551
|
Expanding the parameter space of anodal transcranial direct current stimulation of the primary motor cortex. Sci Rep 2019; 9:18185. [PMID: 31796827 PMCID: PMC6890804 DOI: 10.1038/s41598-019-54621-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Size and duration of the neuroplastic effects of tDCS depend on stimulation parameters, including stimulation duration and intensity of current. The impact of stimulation parameters on physiological effects is partially non-linear. To improve the utility of this intervention, it is critical to gather information about the impact of stimulation duration and intensity on neuroplasticity, while expanding the parameter space to improve efficacy. Anodal tDCS of 1–3 mA current intensity was applied for 15–30 minutes to study motor cortex plasticity. Sixteen healthy right-handed non-smoking volunteers participated in 10 sessions (intensity-duration pairs) of stimulation in a randomized cross-over design. Transcranial magnetic stimulation (TMS)-induced motor-evoked potentials (MEP) were recorded as outcome measures of tDCS effects until next evening after tDCS. All active stimulation conditions enhanced motor cortex excitability within the first 2 hours after stimulation. We observed no significant differences between the three stimulation intensities and durations on cortical excitability. A trend for larger cortical excitability enhancements was however observed for higher current intensities (1 vs 3 mA). These results add information about intensified tDCS protocols and suggest that the impact of anodal tDCS on neuroplasticity is relatively robust with respect to gradual alterations of stimulation intensity, and duration.
Collapse
|
552
|
Ruttorf M, Kristensen S, Schad LR, Almeida J. Transcranial Direct Current Stimulation Alters Functional Network Structure in Humans: A Graph Theoretical Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2829-2837. [PMID: 31071024 DOI: 10.1109/tmi.2019.2915206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transcranial direct current stimulation (tDCS) is routinely used in basic and clinical research, but its efficacy has been challenged on a methodological, statistical and technical basis recently. The arguments against tDCS derive from an insufficient understanding of how this technique interacts with brain processes physiologically. Because of its potential as a central tool in neuroscience, it is important to clarify whether tDCS affects neuronal activity. Here, we investigate influences of offline tDCS on network architecture measured by functional magnetic resonance imaging. Applied to one network node only, offline tDCS affects the architecture of the entire functional network. Furthermore, offline tDCS exerts polarity-specific effects on the topology of the functional network attached. Our results confirm in a functioning brain and in a bias free and independent fashion that offline tDCS influences neuronal activity. Moreover, our results suggest that network-specific connectivity has an important role in improving our understanding of the effects of tDCS.
Collapse
|
553
|
Ahn H, Zhong C, Miao H, Chaoul A, Park L, Yen IH, Vila MA, Sorkpor S, Abdi S. Efficacy of combining home-based transcranial direct current stimulation with mindfulness-based meditation for pain in older adults with knee osteoarthritis: A randomized controlled pilot study. J Clin Neurosci 2019; 70:140-145. [DOI: 10.1016/j.jocn.2019.08.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
|
554
|
de Aguiar V, Zhao Y, Ficek BN, Webster K, Rofes A, Wendt H, Frangakis C, Caffo B, Hillis AE, Rapp B, Tsapkini K. Cognitive and language performance predicts effects of spelling intervention and tDCS in Primary Progressive Aphasia. Cortex 2019; 124:66-84. [PMID: 31838450 DOI: 10.1016/j.cortex.2019.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/16/2019] [Accepted: 11/04/2019] [Indexed: 11/25/2022]
Abstract
Predictors of treatment effects allow individual tailoring of treatment characteristics, thereby saving resources and optimizing outcomes. Electrical stimulation coupled with language intervention has shown promising results in improving language performance in individuals with Primary Progressive Aphasia (PPA). The current study aimed to identify language and cognitive variables associated with response to therapy consisting of language intervention combined with transcranial direct current stimulation (tDCS). Forty individuals with PPA received written naming/spelling intervention combined with anodal tDCS or Sham, using a between-subjects, randomized design, with intervention delivered over a period of 3 weeks. Participants were assessed using a battery of neuropsychological tests before and after each phase. We measured letter accuracy during spelling of trained and untrained words, before, immediately after, 2 weeks, and 2 months after therapy. We used step-wise regression methods to identify variables amongst the neuropsychological measures and experimental factors that were significantly associated with therapy outcomes at each time-point. For trained words, improvement was related to pre-therapy scores, in RAVLT (5 trials sum), pseudoword spelling, object naming, digit span backward, spatial span backward and years post symptom onset. Regarding generalization to untrained words, improvement in spelling was associated with pseudoword spelling, RAVLT proactive interference, RAVLT immediate recall. Generalization effects were larger under tDCS compared to Sham at the 2-month post training measurement. We conclude that, for trained words, patients who improve the most are those who retain for longer language skills such as sublexical spelling processes (phoneme-to-grapheme correspondences) and word retrieval, and other cognitive functions such as executive functions and working memory, and those who have a better learning capacity. Generalization to untrained words occurs through improvement in knowledge of phoneme-to-grapheme correspondences. Furthermore, tDCS enhances the generalizability and duration of therapy effects.
Collapse
Affiliation(s)
- Vânia de Aguiar
- Department of Neurology, Johns Hopkins Medicine; Centre for Language and Cognition Groningen (CLCG), University of Groningen.
| | - Yi Zhao
- Department of Biostatistics, Johns Hopkins School of Public Health
| | | | - Kimberly Webster
- Department of Neurology, Johns Hopkins Medicine; Department of Otolaryngology, Johns Hopkins Medicine
| | - Adrià Rofes
- Centre for Language and Cognition Groningen (CLCG), University of Groningen; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; Department of Cognitive Science, Johns Hopkins University
| | - Haley Wendt
- Department of Neurology, Johns Hopkins Medicine
| | | | - Brian Caffo
- Department of Biostatistics, Johns Hopkins School of Public Health
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins Medicine; Department of Cognitive Science, Johns Hopkins University; Department of Physical Medicine & Rehabilitation, Johns Hopkins University
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins Medicine; Department of Cognitive Science, Johns Hopkins University
| |
Collapse
|
555
|
Caetano A, Pereira P, Pereira M, de Carvalho M. Modulation of sensory nerve fiber excitability by transcutaneous cathodal direct current stimulation. Neurophysiol Clin 2019; 49:385-390. [PMID: 31735493 DOI: 10.1016/j.neucli.2019.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the lasting effects on sensory nerve membrane excitability of transcutaneous peripheral nerve stimulation with cathodal direct currents (pDCS). METHODS We performed pDCS in 10 healthy subjects with the active electrode placed over the distal right forearm and the reference electrode on the back of the right hand. We used 5×5cm rubber electrodes and the current applied was 2.5mA during 15min. Three pDCS sessions were performed on the same day: first, a baseline stimulation was performed, followed by a sham stimulation and lastly a cathodal stimulation. Median sensory nerve excitability measurements were performed at baseline and immediately after each pDCS session using the TRONDNF nerve excitability protocol of the QTRAC program (measurement on the second finger). RESULTS The protocol was completed and well tolerated in all subjects. RRP (relative refractory period) and refractoriness at 2.5ms were significantly different across the three study conditions, with a significant increase of RRP immediately following cathodal stimulation compared with baseline assessment (mean 4.2 versus 5.3, P=0.002). Other measurements were not modulated by the intervention. Sham-stimulation did not change axonal excitability. CONCLUSIONS Cathodal pDCS stimulation increased RRP of sensory fibers, but no other consistent long-lasting effect was observed. This finding might suggest a reduction of sensory fiber excitability induced by cathodal pDCS.
Collapse
Affiliation(s)
- André Caetano
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal.
| | - Pedro Pereira
- Department of Neurology, Hospital Garcia de Orta, Almada, Portugal
| | - Mariana Pereira
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Department of Neurosciences, Hospital de Santa Maria, Centro Hospitalar de Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
556
|
Morya E, Monte-Silva K, Bikson M, Esmaeilpour Z, Biazoli CE, Fonseca A, Bocci T, Farzan F, Chatterjee R, Hausdorff JM, da Silva Machado DG, Brunoni AR, Mezger E, Moscaleski LA, Pegado R, Sato JR, Caetano MS, Sá KN, Tanaka C, Li LM, Baptista AF, Okano AH. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J Neuroeng Rehabil 2019; 16:141. [PMID: 31730494 PMCID: PMC6858746 DOI: 10.1186/s12984-019-0581-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.
Collapse
Affiliation(s)
- Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Rio Grande do Norte Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Kátia Monte-Silva
- Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Andre Fonseca
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Tommaso Bocci
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, International Medical School, University of Milan, Milan, Italy
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Raaj Chatterjee
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Jeffrey M. Hausdorff
- Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Luciane Aparecida Moscaleski
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Rodrigo Pegado
- Graduate Program in Rehabilitation Science, Universidade Federal do Rio Grande do Norte, Santa Cruz, Rio Grande do Norte Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Marcelo Salvador Caetano
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Kátia Nunes Sá
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
| | - Clarice Tanaka
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Li Min Li
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Abrahão Fontes Baptista
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Alexandre Hideki Okano
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Graduate Program in Physical Education. State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
557
|
Patel R, Ashcroft J, Patel A, Ashrafian H, Woods AJ, Singh H, Darzi A, Leff DR. The Impact of Transcranial Direct Current Stimulation on Upper-Limb Motor Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Front Neurosci 2019; 13:1213. [PMID: 31803003 PMCID: PMC6873898 DOI: 10.3389/fnins.2019.01213] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/28/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Transcranial direct current stimulation (tDCS) has previously been reported to improve facets of upper limb motor performance such as accuracy and strength. However, the magnitude of motor performance improvement has not been reviewed by contemporaneous systematic review or meta-analysis of sham vs. active tDCS. Objective: To systematically review and meta-analyse the existing evidence regarding the benefits of tDCS on upper limb motor performance in healthy adults. Methods: A systematic search was conducted to obtain relevant articles from three databases (MEDLINE, EMBASE, and PsycINFO) yielding 3,200 abstracts. Following independent assessment by two reviewers, a total of 86 articles were included for review, of which 37 were deemed suitable for meta-analysis. Results: Meta-analyses were performed for four outcome measures, namely: reaction time (RT), execution time (ET), time to task failure (TTF), and force. Further qualitative review was performed for accuracy and error. Statistically significant improvements in RT (effect size −0.01; 95% CI −0.02 to 0.001, p = 0.03) and ET (effect size −0.03; 95% CI −0.05 to −0.01, p = 0.017) were demonstrated compared to sham. In exercise tasks, increased force (effect size 0.10; 95% CI 0.08 to 0.13, p < 0.001) and a trend towards improved TTF was also observed. Conclusions: This meta-analysis provides evidence attesting to the impact of tDCS on upper limb motor performance in healthy adults. Improved performance is demonstrable in reaction time, task completion time, elbow flexion tasks and accuracy. Considerable heterogeneity exists amongst the literature, further confirming the need for a standardised approach to reporting tDCS studies.
