551
|
Tang BL. Unconventional Secretion and Intercellular Transfer of Mutant Huntingtin. Cells 2018; 7:cells7060059. [PMID: 29904030 PMCID: PMC6025013 DOI: 10.3390/cells7060059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 01/17/2023] Open
Abstract
The mechanism of intercellular transmission of pathological agents in neurodegenerative diseases has received much recent attention. Huntington’s disease (HD) is caused by a monogenic mutation in the gene encoding Huntingtin (HTT). Mutant HTT (mHTT) harbors a CAG repeat extension which encodes an abnormally long polyglutamine (polyQ) repeat at HTT’s N-terminus. Neuronal pathology in HD is largely due to the toxic gain-of-function by mHTT and its proteolytic products, which forms both nuclear and cytoplasmic aggregates that perturb nuclear gene transcription, RNA splicing and transport as well cellular membrane dynamics. The neuropathological effects of mHTT have been conventionally thought to be cell-autonomous in nature. Recent findings have, however, indicated that mHTT could be secreted by neurons, or transmitted from one neuronal cell to another via different modes of unconventional secretion, as well as via tunneling nanotubes (TNTs). These modes of transmission allow the intercellular spread of mHTT and its aggregates, thus plausibly promoting neuropathology within proximal neuronal populations and between neurons that are connected within neural circuits. Here, the various possible modes for mHTT’s neuronal cell exit and intercellular transmission are discussed.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, 117597 Singapore, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, 117456 Singapore, Singapore.
| |
Collapse
|
552
|
Vidinská D, Vochozková P, Šmatlíková P, Ardan T, Klíma J, Juhás Š, Juhásová J, Bohuslavová B, Baxa M, Valeková I, Motlík J, Ellederová Z. Gradual Phenotype Development in Huntington Disease Transgenic Minipig Model at 24 Months of Age. NEURODEGENER DIS 2018; 18:107-119. [DOI: 10.1159/000488592] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/20/2018] [Indexed: 11/19/2022] Open
Abstract
Background: Huntington disease (HD) is an incurable neurodegenerative disease caused by the expansion of a polyglutamine sequence in a gene encoding the huntingtin (Htt) protein, which is expressed in almost all cells of the body. In addition to small animal models, new therapeutic approaches (including gene therapy) require large animal models as their large brains are a more realistic model for translational research. Objective: In this study, we describe phenotype development in transgenic minipigs (TgHD) expressing the N-terminal part of mutated human Htt at the age of 24 months. Methods: TgHD and wild-type littermates were compared. Western blot analysis and subcellular fractionation of different tissues was used to determine the fragmentation of Htt. Immunohistochemistry and optical analysis of coronal sections measuring aggregates, Htt expression, neuroinflammation, and myelination was applied. Furthermore, the expression of Golgi protein acyl-CoA binding domain containing 3 (ACBD3) was analyzed. Results: We found age-correlated Htt fragmentation in the brain. Among various tissues studied, the testes displayed the highest fragmentation, with Htt fragments detectable even in cell nuclei. Also, Golgi protein ACBD3 was upregulated in testes, which is in agreement with previously reported testicular degeneration in TgHD minipigs. Nevertheless, the TgHD-specific mutated Htt fragments were also present in the cytoplasm of striatum and cortex cells. Moreover, microglial cells were activated and myelination was slightly decreased, suggesting the development of a premanifest stage of neurodegeneration in TgHD minipigs. Conclusions: The gradual development of a neurodegenerative phenotype, accompanied with testicular degeneration, is observed in 24- month-old TgHD minipigs.
Collapse
|
553
|
Lee A, Hirabayashi Y, Kwon SK, Lewis TL, Polleux F. Emerging roles of mitochondria in synaptic transmission and neurodegeneration. CURRENT OPINION IN PHYSIOLOGY 2018; 3:82-93. [PMID: 30320242 PMCID: PMC6178220 DOI: 10.1016/j.cophys.2018.03.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mitochondria play numerous critical physiological functions in neurons including ATP production, Ca2+ regulation, lipid synthesis, ROS signaling, and the ability to trigger apoptosis. Recently developed technologies, including in vivo 2-photon imaging in awake behaving mice revealed that unlike in the peripheral nervous system (PNS), mitochondrial transport decreases strikingly along the axons of adult neurons of the central nervous system (CNS). Furthermore, the improvements of genetically-encoded biosensors have enabled precise monitoring of the spatial and temporal impact of mitochondria on Ca2+, ATP and ROS homeostasis in a compartment-specific manner. Here, we discuss recent findings that begin to unravel novel physiological and pathophysiological properties of neuronal mitochondria at synapses. We also suggest new directions in the exploration of mitochondrial function in synaptic transmission, plasticity and neurodegeneration.
Collapse
Affiliation(s)
- Annie Lee
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute
| | - Yusuke Hirabayashi
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute
| | - Seok-Kyu Kwon
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute
| | - Tommy L. Lewis
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute
- Kavli Institute for Brain Science at Columbia University
| |
Collapse
|
554
|
Blum D, Chern Y, Domenici MR, Buée L, Lin CY, Rea W, Ferré S, Popoli P. The Role of Adenosine Tone and Adenosine Receptors in Huntington's Disease. J Caffeine Adenosine Res 2018; 8:43-58. [PMID: 30023989 PMCID: PMC6049521 DOI: 10.1089/caff.2018.0006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by a mutation in the IT15 gene that encodes for the huntingtin protein. Mutated hungtingtin, although widely expressed in the brain, predominantly affects striato-pallidal neurons, particularly enriched with adenosine A2A receptors (A2AR), suggesting a possible involvement of adenosine and A2AR is the pathogenesis of HD. In fact, polymorphic variation in the ADORA2A gene influences the age at onset in HD, and A2AR dynamics is altered by mutated huntingtin. Basal levels of adenosine and adenosine receptors are involved in many processes critical for neuronal function and homeostasis, including modulation of synaptic activity and excitotoxicity, the control of neurotrophin levels and functions, and the regulation of protein degradation mechanisms. In the present review, we critically analyze the current literature involving the effect of altered adenosine tone and adenosine receptors in HD and discuss why therapeutics that modulate the adenosine system may represent a novel approach for the treatment of HD.
Collapse
Affiliation(s)
- David Blum
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, Lille, France
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Maria Rosaria Domenici
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, Lille, France
| | - Chien-Yu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Patrizia Popoli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
555
|
Tan H, Wu C, Jin L. A Possible Role for Long Interspersed Nuclear Elements-1 (LINE-1) in Huntington's Disease Progression. Med Sci Monit 2018; 24:3644-3652. [PMID: 29851926 PMCID: PMC6007493 DOI: 10.12659/msm.907328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recent studies have shown that increased mobilization of Long Interspersed Nuclear Elements-1 (L1) can promote the pathophysiology of multiple neurological diseases. However, its role in Huntington's disease (HD) remains unknown. MATERIAL AND METHODS R6/2 mice - a common mouse model of HD - were used to evaluate changes in L1 mobilization. Pyrosequencing was used to evaluate methylation content changes. L1-ORF1 and L1-ORF2 expression analysis were evaluated by RT-PCR and immunoblotting. Changes in pro-survival signaling were evaluated by L1-ORF overexpression studies and validated in the mouse model by immunohistochemistry and immunoblotting. RESULTS We found an increased mobilization of L1 elements in the caudate genome of R6/2 mice (p<0.05) - a common mouse model of HD - but not in wild-type mice. Subsequent pyrosequencing and expression analysis showed that the L1 elements were hypomethylated and their respective ORFs were overexpressed in the affected tissues. In addition, a significant decrease in the pro-survival proteins such as the phosphoproteins of AKT target proteins, mTORC1 activity, and AMPK alpha levels was observed with the increase in the expression L1-ORF2. CONCLUSIONS These findings indicate that hyperactive retrotransposition of L1 triggers a downstream signaling pathway affecting the neuronal survival pathways via downregulation of mTORC1 activity and AMPKalpha and increasing apoptosis in neurons.
Collapse
Affiliation(s)
- Huiping Tan
- Reproductive Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Chunlin Wu
- Reproductive Medicine Center, Wuhan No. 1 Hospital, Wuhan, Hubei, P.R. China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
556
|
Rohn TT, Kim N, Isho NF, Mack JM. The Potential of CRISPR/Cas9 Gene Editing as a Treatment Strategy for Alzheimer's Disease. ACTA ACUST UNITED AC 2018; 8. [PMID: 30090689 PMCID: PMC6078432 DOI: 10.4172/2161-0460.1000439] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Despite a wealth of knowledge gained in the past three decades concerning the molecular underpinnings of Alzheimer’s disease (AD), progress towards obtaining effective, disease modifying therapies has proven to be challenging. In this manner, numerous clinical trials targeting the production, aggregation, and toxicity of beta-amyloid, have failed to meet efficacy standards. This puts into question the beta-amyloid hypothesis and suggests that additional treatment strategies should be explored. The recent emergence of CRISPR/Cas9 gene editing as a relatively straightforward, inexpensive, and precise system has led to an increased interest of applying this technique in AD. CRISPR/Cas9 gene editing can be used as a direct treatment approach or to help establish better animal models that more faithfully mimic human neurodegenerative diseases. In this manner, this technique has already shown promise in other neurological disorders, such as Huntington’s disease. The purpose of this review is to examine the potential utility of CRISPR/Cas9 as a treatment option for AD by targeting specific genes including those that cause early-onset AD, as well as those that are significant risk factors for late-onset AD such as the apolipoprotein E4 (APOE4) gene.
