43. [PMID: 24318884 DOI: 10.1007/978-1-62703-730-3_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nucleic acid therapies targeting HIV replication have the potential to be used in conjunction with or in place of the standard small-molecule therapies. Among the different classes of nucleic acid therapies, several ribozymes (Rzs, RNA enzymes) have been developed to target HIV RNA. The design of Rzs targeting HIV RNA is complicated by the sequence diversity of viral strains and the structural diversity of their target sites. Using the SOFA-HDV Rz as an example, this chapter describes methods that can be used to design Rzs for controlling HIV replication. We describe how to (1) identify highly conserved Rz target sites in HIV RNA; (2) generate a set of Rzs with the potential to be used as therapeutics; and (3) screen these Rzs for activity against HIV production.
Collapse
Affiliation(s)
- Robert J Scarborough
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, McGill University, Montréal, QC, Canada
| | | | | | | |
Collapse
|
554
|
Lin CY, Huang Z, Jaremko W, Niu L. High-performance liquid chromatography purification of chemically modified RNA aptamers. Anal Biochem 2013; 449:106-8. [PMID: 24373999 DOI: 10.1016/j.ab.2013.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 12/16/2022]
Abstract
2'-Fluoro modified RNAs are useful as potential therapeutics and as special substrates for studying RNA function. 2'-Fluoro modified RNAs generally need to be purified after they are prepared either enzymatically or by solid-phase synthesis. Here we introduce a protocol by which 2'-fluoro modified RNAs with 57 and 58 nucleotides can be resolved and purified using ion-pair, reverse-phase high-performance liquid chromatography (HPLC). Because the size of our RNA samples is in the range of many known RNA aptamers of therapeutic values, our protocol should be generally useful.
Collapse
Affiliation(s)
- Chi-Yen Lin
- Department of Chemistry, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY 12222, USA
| | - Zhen Huang
- Department of Chemistry, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY 12222, USA
| | - William Jaremko
- Department of Chemistry, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY 12222, USA
| | - Li Niu
- Department of Chemistry, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY 12222, USA.
| |
Collapse
|
555
|
Lee CH, Kim JH, Lee SW. Prospects for nucleic acid-based therapeutics against hepatitis C virus. World J Gastroenterol 2013; 19:8949-8962. [PMID: 24379620 PMCID: PMC3870548 DOI: 10.3748/wjg.v19.i47.8949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/10/2013] [Accepted: 11/30/2013] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss recent advances in nucleic acid-based therapeutic technologies that target hepatitis C virus (HCV) infection. Because the HCV genome is present exclusively in RNA form during replication, various nucleic acid-based therapeutic approaches targeting the HCV genome, such as ribozymes, aptamers, siRNAs, and antisense oligonucleotides, have been suggested as potential tools against HCV. Nucleic acids are potentially immunogenic and typically require a delivery tool to be utilized as therapeutics. These limitations have hampered the clinical development of nucleic acid-based therapeutics. However, despite these limitations, nucleic acid-based therapeutics has clinical value due to their great specificity, easy and large-scale synthesis with chemical methods, and pharmaceutical flexibility. Moreover, nucleic acid therapeutics are expected to broaden the range of targetable molecules essential for the HCV replication cycle, and therefore they may prove to be more effective than existing therapeutics, such as interferon-α and ribavirin combination therapy. This review focuses on the current status and future prospects of ribozymes, aptamers, siRNAs, and antisense oligonucleotides as therapeutic reagents against HCV.
Collapse
|
556
|
Nakagawa O, Ming X, Carver K, Juliano R. Conjugation with receptor-targeted histidine-rich peptides enhances the pharmacological effectiveness of antisense oligonucleotides. Bioconjug Chem 2013; 25:165-70. [PMID: 24354269 DOI: 10.1021/bc400500h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ineffective delivery to intracellular sites of action is one of the key limitations to the use of antisense and siRNA oligonucleotides as therapeutic agents. Here, we describe molecular scale antisense oligonucleotide conjugates that bind selectively to a cell surface receptor, are internalized, and then partially escape from nonproductive endosomal locations to reach their sites of action in the nucleus. Peptides that include bombesin sequences for receptor targeting and a run of histidine residues for endosomal disruption were covalently linked to a splice switching antisense oligonucleotide. The conjugates were tested for their ability to correct splicing and up-regulate expression of a luciferase reporter in prostate cancer cells that express the bombesin receptor. We found that trivalent conjugates that included both the targeting sequence and several histidine residues were substantially more effective than conjugates containing only the bombesin or histidine moieties. This demonstrates the potential of creating molecular scale oligonucleotide conjugates with both targeting and endosome escape capabilities.
Collapse
Affiliation(s)
- Osamu Nakagawa
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill North Carolina 27599, United States
| | | | | | | |
Collapse
|
557
|
Bennett MS, Akkina R. Gene therapy strategies for HIV/AIDS: preclinical modeling in humanized mice. Viruses 2013; 5:3119-41. [PMID: 24351796 PMCID: PMC3967164 DOI: 10.3390/v5123119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/04/2013] [Accepted: 12/03/2013] [Indexed: 12/28/2022] Open
Abstract
In the absence of an effective vaccine and lack of a complete cure, gene therapy approaches to control HIV infection offer feasible alternatives. Due to the chronic nature of infection, a wide window of opportunity exists to gene modify the HIV susceptible cells that continuously arise from the bone marrow source. To evaluate promising gene therapy approaches that employ various anti-HIV therapeutic molecules, an ideal animal model is necessary to generate important efficacy and preclinical data. In this regard, the humanized mouse models that harbor human hematopoietic cells susceptible to HIV infection provide a suitable in vivo system. This review summarizes the currently used humanized mouse models and different anti-HIV molecules utilized for conferring HIV resistance. Humanized mouse models are compared for their utility in this context and provide perspectives for new directions.
Collapse
Affiliation(s)
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1619 Campus delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|
558
|
Videira M, Arranja A, Rafael D, Gaspar R. Preclinical development of siRNA therapeutics: towards the match between fundamental science and engineered systems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:689-702. [PMID: 24333589 DOI: 10.1016/j.nano.2013.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/21/2013] [Accepted: 11/24/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED The evolution of synthetic RNAi faces the paradox of interfering with the human biological environment. Due to the fact that all cell physiological processes can be target candidates, silencing a precise biological pathway could be challenging if target selectivity is not properly addressed. Molecular biology has provided scientific tools to suppress some of the most critical issues in gene therapy, while setting the standards for siRNA clinical application. However, the protein down-regulation through the mRNA silencing is intimately related to the sequence-specific siRNA ability to interact accurately with the potential target. Moreover, its in vivo biological fate is highly dependent on the successful design of a vehicle able to overcome both extracellular and intracellular barriers. Anticipating a great deal of innovation, crucial to meet the challenges involved in the RNAi therapeutics, the present review intends to build up a synopsis on the delivery strategies currently developed. FROM THE CLINICAL EDITOR This review discusses recent progress and pertinent limiting factors related to the use of siRNA-s as efficient protein-specific "silencing" agents, focusing on targeted delivery not only to cells of interest, but to the proper intracellular destination.
Collapse
Affiliation(s)
- M Videira
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| | - A Arranja
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - D Rafael
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - R Gaspar
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
559
|
Bates K, Kostarelos K. Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals. Adv Drug Deliv Rev 2013; 65:2023-33. [PMID: 24184373 DOI: 10.1016/j.addr.2013.10.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 12/18/2022]
Abstract
Promising therapeutic and prophylactic effects have been achieved following advances in the gene therapy research arena, giving birth to the new generation of disease-modifying therapeutics. The greatest challenge that gene therapy vectors still face is the ability to deliver sufficient genetic payloads in order to enable efficient gene transfer into target cells. A wide variety of viral and non-viral gene therapy vectors have been developed and explored over the past 10years, including carbon nanotubes. In this review we will address the application of carbon nanotubes as non-viral vectors in gene therapy with the aim to give a perspective on the past achievements, present challenges and future goals. A series of important topics concerning carbon nanotubes as gene therapy vectors will be addressed, including the benefits that carbon nanotubes offer over other non-viral delivery systems. Furthermore, a perspective is given on what the ideal genetic cargo to deliver using carbon nanotubes is and finally the geno-pharmacological impact of carbon nanotube-mediated gene therapy is discussed.