Collapse
Affiliation(s)
- Ronak Patel
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - James Ashcroft
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Ashish Patel
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Hutan Ashrafian
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Harsimrat Singh
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Ara Darzi
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Daniel Richard Leff
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
558
|
Lu H. Developing and aging: A tale of two stages. CNS Neurosci Ther 2019; 26:281-282. [PMID: 31721450 PMCID: PMC6978226 DOI: 10.1111/cns.13264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/27/2019] [Indexed: 01/12/2023] Open
Affiliation(s)
- Hanna Lu
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.,The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
559
|
Brunoni AR, Carracedo A, Amigo OM, Pellicer AL, Talib L, Carvalho AF, Lotufo PA, Benseñor IM, Gattaz W, Cappi C. Association of BDNF, HTR2A, TPH1, SLC6A4, and COMT polymorphisms with tDCS and escitalopram efficacy: ancillary analysis of a double-blind, placebo-controlled trial. ACTA ACUST UNITED AC 2019; 42:128-135. [PMID: 31721892 PMCID: PMC7115450 DOI: 10.1590/1516-4446-2019-0620] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE We investigated whether single nucleotide polymorphisms (SNPs) associated with neuroplasticity and activity of monoamine neurotransmitters, such as the brain-derived neurotrophic factor (BDNF, rs6265), the serotonin transporter (SLC6A4, rs25531), the tryptophan hydroxylase 1 (TPH1, rs1800532), the 5-hydroxytryptamine receptor 2A (HTR2A, rs6311, rs6313, rs7997012), and the catechol-O-methyltransferase (COMT, rs4680) genes, are associated with efficacy of transcranial direct current stimulation (tDCS) in major depression. METHODS Data from the Escitalopram vs. Electrical Current Therapy for Treating Depression Clinical Study (ELECT-TDCS) were used. Participants were antidepressant-free at baseline and presented with an acute, moderate-to-severe unipolar depressive episode. They were randomized to receive escitalopram/tDCS-sham (n=75), tDCS/placebo-pill (n=75), or placebo-pill/sham-tDCS (n=45). General linear models assessed the interaction between treatment group and allele-wise carriers. Additional analyses were performed for each group and each genotype separately. RESULTS Pairwise group comparisons (tDCS vs. placebo, tDCS vs. escitalopram, and escitalopram vs. placebo) did not identify alleles associated with depression improvement. In addition, exploratory analyses also did not identify any SNP unequivocally associated with improvement of depression in any treatment group. CONCLUSION Larger, combined datasets are necessary to identify candidate genes for tDCS response.
Collapse
Affiliation(s)
- Andre R Brunoni
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Angel Carracedo
- Grupo de Medicina Xenómica/Pharmacogenetics Research, Laboratorio SSL1, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Santiago de Compostela, Spain
| | - Olalla M Amigo
- Grupo de Medicina Xenómica/Pharmacogenetics Research, Laboratorio SSL1, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Santiago de Compostela, Spain
| | - Ana L Pellicer
- Grupo de Medicina Xenómica/Pharmacogenetics Research, Laboratorio SSL1, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Santiago de Compostela, Spain
| | - Leda Talib
- Laboratório de Neurociências (LIM-27) and Instituto Nacional de Biomarcadores em Psiquiatria (INBION), Departamento e Instituto de Psiquiatria, Faculdade de Medicina, São Paulo, SP, Brazil
| | - Andre F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto & Centre for Addiction & Mental Health (CAMH), Toronto, Canada
| | - Paulo A Lotufo
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Isabela M Benseñor
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Wagner Gattaz
- Laboratório de Neurociências (LIM-27) and Instituto Nacional de Biomarcadores em Psiquiatria (INBION), Departamento e Instituto de Psiquiatria, Faculdade de Medicina, São Paulo, SP, Brazil
| | - Carolina Cappi
- Programa Transtornos do Espectro Obsessivo-Compulsivo, Departamento e Instituto de Psiquiatria, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| |
Collapse
|
560
|
Lu H, Chiu Wa Lam L, Ning Y. Toward personalized brain stimulation: Advances and challenges. CNS Neurosci Ther 2019; 25:1219-1221. [PMID: 31696643 PMCID: PMC6834681 DOI: 10.1111/cns.13251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Hanna Lu
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.,The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linda Chiu Wa Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuping Ning
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.,The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
561
|
Rezaee Z, Dutta A. Transcranial Direct Current Stimulation of the Leg Motor Area - is it partly somatosensory? ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:4764-4767. [PMID: 30441414 DOI: 10.1109/embc.2018.8513195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Non-invasive brain stimulation such as transcranial direct current stimulation (tDCS) involves passing low currents through the brain and is a promising tool for the modulation of cortical excitability. We computationally investigated the effects of the size of the anode in the conventional montage (contralateral supraorbital cathode) using finite element analysis (FEA) for the targeted leg area of the motor cortex where tDCS is challenging due to the depth and orientation of the leg motor area in the inter-hemispheric fissure. We used FEA to develop two anode sizes (same cathode size) with the same current density but different electric field magnitude at the targeted leg area of the motor cortex. Then, we evaluated the effects of the two anode sizes via neurophysiological testing on twelve healthy subjects, seven males and five females (age: 21-36 years, all right-leg dominant). Here, conventional anodal tDCS electrode montage for the leg area of the motor cortex used a large-anode (5cmx7cm, current strength 2mA) which was compared based on transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEP) with a small-anode (3.5cmx1cm at 0.2mA) montage of the same current density at the skin-electrode interface and identical contralateral supraorbital cathode placement. Small-anode decreased the electric field magnitude by almost one-tenth but still got a similar statistically significant $(\mathrm {P}<0.05)$ increase in the cortical excitability (MEP) at the targeted leg motor area when compared to sham tDCS. Since the electric field magnitude was similar at the scalp (skin-electrode interface) level but differed significantly at the leg motor area in the inter-hemispheric fissure, so a possible contribution of scalp sensory nerve responses to electrocutaneous stimulation is proposed.
Collapse
|
562
|
Datta A, Thomas C, Huang Y, Venkatasubramanian G. Exploration of the Effect of Race on Cortical Current Flow Due to Transcranial Direct Current Stimulation: Comparison across Caucasian, Chinese, and Indian Standard Brains. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:2341-2344. [PMID: 30440876 DOI: 10.1109/embc.2018.8512887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It is well known that genetic and environmental factors amongst others make different ethnic populations dissimilar reflected by the difference in overall skull and brain volume, shape, and size. We sought to investigate in this study the effects of race related morphological changes by comparing across standard Caucasian, Chinese and Indian templates on brain current flow due to transcranial Direct Current Stimulation. Findings indicate up to 1.4 fold variation in induced electrical field magnitude in both target and non-target regions across the electrode montage and average heads considered. The observed variation is similar to the variation observed in adults of Caucasian race indicating that variation observed due to race are not significantly more than within race variation.
Collapse
|
563
|
Jaušovec N. The neural code of intelligence: From correlation to causation. Phys Life Rev 2019; 31:171-187. [PMID: 31706924 DOI: 10.1016/j.plrev.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/18/2019] [Indexed: 01/03/2023]
Abstract
Research into the neural underpinning of intelligence has mainly adopted a construct perspective: trying to find structural and functional brain characteristics that would accommodate the psychological concept of g. Few attempts have been made to explain intelligence exclusively based on brain characteristics - the brain perspective. From a methodological viewpoint the brain intelligence relation has been studied by means of correlational and interventional studies. The later providing a causal elucidation of the brain - intelligence relation. The best neuro-anatomical predictor of intelligence is brain volume showing a modest positive correlation with g, explaining between 9 to 16% of variance. The most likely explanation was that larger brains, containing more neurons, have a greater computational power and in that way allow more complex cognitive processing. Correlations with brain surface, thickness, convolution and callosal shape showed less consistent patterns. The development of diffusion tensor imaging has allowed researchers to look also into the microstructure of brain tissue. Consistently observed was a positively correlation between white matter integrity and intelligence, supporting the idea that efficient information transfer between hemispheres and brain areas is crucial for higher intellectual competence. Based on functional studies of the brain intelligence relationship three theories have been put forward: the neural efficiency, the P-FIT and the multi demand (MD) system theory. On the other hand, The Network Neuroscience Theory of g, based on methods from mathematics, physics, and computer science, is an example for the brain perspective on neurobiological underpinning of intelligence. In this framework network flexibility and dynamics provide the foundation for general intelligence. With respect to intervention studies the most promising results have been achieved with noninvasive brain stimulation and behavioral training providing tentative support for findings put forward by the correlational approach. To date the best consensus based on the diversity of results reported would be that g is predominantly determined by lateral prefrontal attentional control of structured sensory episodes in posterior brain areas. The capacity of flexible transitions between these network states represents the essence of intelligence - g.