Collapse
Affiliation(s)
- Troy T Rohn
- Department of Biological Sciences, Science Building, Room 228, Boise State University, Boise, Idaho, USA
| | - Nayoung Kim
- Department of Biological Sciences, Science Building, Room 228, Boise State University, Boise, Idaho, USA
| | - Noail F Isho
- Department of Biological Sciences, Science Building, Room 228, Boise State University, Boise, Idaho, USA
| | - Jacob M Mack
- Department of Biological Sciences, Science Building, Room 228, Boise State University, Boise, Idaho, USA
| |
Collapse
|
557
|
McClory H, Wang X, Sapp E, Gatune LW, Iuliano M, Wu CY, Nathwani G, Kegel-Gleason KB, DiFiglia M, Li X. The COOH-terminal domain of huntingtin interacts with RhoGEF kalirin and modulates cell survival. Sci Rep 2018; 8:8000. [PMID: 29789657 PMCID: PMC5964228 DOI: 10.1038/s41598-018-26255-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Human huntingtin (Htt) contains 3144 amino acids and has an expanded polyglutamine region near the NH2-terminus in patients with Huntington's disease. While numerous binding partners have been identified to NH2-terminal Htt, fewer proteins are known to interact with C-terminal domains of Htt. Here we report that kalirin, a Rac1 activator, is a binding partner to C-terminal Htt. Kalirin and Htt co-precipitated from mouse brain endosomes and co-localized at puncta in NRK and immortalized striatal cells and primary cortical neurons. We mapped the interaction domains to kalirin674-1272 and Htt2568-3144 and determined that the interaction between kalirin and Htt was independent of HAP1, a known interactor for Htt and kalirin. Kalirin precipitated with mutant Htt was more abundant than with wild-type Htt and had a reduced capacity to activate Rac1 when mutant Htt was present. Expression of Htt2568-3144 caused cytotoxicity, partially rescued by co-expressing kalirin674-1272 but not other regions of kalirin. Our study suggests that the interaction of kalirin with the C-terminal region of Htt influences the function of kalirin and modulates the cytotoxicity induced by C-terminal Htt.
Collapse
Affiliation(s)
- Hollis McClory
- Laboratory of Cellular Neurobiology and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xiaolong Wang
- School of Pharmacy, Shanghai Jiao Tong University, Minhang District, Shanghai, China
| | - Ellen Sapp
- Laboratory of Cellular Neurobiology and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Leah W Gatune
- Laboratory of Cellular Neurobiology and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Maria Iuliano
- Laboratory of Cellular Neurobiology and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Chiu-Yi Wu
- Laboratory of Cellular Neurobiology and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Gina Nathwani
- Laboratory of Cellular Neurobiology and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kimberly B Kegel-Gleason
- Laboratory of Cellular Neurobiology and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Marian DiFiglia
- Laboratory of Cellular Neurobiology and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xueyi Li
- Laboratory of Cellular Neurobiology and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
- School of Pharmacy, Shanghai Jiao Tong University, Minhang District, Shanghai, China.
| |
Collapse
|
558
|
Tang BL. Patient-Derived iPSCs and iNs-Shedding New Light on the Cellular Etiology of Neurodegenerative Diseases. Cells 2018; 7:cells7050038. [PMID: 29738460 PMCID: PMC5981262 DOI: 10.3390/cells7050038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) and induced neuronal (iN) cells are very much touted in terms of their potential promises in therapeutics. However, from a more fundamental perspective, iPSCs and iNs are invaluable tools for the postnatal generation of specific diseased cell types from patients, which may offer insights into disease etiology that are otherwise unobtainable with available animal or human proxies. There are two good recent examples of such important insights with diseased neurons derived via either the iPSC or iN approaches. In one, induced motor neurons (iMNs) derived from iPSCs of Amyotrophic lateral sclerosis/Frontotemporal dementia (ALS/FTD) patients with a C9orf72 repeat expansion revealed a haploinsufficiency of protein function resulting from the intronic expansion and deficiencies in motor neuron vesicular trafficking and lysosomal biogenesis that were not previously obvious in knockout mouse models. In another, striatal medium spinal neurons (MSNs) derived directly from fibroblasts of Huntington’s disease (HD) patients recapitulated age-associated disease signatures of mutant Huntingtin (mHTT) aggregation and neurodegeneration that were not prominent in neurons differentiated indirectly via iPSCs from HD patients. These results attest to the tremendous potential for pathologically accurate and mechanistically revealing disease modelling with advances in the derivation of iPSCs and iNs.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
559
|
Sethi R, Tripathi N, Pallapati AR, Gaikar A, Bharatam PV, Roy I. Does N-terminal huntingtin function as a 'holdase' for inhibiting cellular protein aggregation? FEBS J 2018; 285:1791-1811. [PMID: 29630769 DOI: 10.1111/febs.14457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/14/2018] [Accepted: 03/29/2018] [Indexed: 11/28/2022]
Abstract
Proteolytic cleavage of huntingtin gives rise to N-terminal fragments. While the role of truncated mutant huntingtin is described in Huntington's disease (HD) pathogenesis, the function of N-terminal wild-type protein is less studied. The yeast model of HD is generated by the presence of FLAG tag and absence of polyproline tract as flanking sequences of the elongated polyglutamine stretch. We show that the same sequence derived from wild-type huntingtin exon1 is able to inhibit the aggregation of proteins in vitro and in yeast cells. It is able to stabilize client proteins as varied as luciferase, α-synuclein, and p53 in a soluble but non-native state. This is somewhat similar to the 'holdase' function of small heat shock proteins and 'nonchaperone proteins' which are able to stabilize partially unfolded client proteins in a nonspecific manner, slowing down their aggregation. Mutagenesis studies show this property to be localized at the N17 domain preceding the polyglutamine tract. Distortion of this ordered segment, either by deletion of this segment or mutation of a single residue (L4A), leads to decreased stability and increased aggregation of client proteins. It is interesting to note that the helical conformation of the N17 domain is also essential for aggregation of the N-terminal mutant protein. Our results provide evidence for a novel function for the amphipathic helix derived from exon1 of wild-type huntingtin.
Collapse
Affiliation(s)
- Ratnika Sethi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Neha Tripathi
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Anusha R Pallapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Abhishek Gaikar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Prasad V Bharatam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Punjab, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| |
Collapse
|
560
|
Metaxakis A, Ploumi C, Tavernarakis N. Autophagy in Age-Associated Neurodegeneration. Cells 2018; 7:cells7050037. [PMID: 29734735 PMCID: PMC5981261 DOI: 10.3390/cells7050037] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
The elimination of abnormal and dysfunctional cellular constituents is an essential prerequisite for nerve cells to maintain their homeostasis and proper function. This is mainly achieved through autophagy, a process that eliminates abnormal and dysfunctional cellular components, including misfolded proteins and damaged organelles. Several studies suggest that age-related decline of autophagy impedes neuronal homeostasis and, subsequently, leads to the progression of neurodegenerative disorders due to the accumulation of toxic protein aggregates in neurons. Here, we discuss the involvement of autophagy perturbation in neurodegeneration and present evidence indicating that upregulation of autophagy holds potential for the development of therapeutic interventions towards confronting neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Athanasios Metaxakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece.
| | - Christina Ploumi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece.
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 70013, Crete, Greece.
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece.
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 70013, Crete, Greece.
| |
Collapse
|
561
|
Harding RJ, Tong YF. Proteostasis in Huntington's disease: disease mechanisms and therapeutic opportunities. Acta Pharmacol Sin 2018; 39:754-769. [PMID: 29620053 DOI: 10.1038/aps.2018.11] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/18/2018] [Indexed: 02/08/2023] Open
Abstract
Many neurodegenerative diseases are characterized by impairment of protein quality control mechanisms in neuronal cells. Ineffective clearance of misfolded proteins by the proteasome, autophagy pathways and exocytosis leads to accumulation of toxic protein oligomers and aggregates in neurons. Toxic protein species affect various cellular functions resulting in the development of a spectrum of different neurodegenerative proteinopathies, including Huntington's disease (HD). Playing an integral role in proteostasis, dysfunction of the ubiquitylation system in HD is progressive and multi-faceted with numerous biochemical pathways affected, in particular, the ubiquitin-proteasome system and autophagy routes for protein aggregate degradation. Unravelling the molecular mechanisms involved in HD pathogenesis of proteostasis provides new insight in disease progression in HD as well as possible therapeutic avenues. Recent developments of potential therapeutics are discussed in this review.