Collapse
Affiliation(s)
- Katie Bates
- Nanomedicine Lab, Faculty of Medical & Human Sciences and National Graphene Institute, University of Manchester, AV Hill Building, Manchester M13 9PT, UK; UCL School of Pharmacy, University College London, Brunswick Square, London WC1N 1AX, UK
| | | |
Collapse
|
560
|
Poelstra K, Beljaars L, Melgert BN. Cell-specific delivery of biologicals: problems, pitfalls and possibilities of antifibrotic compounds in the liver. Drug Discov Today 2013; 18:1237-42. [DOI: 10.1016/j.drudis.2013.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/22/2013] [Indexed: 02/06/2023]
|
561
|
Bagheri F, Safarian S, Eslaminejad MB, Sheibani N. siRNA-mediated knock-down of DFF45 amplifies doxorubicin therapeutic effects in breast cancer cells. Cell Oncol (Dordr) 2013; 36:515-26. [PMID: 24277473 DOI: 10.1007/s13402-013-0157-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2013] [Indexed: 11/25/2022] Open
Abstract
PURPOSE RNA interference (RNAi) has become a promising tool for cancer therapy. Small interfering RNAs (siRNAs) can synergistically enhance the cell killing effects of drugs used in cancer treatment. Here we examined the effects of siRNA-mediated DNA fragmentation factor 45 (DFF45) gene silencing on breast cancer cell viability, cell cycle arrest, and apoptosis in the presence and absence of doxorubicin. METHODS We designed three siRNAs, which target different regions of the DFF45 mRNA. Gene silencing was confirmed by real time RT-PCR and Western blot analyses. The impact of DFF45 siRNA, doxorubicin, and their combination on the viability, cell cycle and apoptosis of T-47D and MDA-MB-231 breast cancer cells were determined by MTT, PI staining, annexin V binding, caspase-3 activity, DNA laddering, and chromatin condensation assays. RESULTS Based on flow cytometric analyses, we found that silencing of DFF45 alone had little effect on apoptosis, especially in T-47D cells. However, when used in combination with doxorubicin (0.33 μM) a significant increase (P < 0.05) in apoptosis was observed in T-47D and MDA-MB-231 cells, i.e., ~2.5- and 3-fold, respectively. Caspase-3 activity, chromatin condensation, as well as DNA laddering supported increased apoptosis in the combinatorial treatment. Cell cycle arrest in both cell lines occurred at lower levels after siRNA + doxorubicin treatment compared to doxorubicin only. CONCLUSIONS Our data indicate that DFF45 gene silencing, when applied in combination with doxorubicin, may offer a novel therapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Fatemeh Bagheri
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | | | | |
Collapse
|
562
|
Angart P, Vocelle D, Chan C, Walton SP. Design of siRNA Therapeutics from the Molecular Scale. Pharmaceuticals (Basel) 2013; 6:440-68. [PMID: 23976875 PMCID: PMC3749788 DOI: 10.3390/ph6040440] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While protein-based therapeutics is well-established in the market, development of nucleic acid therapeutics has lagged. Short interfering RNAs (siRNAs) represent an exciting new direction for the pharmaceutical industry. These small, chemically synthesized RNAs can knock down the expression of target genes through the use of a native eukaryotic pathway called RNA interference (RNAi). Though siRNAs are routinely used in research studies of eukaryotic biological processes, transitioning the technology to the clinic has proven challenging. Early efforts to design an siRNA therapeutic have demonstrated the difficulties in generating a highly-active siRNA with good specificity and a delivery vehicle that can protect the siRNA as it is transported to a specific tissue. In this review article, we discuss design considerations for siRNA therapeutics, identifying criteria for choosing therapeutic targets, producing highly-active siRNA sequences, and designing an optimized delivery vehicle. Taken together, these design considerations provide logical guidelines for generating novel siRNA therapeutics.
Collapse
Affiliation(s)
- Phillip Angart
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, Room 2527, East Lansing, MI 48824, USA; (P.A.); (D.V.); (C.C.)
| | | | | | | |
Collapse
|
563
|
Abstract
RNA interference (RNAi) is an evolutionarily conserved, endogenous process for post-transcriptional regulation of gene expression. Although RNAi therapeutics have recently progressed through the pipeline toward clinical trials, the application of these as ideal, clinical therapeutics requires the development of safe and effective delivery systems. Inspired by the immense progress with nanotechnology in drug delivery, efforts have been dedicated to the development of nanoparticle-based RNAi delivery systems. For example, a precisely engineered, multifunctional nanocarrier with combined passive and active targeting capabilities may address the delivery challenges for the widespread use of RNAi as a therapy. Therefore, in this review, we introduce the major hurdles in achieving efficient RNAi delivery and discuss the current advances in applying nanotechnology-based delivery systems to overcome the delivery hurdles of RNAi therapeutics. In particular, some representative examples of nanoparticle-based delivery formulations for targeted RNAi therapeutics are highlighted.
Collapse
|
564
|
Fujita Y, Takeshita F, Mizutani T, Ohgi T, Kuwano K, Ochiya T. A novel platform to enable inhaled naked RNAi medicine for lung cancer. Sci Rep 2013; 3:3325. [PMID: 24270189 PMCID: PMC3839038 DOI: 10.1038/srep03325] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 11/08/2013] [Indexed: 12/14/2022] Open
Abstract
Small interfering RNA (siRNA)-based therapeutics have been used in humans and offer distinct advantages over traditional therapies. However, previous investigations have shown that there are several technical obstacles that need to be overcome before routine clinical applications are used. Currently, we are launching a novel class of RNAi therapeutic agents (PnkRNA™, nkRNA) that show high resistance to degradation and are less immunogenic, less cytotoxic, and capable of efficient intracellular delivery. Here, we develop a novel platform to promote naked RNAi approaches administered through inhalation without sophisticated delivery technology in mice. Furthermore, a naked and unmodified novel RNAi agent, such as ribophorin II (RPN2-PnkRNA), which has been selected as a therapeutic target for lung cancer, resulted in efficient inhibition of tumor growth without any significant toxicity. Thus, this new technology using aerosol delivery could represent a safe, potentially RNAi-based strategy for clinical applications in lung cancer treatment without delivery vehicles.
Collapse
Affiliation(s)
- Yu Fujita
- 1] Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan [2] Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-19-18, Nishi-shinbashi, Minato-ku, Tokyo 105-8471, Japan
| | | | | | | | | | | |
Collapse
|
565
|
Aptamer-based therapeutics: new approaches to combat human viral diseases. Pharmaceuticals (Basel) 2013; 6:1507-42. [PMID: 24287493 PMCID: PMC3873675 DOI: 10.3390/ph6121507] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 12/18/2022] Open
Abstract
Viruses replicate inside the cells of an organism and continuously evolve to contend with an ever-changing environment. Many life-threatening diseases, such as AIDS, SARS, hepatitis and some cancers, are caused by viruses. Because viruses have small genome sizes and high mutability, there is currently a lack of and an urgent need for effective treatment for many viral pathogens. One approach that has recently received much attention is aptamer-based therapeutics. Aptamer technology has high target specificity and versatility, i.e., any viral proteins could potentially be targeted. Consequently, new aptamer-based therapeutics have the potential to lead a revolution in the development of anti-infective drugs. Additionally, aptamers can potentially bind any targets and any pathogen that is theoretically amenable to rapid targeting, making aptamers invaluable tools for treating a wide range of diseases. This review will provide a broad, comprehensive overview of viral therapies that use aptamers. The aptamer selection process will be described, followed by an explanation of the potential for treating virus infection by aptamers. Recent progress and prospective use of aptamers against a large variety of human viruses, such as HIV-1, HCV, HBV, SCoV, Rabies virus, HPV, HSV and influenza virus, with particular focus on clinical development of aptamers will also be described. Finally, we will discuss the challenges of advancing antiviral aptamer therapeutics and prospects for future success.