Collapse
|
564
|
Thomas C, Datta A, Woods A. Effect of Aging on Cortical Current Flow Due to Transcranial Direct Current Stimulation: Considerations for Safety. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:3084-3087. [PMID: 30441046 DOI: 10.1109/embc.2018.8513014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
While intracranial volume is thought to be fixed throughout the lifespan, there is little doubt that the brain shrinks with age and it is most precipitous after about the age of 50. This as a consequence reflects an increase in cranial cerebrospinal fluid (CSF) with age. Of the myriad factors influencing brain current flow, these changes in CSF volume are expected to play a profound role given its high electrical conductivity. The aim of this study is to investigate the effects of agerelated morphological changes on brain current flow patterns due to transcranial Direct Current Stimulation (tDCS). Anatomical MRI data were collected for 5 healthy subjects spanning 5 decades of life (ages: 43 to 85). Finite element models derived from the MRI were used to calculate cortical electrical field values during tDCS. The widely used C3-Fp2 (M1-SO) and the F3-F4 montage along with two High Definition-tDCS electrode montages 4X1 (C3-centered) and 4X1 (F3-centered) were simulated. Peak induced electrical field at the intended brain target (assumed to be directly underneath the electrode) and at non-intended brain regions was compared with the individual brain atrophy coefficients. Findings across 4 subjects (ages: 43 to 75) indicate reduced peak electrical field with increasing age. However, this trend reverses for the oldest subject. While age-related morphological changes lead to significant changes in current flow distribution, they are not substantially different than younger adults. The predictions of this study are the first step to assess safety of tDCS in elderly subjects and provide a rational path in customizing stimulation dose for trials involving them.
Collapse
|
565
|
Kade AK, Kravchenko SV, Trofimenko AI, Chaplygina KY, Ananeva EI, Poliakov PP, Lipatova AS. [The efficacy of tes-therapy for treatment of anxiety-like behavior and motor disorders in rats with an experimental model of parkinsonism]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:91-96. [PMID: 31626224 DOI: 10.17116/jnevro201911909191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIM To assess the efficacy of transcranial electrostimulation TES for treatmnet of anxiety-like behavior and motor disorders in rats with rotenone-induced parkinsonism. MATERIAL AND METHODS The study was performed on 30 mature male-rats. Animals were divided into following groups: control, intact rats (group 1); rats with an experimental model of parkinsonism without treatment (group 2); rats with an experimental model of parkinsonism, which had 7 sessions of TES-therapy (group 3), the number of rats in each group was 10. The parkinsonism model was achieved by daily rotenone administration for 28 days. Parkinsonism's markers were assessed using 3-point scale; anxiety-like behavior and motor activity were assessed in the open-field test. TES was performed using TRANSAIR-stimulator for 7 days. Substantia nigra slices were stained with hematoxylin and Lillie's staining for neuromelanin. RESULTS The rats of group 3 show less neurological deficits, less anxiety-like behavior and less neurodegeneration in the substantia nigra. There are a decrease in individual total scores of motor disorders by 50%, a decrease in the level of anxiety-like behavior or the absence of its increase in the open-field test. CONCLUSION TES-therapy may be used as an additional non-pharmacological treatment of motor and related non-motor damage in Parkinson's disease.
Collapse
Affiliation(s)
- A Kh Kade
- Kuban State Medical University, Krasnodar, Russia
| | | | - A I Trofimenko
- Scientific Research Institute - Ochapovsky Regional Clinical Hospital #1, Krasnodar, Russia
| | | | - E I Ananeva
- Kuban State Medical University, Krasnodar, Russia
| | - P P Poliakov
- Kuban State Medical University, Krasnodar, Russia
| | - A S Lipatova
- Kuban State Medical University, Krasnodar, Russia
| |
Collapse
|
566
|
Turi Z, Csifcsák G, Boayue NM, Aslaksen P, Antal A, Paulus W, Groot J, Hawkins GE, Forstmann B, Opitz A, Thielscher A, Mittner M. Blinding is compromised for transcranial direct current stimulation at 1
mA
for 20 min in young healthy adults. Eur J Neurosci 2019; 50:3261-3268. [DOI: 10.1111/ejn.14403] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Zsolt Turi
- Department of Clinical Neurophysiology University Medical Center Göttingen Göttingen Germany
| | - Gábor Csifcsák
- Department of Psychology University of Tromsø Tromsø Norway
| | | | - Per Aslaksen
- Department of Psychology University of Tromsø Tromsø Norway
| | - Andrea Antal
- Department of Clinical Neurophysiology University Medical Center Göttingen Göttingen Germany
- Medical Psychology Otto‐Guericke University Magdeburg Magdeburg Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology University Medical Center Göttingen Göttingen Germany
| | - Josephine Groot
- Department of Psychology University of Tromsø Tromsø Norway
- Integrative Model‐based Cognitive Neuroscience Research Unit University of Amsterdam Amsterdam The Netherlands
| | - Guy E. Hawkins
- School of Psychology University of Newcastle Newcastle New South Wales Australia
| | - Birte Forstmann
- Integrative Model‐based Cognitive Neuroscience Research Unit University of Amsterdam Amsterdam The Netherlands
| | - Alexander Opitz
- Department of Biomedical Engineering University of Minnesota Minneapolis Minnesota
| | - Axel Thielscher
- Department of Electrical Engineering Technical University of Denmark Lyngby Denmark
- Danish Research Centre for Magnetic Resonance Centre for Functional and Diagnostic Imaging and Research Copenhagen University Hospital Hvidovre Copenhagen Denmark
| | | |
Collapse
|
567
|
Fertonani A, Pirulli C, Bollini A, Miniussi C, Bortoletto M. Age-related changes in cortical connectivity influence the neuromodulatory effects of transcranial electrical stimulation. Neurobiol Aging 2019; 82:77-87. [DOI: 10.1016/j.neurobiolaging.2019.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
|
568
|
Lo Gerfo E, Gallucci A, Morese R, Vergallito A, Ottone S, Ponzano F, Locatelli G, Bosco F, Romero Lauro LJ. The role of ventromedial prefrontal cortex and temporo-parietal junction in third-party punishment behavior. Neuroimage 2019; 200:501-510. [DOI: 10.1016/j.neuroimage.2019.06.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 11/29/2022] Open
|
569
|
Muffel T, Kirsch F, Shih PC, Kalloch B, Schaumberg S, Villringer A, Sehm B. Anodal Transcranial Direct Current Stimulation Over S1 Differentially Modulates Proprioceptive Accuracy in Young and Old Adults. Front Aging Neurosci 2019; 11:264. [PMID: 31611782 PMCID: PMC6775783 DOI: 10.3389/fnagi.2019.00264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/06/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Proprioception is a prerequisite for successful motor control but declines throughout the lifespan. Brain stimulation techniques such as anodal transcranial direct current stimulation (a-tDCS) are capable of enhancing sensorimotor performance across different tasks and age groups. Despite such growing evidence for a restorative potential of tDCS, its impact on proprioceptive accuracy has not been studied in detail yet. OBJECTIVE This study investigated online effects of a-tDCS over S1 on proprioceptive accuracy in young (YA) and old healthy adults (OA). METHODS The effect of 15 min of a-tDCS vs. sham on proprioceptive accuracy was assessed in a cross-over, double blind experiment in both age groups. Performance changes were tested using an arm position matching task in a robotic environment. Electrical field (EF) strengths in the target area S1 and control areas were assessed based on individualized simulations. RESULTS a-tDCS elicited differential changes in proprioceptive accuracy and EF strengths in the two groups: while YA showed a slight improvement, OA exhibited a decrease in performance during a-tDCS. Stronger EF were induced in target S1 and control areas in the YA group. However, no relationship between EF strength and performance change was found. CONCLUSION a-tDCS over S1 elicits opposing effects on proprioceptive accuracy as a function of age, a result that is important for future studies investigating the restorative potential of a-tDCS in healthy aging and in the rehabilitation of neurological diseases that occur at advanced age. Modeling approaches could help elucidate the relationship between tDCS protocols, brain structure and performance modulation.
Collapse
Affiliation(s)
- Toni Muffel
- Neuroplasticity and Motor Recovery Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Day Clinic for Cognitive Neurology, University Hospital, Leipzig University, Leipzig, Germany
- Mind Brain Body Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin (CSB), Charité – Universitätsmedizin Berlin, Berlin, Germany
- International Max Planck Research School on the Life Course, Max Planck Institute for Human Development, Berlin, Germany
| | - Franziska Kirsch
- Neuroplasticity and Motor Recovery Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Pei-Cheng Shih
- Neuroplasticity and Motor Recovery Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Benjamin Kalloch
- Neuroplasticity and Motor Recovery Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Computer Science and Media, Leipzig University of Applied Sciences, Leipzig, Germany
| | - Sara Schaumberg
- Neuroplasticity and Motor Recovery Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Neuroplasticity and Motor Recovery Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Day Clinic for Cognitive Neurology, University Hospital, Leipzig University, Leipzig, Germany
- Mind Brain Body Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin (CSB), Charité – Universitätsmedizin Berlin, Berlin, Germany
- International Max Planck Research School on the Life Course, Max Planck Institute for Human Development, Berlin, Germany
- International Max Planck Research School on Neuroscience of Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Bernhard Sehm
- Neuroplasticity and Motor Recovery Group, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Day Clinic for Cognitive Neurology, University Hospital, Leipzig University, Leipzig, Germany
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| |
Collapse
|
570
|
Chen SG, Tsai CH, Lin CJ, Lee CC, Yu HY, Hsieh TH, Liu HL. Transcranial focused ultrasound pulsation suppresses pentylenetetrazol induced epilepsy in vivo. Brain Stimul 2019; 13:35-46. [PMID: 31575487 DOI: 10.1016/j.brs.2019.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 09/04/2019] [Accepted: 09/23/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Epilepsy is a neurological disorder characterized by abnormal neuron discharge, and one-third of epilepsy patients suffer from drug-resistant epilepsy (DRE). The current management for DRE includes epileptogenic lesion resection, disconnection, and neuromodulation. Neuromodulation is achieved through invasive electrical stimulus including deep brain stimulation, vagus nerve stimulation, or responsive neurostimulation (RNS). As an alternative therapy, transcranial focused ultrasound (FUS) can transcranially and non-invasively modulate neuron activity. OBJECTIVE This study seeks to verify the use of FUS pulsations to suppress spikes in an acute epileptic small-animal model, and to investigate possible biological mechanisms by which FUS pulsations interfere with epileptic neuronal activity. METHODS The study used a total of 76 Sprague-Dawley rats. For the epilepsy model, rats were administered pentylenetetrazol (PTZ) to induce acute epileptic-like abnormal neuron discharges, followed by FUS exposure. Various ultrasound parameters were set to test the epilepsy-suppressing effect, while concurrently monitoring and analyzing electroencephalogram (EEG) signals. Animal behavior was monitored and histological examinations were conducted to evaluate the hazard posed by ultrasound exposure and the expression of neuronal activity markers. Western blotting was used to evaluate the correlation between FUS-induced epileptic suppression and the PI3K-mTOR signaling pathway. RESULTS We observed that FUS pulsations effectively suppressed epileptic activity and observed EEG spectrum oscillations; the spike-suppressing effect depended on the selection of ultrasound parameters and highly correlated with FUS exposure level. Expression level changes of c-Fos and GAD65 were confirmed in the cortex and hippocampus, indicating that FUS pulsations deactivated excitatory cells and activated GABAergic terminals. No tissue damage, inflammatory response, or behavioral abnormalities were observed in rats treated with FUS under these exposure parameters. We also found that the FUS pulsations down-regulated the S6 phosphorylation and decreased pAKT expression. CONCLUSION Our results suggest that pulsed FUS exposure effectively suppresses epileptic spikes in an acute epilepsy animal model, and finds that ultrasound pulsation interferes with neuronal activity and affects the PTZ-induced PI3K-Akt-mTOR pathway, which might help explain the mechanism underlying ultrasound-related epileptic spike control.