Collapse
|
562
|
Cytoprotective role of ubiquitin against toxicity induced by polyglutamine-expanded aggregates. Biochem Biophys Res Commun 2018; 500:344-350. [PMID: 29654755 DOI: 10.1016/j.bbrc.2018.04.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 11/21/2022]
Abstract
Ubiquitin (Ub) homeostasis is important for cellular function and survival, especially under stress conditions. Recently, we have demonstrated that Ubc-/- (Ub-deficient) mouse embryonic fibroblasts (MEFs) exhibited reduced viability under oxidative stress induced by arsenite, which was not due to dysregulation of the antioxidant response pathway, but rather due to the potential toxicity caused by the misfolded protein aggregates. However, it is still not clear whether Ub deficiency is directly related to the accumulation of toxic protein aggregates, as arsenite itself triggers protein aggregation and renders cells into aberrant conditions such as reduced proteasome function and inhibition of autophagic flux. Therefore, under arsenite treatment, the outcome could be derived from the combination of multiple defective pathways. Furthermore, it has also been suggested that ubiquitination status of misfolded proteins may not be important for the formation of inclusion bodies composed of misfolded protein aggregates. We therefore wondered whether Ub deficiency is sufficient to trigger the accumulation of toxic protein aggregates inside the cells. In this study, we ectopically expressed polyQ-expanded aggregates (Q103) in MEFs and observed inclusion body formation at the juxtanuclear region, which was independent of cellular Ub levels. In contrast to arsenite treatment, polyQ expression did not affect proteasome function. However, we observed an increased accumulation of Q103 aggregates in Ubc-/- MEFs, which was due to impaired autophagic clearance. Finally, we demonstrated that the increased accumulation of Q103 aggregates under Ub deficiency dramatically reduced the viability of cells. Therefore, our results suggest that the maintenance of proper levels of cellular Ub is important to protect cells against the toxicity induced by the accumulation of protein aggregates.
Collapse
|
563
|
Thomas EA, D'Mello SR. Complex neuroprotective and neurotoxic effects of histone deacetylases. J Neurochem 2018; 145:96-110. [PMID: 29355955 DOI: 10.1111/jnc.14309] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/05/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
By their ability to shatter quality of life for both patients and caregivers, neurodegenerative diseases are the most devastating of human disorders. Unfortunately, there are no effective or long-terms treatments capable of slowing down the relentless loss of neurons in any of these diseases. One impediment is the lack of detailed knowledge of the molecular mechanisms underlying the processes of neurodegeneration. While some neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, are mostly sporadic in nature, driven by both environment and genetic susceptibility, many others, including Huntington's disease, spinocerebellar ataxias, and spinal-bulbar muscular atrophy, are genetically inherited disorders. Surprisingly, given their different roots and etiologies, both sporadic and genetic neurodegenerative disorders have been linked to disease mechanisms involving histone deacetylase (HDAC) proteins, which consists of 18 family members with diverse functions. While most studies have implicated certain HDAC subtypes in promoting neurodegeneration, a substantial body of literature suggests that other HDAC proteins can preserve neuronal viability. Of particular interest, however, is the recent realization that a single HDAC subtype can have both neuroprotective and neurotoxic effects. Diverse mechanisms, beyond transcriptional regulation have been linked to these effects, including deacetylation of non-histone proteins, protein-protein interactions, post-translational modifications of the HDAC proteins themselves and direct interactions with disease proteins. The roles of these HDACs in both sporadic and genetic neurodegenerative diseases will be discussed in the current review.
Collapse
Affiliation(s)
- Elizabeth A Thomas
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
564
|
Farah R, Haraty H, Salame Z, Fares Y, Ojcius DM, Said Sadier N. Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biomed J 2018; 41:63-87. [PMID: 29866603 PMCID: PMC6138769 DOI: 10.1016/j.bj.2018.03.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/13/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022] Open
Abstract
Current research efforts on neurological diseases are focused on identifying novel disease biomarkers to aid in diagnosis, provide accurate prognostic information and monitor disease progression. With advances in detection and quantification methods in genomics, proteomics and metabolomics, saliva has emerged as a good source of samples for detection of disease biomarkers. Obtaining a sample of saliva offers multiple advantages over the currently tested biological fluids as it is a non-invasive, painless and simple procedure that does not require expert training or harbour undesirable side effects for the patients. Here, we review the existing literature on salivary biomarkers and examine their validity in diagnosing and monitoring neurodegenerative and neuropsychiatric disorders such as autism and Alzheimer's, Parkinson's and Huntington's disease. Based on the available research, amyloid beta peptide, tau protein, lactoferrin, alpha-synuclein, DJ-1 protein, chromogranin A, huntingtin protein, DNA methylation disruptions, and micro-RNA profiles provide display a reliable degree of consistency and validity as disease biomarkers.
Collapse
Affiliation(s)
- Raymond Farah
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Haraty
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Ziad Salame
- Research Department, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA.
| | - Najwane Said Sadier
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
565
|
Youssov K, Bachoud-Lévi AC. Malattia di Huntington: aspetti diagnostici attuali e applicazioni pratiche. Neurologia 2018. [DOI: 10.1016/s1634-7072(18)89403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
566
|
Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, Yang W, Zhao Y, Ouyang Z, Lai C, Yang H, Li L, Liu Q, Shi H, Xu G, Zhao H, Wei H, Pei Z, Li S, Lai L, Li XJ. A Huntingtin Knockin Pig Model Recapitulates Features of Selective Neurodegeneration in Huntington's Disease. Cell 2018; 173:989-1002.e13. [PMID: 29606351 DOI: 10.1016/j.cell.2018.03.005] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/21/2018] [Accepted: 02/27/2018] [Indexed: 01/23/2023]
Abstract
Huntington's disease (HD) is characterized by preferential loss of the medium spiny neurons in the striatum. Using CRISPR/Cas9 and somatic nuclear transfer technology, we established a knockin (KI) pig model of HD that endogenously expresses full-length mutant huntingtin (HTT). By breeding this HD pig model, we have successfully obtained F1 and F2 generation KI pigs. Characterization of founder and F1 KI pigs shows consistent movement, behavioral abnormalities, and early death, which are germline transmittable. More importantly, brains of HD KI pig display striking and selective degeneration of striatal medium spiny neurons. Thus, using a large animal model of HD, we demonstrate for the first time that overt and selective neurodegeneration seen in HD patients can be recapitulated by endogenously expressed mutant proteins in large mammals, a finding that also underscores the importance of using large mammals to investigate the pathogenesis of neurodegenerative diseases and their therapeutics.
Collapse
Affiliation(s)
- Sen Yan
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632 Guangzhou, China
| | - Zhuchi Tu
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632 Guangzhou, China
| | - Zhaoming Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Nana Fan
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Huiming Yang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Su Yang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Weili Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632 Guangzhou, China
| | - Yu Zhao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Zhen Ouyang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Chengdan Lai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Huaqiang Yang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Li Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Qishuai Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Hui Shi
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Guangqing Xu
- Department of Neurology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 Guangdong, China
| | - Heng Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Hongjiang Wei
- College of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Zhong Pei
- Department of Neurology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 Guangdong, China
| | - Shihua Li
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632 Guangzhou, China; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China; Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, 130062 Changchun, China.
| | - Xiao-Jiang Li
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632 Guangzhou, China; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
567
|
Di Pardo A, Maglione V. The S1P Axis: New Exciting Route for Treating Huntington's Disease. Trends Pharmacol Sci 2018; 39:468-480. [PMID: 29559169 DOI: 10.1016/j.tips.2018.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 11/17/2022]
Abstract
Huntington's disease (HD) is a single-gene inheritable neurodegenerative disorder with an associated complex molecular pathogenic profile that renders it the most 'curable incurable' brain disorder. Continuous effort in the field has contributed to the recent discovery of novel potential pathogenic mechanisms. Findings in preclinical models of the disease as well as in human post-mortem brains from affected patients demonstrate that alteration of the sphingosine-1-phosphate (S1P) axis may represent a possible key player in the pathogenesis of the disease and may act as a potential actionable drug target for the development of more targeted and effective therapeutic approaches. The relevance of the path of this new 'therapeutic route' is underscored by the fact that some drugs targeting the S1P axis are currently in clinical trials for the treatment of other brain disorders.
Collapse
Affiliation(s)
- Alba Di Pardo
- Centre for Neurogenetics and Rare Diseases, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Vittorio Maglione
- Centre for Neurogenetics and Rare Diseases, IRCCS Neuromed, 86077 Pozzilli (IS), Italy.
| |
Collapse
|
568
|
Neuromuscular synapse degeneration without muscle function loss in the diaphragm of a murine model for Huntington's Disease. Neurochem Int 2018. [PMID: 29530757 DOI: 10.1016/j.neuint.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by chorea, incoordination and psychiatric and behavioral symptoms. The leading cause of death in HD patients is aspiration pneumonia, associated with respiratory dysfunction, decreased respiratory muscle strength and dysphagia. Although most of the motor symptoms are derived from alterations in the central nervous system, some might be associated with changes in the components of motor units (MU). To explore this hypothesis, we evaluated morphofunctional aspects of the diaphragm muscle in a mouse model for HD (BACHD). We showed that the axons of the phrenic nerves were not affected in 12-months-old BACHD mice, but the axon terminals that form the neuromuscular junctions (NMJs) were more fragmented in these animals in comparison with the wild-type mice. In BACHD mice, the synaptic vesicles of the diaphragm NMJs presented a decreased exocytosis rate. Quantal content and quantal size were smaller and there was less synaptic depression whereas the estimated size of the readily releasable vesicle pool was not changed. At the ultrastructure level, the diaphragm NMJs of these mice presented fewer synaptic vesicles with flattened and oval shapes, which might be associated with the reduced expression of the vesicular acetylcholine transporter protein. Furthermore, mitochondria of the diaphragm muscle presented signs of degeneration in BACHD mice. Interestingly, despite all these cellular alterations, BACHD diaphragmatic function was not compromised, suggesting a higher resistance threshold of this muscle. A putative resistance mechanism may be protecting this vital muscle. Our data contribute to expanding the current understanding of the effects of mutated huntingtin in the neuromuscular synapse and the diaphragm muscle function.