Collapse
|
566
|
Vazquez-Anderson J, Contreras LM. Regulatory RNAs: charming gene management styles for synthetic biology applications. RNA Biol 2013; 10:1778-97. [PMID: 24356572 DOI: 10.4161/rna.27102] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RNAs have many important functional properties, including that they are independently controllable and highly tunable. As a result of these advantageous properties, their use in a myriad of sophisticated devices has been widely explored. Yet, the exploitation of RNAs for synthetic applications is highly dependent on the ability to characterize the many new molecules that continue to be discovered by large-scale sequencing and high-throughput screening techniques. In this review, we present an exhaustive survey of the most recent synthetic bacterial riboswitches and small RNAs while emphasizing their virtues in gene expression management. We also explore the use of these RNA components as building blocks in the RNA synthetic biology toolbox and discuss examples of synthetic RNA components used to rewire bacterial regulatory circuitry. We anticipate that this field will expand its catalog of smart devices by mimicking and manipulating natural RNA mechanisms and functions.
Collapse
Affiliation(s)
- Jorge Vazquez-Anderson
- McKetta Department of Chemical Engineering; University of Texas at Austin; Austin, TX USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering; University of Texas at Austin; Austin, TX USA
| |
Collapse
|
567
|
Osório L, Gijsbers R, Oliveras-Salvá M, Michiels A, Debyser Z, Van den Haute C, Baekelandt V. Viral vectors expressing a single microRNA-based short-hairpin RNA result in potent gene silencing in vitro and in vivo. J Biotechnol 2013; 169:71-81. [PMID: 24252659 DOI: 10.1016/j.jbiotec.2013.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 12/23/2022]
Abstract
The characterization of RNA interference and the accompanying microRNAs (miRs), together with the exogenous expression of artificial miR-like elements, has led to the development of strategies for specific and potent gene silencing. In turn, this allows manipulation of gene expression levels for target validation purposes in cell culture or for the generation of animal models. In this study we determined the optimal strategy to achieve the most potent knockdown using miR-based viral vectors. We studied polycistronic miRs in a viral vector context and evaluated knockdown potency of multiple-miRs targeting the same seed sequence in parallel with miRs targeting different seed sequences, both for a reporter and endogenous mRNA targets. We demonstrate that potent knockdown can be obtained in vitro and in vivo using viral vectors that encode a single miR-based short-hairpin RNA and report a generic and effective cloning platform for artificial miR30-based short-hairpin RNAs to generate potent knockdown viral vectors.
Collapse
Affiliation(s)
- Luísa Osório
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| | - Rik Gijsbers
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium; KU Leuven, Leuven Viral Vector Core, Leuven, Belgium
| | - Marusela Oliveras-Salvá
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| | - Annelies Michiels
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium; KU Leuven, Leuven Viral Vector Core, Leuven, Belgium
| | - Zeger Debyser
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Chris Van den Haute
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium
| | - Veerle Baekelandt
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven, Belgium.
| |
Collapse
|
568
|
Harrison JG, Zheng YB, Beal PA, Tantillo DJ. Computational approaches to predicting the impact of novel bases on RNA structure and stability. ACS Chem Biol 2013; 8:2354-9. [PMID: 24063428 DOI: 10.1021/cb4006062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of computational modeling techniques to gain insight into nucleobase interactions has been a challenging endeavor to date. Accurate treatment requires the tackling of many challenges but also holds the promise of great rewards. The development of effective computational approaches to predict the binding affinities of nucleobases and analogues can, for example, streamline the process of developing novel nucleobase modifications, which should facilitate the development of new RNAi-based therapeutics. This brief review focuses on available computational approaches to predicting base pairing affinity in RNA-based contexts such as nucleobase-nucleobase interactions in duplexes and nucleobase-protein interactions. The challenges associated with such modeling along with potential future directions for the field are highlighted.
Collapse
Affiliation(s)
- Jason G. Harrison
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
| | - Yvonne B. Zheng
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
| | - Peter A. Beal
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
| |
Collapse
|
569
|
Mathis G, Bourg S, Aci-Sèche S, Truffert JC, Asseline U. Synthesis and properties of 2'-O-neopentyl modified oligonucleotides. Org Biomol Chem 2013; 11:1345-57. [PMID: 23318410 DOI: 10.1039/c2ob26871j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
2'-O-Neopentyldeoxyuridine (Un) was synthesized and incorporated into a series of oligodeoxyribonucleotides. Single and triple incorporations in various arrangements were performed. The Watson and Crick pairing properties with complementary DNA and RNA were investigated by UV melting curves, CD spectroscopy, and molecular dynamic simulations. The results were compared to those obtained with DNA-DNA and DNA-RNA duplexes involving dU at the same positions. Oligonucleotides containing Un clearly demonstrated their ability to form duplexes with both complementary DNA and RNA but with higher stabilities for the DNA-RNA duplexes similar to the one of the parent DNA-RNA duplex. Investigations into the thermodynamic properties of these 17-base-pair duplexes revealed ΔG values (37 °C) that are in line with the measured T(m) values for both the DNA-DNA and DNA-RNA duplexes. CD spectroscopic structural investigations indicated that the conformations of the DNA-DNA and DNA-RNA duplexes involving Un are similar to those of the dT-rA and dU-rA containing duplexes. Only small changes in intensities and weak blue shifts were observed when three Uns were incorporated into the duplexes. The results of the molecular dynamic simulations showed, for the six duplexes involving the modified nucleoside Un, calculated curvatures similar to those of the corresponding unmodified duplexes without base-pair disruption. The neopentyl group is able to be accommodated in the minor grooves of both the DNA-DNA and RNA-DNA duplexes. However, molecular dynamic simulations indicated that the Uns adopt a C2'-exo sugar pucker conformation close to an A-helix type without perturbing the C2'-endo sugar pucker conformations of their 2'-deoxynucleoside neighbours. These results confirm the potential of 2'-O-neopentyldeoxyuridine as a nucleoside surrogate for oligonucleotide based therapeutic strategies.
Collapse
Affiliation(s)
- Gérald Mathis
- Centre de Biophysique Moléculaire UPR 4301 CNRS, Conventionnée avec l'Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 02, France
| | | | | | | | | |
Collapse
|
570
|
Fisher HC, Smith M, Ashcroft AE. De novo sequencing of short interfering ribonucleic acids facilitated by use of tandem mass spectrometry with ion mobility spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2247-2254. [PMID: 24019190 DOI: 10.1002/rcm.6685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/03/2013] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE The use of RNAi for new therapeutics is becoming more widespread. To improve the development and quality control of such materials there is a need for rapid, accurate and meaningful analyses. Here, the use of negative ion nano-electrospray ionisation tandem mass spectrometry with ion mobility spectrometry (nESI-MS/MS-IMS-MS) is shown to simplify data interpretation and lead to higher sequence coverage. METHODS A set of 20-nucleotide RNA molecules was analysed using nESI-MS/MS and their sequences determined manually with the aid of the Simple Oligonucleotide Sequencer (SOS) program. The RNAs were also analysed using nESI-MS/MS-IMS-MS. This incorporates an extra step involving travelling-wave IMS separation of the product ions into groups according to the number of charges that the ions carry. Following this, the RNA sequences were determined from the separated groups of ions. RESULTS nESI-MS/MS collision-induced dissociation of the RNA sequences produced w, y, a-(Base) and c product ions. Sequence determination resulted in incomplete coverage with bases in the centre of the sequences being unidentifiable because of the plethora of overlapping ions. Sequencing carried out from the nESI-MS/MS-IMS-MS data, whereby individual product ion spectra arising only from ions carrying the same charge were generated, gave full sequence coverage for each nucleotide (except y1 ) with assignment confirmation from a minimum of four different product ions. CONCLUSIONS Using nESI-MS/MS-IMS-MS to analyse a number of 20-nucleotide RNA molecules produced full sequence coverage with 100% accuracy, in addition to molecular mass confirmation. This method has the potential for automation for higher sample throughput and thus constitutes a robust approach for the quality control of RNAs in therapeutics.