Collapse
Affiliation(s)
- Sin-Guang Chen
- Department of Electrical Engineering, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Chih-Hung Tsai
- Department of Electrical Engineering, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Lin
- Department of Electrical Engineering, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chia Lee
- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Hsiang-Yu Yu
- School of Medicine and Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Hao-Li Liu
- Department of Electrical Engineering, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
571
|
Ciechanski P, Kirton A, Wilson B, Williams CC, Anderson SJ, Cheng A, Lopushinsky S, Hecker KG. Electroencephalography correlates of transcranial direct-current stimulation enhanced surgical skill learning: A replication and extension study. Brain Res 2019; 1725:146445. [PMID: 31520611 DOI: 10.1016/j.brainres.2019.146445] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/01/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022]
Abstract
Transcranial direct-current stimulation (tDCS), an increasingly applied form of non-invasive brain stimulation, can augment the acquisition of motor skills. Motor learning investigations of tDCS are limited to simple skills, where mechanisms are increasingly understood. Investigations of meaningful, complex motor skills possessed by humans, such as surgical skills, are limited. This replication and extension of our previous findings used electroencephalography (EEG) to determine how tDCS and complex surgical training alters electrical activity in the sensorimotor network to enhance complex surgical skill acquisition. In twenty-two participants, EEG was recorded during baseline performance of simulation-based laparoscopic surgical skills. Participants were randomized to receive 20 min of primary motor cortex targeting anodal tDCS or sham concurrent to 1 h of surgical skill training. EEG was reassessed following training, during a post-training repetition of the surgical tasks. Our results replicated our previous study suggesting that compared to sham, anodal tDCS enhanced the acquisition of unimanual surgical skill. Surgical training modulated delta frequency band activity in sensorimotor regions. Next, the performance of unimanual and bimanual skills evoked unique EEG profiles, primarily within the beta frequency-band in parietal regions. Finally, tDCS-paired surgical training independently modulated delta and alpha frequency-bands in sensorimotor regions. Application of tDCS during surgical skill training is feasible, safe and tolerable. In conclusion, we are the first to explore electrical brain activity during performance of surgical skills, how electrical activity may change during surgical training and how tDCS alters the brain to enhance skill acquisition. The results provide preliminary evidence of neural markers that can be targeted by neuromodulation to optimize complex surgical training.
Collapse
Affiliation(s)
- Patrick Ciechanski
- Faculty of Medicine and Dentistry, University of Alberta, 1-002 Katz Group Centre for Pharmacy and Health Research, Edmonton, Alberta T6G 2E1, Canada.
| | - Adam Kirton
- Departments of Clinical Neurosciences, Pediatrics and Radiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Bethan Wilson
- Department of Health Sciences, Carleton University, 2305 Health Sciences Building, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - Chad C Williams
- Centre for Biomedical Research, University of Victoria, PO Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada.
| | - Sarah J Anderson
- Veterinary Clinical and Diagnostic Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Adam Cheng
- Department of Pediatrics and Emergency Medicine, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Steven Lopushinsky
- Department of Surgery, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Kent G Hecker
- Departments of Community Health Sciences and Veterinary Clinical and Diagnostic Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
572
|
Bahr Hosseini M, Hou J, Bikson M, Iacoboni M, Gornbein J, Saver JL. Central Nervous System Electrical Stimulation for Neuroprotection in Acute Cerebral Ischemia: Meta-Analysis of Preclinical Studies. Stroke 2019; 50:2892-2901. [PMID: 31480966 DOI: 10.1161/strokeaha.119.025364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background and Purpose- Brain electrical stimulation, widely studied to facilitate recovery from stroke, has also been reported to confer direct neuroprotection in preclinical models of acute cerebral ischemia. Systematic review of controlled preclinical acute cerebral ischemia studies would aid in planning for initial human clinical trials. Methods- A systematic Medline search identified controlled, preclinical studies of central nervous system electrical stimulation in acute cerebral ischemia. Studies were categorized among 6 stimulation strategies. Three strategies applied different stimulation types to tissues within the ischemic zone (cathodal hemispheric stimulation [CHS], anodal hemispheric stimulation, and pulsed hemispheric stimulation), and 3 strategies applied deep brain stimulation to different neuronal targets remote from the ischemic zone (fastigial nucleus stimulation, subthalamic vasodilator area stimulation, and dorsal periaqueductal gray stimulation). Random-effects meta-analysis assessed electrical stimulation modification of final infarct volume. Study-level risk of bias and intervention-level readiness-for-translation were assessed using formal rating scales. Results- Systematic search identified 28 experiments in 21 studies, including a total of 350 animals, of electrical stimulation in preclinical acute cerebral ischemia. Overall, in animals undergoing electrical stimulation, final infarct volumes were reduced by 37% (95% CI, 34%-40%; P<0.001), compared with control. There was evidence of heterogeneity of efficacy among stimulation strategies (I2=93.1%, Pheterogeneity<0.001). Among the within-ischemic zone stimulation strategies, only CHS significantly reduced the infarct volume (27 %; 95% CI, 22%-33%; P<0.001); among the remote-from ischemic zone approaches, all (fastigial nucleus stimulation, subthalamic vasodilator area stimulation, and dorsal periaqueductal gray stimulation) reduced infarct volumes by approximately half. On formal rating scales, CHS studies had the lowest risk of bias, and CHS had the highest overall quality of intervention-level evidence supporting readiness to proceed to clinical testing. Conclusions- Electrical stimulation reduces final infarct volume across preclinical studies. CHS shows the most robust evidence and is potentially appropriate for progression to early-stage human clinical trial testing as a promising neuroprotective intervention.
Collapse
Affiliation(s)
- Mersedeh Bahr Hosseini
- From the Department of Neurology and Comprehensive Stroke Center (M.B.H., J.H., J.L.S.), David Geffen School of Medicine at UCLA
| | - Jesse Hou
- From the Department of Neurology and Comprehensive Stroke Center (M.B.H., J.H., J.L.S.), David Geffen School of Medicine at UCLA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York (CCNY) (M.B.)
| | - Marco Iacoboni
- Department of Psychiatry and Biobehavioral Sciences (M.I.), David Geffen School of Medicine at UCLA
| | - Jeffrey Gornbein
- Department of Biomedical Engineering, The City College of New York (CCNY) (M.B.)
| | - Jeffrey L Saver
- From the Department of Neurology and Comprehensive Stroke Center (M.B.H., J.H., J.L.S.), David Geffen School of Medicine at UCLA
| |
Collapse
|
573
|
Kim J, Plitman E, Nakajima S, Alshehri Y, Iwata Y, Chung JK, Caravaggio F, Menon M, Blumberger DM, Pollock BG, Remington G, De Luca V, Graff-Guerrero A, Gerretsen P. Modulation of brain activity with transcranial direct current stimulation: Targeting regions implicated in impaired illness awareness in schizophrenia. Eur Psychiatry 2019; 61:63-71. [DOI: 10.1016/j.eurpsy.2019.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/15/2019] [Accepted: 06/21/2019] [Indexed: 01/29/2023] Open
|
574
|
Fassini PG, Das SK, Suen VMM, Magerowski G, Marchini JS, da Silva Junior WA, Changyu S, Alonso-Alonso M. Appetite effects of prefrontal stimulation depend on COMT Val158Met polymorphism: A randomized clinical trial. Appetite 2019; 140:142-150. [PMID: 31095973 DOI: 10.1016/j.appet.2019.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/22/2019] [Accepted: 05/12/2019] [Indexed: 12/13/2022]
Abstract
The regulation of appetite is supported by dopamine-modulated brain circuits. Recent studies have shown that transcranial direct current stimulation (tDCS) aimed at increasing the excitability of the dorsolateral prefrontal cortex can reduce appetite, but the underlying mechanisms remain unknown, and response variability is large. The aim of this study was to determine whether individual differences in Catechol-O-methyl transferase (COMT) Val158Met polymorphism can influence tDCS effects on appetite. Thirty-eight adult women with obesity, classified as carriers or non-carriers of the Met allele, underwent a randomized, double-blind, sham-controlled tDCS intervention involving three phases: Phase I, target engagement (immediate effects of tDCS on working memory performance), Phase II, tDCS only (10 sessions, two weeks), and Phase III, tDCS + hypocaloric diet: (6 sessions, two weeks, 30% energy intake reduction, inpatient). Data were analyzed using linear mixed-effects models and mixed ANCOVA. Appetite was evaluated using visual analogue scales. We found that Met-carriers receiving active tDCS were the only participants who experienced a significant reduction of appetite over time. Conversely, Met non-carriers maintained high levels of appetite during the intervention; this effect was driven by a delayed paradoxical rise in appetite after stimulation. Working memory task performance at phase I correlated with subsequent appetite change in a COMT-dependent manner: speed improvements during the task predicted appetite increase in Met carriers and appetite reduction in Met non-carriers. Our findings suggest that genotype differences impacting dopamine levels influence prefrontal tDCS effects on appetite. This source of variability should be considered in the design of future studies.