Collapse
|
569
|
López-Hurtado A, Burgos DF, González P, Dopazo XM, González V, Rábano A, Mellström B, Naranjo JR. Inhibition of DREAM-ATF6 interaction delays onset of cognition deficit in a mouse model of Huntington's disease. Mol Brain 2018. [PMID: 29523177 PMCID: PMC5845147 DOI: 10.1186/s13041-018-0359-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) is a multifunctional neuronal calcium sensor (NCS) that controls Ca2+ and protein homeostasis through gene regulation and protein-protein interactions. Downregulation of DREAM is part of an endogenous neuroprotective mechanism that improves ATF6 (activating transcription factor 6) processing, neuronal survival in the striatum, and motor coordination in R6/2 mice, a model of Huntington’s disease (HD). Whether modulation of DREAM activity can also ameliorate cognition deficits in HD mice has not been studied. Moreover, it is not known whether DREAM downregulation in HD is unique, or also occurs for other NCS family members. Using the novel object recognition test, we show that chronic administration of the DREAM-binding molecule repaglinide, or induced DREAM haplodeficiency delays onset of cognitive impairment in R6/1 mice, another HD model. The mechanism involves a notable rise in the levels of transcriptionally active ATF6 protein in the hippocampus after repaglinide administration. In addition, we show that reduction in DREAM protein in the hippocampus of HD patients was not accompanied by downregulation of other NCS family members. Our results indicate that DREAM inhibition markedly improves ATF6 processing in the hippocampus and that it might contribute to a delay in memory decline in HD mice. The mechanism of neuroprotection through DREAM silencing in HD does not apply to other NCS family members.
Collapse
Affiliation(s)
- Alejandro López-Hurtado
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Daniel F Burgos
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Paz González
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Xose M Dopazo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Valentina González
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Rábano
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Britt Mellström
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Jose R Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain. .,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain.
| |
Collapse
|
570
|
Caterino M, Squillaro T, Montesarchio D, Giordano A, Giancola C, Melone MAB. Huntingtin protein: A new option for fixing the Huntington's disease countdown clock. Neuropharmacology 2018. [PMID: 29526547 DOI: 10.1016/j.neuropharm.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Huntington's disease is a dreadful, incurable disorder. It springs from the autosomal dominant mutation in the first exon of the HTT gene, which encodes for the huntingtin protein (HTT) and results in progressive neurodegeneration. Thus far, all the attempted approaches to tackle the mutant HTT-induced toxicity causing this disease have failed. The mutant protein comes with the aberrantly expanded poly-glutamine tract. It is primarily to blame for the build-up of β-amyloid-like HTT aggregates, deleterious once broadened beyond the critical ∼35-37 repeats threshold. Recent experimental findings have provided valuable information on the molecular basis underlying this HTT-driven neurodegeneration. These findings indicate that the poly-glutamine siding regions and many post-translation modifications either abet or counter the poly-glutamine tract. This review provides an overall, up-to-date insight into HTT biophysics and structural biology, particularly discussing novel pharmacological options to specifically target the mutated protein and thus inhibit its functions and toxicity.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Tiziana Squillaro
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases, University of Campania "Luigi Vanvitelli", Napoli, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Daniela Montesarchio
- InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA; Department of Medicine, Surgery and Neuroscience University of Siena, Siena, Italy
| | - Concetta Giancola
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.
| | - Mariarosa A B Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases, University of Campania "Luigi Vanvitelli", Napoli, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
571
|
McColgan P, Gregory S, Seunarine KK, Razi A, Papoutsi M, Johnson E, Durr A, Roos RAC, Leavitt BR, Holmans P, Scahill RI, Clark CA, Rees G, Tabrizi SJ. Brain Regions Showing White Matter Loss in Huntington's Disease Are Enriched for Synaptic and Metabolic Genes. Biol Psychiatry 2018; 83:456-465. [PMID: 29174593 PMCID: PMC5803509 DOI: 10.1016/j.biopsych.2017.10.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND The earliest white matter changes in Huntington's disease are seen before disease onset in the premanifest stage around the striatum, within the corpus callosum, and in posterior white matter tracts. While experimental evidence suggests that these changes may be related to abnormal gene transcription, we lack an understanding of the biological processes driving this regional vulnerability. METHODS Here, we investigate the relationship between regional transcription in the healthy brain, using the Allen Institute for Brain Science transcriptome atlas, and regional white matter connectivity loss at three time points over 24 months in subjects with premanifest Huntington's disease relative to control participants. The baseline cohort included 72 premanifest Huntington's disease participants and 85 healthy control participants. RESULTS We show that loss of corticostriatal, interhemispheric, and intrahemispheric white matter connections at baseline and over 24 months in premanifest Huntington's disease is associated with gene expression profiles enriched for synaptic genes and metabolic genes. Corticostriatal gene expression profiles are predominately associated with motor, parietal, and occipital regions, while interhemispheric expression profiles are associated with frontotemporal regions. We also show that genes with known abnormal transcription in human Huntington's disease and animal models are overrepresented in synaptic gene expression profiles, but not in metabolic gene expression profiles. CONCLUSIONS These findings suggest a dual mechanism of white matter vulnerability in Huntington's disease, in which abnormal transcription of synaptic genes and metabolic disturbance not related to transcription may drive white matter loss.
Collapse
Affiliation(s)
- Peter McColgan
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square, London, United Kingdom
| | - Sarah Gregory
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square, London, United Kingdom
| | - Kiran K Seunarine
- Developmental Imaging and Biophysics Section, UCL Institute of Child Health, Queen Square, London, United Kingdom
| | - Adeel Razi
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London, United Kingdom; Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Marina Papoutsi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square, London, United Kingdom
| | - Eileanoir Johnson
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square, London, United Kingdom
| | - Alexandra Durr
- APHP Department of Genetics, University Hospital Pitié-Salpêtrière; and ICM (Brain and Spine Institute) INSERM U1127, CNRS UMR7225, Sorbonne Universités - UPMC Paris VI UMR_S1127, Paris, France
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rachael I Scahill
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square, London, United Kingdom
| | - Chris A Clark
- Developmental Imaging and Biophysics Section, UCL Institute of Child Health, Queen Square, London, United Kingdom
| | - Geraint Rees
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Queen Square, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom.
| |
Collapse
|
572
|
Dabrowska M, Juzwa W, Krzyzosiak WJ, Olejniczak M. Precise Excision of the CAG Tract from the Huntingtin Gene by Cas9 Nickases. Front Neurosci 2018. [PMID: 29535594 PMCID: PMC5834764 DOI: 10.3389/fnins.2018.00075] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Huntington's disease (HD) is a progressive autosomal dominant neurodegenerative disorder caused by the expansion of CAG repeats in the first exon of the huntingtin gene (HTT). The accumulation of polyglutamine-rich huntingtin proteins affects various cellular functions and causes selective degeneration of neurons in the striatum. Therapeutic strategies used to date to silence the expression of mutant HTT include antisense oligonucleotides, RNA interference-based approaches and, recently, genome editing with the CRISPR/Cas9 system. Here, we demonstrate that the CAG repeat tract can be precisely excised from the HTT gene with the use of the paired Cas9 nickase strategy. As a model, we used HD patient-derived fibroblasts with varied numbers of CAG repeats. The repeat excision inactivated the HTT gene and abrogated huntingtin synthesis in a CAG repeat length-independent manner. Because Cas9 nickases are known to be safe and specific, our approach provides an attractive treatment tool for HD that can be extended to other polyQ disorders.
Collapse
Affiliation(s)
- Magdalena Dabrowska
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
573
|
Abstract
Huntingtin (Htt) is a large (348 kDa) protein, essential for embryonic
development and involved in diverse cellular activities such as vesicular
transport, endocytosis, autophagy and transcription regulation1,2.
While an integrative understanding of Htt's biological functions is
lacking, the large number of identified interactors suggests that Htt serves as
a protein-protein interaction hub1,3,4.
Furthermore, Huntington’s disease is caused by a mutation in the Htt
gene, resulting in a pathogenic expansion of a polyglutamine (polyQ) repeat at
the N-terminus of Htt5,6. However, only limited structural
information on Htt is currently available. Here we employed cryo-electron
microscopy (cryo-EM) to determine the structure of full-length human Htt in a
complex with HAP40/F8A7 to 4 Å
resolution. Htt is largely α-helical and consists of three major domains.
The N- and C-terminal domains contain multiple HEAT repeats arranged in a
solenoid fashion. These domains are connected by a smaller bridge domain
containing different types of tandem repeats. HAP40 is also largely
α-helical and has a tetratricopeptide repeat (TPR)-like organization.
HAP40 binds in a cleft contacting the three Htt domains by hydrophobic and
electrostatic interactions, thereby stabilizing Htt conformation. These data
rationalize previous biochemical results and pave the way for an improved
understanding of Htt’s diverse cellular functions.