Collapse
Affiliation(s)
- Henry C Fisher
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
571
|
Hickerson RP, Wey WC, Rimm DL, Speaker T, Suh S, Flores MA, Gonzalez-Gonzalez E, Leake D, Contag CH, Kaspar RL. Gene Silencing in Skin After Deposition of Self-Delivery siRNA With a Motorized Microneedle Array Device. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e129. [PMID: 24150576 PMCID: PMC4027428 DOI: 10.1038/mtna.2013.56] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/08/2013] [Indexed: 01/08/2023]
Abstract
Despite the development of potent siRNAs that effectively target genes responsible for skin disorders, translation to the clinic has been hampered by inefficient delivery through the stratum corneum barrier and into the live cells of the epidermis. Although hypodermic needles can be used to transport siRNA through the stratum corneum, this approach is limited by pain caused by the injection and the small volume of tissue that can be accessed by each injection. The use of microneedle arrays is a less painful method for siRNA delivery, but restricted payload capacity limits this approach to highly potent molecules. To address these challenges, a commercially available motorized microneedle array skin delivery device was evaluated. This device combines the positive elements of both hypodermic needles and microneedle array technologies with little or no pain to the patient. Application of fluorescently tagged self-delivery (sd)-siRNA to both human and murine skin resulted in distribution throughout the treated skin. In addition, efficient silencing (78% average reduction) of reporter gene expression was achieved in a transgenic fluorescent reporter mouse skin model. These results indicate that this device effectively delivers functional sd-siRNA with an efficiency that predicts successful clinical translation.
Collapse
Affiliation(s)
- Robyn P Hickerson
- 1] TransDerm, Santa Cruz, California, USA [2] Current address: University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
572
|
Hansen MR, Villar HO, Feyfant E. Development of an Informatics Platform for Therapeutic Protein and Peptide Analytics. J Chem Inf Model 2013; 53:2774-9. [DOI: 10.1021/ci400333x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mark R. Hansen
- Altoris, Inc., 7770 Regents Rd
#557, San Diego, California 92122, United States
| | - Hugo O. Villar
- Altoris, Inc., 7770 Regents Rd
#557, San Diego, California 92122, United States
| | - Eric Feyfant
- Aileron Therapeutics, 281 Albany
Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
573
|
Advances in siRNA delivery to T-cells: potential clinical applications for inflammatory disease, cancer and infection. Biochem J 2013; 455:133-47. [DOI: 10.1042/bj20130950] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The specificity of RNAi and its ability to silence ‘undruggable’ targets has made inhibition of gene expression in T-cells with siRNAs an attractive potential therapeutic strategy for the treatment of inflammatory disease, cancer and infection. However, delivery of siRNAs into primary T-cells represents a major hurdle to their use as potential therapeutic agents. Recent advances in siRNA delivery through the use of electroporation/nucleofection, viral vectors, peptides/proteins, nanoparticles, aptamers and other agents have now enabled efficient gene silencing in primary T-cells both in vitro and in vivo. Overcoming such barriers in siRNA delivery offers exciting new prospects for directly targeting T-cells systemically with siRNAs, or adoptively transferring T-cells back into patients following ex vivo manipulation with siRNAs. In the present review, we outline the challenges in delivering siRNAs into primary T-cells and discuss the mechanism and therapeutic opportunities of each delivery method. We emphasize studies that have exploited RNAi-mediated gene silencing in T-cells for the treatment of inflammatory disease, cancer and infection using mouse models. We also discuss the potential therapeutic benefits of manipulating T-cells using siRNAs for the treatment of human diseases.
Collapse
|
574
|
Gore KR, Harikrishna S, Pradeepkumar PI. Influence of 2'-fluoro versus 2'-O-methyl substituent on the sugar puckering of 4'-C-aminomethyluridine. J Org Chem 2013; 78:9956-62. [PMID: 24016294 DOI: 10.1021/jo4012333] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we report the synthesis of 4'-C-aminomethyl-2'-deoxy-2'-fluorouridine, a therapeutically appealing RNA modification. Conformational analysis by DFT calculations and molecular dynamics simulations using trinucleotide model systems revealed that modified sugar adopts C3'-endo conformation. In this conformer, a weak intramolecular C-H···F H-bond between the hydrogen atom of the 4'-C-CH2 group and the F atom at the 2' position is observed. Comparative studies with unmodified, 2'-fluoro-, 2'-O-methyl-, and 4'-C-aminomethyl-2'-O-methyluridine showed the chemical nature of 2'-substituent dictates the sugar puckering of 2',4'-modified nucleotides.
Collapse
Affiliation(s)
- Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| | | | | |
Collapse
|
575
|
Pechlaner M, Sigel RKO, van Gunsteren WF, Dolenc J. Structure and Conformational Dynamics of the Domain 5 RNA Hairpin of a Bacterial Group II Intron Revealed by Solution Nuclear Magnetic Resonance and Molecular Dynamics Simulations. Biochemistry 2013; 52:7099-113. [DOI: 10.1021/bi400784r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Maria Pechlaner
- Institute
of Inorganic Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Roland K. O. Sigel
- Institute
of Inorganic Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Wilfred F. van Gunsteren
- Laboratory
of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Jožica Dolenc
- Laboratory
of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| |
Collapse
|
576
|
Multifunctional polyion complex micelle featuring enhanced stability, targetability, and endosome escapability for systemic siRNA delivery to subcutaneous model of lung cancer. Drug Deliv Transl Res 2013; 4:50-60. [DOI: 10.1007/s13346-013-0175-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
577
|
Sanders JM, Wampole ME, Chen CP, Sethi D, Singh A, Dupradeau FY, Wang F, Gray BD, Thakur ML, Wickstrom E. Effects of hypoxanthine substitution in peptide nucleic acids targeting KRAS2 oncogenic mRNA molecules: theory and experiment. J Phys Chem B 2013; 117:11584-95. [PMID: 23972113 DOI: 10.1021/jp4064966] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic disorders can arise from single base substitutions in a single gene. A single base substitution for wild type guanine in the twelfth codon of KRAS2 mRNA occurs frequently to initiate lung, pancreatic, and colon cancer. We have observed single base mismatch specificity in radioimaging of mutant KRAS2 mRNA in tumors in mice by in vivo hybridization with radiolabeled peptide nucleic acid (PNA) dodecamers. We hypothesized that multimutant specificity could be achieved with a PNA dodecamer incorporating hypoxanthine, which can form Watson-Crick base pairs with adenine, cytosine, thymine, and uracil. Using molecular dynamics simulations and free energy calculations, we show that hypoxanthine substitutions in PNAs are tolerated in KRAS2 RNA:PNA duplexes where wild type guanine is replaced by mutant uracil or adenine in RNA. To validate our predictions, we synthesized PNA dodecamers with hypoxanthine, and then measured the thermal stability of RNA:PNA duplexes. Circular dichroism thermal melting results showed that hypoxanthine-containing PNAs are more stable in duplexes where hypoxanthine-adenine and hypoxanthine-uracil base pairs are formed than single mismatch duplexes or duplexes containing hypoxanthine-guanine opposition.