Collapse
Affiliation(s)
- Priscila Giacomo Fassini
- Laboratory of Bariatric and Nutritional Neuroscience, Center for the Study of Nutrition Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Sai Krupa Das
- Energy Metabolism Laboratory, Jean Mayer USDA Human Nutrition Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111-1524, United States
| | - Vivian Marques Miguel Suen
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900. Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Greta Magerowski
- Laboratory of Bariatric and Nutritional Neuroscience, Center for the Study of Nutrition Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Júlio Sérgio Marchini
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900. Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Wilson Araújo da Silva Junior
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900. Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Shen Changyu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Miguel Alonso-Alonso
- Laboratory of Bariatric and Nutritional Neuroscience, Center for the Study of Nutrition Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States.
| |
Collapse
|
575
|
Cattagni T, Geiger M, Supiot A, de Mazancourt P, Pradon D, Zory R, Roche N. A single session of anodal transcranial direct current stimulation applied over the affected primary motor cortex does not alter gait parameters in chronic stroke survivors. Neurophysiol Clin 2019; 49:283-293. [DOI: 10.1016/j.neucli.2019.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/20/2023] Open
|
576
|
Mohsen S, Pourbakht A, Farhadi M, Mahmoudian S. The efficacy and safety of multiple sessions of multisite transcranial random noise stimulation in treating chronic tinnitus. Braz J Otorhinolaryngol 2019; 85:628-635. [PMID: 30528654 PMCID: PMC9443048 DOI: 10.1016/j.bjorl.2018.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/24/2018] [Accepted: 05/21/2018] [Indexed: 01/15/2023] Open
Abstract
Introduction Objective Methods Results Conclusions
Collapse
|
577
|
Ekhtiari H, Tavakoli H, Addolorato G, Baeken C, Bonci A, Campanella S, Castelo-Branco L, Challet-Bouju G, Clark VP, Claus E, Dannon PN, Del Felice A, den Uyl T, Diana M, di Giannantonio M, Fedota JR, Fitzgerald P, Gallimberti L, Grall-Bronnec M, Herremans SC, Herrmann MJ, Jamil A, Khedr E, Kouimtsidis C, Kozak K, Krupitsky E, Lamm C, Lechner WV, Madeo G, Malmir N, Martinotti G, McDonald WM, Montemitro C, Nakamura-Palacios EM, Nasehi M, Noël X, Nosratabadi M, Paulus M, Pettorruso M, Pradhan B, Praharaj SK, Rafferty H, Sahlem G, Salmeron BJ, Sauvaget A, Schluter RS, Sergiou C, Shahbabaie A, Sheffer C, Spagnolo PA, Steele VR, Yuan TF, van Dongen JDM, Van Waes V, Venkatasubramanian G, Verdejo-García A, Verveer I, Welsh JW, Wesley MJ, Witkiewitz K, Yavari F, Zarrindast MR, Zawertailo L, Zhang X, Cha YH, George TP, Frohlich F, Goudriaan AE, Fecteau S, Daughters SB, Stein EA, Fregni F, Nitsche MA, Zangen A, Bikson M, Hanlon CA. Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: A consensus paper on the present state of the science and the road ahead. Neurosci Biobehav Rev 2019; 104:118-140. [PMID: 31271802 PMCID: PMC7293143 DOI: 10.1016/j.neubiorev.2019.06.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 12/21/2022]
Abstract
There is growing interest in non-invasive brain stimulation (NIBS) as a novel treatment option for substance-use disorders (SUDs). Recent momentum stems from a foundation of preclinical neuroscience demonstrating links between neural circuits and drug consuming behavior, as well as recent FDA-approval of NIBS treatments for mental health disorders that share overlapping pathology with SUDs. As with any emerging field, enthusiasm must be tempered by reason; lessons learned from the past should be prudently applied to future therapies. Here, an international ensemble of experts provides an overview of the state of transcranial-electrical (tES) and transcranial-magnetic (TMS) stimulation applied in SUDs. This consensus paper provides a systematic literature review on published data - emphasizing the heterogeneity of methods and outcome measures while suggesting strategies to help bridge knowledge gaps. The goal of this effort is to provide the community with guidelines for best practices in tES/TMS SUD research. We hope this will accelerate the speed at which the community translates basic neuroscience into advanced neuromodulation tools for clinical practice in addiction medicine.
Collapse
Affiliation(s)
| | - Hosna Tavakoli
- Institute for Cognitive Science Studies (ICSS), Iran; Iranian National Center for Addiction Studies (INCAS), Iran
| | - Giovanni Addolorato
- Alcohol Use Disorder Unit, Division of Internal Medicine, Gastroenterology and Hepatology Unit, Catholic University of Rome, A. Gemelli Hospital, Rome, Italy; Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, University Hospital Ghent, Ghent, Belgium
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - Vincent P Clark
- University of New Mexico, USA; The Mind Research Network, USA
| | | | | | - Alessandra Del Felice
- University of Padova, Department of Neuroscience, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | | | - Marco Diana
- 'G. Minardi' Laboratory of Cognitive Neuroscience, Department of Chemistry and Pharmacy, University of Sassari, Italy
| | | | - John R Fedota
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - Luigi Gallimberti
- Novella Fronda Foundation, Human Science and Brain Research, Padua, Italy
| | | | - Sarah C Herremans
- Department of Psychiatry and Medical Psychology, University Hospital Ghent, Ghent, Belgium
| | - Martin J Herrmann
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Asif Jamil
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | | | | | - Karolina Kozak
- University of Toronto, Canada; Centre for Addiction and Mental Health (CAMH), Canada
| | - Evgeny Krupitsky
- V. M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St.-Petersburg, Russia; St.-Petersburg First Pavlov State Medical University, Russia
| | - Claus Lamm
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Austria
| | | | - Graziella Madeo
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | | | | | - William M McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Chiara Montemitro
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; University G.d'Annunzio of Chieti-Pescara, Italy
| | | | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Xavier Noël
- Université Libre de Bruxelles (ULB), Belgium
| | | | | | | | | | - Samir K Praharaj
- Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Haley Rafferty
- Spaulding Rehabilitation Hospital, Harvard Medical School, USA
| | | | - Betty Jo Salmeron
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Anne Sauvaget
- Laboratory «Movement, Interactions, Performance» (E.A. 4334), University of Nantes, 25 Bis Boulevard Guy Mollet, BP 72206, 44322, Nantes Cedex 3, France; CHU de Nantes Addictology and Liaison Psychiatry Department, University Hospital Nantes, Nantes Cedex 3, France
| | - Renée S Schluter
- Laureate Institute for Brain Research, USA; Institute for Cognitive Science Studies (ICSS), Iran
| | | | - Alireza Shahbabaie
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | | | | | - Vaughn R Steele
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, China
| | | | - Vincent Van Waes
- Laboratoire de Neurosciences Intégratives et Cliniques EA481, Université Bourgogne Franche-Comté, Besançon, France
| | | | | | | | - Justine W Welsh
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Fatemeh Yavari
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Laurie Zawertailo
- University of Toronto, Canada; Centre for Addiction and Mental Health (CAMH), Canada
| | - Xiaochu Zhang
- University of Science and Technology of China, China
| | | | - Tony P George
- University of Toronto, Canada; Centre for Addiction and Mental Health (CAMH), Canada
| | | | - Anna E Goudriaan
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Arkin, Department of Research and Quality of Care, Amsterdam, The Netherlands
| | | | | | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Felipe Fregni
- Spaulding Rehabilitation Hospital, Harvard Medical School, USA
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; University Medical Hospital Bergmannsheil, Dept. Neurology, Bochum, Germany
| | | | | | | |
Collapse
|
578
|
Effects of transcranial direct current stimulation over the posterior parietal cortex on episodic memory reconsolidation. Cortex 2019; 121:78-88. [PMID: 31550617 DOI: 10.1016/j.cortex.2019.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 01/13/2023]
Abstract
Consolidated memories may return to labile/unstable states after their reactivation, thus requiring a restabilization process that is known as reconsolidation. During this time-limited reconsolidation window, reactivated existing memories can be strengthened, weakened or updated with new information. Previous studies have shown that non-invasive stimulation of the lateral prefrontal cortex after memory reactivation strengthened existing verbal episodic memories through reconsolidation, an effect documented by enhanced delayed memory recall (24 h post-reactivation). However, it remains unknown whether the left posterior parietal cortex (PPC), a region involved during reactivation of existing episodic memories, contributes to reconsolidation. To address this question, in this double-blind experiment healthy participants (n = 27) received transcranial direct current stimulation (tDCS) with the anode over the left PPC after reactivation of previously learned verbal episodic memories. Memory recall was tested 24 h later. To rule out unspecific effects of memory reactivation or tDCS alone, we included two control groups: one that receives tDCS with the anode over the left PPC without reactivation (n = 27) and another one that receives tDCS with the anode over a control site (primary visual cortex) after reactivation (n = 27). We hypothesized that tDCS with the anode over the left PPC after memory reactivation would enhance delayed recall through reconsolidation relative to the two control groups. No significant between groups differences in the mean number of words recalled on day 3 occurred, suggesting no beneficial effect of tDCS over the left PPC. Alternative explanations were discussed, including efficacy of tDCS, different stimulation parameters, electrode montage, and stimulation site within the PPC.
Collapse
|
579
|
Cespón J, Rodella C, Miniussi C, Pellicciari MC. Behavioural and electrophysiological modulations induced by transcranial direct current stimulation in healthy elderly and Alzheimer's disease patients: A pilot study. Clin Neurophysiol 2019; 130:2038-2052. [PMID: 31541981 DOI: 10.1016/j.clinph.2019.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/28/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate whether anodal and cathodal transcranial direct current stimulation (tDCS) can modify cognitive performance and neural activity in healthy elderly and Alzheimer's disease (AD) patients. METHODS Fourteen healthy elderly and twelve AD patients performed a working memory task during an electroencephalogram recording before and after receiving anodal, cathodal, and sham tDCS over the left dorsolateral prefrontal cortex. Behavioural performance, event-related potentials (P200, P300) and evoked cortical oscillations were studied as correlates of working memory. RESULTS Anodal tDCS increased P200 and P300 amplitudes in healthy elderly. Cathodal tDCS increased P200 amplitude and frontal theta activity between 150 and 300 ms in AD patients. Improved working memory after anodal tDCS correlated with increased P300 in healthy elderly. In AD patients, slight tendencies between enhanced working memory and increased P200 after cathodal tDCS were observed. CONCLUSIONS Functional neural modulations were promoted by anodal tDCS in healthy elderly and by cathodal tDCS in AD patients. SIGNIFICANCE Interaction between tDCS polarity and the neural state (e.g., hyper-excitability exhibited by AD patients) suggests that appropriate tDCS parameters (in terms of tDCS polarity) to induce behavioural improvements should be chosen based on the participant's characteristics. Future studies using higher sample sizes should confirm and extend the present findings.