Collapse
|
574
|
Miniarikova J, Evers MM, Konstantinova P. Translation of MicroRNA-Based Huntingtin-Lowering Therapies from Preclinical Studies to the Clinic. Mol Ther 2018; 26:947-962. [PMID: 29503201 DOI: 10.1016/j.ymthe.2018.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022] Open
Abstract
The single mutation underlying the fatal neuropathology of Huntington's disease (HD) is a CAG triplet expansion in exon 1 of the huntingtin (HTT) gene, which gives rise to a toxic mutant HTT protein. There have been a number of not yet successful therapeutic advances in the treatment of HD. The current excitement in the HD field is due to the recent development of therapies targeting the culprit of HD either at the DNA or RNA level to reduce the overall mutant HTT protein. In this review, we briefly describe short-term and long-term HTT-lowering strategies targeting HTT transcripts. One of the most advanced HTT-lowering strategies is a microRNA (miRNA)-based gene therapy delivered by a single administration of an adeno-associated viral (AAV) vector to the HD patient. We outline the outcome measures for the miRNA-based HTT-lowering therapy in the context of preclinical evaluation in HD animal and cell models. We highlight the strengths and ongoing queries of the HTT-lowering gene therapy as an HD intervention with a potential disease-modifying effect. This review provides a perspective on the fast-developing HTT-lowering therapies for HD and their translation to the clinic based on existing knowledge in preclinical models.
Collapse
Affiliation(s)
- Jana Miniarikova
- Department of Research and Development, uniQure, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Melvin M Evers
- Department of Research and Development, uniQure, Amsterdam, the Netherlands
| | | |
Collapse
|
575
|
Park EC, Lim JS, Kim SI, Lee SY, Tak YK, Choi CW, Yun S, Park J, Lee M, Chung HK, Kim KS, Na YG, Shin JH, Kim GH. Proteomic Analysis of Urothelium of Rats with Detrusor Overactivity Induced by Bladder Outlet Obstruction. Mol Cell Proteomics 2018; 17:948-960. [PMID: 29414759 DOI: 10.1074/mcp.ra117.000290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/15/2018] [Indexed: 11/06/2022] Open
Abstract
Overactive bladder (OAB) syndrome is a condition that has four symptoms: urgency, urinary frequency, nocturia, and urge incontinence and negatively affects a patient's life. Recently, it is considered that the urinary bladder urothelium is closely linked to pathogenesis of OAB. However, the mechanisms of pathogenesis of OAB at the molecular level remain poorly understood, mainly because of lack of modern molecular analysis. The goal of this study is to identify a potential target protein that could act as a predictive factor for effective diagnosis and aid in the development of therapeutic strategies for the treatment of OAB syndrome. We produced OAB in a rat model and performed the first proteomic analysis on the mucosal layer (urothelium) of the bladders of sham control and OAB rats. The resulting data revealed the differential expression of 355 proteins in the bladder urothelium of OAB rats compared with sham subjects. Signaling pathway analysis revealed that the differentially expressed proteins were mainly involved in the inflammatory response and apoptosis. Our findings suggest a new target for accurate diagnosis of OAB that can provide essential information for the development of drug treatment strategies as well as establish criteria for screening patients in the clinical environment.
Collapse
Affiliation(s)
- Edmond Changkyun Park
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea.,§Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.,¶Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jae Sung Lim
- ‖Department of Urology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seung Il Kim
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea.,§Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.,¶Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sang-Yeop Lee
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea.,§Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Yu-Kyung Tak
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Chi-Won Choi
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea.,**Tunneling Nanotube Research Center, Division of Life Science, Korea University, Seoul 02841, Republic of Korea
| | - Sungho Yun
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Joohyun Park
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Minji Lee
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea.,¶Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hyo Kyun Chung
- ‡‡Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Koon Soon Kim
- ‡‡Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Yong Gil Na
- ‖Department of Urology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ju Hyun Shin
- ‖Department of Urology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Gun-Hwa Kim
- From the ‡Drug & Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea; .,¶Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.,**Tunneling Nanotube Research Center, Division of Life Science, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
576
|
Chaibva M, Gao X, Jain P, Campbell WA, Frey SL, Legleiter J. Sphingomyelin and GM1 Influence Huntingtin Binding to, Disruption of, and Aggregation on Lipid Membranes. ACS OMEGA 2018; 3:273-285. [PMID: 29399649 PMCID: PMC5793032 DOI: 10.1021/acsomega.7b01472] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/25/2017] [Indexed: 05/09/2023]
Abstract
Huntington disease (HD) is an inherited neurodegenerative disease caused by the expansion beyond a critical threshold of a polyglutamine (polyQ) tract near the N-terminus of the huntingtin (htt) protein. Expanded polyQ promotes the formation of a variety of oligomeric and fibrillar aggregates of htt that accumulate into the hallmark proteinaceous inclusion bodies associated with HD. htt is also highly associated with numerous cellular and subcellular membranes that contain a variety of lipids. As lipid homeostasis and metabolism abnormalities are observed in HD patients, we investigated how varying both the sphingomyelin (SM) and ganglioside (GM1) contents modifies the interactions between htt and lipid membranes. SM composition is altered in HD, and GM1 has been shown to have protective effects in animal models of HD. A combination of Langmuir trough monolayer techniques, vesicle permeability and binding assays, and in situ atomic force microscopy (AFM) were used to directly monitor the interaction of a model, synthetic htt peptide and a full-length htt-exon1 recombinant protein with model membranes comprised of total brain lipid extract (TBLE) and varying amounts of exogenously added SM or GM1. The addition of either SM or GM1 decreased htt insertion into the lipid monolayers. However, TBLE vesicles with an increased SM content were more susceptible to htt-induced permeabilization, whereas GM1 had no effect on permeablization. Pure TBLE bilayers and TBLE bilayers enriched with GM1 developed regions of roughened, granular morphologies upon exposure to htt-exon1, but plateau-like domains with a smoother appearance formed in bilayers enriched with SM. Oligomeric aggregates were observed on all bilayer systems regardless of induced morphology. Collectively, these observations suggest that the lipid composition and its subsequent effects on membrane material properties strongly influence htt binding and aggregation on lipid membranes.
Collapse
Affiliation(s)
- Maxmore Chaibva
- The
C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, P.O. Box 6045, Morgantown, West Virginia 26505, United States
| | - Xiang Gao
- The
C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, P.O. Box 6045, Morgantown, West Virginia 26505, United States
| | - Pranav Jain
- The
C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, P.O. Box 6045, Morgantown, West Virginia 26505, United States
| | - Warren A. Campbell
- Department
of Chemistry, Gettysburg College, 300 N. Washington Avenue, Campus Box 0393, Gettysburg, Pennsylvania 17325, United States
| | - Shelli L. Frey
- Department
of Chemistry, Gettysburg College, 300 N. Washington Avenue, Campus Box 0393, Gettysburg, Pennsylvania 17325, United States
- E-mail: . Phone: 717-337-6259 (S.L.F.)
| | - Justin Legleiter
- The
C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, P.O. Box 6045, Morgantown, West Virginia 26505, United States
- Blanchette
Rockefeller Neurosciences Institutes, West
Virginia University, 1 Medical Center Dr., P.O. Box 9303, Morgantown, West Virginia 26505, United States
- E-mail: . Phone: 304-293-0175 (J.L.)
| |
Collapse
|
577
|
Abstract
Diseases such as Huntington's disease and certain spinocerebellar ataxias are caused by the expansion of genomic cytosine-adenine-guanine (CAG) trinucleotide repeats beyond a specific threshold. These diseases are all characterised by neurological symptoms and central neurodegeneration, but our understanding of how expanded repeats drive neuronal loss is incomplete. Recent human genetic evidence implicates DNA repair pathways, especially mismatch repair, in modifying the onset and progression of CAG repeat diseases. Repair pathways might operate directly on repeat sequences by licensing or inhibiting repeat expansion in neurons. Alternatively, or in addition, because many of the genes containing pathogenic CAG repeats encode proteins that themselves have roles in the DNA damage response, it is possible that repeat expansions impair specific DNA repair pathways. DNA damage could then accrue in neurons, leading to further expansion at repeat loci, thus setting up a vicious cycle of pathology. In this review, we consider DNA damage and repair pathways in postmitotic neurons in the context of disease-causing CAG repeats. Investigating and understanding these pathways, which are clearly relevant in promoting and ameliorating disease in humans, is a research priority, as they are known to modify disease and therefore constitute prevalidated drug targets.
Collapse
Affiliation(s)
- Thomas H Massey
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Lesley Jones
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, CF24 4HQ, UK
| |
Collapse
|
578
|
Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes. Proc Natl Acad Sci U S A 2018; 115:E762-E771. [PMID: 29311338 DOI: 10.1073/pnas.1715865115] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence suggests that early neurodevelopmental defects in Huntington's disease (HD) patients could contribute to the later adult neurodegenerative phenotype. Here, by using HD-derived induced pluripotent stem cell lines, we report that early telencephalic induction and late neural identity are affected in cortical and striatal populations. We show that a large CAG expansion causes complete failure of the neuro-ectodermal acquisition, while cells carrying shorter CAGs repeats show gross abnormalities in neural rosette formation as well as disrupted cytoarchitecture in cortical organoids. Gene-expression analysis showed that control organoid overlapped with mature human fetal cortical areas, while HD organoids correlated with the immature ventricular zone/subventricular zone. We also report that defects in neuroectoderm and rosette formation could be rescued by molecular and pharmacological approaches leading to a recovery of striatal identity. These results show that mutant huntingtin precludes normal neuronal fate acquisition and highlights a possible connection between mutant huntingtin and abnormal neural development in HD.