Collapse
Affiliation(s)
- Jeffrey M Sanders
- Departments of Biochemistry & Molecular Biology and ∥Radiology, and ⊥Kimmel Cancer Center, Thomas Jefferson University , Philadelphia, Pennsylvania 19107, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
578
|
Matsushita-Ishiodori Y, Morinaga M, Watanabe K, Ohtsuki T. Near-Infrared Light-Directed RNAi Using a Photosensitive Carrier Molecule. Bioconjug Chem 2013; 24:1669-73. [DOI: 10.1021/bc4001195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuka Matsushita-Ishiodori
- Department
of Biotechnology,
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Mika Morinaga
- Department
of Biotechnology,
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Kazunori Watanabe
- Department
of Biotechnology,
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Takashi Ohtsuki
- Department
of Biotechnology,
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
579
|
Abstract
Insufficient pharmacokinetic properties and poor cellular uptake are the main hurdles for successful therapeutic development of oligonucleotide agents. The covalent attachment of various ligands designed to influence the biodistribution and cellular uptake or for targeting specific tissues is an attractive possibility to advance therapeutic applications and to expand development options. In contrast to advanced formulations, which often consist of multiple reagents and are sensitive to a variety of preparation conditions, oligonucleotide conjugates are defined molecules, enabling structure-based analytics and quality control techniques. This review gives an overview of current developments of oligonucleotide conjugates for therapeutic applications. Attached ligands comprise peptides, proteins, carbohydrates, aptamers and small molecules, including cholesterol, tocopherol and folic acid. Important linkage types and conjugation methods are summarized. The distinct ligands directly influence biochemical parameters, uptake mechanisms and pharmacokinetic properties.
Collapse
|
580
|
siRNA Treatment: "A Sword-in-the-Stone" for Acute Brain Injuries. Genes (Basel) 2013; 4:435-56. [PMID: 24705212 PMCID: PMC3924829 DOI: 10.3390/genes4030435] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/17/2013] [Accepted: 08/22/2013] [Indexed: 11/28/2022] Open
Abstract
Ever since the discovery of small interfering ribonucleic acid (siRNA) a little over a decade ago, it has been highly sought after for its potential as a therapeutic agent for many diseases. In this review, we discuss the promising possibility of siRNA to be used as a drug to treat acute brain injuries such as stroke and traumatic brain injury. First, we will give a brief and basic overview of the principle of RNA interference as an effective mechanism to decrease specific protein expression. Then, we will review recent in vivo studies describing siRNA research experiments/treatment options for acute brain diseases. Lastly, we will discuss the future of siRNA as a clinical therapeutic strategy against brain diseases and injuries, while addressing the current obstacles to effective brain delivery.
Collapse
|
581
|
Nishimura M, Jung EJ, Shah MY, Lu C, Spizzo R, Shimizu M, Han HD, Ivan C, Rossi S, Zhang X, Nicoloso MS, Wu SY, Almeida MI, Bottsford-Miller J, Pecot CV, Zand B, Matsuo K, Shahzad MM, Jennings NB, Rodriguez-Aguayo C, Lopez-Berestein G, Sood AK, Calin GA. Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment. Cancer Discov 2013; 3:1302-15. [PMID: 24002999 DOI: 10.1158/2159-8290.cd-13-0159] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
UNLABELLED Development of improved RNA interference-based strategies is of utmost clinical importance. Although siRNA-mediated silencing of EphA2, an ovarian cancer oncogene, results in reduction of tumor growth, we present evidence that additional inhibition of EphA2 by a microRNA (miRNA) further "boosts" its antitumor effects. We identified miR-520d-3p as a tumor suppressor upstream of EphA2, whose expression correlated with favorable outcomes in two independent patient cohorts comprising 647 patients. Restoration of miR-520d-3p prominently decreased EphA2 protein levels, and suppressed tumor growth and migration/invasion both in vitro and in vivo. Dual inhibition of EphA2 in vivo using 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) nanoliposomes loaded with miR-520d-3p and EphA2 siRNA showed synergistic antitumor efficiency and greater therapeutic efficacy than either monotherapy alone. This synergy is at least in part due to miR-520d-3p targeting EphB2, another Eph receptor. Our data emphasize the feasibility of combined miRNA-siRNA therapy, and will have broad implications for innovative gene silencing therapies for cancer and other diseases. SIGNIFICANCE This study addresses a new concept of RNA inhibition therapy by combining miRNA and siRNA in nanoliposomal particles to target oncogenic pathways altered in ovarian cancer. Combined targeting of the Eph pathway using EphA2-targeting siRNA and the tumor suppressor miR-520d-3p exhibits remarkable therapeutic synergy and enhanced tumor suppression in vitro and in vivo compared with either monotherapy alone.
Collapse
Affiliation(s)
- Masato Nishimura
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Obstetrics and Gynecology, The University of Tokushima, Graduate School; Japan
| | - Eun-Jung Jung
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Surgery, School of Medicine, Gyeongsang National University, Jin-ju, South Korea
| | - Maitri Y Shah
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Chunhua Lu
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Riccardo Spizzo
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Masayoshi Shimizu
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Hee Dong Han
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,The Center for RNA Interference and Non-coding RNAs, The University of Texas M.D. Anderson Center, Houston, TX; USA
| | - Simona Rossi
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Batiment Genopode, Lausanne, Switzerland
| | - Xinna Zhang
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,The Center for RNA Interference and Non-coding RNAs, The University of Texas M.D. Anderson Center, Houston, TX; USA
| | - Milena S Nicoloso
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sherry Y Wu
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Maria Ines Almeida
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Justin Bottsford-Miller
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Chad V Pecot
- Department of Thoracic, Head & Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Behrouz Zand
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Koji Matsuo
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Mian M Shahzad
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Division of Gynecologic Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nicholas B Jennings
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,The Center for RNA Interference and Non-coding RNAs, The University of Texas M.D. Anderson Center, Houston, TX; USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,The Center for RNA Interference and Non-coding RNAs, The University of Texas M.D. Anderson Center, Houston, TX; USA.,Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,The Center for RNA Interference and Non-coding RNAs, The University of Texas M.D. Anderson Center, Houston, TX; USA.,Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,The Center for RNA Interference and Non-coding RNAs, The University of Texas M.D. Anderson Center, Houston, TX; USA
| |
Collapse
|
582
|
Kalani A, Tyagi A, Tyagi N. Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics. Mol Neurobiol 2013; 49:590-600. [PMID: 23999871 DOI: 10.1007/s12035-013-8544-1] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022]
Abstract
Exosomes have emerged as prominent mediators of neurodegenerative diseases where they have been shown to carry disease particles such as beta amyloid and prions from their cells of origin to other cells. Their simple structure and ability to cross the blood-brain barrier allow great opportunity to design a "makeup" with drugs and genetic elements, such as siRNA or miRNA, and use them as delivery vehicles for neurotherapeutics. Their role in neuroprotection is evident by the fact that they are involved in the regeneration of peripheral nerves and repair of neuronal injuries. This review is focused on the role of exosomes in mediating neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Anuradha Kalani
- Department of Physiology and Biophysics, School of Medicine, Health Sciences Center, A-1201, University of Louisville, 500 South Preston Street, Louisville, KY, 40202, USA
| | | | | |
Collapse
|
583
|
Discovery of siRNA lipid nanoparticles to transfect suspension leukemia cells and provide in vivo delivery capability. Mol Ther 2013; 22:359-370. [PMID: 24002693 DOI: 10.1038/mt.2013.210] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/19/2013] [Indexed: 12/15/2022] Open
Abstract
As a powerful research tool, siRNA's therapeutic and target validation utility with leukemia cells and long-term gene knockdown is severely restricted by the lack of omnipotent, safe, stable, and convenient delivery. Here, we detail our discovery of siRNA-containing lipid nanoparticles (LNPs) able to effectively transfect several leukemia and difficult-to-transfect adherent cell lines also providing in vivo delivery to mouse spleen and bone marrow tissues through tail-vein administration. We disclose a series of novel structurally related lipids accounting for the superior transfection ability, and reveal a correlation between expression of Caveolins and successful transfection. These LNPs, bearing low toxicity and long stability of >6 months, are ideal for continuous long-term dosing. Our discovery represents the first effective siRNA-containing LNPs for leukemia cells, which not only enables high-throughput siRNA screening with leukemia cells and difficult-to-transfect adherent cells but also paves the way for the development of therapeutic siRNA for leukemia treatment.