Collapse
Affiliation(s)
- J Cespón
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; BCBL, Basque Center on Cognition, Brain, and Language, Donostia/San Sebastián, Spain.
| | - C Rodella
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - C Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy; Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - M C Pellicciari
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
580
|
Lu H, Lam LCW, Ning Y. Scalp-to-cortex distance of left primary motor cortex and its computational head model: Implications for personalized neuromodulation. CNS Neurosci Ther 2019; 25:1270-1276. [PMID: 31420949 PMCID: PMC6834924 DOI: 10.1111/cns.13204] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background Non‐invasive brain stimulation (NIBS) is increasingly used as a probe of function and therapeutics in experimental neuroscience and neurorehabilitation. Scalp‐to‐cortex distance (SCD), as a key parameter, has been shown to potentially impact on the electric field. This study aimed to examine the region‐specific SCD and its relationship with cognitive function in the context of age‐related brain atrophy. Methods We analyzed the SCD and cortical thickness (CT) of left primary motor cortex (M1) in 164 cognitively normal (CN) adults and 43 dementia patients drawn from the Open Access Series of Imaging Studies (OASIS). The degree of brain atrophy was measured by the volume of ventricular system. Computational head model was developed to simulate the impact of SCD on the electric field. Results Increased SCD of left M1 was only found in dementia patients (P < .001). When considering CT, the ratio of SCD to CT (F = 27.41, P < .001) showed better differential value than SCD. The SCD of left M1 was associated with worse global cognition (r = −.207, P = .011) and enlarged third ventricle (r = .241, P < .001). The electric field was consequently reduced with the increased SCD across cognitively normal elderly and dementia groups. Conclusions Scalable distance measures, including SCD and CT, are markedly correlated with reduced electric field in dementia patients. The findings suggest that it is important to be aware of region‐specific distance measures when conducting NIBS‐based rehabilitation in individuals with brain atrophy.
Collapse
Affiliation(s)
- Hanna Lu
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.,The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linda C W Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuping Ning
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.,The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
581
|
Antonenko D, Thams F, Uhrich J, Dix A, Thurm F, Li SC, Grittner U, Flöel A. Effects of a Multi-Session Cognitive Training Combined With Brain Stimulation (TrainStim-Cog) on Age-Associated Cognitive Decline - Study Protocol for a Randomized Controlled Phase IIb (Monocenter) Trial. Front Aging Neurosci 2019; 11:200. [PMID: 31474848 PMCID: PMC6707337 DOI: 10.3389/fnagi.2019.00200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Background With increasing aging populations worldwide, developing interventions against age-associated cognitive decline is particularly important. Evidence suggests that combination of brain stimulation with cognitive training intervention may enhance training effects in terms of performance gain or transfer to untrained domains. This protocol describes a Phase IIb clinical trial that investigates the intervention effects of training combined with brain stimulation in older adults. Methods The TrainStim-Cog study is a monocentric, randomized, single-blind, placebo-controlled intervention. The study will investigate cognitive training with concurrent anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (target intervention) compared to cognitive training with sham stimulation (control intervention) over nine sessions in 3 weeks, consisting of a letter updating task, and a three-stage Markov decision-making task. Fifty-six older adults will be recruited from the general population. Baseline assessment will be performed including neuropsychological screening and performance on training tasks. Participants will be allocated to one of the two study arms using block-wise randomization stratified by age and baseline performance with a 1:1 allocation ratio. Primary outcome is performance in the letter updating task after training under anodal tDCS compared to sham stimulation. Secondary outcomes include performance changes in the decision-making task and transfer tasks, as well as brain structure and functional networks assessed by structural, and functional magnetic resonance imaging (MRI) that are acquired pre- and post-intervention. Significance The main aim of the TrainStim-Cog study is to provide evidence for behavioral and neuronal effects of tDCS-accompanied cognitive training and to elucidate the underlying mechanisms in older adults. Our findings will contribute toward developing efficient interventions for age-associated cognitive decline. Trial registration This trial was retrospectively registered at Clinicaltrials.gov Identifier: NCT03838211 at February 12, 2019, https://clinicaltrials.gov/ct2/show/NCT03838211. Protocol version Based on BB 004/18 version 1.2 (May 17, 2019).
Collapse
Affiliation(s)
- Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jessica Uhrich
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Annika Dix
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TU Dresden, Dresden, Germany
| | - Franka Thurm
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TU Dresden, Dresden, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TU Dresden, Dresden, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| |
Collapse
|
582
|
Chen L, Zou X, Tang R, Ke A, He J. Effect of electrode-electrolyte spatial mismatch on transcranial direct current stimulation: a finite element modeling study. J Neural Eng 2019; 16:056012. [DOI: 10.1088/1741-2552/ab29c5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
583
|
Testing the role of cognitive inhibition in physical endurance using high-definition transcranial direct current stimulation over the prefrontal cortex. Hum Mov Sci 2019; 67:102507. [PMID: 31394308 DOI: 10.1016/j.humov.2019.102507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/21/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022]
Abstract
The aim of this study was to clarify the role of the prefrontal cortex (PFC) in physical effort regulation. We hypothesized that the PFC would be progressively involved in physical endurance through the engagement of cognitive inhibition, which would be necessary to maintain effort by inhibiting fatigue-related cues. This hypothesis was examined using a double-blind, sham-controlled, within-subjects study (N = 20) using high-definition (HD) transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex (dlPFC). Participants had to maintain a knee extensor contraction at 30% of their maximal force while simultaneously performing an Eriksen flanker task to evaluate their inhibition performance during the task. Anodal stimulation of the dlPFC influenced response to the cognitive task during exercise, as seen by slower response times and better accuracy. However, it did not lead to any measureable improvement in cognitive inhibition and did not influence endurance time. There was no correlation between cognitive inhibition and the maintenance of physical effort. This result does not indicate a relationship between cognitive inhibition and endurance performance. The contribution of the PFC in physical endurance could be explained through its involvement on decisional processes.
Collapse
|
584
|
Khadka N, Borges H, Paneri B, Kaufman T, Nassis E, Zannou AL, Shin Y, Choi H, Kim S, Lee K, Bikson M. Adaptive current tDCS up to 4 mA. Brain Stimul 2019; 13:69-79. [PMID: 31427272 DOI: 10.1016/j.brs.2019.07.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Higher tDCS current may putatively enhance efficacy, with tolerability the perceived limiting factor. OBJECTIVE We designed and validated electrodes and an adaptive controller to provide tDCS up to 4 mA, while managing tolerability. The adaptive 4 mA controller included incremental ramp up, impedance-based current limits, and a Relax-mode where current is transiently decreased. Relax-mode was automatically activated by self-report VAS-pain score >5 and in some conditions by a Relax-button available to participants. METHODS In a parallel-group participant-blind design with 50 healthy subjects, we used specialized electrodes to administer 3 daily session of tDCS for 11 min, with a lexical decision task as a distractor, in 5 study conditions: adaptive 4 mA, adaptive 4 mA with Relax-button, adaptive 4 mA with historical-Relax-button, 2 mA, and sham. A tablet-based stimulator with a participant interface regularly queried VAS pain score and also limited current based on impedance and tolerability. An Abort-button provided in all conditions stopped stimulation. In the adaptive 4 mA with Relax-button and adaptive 4 mA with historical-Relax-button conditions, participants could trigger a Relax-mode ad libitum, in the latter case with incrementally longer current reductions. Primary outcome was the average current delivered during each session, VAS pain score, and adverse event questionnaires. Current delivered was analyzed either excluding or including dropouts who activated Abort (scored as 0 current). RESULTS There were two dropouts each in the adaptive 4 mA and sham conditions. Resistance based current attenuation was rarely activated, with few automatic VAS pain score triggered relax-modes. In conditions with Relax-button option, there were significant activations often irrespective of VAS pain score. Including dropouts, current across conditions were significantly different from each other with maximum current delivered during adaptive 4 mA with Relax-button. Excluding dropouts, maximum current was delivered with adaptive 4 mA. VAS pain score and adverse events for the sham was only significantly lower than the adaptive 4 mA with Relax-button and adaptive 4 mA with historical-Relax-button. There was no difference in VAS pain score or adverse events between 2 mA and adaptive 4 mA. CONCLUSIONS Provided specific electrodes and controllers, adaptive 4 mA tDCS is tolerated and effectively blinded, with acceptability likely higher in a clinical population and absence of regular querying. Indeed, presenting participants with overt controls increases rumination on sensation.