Collapse
|
579
|
Abstract
Neural stem cells (NSCs) give rise to the entire nervous system. Animal models suggest that defects in NSC proliferation and differentiation contribute to several brain disorders (e.g., microcephaly, macrocephaly, autism, schizophrenia, and Huntington's disease). However, animal models of such diseases do not fully recapitulate all disease-related phenotypes because of substantial differences in brain development between rodents and humans. Therefore, additional human-based evidence is required to understand the mechanisms that are involved in the development of neurological diseases that result from human NSC (hNSC) dysfunction. Human-induced pluripotent stem cells provide a new model to investigate the contribution of hNSCs to various neurological pathologies. In this chapter, we review the role of hNSCs in both neurodevelopment- and neurodegeneration-related human brain pathologies, with an emphasis on recent evidence that has been obtained using embryonic stem cell- or induced pluripotent stem cell-derived hNSCs and progenitors.
Collapse
Affiliation(s)
- Ewa Liszewska
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
580
|
Weydt P, Dupuis L, Petersen Å. Thermoregulatory disorders in Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:761-775. [PMID: 30459039 DOI: 10.1016/b978-0-444-64074-1.00047-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington disease (HD) is a paradigmatic autosomal-dominant adult-onset neurodegenerative disease. Since the identification of an abnormal expansion of a trinucleotide repeat tract in the huntingtin gene as the underlying genetic defect, a broad range of transgenic animal models of the disease has become available and these have helped to unravel the relevant molecular pathways in unprecedented detail. Of note, some of the most informative of these models develop thermoregulatory defects such as hypothermia, problems with adaptive thermogenesis, and an altered circadian temperature rhythm. Both central, e.g., in the hypothalamus and peripheral, i.e., the brown adipose tissue and skeletal muscle, problems contribute to the phenotype. Importantly, these structures and pathways are also affected in human HD. Yet, currently the evidence for bona fide thermodysregulation in human HD patients remains anecdotal. This may be due to a lack of reliable tools for monitoring body temperature in an outpatient setting. Regardless, study of the temperature phenotype has contributed to the identification of unexpected molecular targets, such as the PGC-1α pathway.
Collapse
Affiliation(s)
- Patrick Weydt
- Department of Neurodegenerative Diseases and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany.
| | - Luc Dupuis
- Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Åsa Petersen
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
581
|
Abstract
The discovery and adaptation of the CRISPR/Cas system for epigenome editing has allowed for a straightforward design of targeting modules which can direct epigenetic editors to virtually any genomic site. This advancement in DNA-targeting technology brings allele-specific epigenome editing into reach, a "super-specific" variation of epigenome editing whose goal is an alteration of chromatin marks at only one selected allele of the target genomic locus. This technology would be useful for the treatment of diseases caused by a mutant allele with a dominant effect, because allele-specific epigenome editing allows the specific silencing of the mutated allele leaving the healthy counterpart expressed. Moreover, it may allow the direct correction of aberrant imprints in imprinting disorders where editing of DNA methylation is needed in one allele only. Here, we describe some principal setups of allele-specific epigenome editing systems and present exemplary data illustrating the feasibility of the concept.
Collapse
Affiliation(s)
- Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Stuttgart, Germany.
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart, Germany.
| |
Collapse
|
582
|
Sirtuins as Modifiers of Huntington's Disease (HD) Pathology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 154:105-145. [DOI: 10.1016/bs.pmbts.2017.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
583
|
Virlogeux A, Moutaux E, Christaller W, Genoux A, Bruyère J, Fino E, Charlot B, Cazorla M, Saudou F. Reconstituting Corticostriatal Network on-a-Chip Reveals the Contribution of the Presynaptic Compartment to Huntington’s Disease. Cell Rep 2018; 22:110-122. [DOI: 10.1016/j.celrep.2017.12.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/01/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022] Open
|
584
|
Dragatsis I, Dietrich P, Ren H, Deng YP, Del Mar N, Wang HB, Johnson IM, Jones KR, Reiner A. Effect of early embryonic deletion of huntingtin from pyramidal neurons on the development and long-term survival of neurons in cerebral cortex and striatum. Neurobiol Dis 2017; 111:102-117. [PMID: 29274742 PMCID: PMC5821111 DOI: 10.1016/j.nbd.2017.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/07/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
We evaluated the impact of early embryonic deletion of huntingtin (htt) from pyramidal neurons on cortical development, cortical neuron survival and motor behavior, using a cre-loxP strategy to inactivate the mouse htt gene (Hdh) in emx1-expressing cell lineages. Western blot confirmed substantial htt reduction in cerebral cortex of these Emx-httKO mice, with residual cortical htt in all likelihood restricted to cortical interneurons of the subpallial lineage and/or vascular endothelial cells. Despite the loss of htt early in development, cortical lamination was normal, as revealed by layer-specific markers. Cortical volume and neuron abundance were, however, significantly less than normal, and cortical neurons showed reduced brain-derived neurotrophic factor (BDNF) expression and reduced activation of BDNF signaling pathways. Nonetheless, cortical volume and neuron abundance did not show progressive age-related decline in Emx-httKO mice out to 24 months. Although striatal neurochemistry was normal, reductions in striatal volume and neuron abundance were seen in Emx-httKO mice, which were again not progressive. Weight maintenance was normal in Emx-httKO mice, but a slight rotarod deficit and persistent hyperactivity were observed throughout the lifespan. Our results show that embryonic deletion of htt from developing pallium does not substantially alter migration of cortical neurons to their correct laminar destinations, but does yield reduced cortical and striatal size and neuron numbers. The Emx-httKO mice were persistently hyperactive, possibly due to defects in corticostriatal development. Importantly, deletion of htt from cortical pyramidal neurons did not yield age-related progressive cortical or striatal pathology.
Collapse
Affiliation(s)
- I Dragatsis
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - P Dietrich
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - H Ren
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Y P Deng
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - N Del Mar
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - H B Wang
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - I M Johnson
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - K R Jones
- Department of Molecular, Cellular, & Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309, United States
| | - A Reiner
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
585
|
Emborg ME. Nonhuman Primate Models of Neurodegenerative Disorders. ILAR J 2017; 58:190-201. [PMID: 28985333 PMCID: PMC5886328 DOI: 10.1093/ilar/ilx021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's (AD), Huntington's (HD), and Parkinson's (PD) disease are age-related neurodegenerative disorders characterized by progressive neuronal cell death. Although each disease has particular pathologies and symptoms, accumulated evidence points to similar mechanisms of neurodegeneration, including inflammation, oxidative stress, and protein aggregation. A significant body of research is ongoing to understand how these pathways affect each other and what ultimately triggers the onset of the disease. Experiments in nonhuman primates (NHPs) account for only 5% of all research in animals. Yet the impact of NHP studies for clinical translation is much greater, especially for neurodegenerative disorders, as NHPs have a complex cognitive and motor functions and highly developed neuroanatomy. New NHP models are emerging to better understand pathology and improve the platform in which to test novel therapies. The goal of this report is to review NHP models of AD, HD, and PD in the context of the current understanding of these diseases and their contribution to the development of novel therapies.
Collapse
Affiliation(s)
- Marina E Emborg
- Marina E. Emborg, MD, PhD, is the director of the Preclinical Parkinson’s Research Program at the Wisconsin National Primate Research Center and an associate professor in the department of Medical Physics at the University of Wisconsin in Madison, Wisconsin.
| |
Collapse
|
586
|
Croese T, Furlan R. Extracellular vesicles in neurodegenerative diseases. Mol Aspects Med 2017; 60:52-61. [PMID: 29137922 DOI: 10.1016/j.mam.2017.11.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) are released by all neural cells, including neurons, oligodendrocytes, astrocytes, and microglia. The lack of adequate technology has not halted neuroscientists from investigating EVs as a mean to decipher neurodegenerative disorders, still in search of comprehensible pathogenic mechanisms and efficient treatment. EVs are thought to be one of ways neurodegenerative pathologies spread in the brain, but also one of the ways the brain tries to displace toxic proteins, making their meaning in pathogenesis uncertain. EVs, however do reach biological fluids where they can be analyzed, and might therefore constitute clinically decisive biomarkers for neurodegenerative diseases in the future. Finally, if they constitute a physiological inter-cell communication system, they may represent also a very specific drug delivery tool for a difficult target such as the brain. We try to resume here available information on the role of EVs in neurodegeneration, with a special focus on Alzheimer's disease, progressive multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease.
Collapse
Affiliation(s)
- Tommaso Croese
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
587
|
Veldman MB, Yang XW. Molecular insights into cortico-striatal miscommunications in Huntington's disease. Curr Opin Neurobiol 2017; 48:79-89. [PMID: 29125980 DOI: 10.1016/j.conb.2017.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD), a dominantly inherited neurodegenerative disease, is defined by its genetic cause, a CAG-repeat expansion in the HTT gene, its motor and psychiatric symptomology and primary loss of striatal medium spiny neurons (MSNs). However, the molecular mechanisms from genetic lesion to disease phenotype remain largely unclear. Mouse models of HD have been created that exhibit phenotypes partially recapitulating those in the patient, and specifically, cortico-striatal disconnectivity appears to be a shared pathogenic event shared by HD mouse models and patients. Molecular studies have begun to unveil converging molecular and cellular pathogenic mechanisms that may account for cortico-striatal miscommunication in various HD mouse models. Systems biological approaches help to illuminate synaptic molecular networks as a nexus for HD cortio-striatal pathogenesis, and may offer new candidate targets to modify the disease.