Collapse
|
584
|
Kim N, Petingi L, Schlick T. Network Theory Tools for RNA Modeling. WSEAS TRANSACTIONS ON MATHEMATICS 2013; 9:941-955. [PMID: 25414570 PMCID: PMC4235620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An introduction into the usage of graph or network theory tools for the study of RNA molecules is presented. By using vertices and edges to define RNA secondary structures as tree and dual graphs, we can enumerate, predict, and design RNA topologies. Graph connectivity and associated Laplacian eigenvalues relate to biological properties of RNA and help understand RNA motifs as well as build, by computational design, various RNA target structures. Importantly, graph theoretical representations of RNAs reduce drastically the conformational space size and therefore simplify modeling and prediction tasks. Ongoing challenges remain regarding general RNA design, representation of RNA pseudoknots, and tertiary structure prediction. Thus, developments in network theory may help advance RNA biology.
Collapse
Affiliation(s)
- Namhee Kim
- New York University Department of Chemistry Courant Institute of Mathematical Sciences 251 Mercer Street New York, NY 10012, USA
| | - Louis Petingi
- College of Staten Island City University of New York Department of Computer Science 2800 Victory Boulevard Staten Island, NY 10314, USA
| | - Tamar Schlick
- New York University Department of Chemistry Courant Institute of Mathematical Sciences 251 Mercer Street New York, NY 10012, USA
| |
Collapse
|
585
|
Adenovirus vector-mediated RNA interference for the inhibition of human parvovirus B19 replication. Virus Res 2013; 176:155-60. [DOI: 10.1016/j.virusres.2013.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/23/2013] [Accepted: 05/26/2013] [Indexed: 01/07/2023]
|
586
|
Tonin Y, Heckel AM, Dovydenko I, Meschaninova M, Comte C, Venyaminova A, Pyshnyi D, Tarassov I, Entelis N. Characterization of chemically modified oligonucleotides targeting a pathogenic mutation in human mitochondrial DNA. Biochimie 2013; 100:192-9. [PMID: 23994754 DOI: 10.1016/j.biochi.2013.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/18/2013] [Indexed: 02/04/2023]
Abstract
Defects in mitochondrial genome can cause a wide range of clinical disorders, mainly neuromuscular diseases. Most of the deleterious mitochondrial mutations are heteroplasmic, meaning that wild type and mutated forms of mtDNA coexist in the same cell. Therefore, a shift in the proportion between mutant and wild type molecules could restore mitochondrial functions. The anti-replicative strategy aims to induce such a shift in heteroplasmy by mitochondrial targeting specifically designed molecules in order to inhibit replication of mutant mtDNA. Recently, we developed mitochondrial RNA vectors that can be used to address anti-replicative oligoribonucleotides into human mitochondria and impact heteroplasmy level, however, the effect was mainly transient, probably due to a rapid degradation of RNA molecules. In the present study, we introduced various chemically modified oligonucleotides in anti-replicative RNAs. We show that the most important increase of anti-replicative molecules' lifetime can be achieved by using synthetic RNA-DNA chimerical molecules or by ribose 2'-O-methylation in nuclease-sensitive sites. The presence of inverted thymidine at 3' terminus and modifications of 2'-OH ribose group did not prevent the mitochondrial uptake of the recombinant molecules. All the modified oligonucleotides were able to anneal specifically with the mutant mtDNA fragment, but not with the wild-type one. Nevertheless, the modified oligonucleotides did not cause a significant effect on the heteroplasmy level in transfected transmitochondrial cybrid cells bearing a pathogenic mtDNA deletion, proving to be less efficient than non-modified RNA molecules.
Collapse
Affiliation(s)
- Yann Tonin
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University - CNRS, Strasbourg 67084, France
| | - Anne-Marie Heckel
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University - CNRS, Strasbourg 67084, France
| | - Ilya Dovydenko
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University - CNRS, Strasbourg 67084, France; Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Mariya Meschaninova
- Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Caroline Comte
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University - CNRS, Strasbourg 67084, France
| | - Alya Venyaminova
- Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Dmitrii Pyshnyi
- Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Ivan Tarassov
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University - CNRS, Strasbourg 67084, France
| | - Nina Entelis
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University - CNRS, Strasbourg 67084, France.
| |
Collapse
|
587
|
Tanaka K, Kanazawa T, Horiuchi S, Ando T, Sugawara K, Takashima Y, Seta Y, Okada H. Cytoplasm-responsive nanocarriers conjugated with a functional cell-penetrating peptide for systemic siRNA delivery. Int J Pharm 2013; 455:40-7. [PMID: 23911914 DOI: 10.1016/j.ijpharm.2013.07.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/19/2013] [Accepted: 07/21/2013] [Indexed: 12/24/2022]
Abstract
To develop a gene carrier for cancer therapy by systemic injection, we synthesized methoxypolyethylene glycol-polycaprolactone (MPEG-PCL) diblock copolymers conjugated with a cytoplasm-responsive cell-penetrating peptide (CPP), CH2R4H2C (C, Cys; H, His; R, Arg). The carrier/small interfering RNA (siRNA) complexes (N/P ratio of 20) had a particle size of approximately 50 nm and stabilized the siRNA against RNase. The cellular uptake ability of the carrier/FAM-siRNA complexes with fetal bovine serum was significantly higher than that of naked FAM-siRNA. In addition, the carrier/anti-vascular endothelial growth factor siRNA (siVEGF) complexes attained a significantly greater silencing effect than naked siVEGF with low cytotoxicity, resulting from higher uptake, early endosomal escape, and efficient release from the complexes in the cytoplasm. Furthermore, intravenous injection of MPEG-PCL-CH2R4H2C/siVEGF complexes had a significantly higher anti-tumor effect in S-180 tumor-bearing mice, which could be attributed to the rigid compaction of siRNA by ionic interactions and disulfide linkages in the CPP polymer micelles in the blood, as well as higher release following cleavage of the disulfide bonds in the reductive cytosol. Taken together, our data demonstrated that these cytoplasm-responsive polymer micelles conjugated with multi-functional CPP, could facilitate siVEGF delivery to tumor tissues after systemic injection and could exert an extremely strong anti-tumor effect.
Collapse
Affiliation(s)
- Ko Tanaka
- Laboratory of Pharmaceutics and Drug Delivery, Department of Pharmaceutical Science, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | |
Collapse
|
588
|
DNA duplexes with hydrophobic modifications inhibit fusion between HIV-1 and cell membranes. Antimicrob Agents Chemother 2013; 57:4963-70. [PMID: 23896466 DOI: 10.1128/aac.00758-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Discovery of new drugs for the treatment of AIDS typically possessing unique structures associated with novel mechanisms of action has been of great importance due to the quick drug-resistant mutations of HIV-1 strains. The work presented in this report describes a novel class of DNA duplex-based HIV-1 fusion inhibitors. Hydrophobic groups were introduced into a DNA duplex skeleton either at one end, at both ends, or in the middle. These modified DNA duplexes inhibited fusion between HIV-1 and human cell membranes at micro- or submicromolar concentrations. Respective inhibitors adopted an aptamer pattern instead of a base-pairing interaction pattern. Structure-activity relationship studies of the respective DNA duplexes showed that the rigid and negatively charged DNA skeletons, in addition to the presence of hydrophobic groups, were crucial to the anti-HIV-1 activity of these compounds. A fluorescent resonance energy transfer (FRET)-based inhibitory assay showed that these duplex inhibitors interacted with the primary pocket in the gp41 N-terminal heptad repeat (NHR) instead of interacting with the lipid bilayers.