Collapse
Affiliation(s)
- Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, 10031, USA
| | - Helen Borges
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, 10031, USA
| | - Bhaskar Paneri
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, 10031, USA
| | - Trynia Kaufman
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, 10031, USA
| | - Electra Nassis
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, 10031, USA
| | - Adantchede L Zannou
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, 10031, USA
| | | | | | | | - Kiwon Lee
- Ybrain Inc., Seongnam-si, Republic of Korea
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, 10031, USA.
| |
Collapse
|
585
|
Osimo SA, Korb S, Aiello M. Obesity, subliminal perception and inhibition: Neuromodulation of the prefrontal cortex. Behav Res Ther 2019; 119:103408. [DOI: 10.1016/j.brat.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/03/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
|
586
|
Causal evidence of right temporal parietal junction involvement in implicit Theory of Mind processing. Neuroimage 2019; 196:329-336. [DOI: 10.1016/j.neuroimage.2019.04.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 01/27/2023] Open
|
587
|
Bikson M, Esmaeilpour Z, Adair D, Kronberg G, Tyler WJ, Antal A, Datta A, Sabel BA, Nitsche MA, Loo C, Edwards D, Ekhtiari H, Knotkova H, Woods AJ, Hampstead BM, Badran BW, Peterchev AV. Transcranial electrical stimulation nomenclature. Brain Stimul 2019; 12:1349-1366. [PMID: 31358456 DOI: 10.1016/j.brs.2019.07.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/25/2019] [Accepted: 07/14/2019] [Indexed: 01/03/2023] Open
Abstract
Transcranial electrical stimulation (tES) aims to alter brain function non-invasively by applying current to electrodes on the scalp. Decades of research and technological advancement are associated with a growing diversity of tES methods and the associated nomenclature for describing these methods. Whether intended to produce a specific response so the brain can be studied or lead to a more enduring change in behavior (e.g. for treatment), the motivations for using tES have themselves influenced the evolution of nomenclature, leading to some scientific, clinical, and public confusion. This ambiguity arises from (i) the infinite parameter space available in designing tES methods of application and (ii) varied naming conventions based upon the intended effects and/or methods of application. Here, we compile a cohesive nomenclature for contemporary tES technologies that respects existing and historical norms, while incorporating insight and classifications based on state-of-the-art findings. We consolidate and clarify existing terminology conventions, but do not aim to create new nomenclature. The presented nomenclature aims to balance adopting broad definitions that encourage flexibility and innovation in research approaches, against classification specificity that minimizes ambiguity about protocols but can hinder progress. Constructive research around tES classification, such as transcranial direct current stimulation (tDCS), should allow some variations in protocol but also distinguish from approaches that bear so little resemblance that their safety and efficacy should not be compared directly. The proposed framework includes terms in contemporary use across peer-reviewed publications, including relatively new nomenclature introduced in the past decade, such as transcranial alternating current stimulation (tACS) and transcranial pulsed current stimulation (tPCS), as well as terms with long historical use such as electroconvulsive therapy (ECT). We also define commonly used terms-of-the-trade including electrode, lead, anode, and cathode, whose prior use, in varied contexts, can also be a source of confusion. This comprehensive clarification of nomenclature and associated preliminary proposals for standardized terminology can support the development of consensus on efficacy, safety, and regulatory standards.
Collapse
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA.
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA.
| | - Devin Adair
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| | - Greg Kronberg
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| | - William J Tyler
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ, USA
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center Goettingen, Goettingen, Germany; Institute of Medical Psychology, Medical Faculty, Otto-v.-Guericke University of Magdeburg, Magdeburg, Germany
| | | | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-v.-Guericke University of Magdeburg, Magdeburg, Germany
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment ant Human Factors, Dept. Psychology and Neurosciences, Dortmund, Germany; University Medical Hospital Bergmannsheil, Dept. Neurology, Bochum, Germany
| | - Colleen Loo
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Dylan Edwards
- Moss Rehabilitation Research Institute, Philadelphia, PA, USA; Edith Cowan University, Joondalup, Australia
| | | | - Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA; Department of Family and Social Medicine, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Benjamin M Hampstead
- Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA; Neuropsychology Section, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Bashar W Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Angel V Peterchev
- Department of Psychiatry & Behavioral Sciences, Department of Biomedical Engineering, Department of Electrical & Computer Engineering, Department of Neurosurgery, Duke University, Durham, NC, USA
| |
Collapse
|
588
|
Bucur M, Papagno C. Are transcranial brain stimulation effects long-lasting in post-stroke aphasia? A comparative systematic review and meta-analysis on naming performance. Neurosci Biobehav Rev 2019; 102:264-289. [DOI: 10.1016/j.neubiorev.2019.04.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/12/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
|
589
|
The effect of transcranial random noise stimulation on corticospinal excitability and motor performance. Neurosci Lett 2019; 705:138-142. [DOI: 10.1016/j.neulet.2019.04.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022]
|
590
|
Noisy galvanic vestibular stimulation modulates spatial memory in young healthy adults. Sci Rep 2019; 9:9310. [PMID: 31249334 PMCID: PMC6597709 DOI: 10.1038/s41598-019-45757-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
Hippocampal and striatal circuits play important roles in spatial navigation. These regions integrate environmental information and receive intrinsic afferent inputs from the vestibular system. Past research indicates that galvanic vestibular stimulation (GVS) is a non-invasive technique that modulates hippocampal and striatal activities. There are also evidences for enhanced motor and cognitive functions through GVS. This study extends previous research to investigate whether noisy GVS may improve hippocampal- and striatal-associated aspects of spatial navigation performance. Using a virtual navigation task, we examined effects of noisy GVS on spatial learning and memory. To probe the participants’ sensitivity to hippocampal- or striatal-associated spatial information, we either enlarged the virtual environment’s boundary or replaced an intra-environmental location cue, respectively. Noisy GVS or sham stimulation was applied online during the learning phase in a within-subject crossover design. The results showed that noisy GVS enhanced spatial learning and the sensitivity foremost to hippocampal-dependent spatial information both in males and females. Individual differences in spatial working memory capacity moderated the effects of GVS, with individuals with lower capacity benefitting more from the stimulation. Furthermore, sex-related differences in GVS effects on the two forms of spatial representations may reflect differences between males and females in preferred spatial strategies.
Collapse
|
591
|
Evidence of top-down modulation of the Brentano illusion but not of the glare effect by transcranial direct current stimulation. Exp Brain Res 2019; 237:2111-2121. [PMID: 31190083 DOI: 10.1007/s00221-019-05577-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been widely used for modulating sensory, motor and cognitive functions, but there are only few attempts to induce and change illusory perception. Visual illusions have been the most traditional and effective way to investigate visual processing through the comparison between physical reality and subjective reports. Here we used tDCS to modulate two different visual illusions, namely the Brentano illusion and the glare effect, with the aim of uncovering the influence of top-down mechanisms on bottom-up visual perception in two experiments. In Experiment 1, to a first group of subjects, real and sham cathodal tDCS (2 mA, 10 min) were applied over the left and right posterior parietal cortices (PPC). In Experiment 2, real and sham cathodal tDCS were applied to the left and right occipital cortices (OC) to a second group of participants. Results showed that tDCS was effective in modulating only the Brentano illusion, but not the glare effect. tDCS increased the Brentano illusion but specifically for the stimulated cortical area (right PPC), illusion direction (leftward), visual hemispace (left), and illusion length (160 mm). These findings suggest the existence of an inhibitory modulation of top-down mechanisms on bottom-up visual processing specifically for the Brentano illusion, but not for the glare effect. The lack of effect of occipital tDCS should consider the possible role of ocular compensation or of the unstimulated hemisphere, which deserves further investigations.
Collapse
|
592
|
Mariano TY, Burgess FW, Bowker M, Kirschner J, van’t Wout-Frank M, Jones RN, Halladay CW, Stein M, Greenberg BD. Transcranial Direct Current Stimulation for Affective Symptoms and Functioning in Chronic Low Back Pain: A Pilot Double-Blinded, Randomized, Placebo-Controlled Trial. PAIN MEDICINE (MALDEN, MASS.) 2019; 20:1166-1177. [PMID: 30358864 PMCID: PMC6544554 DOI: 10.1093/pm/pny188] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Chronic low back pain (CLBP) is highly prevalent, with a substantial psychosocial burden. Pain has both sensory and affective components. The latter component is a significant driver of disability and psychiatric comorbidity but is often inadequately treated. Previously we reported that noninvasive transcranial direct current stimulation (tDCS) may modulate pain-associated affective distress. Here we tested whether 10 daily tDCS sessions aimed to inhibit the left dorsal anterior cingulate cortex (dACC), a region strongly implicated in the affective component of pain, would produce selective reduction in pain-related symptoms. METHODS In this multisite, double-blinded, randomized placebo-controlled trial (RCT), 21 CLBP patients received 10 weekday sessions of 2-mA active tDCS or sham (20 minutes/session). A cathodal electrode was placed over FC1 (10-20 electroencephalography coordinates), and an identical anodal return electrode was placed over the contralateral mastoid. Participants rated pain intensity, acceptance, interference, disability, and anxiety, plus general anxiety and depression. RESULTS Regression analysis noted significantly less pain interference (P =0.002), pain disability (P =0.001), and depression symptoms (P =0.003) at six-week follow-up for active tDCS vs sham. Omnibus tests suggested that these improvements were not merely due to baseline (day 1) group differences. CONCLUSIONS To our knowledge, this is the first double-blinded RCT of multiple tDCS sessions targeting the left dACC to modulate CLBP's affective symptoms. Results are encouraging, including several possible tDCS-associated improvements. Better-powered RCTs are needed to confirm these effects. Future studies should also consider different stimulation schedules, additional cortical targets, high-density multi-electrode tDCS arrays, and multimodal approaches.
Collapse
Affiliation(s)
- Timothy Y Mariano
- Butler Hospital, Providence, Rhode Island
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Frederick W Burgess
- Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Marguerite Bowker
- Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Jason Kirschner
- Butler Hospital, Providence, Rhode Island
- Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Mascha van’t Wout-Frank
- Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Richard N Jones
- Butler Hospital, Providence, Rhode Island
- Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Christopher W Halladay
- Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Michael Stein
- Butler Hospital, Providence, Rhode Island
- Department of Health Law, Policy and Management, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Benjamin D Greenberg
- Butler Hospital, Providence, Rhode Island
- Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
593
|
New perspectives for the modulation of mind-wandering using transcranial electric brain stimulation. Neuroscience 2019; 409:69-80. [DOI: 10.1016/j.neuroscience.2019.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 11/18/2022]
|
594
|
Simon L, Bikson M. The frontier of tDCS in psychiatry and the role of new technologies. L'ENCEPHALE 2019; 45 Suppl 2:S55-S57. [PMID: 31088687 DOI: 10.1016/j.encep.2019.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- L Simon
- Inserm U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, université Claude Bernard Lyon 1, centre hospitalier Le Vinatier, Lyon, France.
| | - M Bikson
- Department of Biomedical Engineering, The City College of New York, New York City, New York, USA
| |
Collapse
|
595
|
Ojardias E, Azé OD, Luneau D, Mednieks J, Condemine A, Rimaud D, Chassagne F, Giraux P. The Effects of Anodal Transcranial Direct Current Stimulation on the Walking Performance of Chronic Hemiplegic Patients. Neuromodulation 2019; 23:373-379. [PMID: 31124218 DOI: 10.1111/ner.12962] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the effect of a single session of tDCS over the primary motor cortex of the lower limb (M1-LL) vs. placebo on the walking performance in chronic hemiplegic patients. PATIENTS AND METHODS Randomized, cross-over, double-blinded study. Eighteen patients with initially complete hemiplegia and poststroke delay >6 months were included. Each patient received a single session of anodal stimulation (2 mA, 20 min) over M1-LL (a-tDCS condition) and a pseudostimulation session (SHAM condition). The order of the two sessions was randomly assigned, with an 11-day interval between the two sessions. The anodal electrode was centered on the hotspot identified with Transcranial magnetic stimulation. The cathode was placed above the contralesional orbitofrontal cortex. Walking performance was evaluated with the Wade test and the 6-minute walk test (6MWT), gait parameters with GAITRite, and balance with posturography. These tests were performed during and 1 hour after the stimulation. Baseline assessments were performed the day before and 10 days after each session. RESULTS The comparison between the 6MWT under a-tDCS vs. SHAM conditions demonstrated a nonsignificant positive effect of the stimulation by 15% during stimulation (p = 0.360) and a significant positive effect of 25% 1 hour after stimulation (p = 0.038). No significant differences were observed for the other evaluations. DISCUSSION These results showed a significant positive effect of a single session of anodal tDCS of the M1-LL in chronic hemiplegic patients. This proof-of-concept study supports the conduct of clinical studies evaluating the effectiveness of a walking training program associated with iterative tDCS stimulation. CONFLICT OF INTEREST The authors reported no conflict of interest.