Collapse
Affiliation(s)
- Matthew B Veldman
- Center for Neurobehavioral Genetics and Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - X William Yang
- Center for Neurobehavioral Genetics and Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States.
| |
Collapse
|
588
|
Abstract
A hallmark of Huntington's disease is the presence of intracellular aggregates of mutant huntingtin, the pathological significance of which has long been debated. Using cryo-electron tomography, Bauerlein et al. reveal the fibrillary structure of huntingtin aggregates in situ and show that huntingtin fibrils interact with the endoplasmic reticulum, distorting its morphology and dynamics.
Collapse
Affiliation(s)
- Pedro Guedes-Dias
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
589
|
Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington's disease. Lancet Neurol 2017; 16:837-847. [PMID: 28920889 PMCID: PMC5604739 DOI: 10.1016/s1474-4422(17)30280-6] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/23/2017] [Accepted: 07/12/2017] [Indexed: 01/12/2023]
Abstract
No disease-slowing treatment exists for Huntington's disease, but its monogenic inheritance makes it an appealing candidate for the development of therapies targeting processes close to its genetic cause. Huntington's disease is caused by CAG repeat expansions in the HTT gene, which encodes the huntingtin protein; development of therapies to target HTT transcription and the translation of its mRNA is therefore an area of intense investigation. Huntingtin-lowering strategies include antisense oligonucleotides and RNA interference targeting mRNA, and zinc finger transcriptional repressors and CRISPR-Cas9 methods aiming to reduce transcription by targeting DNA. An intrathecally delivered antisense oligonucleotide that aims to lower huntingtin is now well into its first human clinical trial, with other antisense oligonucleotides expected to enter trials in the next 1-2 years and virally delivered RNA interference and zinc finger transcriptional repressors in advanced testing in animal models. Recent advances in the design and delivery of therapies to target HTT RNA and DNA are expected to improve their efficacy, safety, tolerability, and duration of effect in future studies.
Collapse
Affiliation(s)
- Edward J Wild
- Huntington's Disease Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Sarah J Tabrizi
- Huntington's Disease Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
590
|
Whittaker DS, Wang H, Loh DH, Cachope R, Colwell CS. Possible use of a H3R antagonist for the management of nonmotor symptoms in the Q175 mouse model of Huntington's disease. Pharmacol Res Perspect 2017; 5:e00344. [PMID: 28971617 PMCID: PMC5625154 DOI: 10.1002/prp2.344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant, neurodegenerative disorder characterized by motor as well as nonmotor symptoms for which there is currently no cure. The Q175 mouse model of HD recapitulates many of the symptoms identified in HD patients including disruptions of the sleep/wake cycle. In this study, we sought to determine if the daily administration of the histamine-3 receptor (H3R) antagonist/inverse agonist 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) would improve nonmotor symptoms in the Q175 line. This class of drugs acts on autoreceptors found at histaminergic synapses and results in increased levels of histamine (HA). HA is a neuromodulator whose levels vary with a daily rhythm with peak release during the active cycle and relatively lower levels during sleep. H3Rs are widely expressed in brain regions involved in cognitive processes and activation of these receptors promotes wakefulness. We administered GSK189254 nightly to homozygote and heterozygote Q175 mice for 4 weeks and confirmed that the plasma levels of the drug were elevated to a therapeutic range. We demonstrate that daily treatment with GSK189254 improved several behavioral measures in the Q175 mice including strengthening activity rhythms, cognitive performance and mood as measured by the tail suspension test. The treatment also reduced inappropriate activity during the normal sleep time. The drug treatment did not alter motor performance and coordination as measured by the challenging beam test. Our findings suggest that drugs targeting the H3R system may show benefits as cognitive enhancers in the management of HD.
Collapse
Affiliation(s)
- Daniel S. Whittaker
- Department of Psychiatry & Biobehavioral SciencesUniversity of CaliforniaLos AngelesCalifornia90095‐1751
| | - Huei‐Bin Wang
- Department of Psychiatry & Biobehavioral SciencesUniversity of CaliforniaLos AngelesCalifornia90095‐1751
| | - Dawn H. Loh
- Department of Psychiatry & Biobehavioral SciencesUniversity of CaliforniaLos AngelesCalifornia90095‐1751
| | - Roger Cachope
- CHDI Foundation6080 Center DriveSuite 100Los AngelesCalifornia90045
| | - Christopher S. Colwell
- Department of Psychiatry & Biobehavioral SciencesUniversity of CaliforniaLos AngelesCalifornia90095‐1751
| |
Collapse
|
591
|
Brandi V, Di Lella V, Marino M, Ascenzi P, Polticelli F. A comprehensive in silico analysis of huntingtin and its interactome. J Biomol Struct Dyn 2017; 36:3155-3171. [PMID: 28920551 DOI: 10.1080/07391102.2017.1381646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A polyglutamine expansion of the N-terminal region of huntingtin (Htt) causes Huntington's disease, a severe neurodegenerative disorder. Htt huge multidomain structure, the presence of disordered regions, and the lack of sequence homologs of known structure, so far prevented structural studies of Htt, making the study of its structure-function relationships very difficult. In this work, the presence and location of five Htt ordered domains (named from Hunt1 to Hunt5) has been detected and the structure of these domains has been predicted for the first time using a combined threading/ab initio modeling approach. This work has led to the identification of a previously undetected HEAT repeats region in the Hunt3 domain. Furthermore, a putative function has been assigned to four out of the five domains. Hunt1 and Hunt5, displaying structural similarity with the regulatory subunit A of protein phosphatase 2A, are predicted to play a role in regulating the phosphorylation status of cellular proteins. Hunt2 and Hunt3 are predicted to be homologs of two yeast importins and to mediate vescicles transport and protein trafficking. Finally, a comprehensive analysis of the Htt interactome has been carried out and is discussed to provide a global picture of the Htt's structure-function relationships.
Collapse
Affiliation(s)
- Valentina Brandi
- a Department of Sciences , Roma Tre University, Viale Guglielmo Marconi 446 , Roma I-00146 , Italy
| | - Valentina Di Lella
- a Department of Sciences , Roma Tre University, Viale Guglielmo Marconi 446 , Roma I-00146 , Italy
| | - Maria Marino
- a Department of Sciences , Roma Tre University, Viale Guglielmo Marconi 446 , Roma I-00146 , Italy
| | - Paolo Ascenzi
- a Department of Sciences , Roma Tre University, Viale Guglielmo Marconi 446 , Roma I-00146 , Italy.,b Interdepartmental Laboratory for Electron Microscopy , Roma Tre University , Roma I-00146 , Italy
| | - Fabio Polticelli
- a Department of Sciences , Roma Tre University, Viale Guglielmo Marconi 446 , Roma I-00146 , Italy.,c National Institute of Nuclear Physics , Roma Tre University, Roma Tre Section , Roma I-00146 , Italy
| |
Collapse
|
592
|
Arbez N, Ratovitski T, Roby E, Chighladze E, Stewart JC, Ren M, Wang X, Lavery DJ, Ross CA. Post-translational modifications clustering within proteolytic domains decrease mutant huntingtin toxicity. J Biol Chem 2017; 292:19238-19249. [PMID: 28972180 DOI: 10.1074/jbc.m117.782300] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/18/2017] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease (HD) is caused in large part by a polyglutamine expansion within the huntingtin (Htt) protein. Post-translational modifications (PTMs) control and regulate many protein functions and cellular pathways, and PTMs of mutant Htt are likely important modulators of HD pathogenesis. Alterations of selected numbers of PTMs of Htt fragments have been shown to modulate Htt cellular localization and toxicity. In this study, we systematically introduced site-directed alterations in individual phosphorylation and acetylation sites in full-length Htt constructs. The effects of each of these PTM alteration constructs were tested on cell toxicity using our nuclear condensation assay and on mitochondrial viability by measuring mitochondrial potential and size. Using these functional assays in primary neurons, we identified several PTMs whose alteration can block neuronal toxicity and prevent potential loss and swelling of the mitochondria caused by mutant Htt. These PTMs included previously described sites such as serine 116 and newly found sites such as serine 2652 throughout the protein. We found that these functionally relevant sites are clustered in protease-sensitive domains throughout full-length Htt. These findings advance our understanding of the Htt PTM code and its role in HD pathogenesis. Because PTMs are catalyzed by enzymes, the toxicity-modulating Htt PTMs identified here may be promising therapeutic targets for managing HD.