Collapse
|
589
|
Lee SK, Tung CH. A fabricated siRNA nanoparticle for ultra-long gene silencing in vivo. ADVANCED FUNCTIONAL MATERIALS 2013; 23:3488-3493. [PMID: 24999314 PMCID: PMC4078887 DOI: 10.1002/adfm.201202777] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Persistent gene silencing is crucially required for the successful therapeutics of short interfering RNA (siRNA). Here, we describe a nanoparticle based delivery system which assembled by layering siRNAs between protease degradable polypeptides to extend the therapeutic window. These tightly packed nanoparticles are efficiently taken up by cells by endocytosis, and the fabricated siRNAs are gradually released following intracellular degradation of the polypeptide layers. During cell division, the particles are distributed to the daughter cells. Due to the slow degradation through the multiple layers, the particles continuously release siRNA in all cells. Using this controlled release construct, the in vivo gene silencing effect of siRNA is consistent for an ultra-long period of time (>3 weeks) with only a single treatment.
Collapse
|
590
|
Ibach J, Dietrich L, Koopmans KRM, Nöbel N, Skoupi M, Brakmann S. Identification of a T7 RNA polymerase variant that permits the enzymatic synthesis of fully 2'-O-methyl-modified RNA. J Biotechnol 2013; 167:287-95. [PMID: 23871655 DOI: 10.1016/j.jbiotec.2013.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022]
Abstract
T7 RNA polymerase is an important biocatalyst that is used in diverse biotechnological applications such as in vitro transcription or protein expression. The enzyme displays high substrate specificity which is payed by significant limitations regarding incorporation of synthetic nucleotide analogs. Of specific interest is enzymatic synthesis of 2'-O-methyl-modified RNA as these nucleic acids exhibit improved biochemical and pharmacokinetic properties that make them attractive for diagnostic and therapeutic purposes. We report here on the development of an activity-based selection/screening approach for assessing polymerase activities in the presence of 2'-O-methyl-modified nucleotides, and on the identification of one variant T7 RNA polymerase which is capable of synthesizing all-2'-O-methyl RNA.
Collapse
Affiliation(s)
- Jenny Ibach
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
591
|
Liu CW, Lin WJ. Using doxorubicin and siRNA-loaded heptapeptide-conjugated nanoparticles to enhance chemosensitization in epidermal growth factor receptor high-expressed breast cancer cells. J Drug Target 2013; 21:776-86. [DOI: 10.3109/1061186x.2013.811511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
592
|
Ibrišimović M, Lion T, Klein R. Combinatorial targeting of 2 different steps in adenoviral DNA replication by herpes simplex virus thymidine kinase and artificial microRNA expression for the inhibition of virus multiplication in the presence of ganciclovir. BMC Biotechnol 2013; 13:54. [PMID: 23822768 PMCID: PMC3720212 DOI: 10.1186/1472-6750-13-54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human adenoviruses are a frequent threat to immunocompromised patients, and disseminated disease is associated with severe morbidity and mortality. Current drugs are not capable of preventing all fatalities, thus indicating the need for alternative treatment strategies. Adenoviruses can be rendered susceptible to antiherpetic prodrugs such as ganciclovir (GCV), upon expression of the herpes simplex virus thymidine kinase (HSV-TK) gene in adenovirus-infected cells. Furthermore, adenoviruses are amenable to post-transcriptional gene silencing via small interfering RNAs (siRNAs) or artificial micro RNAs (amiRNAs). RESULTS In this study, we combined these 2 approaches by constructing a combinatorial gene expression cassette that comprises the HSV-TK gene and multiple copies of an amiRNA directed against the mRNA encoding the adenoviral preterminal protein (pTP). HSV-TK gene expression was controlled by the adenoviral E4 promoter, which is activated in the presence of the adenoviral E1 gene products (i.e., when adenovirus is present in the cell). When inserted into a replication-deficient (E1-, E3-deleted) adenoviral vector, this cassette effectively inhibited the replication of wild-type adenovirus in vitro. The reduction rate mediated by the combinatorial approach was higher compared to that achieved by either of the 2 approaches alone, and these obvious additive effects became most pronounced when the GCV concentration was low. CONCLUSIONS The concept presented here has the potential to aid in the inhibition of wild-type adenovirus replication. Furthermore, the combinatorial expression cassette may constitute a safeguard to potentially control unintended replication of adenoviral vectors and to prevent immune responses provoked by them.
Collapse
Affiliation(s)
- Mirza Ibrišimović
- Children's Cancer Research Institute, St, Anna Kinderkrebsforschung, Zimmermannplatz 10, 1090 Vienna, Austria
| | | | | |
Collapse
|
593
|
Nikitenko NA, Prassolov VS. Non-Viral Delivery and Therapeutic Application of Small Interfering RNAs. Acta Naturae 2013; 5:35-53. [PMID: 24303201 PMCID: PMC3848066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA interference (RNAi) is a powerful method used for gene expression regulation. The increasing knowledge about the molecular mechanism of this phenomenon creates new avenues for the application of the RNAi technology in the treatment of various human diseases. However, delivery of RNA interference mediators, small interfering RNAs (siRNAs), to target cells is a major hurdle. Effective and safe pharmacological use of siRNAs requires carriers that can deliver siRNA to its target site and the development of methods for protection of these fragile molecules from in vivo degradation. This review summarizes various strategies for siRNA delivery, including chemical modification and non-viral approaches, such as the polymer-based, peptide-based, lipid-based techniques, and inorganic nanosystems. The advantages, disadvantages, and prospects for the therapeutic application of these methods are also examined in this paper.
Collapse
Affiliation(s)
- N. A. Nikitenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, Russia, 119991
| | - V. S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, Russia, 119991
| |
Collapse
|
594
|
Synthesis, RNAi activity and nuclease-resistant properties of apolar carbohydrates siRNA conjugates. Bioorg Med Chem Lett 2013; 23:4048-51. [DOI: 10.1016/j.bmcl.2013.05.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/15/2013] [Accepted: 05/18/2013] [Indexed: 12/27/2022]
|
595
|
Kiran Y, Wakamatsu H, Natori Y, Takahata H, Yoshimura Y. Design and synthesis of a nucleoside and a phosphonate analogue constructed on a branched-threo-tetrofuranose skeleton. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.05.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
596
|
Castleberry S, Wang M, Hammond PT. Nanolayered siRNA dressing for sustained localized knockdown. ACS NANO 2013; 7:5251-61. [PMID: 23672676 PMCID: PMC3873513 DOI: 10.1021/nn401011n] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The success of RNA interference (RNAi) in medicine relies on the development of technology capable of successfully delivering it to tissues of interest. Significant research has focused on the difficult task of systemic delivery of RNAi; however its local delivery could be a more easily realized approach. Localized delivery is of particular interest for many medical applications, including the treatment of localized diseases, the modulation of cellular response to implants or tissue engineering constructs, and the management of wound healing and regenerative medicine. In this work we present an ultrathin electrostatically assembled coating for localized and sustained delivery of short interfering RNA (siRNA). This film was applied to a commercially available woven nylon dressing commonly used for surgical applications and was demonstrated to sustain significant knockdown of protein expression in multiple cell types for more than one week in vitro. Significantly, this coating can be easily applied to a medically relevant device and requires no externally delivered transfection agents for effective delivery of siRNA. These results present promising opportunities for the localized administration of RNAi.