Collapse
Affiliation(s)
- Etienne Ojardias
- Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.,CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France
| | - Oscar Dagbémabou Azé
- Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.,Laboratoire de Biomécanique et de Performance, Institut National de la Jeunesse, de l'Education Physique et du Sport (INJEPS)/ Université d'Abomey-Calavi (UAC), Porto-Novo, Bénin, Africa
| | - Davy Luneau
- Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France
| | - Janis Mednieks
- CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France.,Department of Neurology and Neurosurgery, Riga Stradins University, Riga, Latvia
| | - Agnès Condemine
- CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France
| | - Diana Rimaud
- Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.,CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France
| | - Fanette Chassagne
- Ecole Nationale Supérieure des Mines de Saint-Etienne, CIS-EMSE, Sainbiose, F-42023, Saint-Etienne, France
| | - Pascal Giraux
- Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.,CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France
| |
Collapse
|
596
|
Sandran N, Hillier S, Hordacre B. Strategies to implement and monitor in-home transcranial electrical stimulation in neurological and psychiatric patient populations: a systematic review. J Neuroeng Rehabil 2019; 16:58. [PMID: 31092267 PMCID: PMC6521538 DOI: 10.1186/s12984-019-0529-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/30/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Transcranial electrical stimulation is a promising technique to facilitate behavioural improvements in neurological and psychiatric populations. Recently there has been interest in remote delivery of stimulation within a participant's home. OBJECTIVE The purpose of this review is to identify strategies employed to implement and monitor in-home stimulation and identify whether these approaches are associated with protocol adherence, adverse events and patient perspectives. METHODS MEDLINE, Embase Classic + Embase, Emcare and PsycINFO databases and clinical trial registries were searched to identify studies which reported primary data for any type of transcranial electrical stimulation applied as a home-based treatment. RESULTS Nineteen published studies from unique trials and ten on-going trials were included. For published data, internal validity was assessed with the Cochrane risk of bias assessment tool with most studies exhibiting a high level of bias possibly reflecting the preliminary nature of current work. Several different strategies were employed to prepare the participant, deliver and monitor the in-home transcranial electrical stimulation. The use of real time videoconferencing to monitor in-home transcranial electrical stimulation appeared to be associated with higher levels of compliance with the stimulation protocol and greater participant satisfaction. There were no severe adverse events associated with in-home stimulation. CONCLUSIONS Delivery of transcranial electrical stimulation within a person's home offers many potential benefits and appears acceptable and safe provided appropriate preparation and monitoring is provided. Future in-home transcranial electrical stimulation studies should use real-time videoconferencing as one of the approaches to facilitate delivery of this potentially beneficial treatment.
Collapse
Affiliation(s)
- Nandini Sandran
- Body in Mind, Division of Health Sciences, University of South Australia, City East Campus, GPO Box 2471, Adelaide, 5001, South Australia
| | - Susan Hillier
- Division of Health Sciences, University of South Australia, Adelaide, South Australia
| | - Brenton Hordacre
- Body in Mind, Division of Health Sciences, University of South Australia, City East Campus, GPO Box 2471, Adelaide, 5001, South Australia.
| |
Collapse
|
597
|
Transcranial Direct Current Stimulation (tDCS) in Unilateral Cerebral Palsy: A Pilot Study of Motor Effect. Neural Plast 2019; 2019:2184398. [PMID: 30733800 PMCID: PMC6348802 DOI: 10.1155/2019/2184398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/26/2018] [Accepted: 11/22/2018] [Indexed: 12/15/2022] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is an emerging tool to improve upper limb motor functions after stroke acquired in adulthood; however, there is a paucity of reports on its efficacy for upper limb motor rehabilitation in congenital or early-acquired stroke. In this pilot study we have explored, for the first time, the immediate effects, and their short-term persistence, of a single application of anodal tDCS on chronic upper limb motor disorders in children and young individuals with Unilateral Cerebral Palsy (UCP). To this aim, in a crossover sham-controlled study, eight subjects aged 10-28 years with UCP underwent two sessions of active and sham tDCS. Anodal tDCS (1.5 mA, 20 min) was delivered over the primary motor cortex (M1) of the ipsilesional hemisphere. Results showed, only following the active stimulation, an immediate improvement in unimanual gross motor dexterity of hemiplegic, but not of nonhemiplegic, hand in Box and Block test (BBT). Such improvement remained stable for at least 90 minutes. Performance of both hands in Hand Grip Strength test was not modified by anodal tDCS. Improvement in BBT was unrelated to participants' age or lesion size, as revealed by MRI data analysis. No serious adverse effects occurred after tDCS; some mild and transient side effects (e.g., headache, tingling, and itchiness) were reported in a limited number of cases. This study provides an innovative contribution to scientific literature on the efficacy and safety of anodal tDCS in UCP. This trial is registered with NCT03137940.
Collapse
|
598
|
Fileccia E, Di Stasi V, Poda R, Rizzo G, Stanzani-Maserati M, Oppi F, Avoni P, Capellari S, Liguori R. Effects on cognition of 20-day anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex in patients affected by mild cognitive impairment: a case-control study. Neurol Sci 2019; 40:1865-1872. [PMID: 31062189 DOI: 10.1007/s10072-019-03903-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a common disorder affecting as much as 15% of the elderly population. Transcranial direct current stimulation (tDCS) is a non-invasive technique of neuromodulation that has proven to influence performance in different cognitive domains. OBJECTIVE/HYPOTHESIS We investigated the effects on cognition of 20-day anodal tDCS in 17 MCI patients compared with 17 matched MCI patients. METHODS Patients underwent neuropsychological evaluation at baseline and then were randomly assigned to the anodal or sham group. The tDCS protocol consisted in 20 min, 5 days per week (up to a total of 20 days), of 2-mA anodal stimulation over the left dorsolateral prefrontal cortex (DLPFC). The location of anodal electrode was chosen in accordance with previous reports which relate anodal stimulation of this site with cognitive enhancement. At the end of the last day of stimulation, a second neuropsychological evaluation was performed. We compared baseline and post-stimulation neuropsychological results in the anodal vs sham group using repeated measures ANOVA as a statistical analysis test. RESULTS At follow-up, patients exposed to anodal stimulation showed improvement in episodic verbal memory (p < 0.001) and figure naming test (p < 0.01), in a general index of cognitive function (Brief Mental Deterioration Battery) (p < 0.0001) and in a mood measurement test (Beck Depression Inventory) (p < 0.01). CONCLUSION Anodal tDCS could be a useful tool to improve cognitive symptoms in MCI although more evidence is needed to understand the exact underlying mechanisms. Confirmation of its potential benefits in MCI would be significant.
Collapse
Affiliation(s)
- Enrico Fileccia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | | | - Roberto Poda
- Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Giovanni Rizzo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Institute of Neurological Sciences of Bologna, Bologna, Italy
| | | | - Federico Oppi
- Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Patrizia Avoni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Institute of Neurological Sciences of Bologna, Bologna, Italy
| |
Collapse
|
599
|
|
600
|
Brunyé TT, Hussey EK, Fontes EB, Ward N. Modulating Applied Task Performance via Transcranial Electrical Stimulation. Front Hum Neurosci 2019; 13:140. [PMID: 31114491 PMCID: PMC6503100 DOI: 10.3389/fnhum.2019.00140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/10/2019] [Indexed: 11/28/2022] Open
Abstract
Basic and applied research are increasingly adopting transcranial electrical stimulation (tES) for modulating perceptual, cognitive, affective, and motor processes. Industry and defense applications of tES hold potential for accelerating training and knowledge acquisition and sustaining work-related performance in the face of fatigue, workload, and stress. This mini-review article describes the promises and perils of tES, and reviews research testing its influence on two broad applied areas: sustaining and dividing attention, and operating in virtual environments. Also included is a discussion of challenges related to viable mechanistic explanations for tES effectiveness, attempts at replication and consideration of null results, and the potential importance of individual differences in predicting tES influences on human performance. Finally, future research directions are proposed to address these challenges and help develop a fuller understanding of tES viability for enhancing real-world performance.
Collapse
Affiliation(s)
- Tad T Brunyé
- Center for Applied Brain and Cognitive Sciences, School of Engineering, Tufts University, Medford, MA, United States.,U.S. Army Combat Capabilities Development Command, Soldier Center (CCDC-SC), Natick, MA, United States.,Department of Psychology, Tufts University, Medford, MA, United States
| | - Erika K Hussey
- Center for Applied Brain and Cognitive Sciences, School of Engineering, Tufts University, Medford, MA, United States.,U.S. Army Combat Capabilities Development Command, Soldier Center (CCDC-SC), Natick, MA, United States
| | - Eduardo B Fontes
- Department of Psychology, Tufts University, Medford, MA, United States.,NEUROEX-Research Group in Physical Activity, Cognition and Behavior, Health Science Center, Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Nathan Ward
- Department of Psychology, Tufts University, Medford, MA, United States.,NEUROEX-Research Group in Physical Activity, Cognition and Behavior, Health Science Center, Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|