Collapse
Affiliation(s)
- Steven Castleberry
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
597
|
Li H, Yu SS, Miteva M, Nelson CE, Werfel T, Giorgio TD, Duvall CL. Matrix Metalloproteinase Responsive, Proximity-activated Polymeric Nanoparticles for siRNA Delivery. ADVANCED FUNCTIONAL MATERIALS 2013; 23:3040-3052. [PMID: 25214828 PMCID: PMC4159188 DOI: 10.1002/adfm.201202215] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Small interfering RNA (siRNA) has significant potential to evolve into a new class of pharmaceutical inhibitors, but technologies that enable robust, tissue-specific intracellular delivery must be developed before effective clinical translation can be achieved. A pH-responsive, smart polymeric nanoparticle (SPN) with matrix metalloproteinase (MMP)-7-dependent proximity-activated targeting (PAT) is described here. The PAT-SPN was designed to trigger cellular uptake and cytosolic delivery of siRNA once activated by MMP-7, an enzyme whose overexpression is a hallmark of cancer initiation and progression. The PAT-SPN is composed of a corona-forming PEG block, an MMP-7-cleavable peptide, a cationic siRNA-condensing block, and a pH-responsive, endosomolytic terpolymer block that drives self-assembly and forms the PAT-SPN core. With this novel design, the PEG corona shields cellular interactions until it is cleaved in MMP-7-rich environments, shifting SPNζ-potential from +5.8 to +14.4 mV and triggering a 2.5 fold increase in carrier internalization. The PAT-SPN exhibited pH-dependent membrane disruptive behavior that enabled siRNA escape from endo-lysosomal pathways. Efficient intracellular siRNA delivery and knockdown of the model enzyme luciferase in R221A-Luc mammary tumor cellssignificantly depended on MMP-7 pre-activation. These combined data indicate that the PAT-SPN provides a promising new platform for tissue-specific, proximity-activated siRNA delivery to MMP-rich pathological environments.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Biomedical Engineering, Vanderbilt University, VU Station B, Box 351631, Nashville, TN, USA; Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Shann S. Yu
- Department of Biomedical Engineering, Vanderbilt University, VU Station B, Box 351631, Nashville, TN, USA
| | - Martina Miteva
- Department of Biomedical Engineering, Vanderbilt University, VU Station B, Box 351631, Nashville, TN, USA
| | - Christopher E. Nelson
- Department of Biomedical Engineering, Vanderbilt University, VU Station B, Box 351631, Nashville, TN, USA
| | - Thomas Werfel
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA; Department of Engineering and Physics, Murray State University, Murray, KY, USA
| | - Todd D. Giorgio
- Department of Biomedical Engineering, Vanderbilt University, VU Station B, Box 351631, Nashville, TN, USA; Department of Cancer Biology, Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, VU Station B, Box 351631, Nashville, TN, USA; Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
598
|
Stigliano C, Aryal S, de Tullio MD, Nicchia GP, Pascazio G, Svelto M, Decuzzi P. siRNA-chitosan complexes in poly(lactic-co-glycolic acid) nanoparticles for the silencing of aquaporin-1 in cancer cells. Mol Pharm 2013; 10:3186-94. [PMID: 23789777 DOI: 10.1021/mp400224u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A large number of studies document the strong expression of aquaporin-1 (AQP1) in tumor microvessels and correlate this aberrant expression with higher metastatic potential and aggressiveness of the malignancy. Although small animal experiments have shown that the modulation of AQP1 expression can halt angiogenesis and induce tumor regression, effective and safe strategies for the tissue specific inhibition of AQP1 are still missing. Here, small interference RNA-chitosan complexes encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are proposed for the intracellular delivery of siRNA molecules against AQP1. These NPs are coated with poly(vinyl alcohol) (PVA), to improve stability under physiological conditions, and demonstrate a diameter of 160 nm. The partial neutralization of the negatively charged siRNA molecules with the cationic chitosan enhances the loading by 5-fold, as compared to that of the free siRNA molecules, and allows one to modulate the release kinetics in the pH-dependent manner. At pH = 7.4, mimicking the conditions found in the systemic circulation, only the 40% of siRNA is released at 24 h post incubation; whereas at pH = 5.0, recreating the cell endosomal environment, all siRNA molecules are released in about 3 h. These NPs show no cytotoxicity on HeLa cells up to 72 h of incubation. In the same cells, transfected to overexpress AQP1, a silencing efficiency of 70% is achieved at 24 h post treatment with siRNA-loaded NPs. Confocal microscopy analysis of NP uptake demonstrates that siRNA molecules accumulate perinuclearly and in the nucleus. Given the stability, preferential release behavior, and well-known biocompatibility properties of PLGA nanostructures, these siRNA-loaded NPs hold potential for the efficient and safe in vivo silencing of AQPs via systemic administration.
Collapse
Affiliation(s)
- Cinzia Stigliano
- Department of Translational Imaging and Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, Texas 77030, United States
| | | | | | | | | | | | | |
Collapse
|
599
|
Malamas AS, Gujrati M, Kummitha CM, Xu R, Lu ZR. Design and evaluation of new pH-sensitive amphiphilic cationic lipids for siRNA delivery. J Control Release 2013; 171:296-307. [PMID: 23796431 DOI: 10.1016/j.jconrel.2013.06.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 12/19/2022]
Abstract
Synthetic small interfering RNA (siRNA) has become the basis of a new generation of gene-silencing cancer therapeutics. However, successful implementation of this novel therapy relies on the ability to effectively deliver siRNA into target cells and to prevent degradation of siRNA in lysosomes after endocytosis. In this study, our goal was to design and optimize new amphiphilic cationic lipid carriers that exhibit selective pH-sensitive endosomal membrane disruptive capabilities to allow for the efficient release of their siRNA payload into the cytosol. The pH sensitive siRNA carriers consist of three domains (cationic head, hydrophobic tail, amino acid-based linker). A library of eight lipid carriers were synthesized using solid phase chemistry, and then studied to determine the role of (1) the number of protonable amines and overall pKa of the cationic head group, (2) the degree of unsaturation of the hydrophobic tail, and (3) the presence of histidine residues in the amino acid linker for transfection and silencing efficacy. In vitro screening evaluation of the new carriers demonstrated at least 80% knockdown of a GFP reporter in CHO cells after 72h. The carriers ECO and ECLn performed the best in a luciferase knockdown study in HT29 human colon cancer cells, which were found to be more difficult to transfect. They significantly reduced expression of this reporter to 22.7±3.31% and 23.5±5.11% after 72h post-transfection, better than Lipofectamine RNAiMax. Both ECO and ECLn carriers caused minimal cytotoxicity, preserving relative cell viabilities at 87.3±2.72% and 88.9±6.84%, respectively. A series of hemolysis assays at various pHs revealed that increasing the number of amines in the protonable head group, and removing the histidine residue from the linker, both resulted in improved membrane disruptive activity at the endosomal pH of 6.5. Meanwhile, the cellular uptake into HT29 cancer cells was improved, not only by increasing the amines of the head group, but also by increasing the degree of unsaturation in the lipid tails. Due to flexibility of the synthetic procedure, the delivery system could be modified further for different applications. The success of ECO and ECLn for in vitro siRNA delivery potentially makes them promising candidates for future in vivo studies.
Collapse
Affiliation(s)
- Anthony S Malamas
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland 44106, USA
| | | | | | | | | |
Collapse
|
600
|
Kikuchi Y, Yamazaki N, Tarashima N, Furukawa K, Takiguchi Y, Itoh K, Minakawa N. Gene suppression via U1 small nuclear RNA interference (U1i) machinery using oligonucleotides containing 2'-modified-4'-thionucleosides. Bioorg Med Chem 2013; 21:5292-6. [PMID: 23871495 DOI: 10.1016/j.bmc.2013.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 10/26/2022]
Abstract
Gene suppression via U1 small nuclear RNA interference (U1i) is considered to be one of the most attractive approaches, and takes the place of general antisense, RNA interference (RNAi), and anti-micro RNA machineries. Since the U1i can be induced by short oligonucleotides (ONs), namely U1 adaptors consisting of a 'target domain' and a 'U1 domain', we prepared adaptor ONs using 2'-modified-4'-thionucleosides developed by our group, and evaluated their U1i activity. As a result, the desired gene suppression via U1i was observed in ONs prepared as a combination of 2'-fluoro-4'-thionucleoside and 2'-fluoronucleoside units as well as only 2'-fluoronucleoside units, while those prepared as combination of 2'-OMe nucleoside/2'-OMe-4'-thionucleoside and 2'-fluoronucleoside units did not show significant activity. Measurement of Tm values indicated that a higher hybridization ability of adaptor ONs with complementary RNA is one of the important factors to show potent U1i activity.
Collapse
Affiliation(s)
- Yusaku Kikuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | | | | | | | | | | | | |
Collapse
|