Collapse
Affiliation(s)
- Nicolas Arbez
- From the Division of Neurobiology, Department of Psychiatry and Behavioral Sciences,
| | - Tamara Ratovitski
- From the Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Elaine Roby
- From the Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Ekaterine Chighladze
- From the Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Jacqueline C Stewart
- From the Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Mark Ren
- the Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, and
| | - Xiaofang Wang
- From the Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Daniel J Lavery
- the CHDI Foundation/CHDI Management Inc., Princeton, New Jersey 08540
| | - Christopher A Ross
- From the Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, .,the Department of Neurology and Program in Cellular and Molecular Medicine, and.,the Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|
593
|
Lee H, Shin EA, Lee JH, Ahn D, Kim CG, Kim JH, Kim SH. Caspase inhibitors: a review of recently patented compounds (2013-2015). Expert Opin Ther Pat 2017; 28:47-59. [DOI: 10.1080/13543776.2017.1378426] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hyemin Lee
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun Ah Shin
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae Hee Lee
- Department of East West Medical Science, Graduate School of East West Medical Science Kyung Hee University, Yongin, South Korea
| | - Deoksoo Ahn
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Chang Geun Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ju-Ha Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung-Hoon Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
594
|
Mutant Huntingtin Inhibits αB-Crystallin Expression and Impairs Exosome Secretion from Astrocytes. J Neurosci 2017; 37:9550-9563. [PMID: 28893927 DOI: 10.1523/jneurosci.1418-17.2017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022] Open
Abstract
In the brain, astrocytes secrete diverse substances that regulate neuronal function and viability. Exosomes, which are vesicles produced through the formation of multivesicular bodies and their subsequent fusion with the plasma membrane, are also released from astrocytes via exocytotic secretion. Astrocytic exosomes carry heat shock proteins that can reduce the cellular toxicity of misfolded proteins and prevent neurodegeneration. Although mutant huntingtin (mHtt) affects multiple functions of astrocytes, it remains unknown whether mHtt impairs the production of exosomes from astrocytes. We found that mHtt is not present in astrocytic exosomes, but can decrease exosome secretion from astrocytes in HD140Q knock-in (KI) mice. N-terminal mHtt accumulates in the nuclei and forms aggregates, causing decreased secretion of exosomes from cultured astrocytes. Consistently, there is a significant decrease in secreted exosomes in both female and male HD KI mouse striatum in which abundant nuclear mHtt aggregates are present. Conversely, injection of astrocytic exosomes into the striatum of HD140Q KI mice reduces the density of mHtt aggregates. Further, mHtt in astrocytes decreased the expression of αB-crystallin, a small heat shock protein that is enriched in astrocytes and mediates exosome secretion, by reducing the association of Sp1 with the enhancer of the αB-crystallin gene. Importantly, overexpression of αB-crystallin rescues defective exosome release from HD astrocytes as well as mHtt aggregates in the striatum of HD140Q KI mice. Our results demonstrate that mHtt reduces the expression of αB-crystallin in astrocytes to decrease exosome secretion in the HD brains, contributing to non-cell-autonomous neurotoxicity in HD.SIGNIFICANCE STATEMENT Huntington's disease (HD) is characterized by selective neurodegeneration that preferentially occurs in the striatal medium spiny neurons. Recent studies in different HD mouse models demonstrated that dysfunction of astrocytes, a major type of glial cell, leads to neuronal vulnerability. Emerging evidence shows that exosomes secreted from astrocytes contain neuroprotective cargoes that could support the survival of neighboring neurons. We found that mHtt in astrocytes impairs exosome secretion by decreasing αB-crystallin, a protein that is expressed mainly in glial cells and mediates exosome secretion. Overexpression of αB-crystallin could alleviate the deficient exosome release and neuropathology in HD mice. Our results revealed a new pathological pathway that affects the critical support of glial cells to neurons in the HD brain.
Collapse
|
595
|
Merienne N, Vachey G, de Longprez L, Meunier C, Zimmer V, Perriard G, Canales M, Mathias A, Herrgott L, Beltraminelli T, Maulet A, Dequesne T, Pythoud C, Rey M, Pellerin L, Brouillet E, Perrier AL, du Pasquier R, Déglon N. The Self-Inactivating KamiCas9 System for the Editing of CNS Disease Genes. Cell Rep 2017; 20:2980-2991. [DOI: 10.1016/j.celrep.2017.08.075] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 07/14/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022] Open
|
596
|
Ratovitski T, O’Meally RN, Jiang M, Chaerkady R, Chighladze E, Stewart JC, Wang X, Arbez N, Roby E, Alexandris A, Duan W, Vijayvargia R, Seong IS, Lavery DJ, Cole RN, Ross CA. Post-Translational Modifications (PTMs), Identified on Endogenous Huntingtin, Cluster within Proteolytic Domains between HEAT Repeats. J Proteome Res 2017; 16:2692-2708. [PMID: 28653853 PMCID: PMC5560079 DOI: 10.1021/acs.jproteome.6b00991] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Post-translational modifications (PTMs) of proteins regulate various cellular processes. PTMs of polyglutamine-expanded huntingtin (Htt) protein, which causes Huntington's disease (HD), are likely modulators of HD pathogenesis. Previous studies have identified and characterized several PTMs on exogenously expressed Htt fragments, but none of them were designed to systematically characterize PTMs on the endogenous full-length Htt protein. We found that full-length endogenous Htt, which was immunoprecipitated from HD knock-in mouse and human post-mortem brain, is suitable for detection of PTMs by mass spectrometry. Using label-free and mass tag labeling-based approaches, we identified near 40 PTMs, of which half are novel (data are available via ProteomeXchange with identifier PXD005753). Most PTMs were located in clusters within predicted unstructured domains rather than within the predicted α-helical structured HEAT repeats. Using quantitative mass spectrometry, we detected significant differences in the stoichiometry of several PTMs between HD and WT mouse brain. The mass-spectrometry identification and quantitation were verified using phospho-specific antibodies for selected PTMs. To further validate our findings, we introduced individual PTM alterations within full-length Htt and identified several PTMs that can modulate its subcellular localization in striatal cells. These findings will be instrumental in further assembling the Htt PTM framework and highlight several PTMs as potential therapeutic targets for HD.
Collapse
Affiliation(s)
- Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Robert N. O’Meally
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway Street, Suite 371 BRB, Baltimore, Maryland 21287, United States
| | - Mali Jiang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Raghothama Chaerkady
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway Street, Suite 371 BRB, Baltimore, Maryland 21287, United States
| | - Ekaterine Chighladze
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Jacqueline C. Stewart
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Xiaofang Wang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Elaine Roby
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Athanasios Alexandris
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
- Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Ravi Vijayvargia
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ihn Sik Seong
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Daniel J. Lavery
- CHDI Foundation/CHDI Management, Inc., Princeton, New Jersey 08540, United States
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway Street, Suite 371 BRB, Baltimore, Maryland 21287, United States
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
- Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
597
|
Translating protein phosphatase research into treatments for neurodegenerative diseases. Biochem Soc Trans 2017; 45:101-112. [PMID: 28202663 DOI: 10.1042/bst20160157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022]
Abstract
Many of the major neurodegenerative disorders are characterized by the accumulation of intracellular protein aggregates in neurons and other cells in brain, suggesting that errors in protein quality control mechanisms associated with the aging process play a critical role in the onset and progression of disease. The increased understanding of the unfolded protein response (UPR) signaling network and, more specifically, the structure and function of eIF2α phosphatases has enabled the development or discovery of small molecule inhibitors that show great promise in restoring protein homeostasis and ameliorating neuronal damage and death. While this review focuses attention on one or more eIF2α phosphatases, the wide range of UPR proteins that are currently being explored as potential drug targets bodes well for the successful future development of therapies to preserve neuronal function and treat neurodegenerative disease.
Collapse
|
598
|
Interaction of misfolded proteins and mitochondria in neurodegenerative disorders. Biochem Soc Trans 2017; 45:1025-1033. [PMID: 28733489 DOI: 10.1042/bst20170024] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022]
Abstract
The number of the people affected by neurodegenerative disorders is growing dramatically due to the ageing of population. The major neurodegenerative diseases share some common pathological features including the involvement of mitochondria in the mechanism of pathology and misfolding and the accumulation of abnormally aggregated proteins. Neurotoxicity of aggregated β-amyloid, tau, α-synuclein and huntingtin is linked to the effects of these proteins on mitochondria. All these misfolded aggregates affect mitochondrial energy metabolism by inhibiting diverse mitochondrial complexes and limit ATP availability in neurones. β-Amyloid, tau, α-synuclein and huntingtin are shown to be involved in increased production of reactive oxygen species, which can be generated in mitochondria or can target this organelle. Most of these aggregated proteins are capable of deregulating mitochondrial calcium handling that, in combination with oxidative stress, lead to opening of the mitochondrial permeability transition pore. Despite some of the common features, aggregated β-amyloid, tau, α-synuclein and huntingtin have diverse targets in mitochondria that can partially explain neurotoxic effect of these proteins in different brain regions.
Collapse
|
599
|
Proteostasis of Huntingtin in Health and Disease. Int J Mol Sci 2017; 18:ijms18071568. [PMID: 28753941 PMCID: PMC5536056 DOI: 10.3390/ijms18071568] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/15/2017] [Accepted: 07/18/2017] [Indexed: 12/28/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder characterized by motor dysfunction, cognitive deficits and psychosis. HD is caused by mutations in the Huntingtin (HTT) gene, resulting in the expansion of polyglutamine (polyQ) repeats in the HTT protein. Mutant HTT is prone to aggregation, and the accumulation of polyQ-expanded fibrils as well as intermediate oligomers formed during the aggregation process contribute to neurodegeneration. Distinct protein homeostasis (proteostasis) nodes such as chaperone-mediated folding and proteolytic systems regulate the aggregation and degradation of HTT. Moreover, polyQ-expanded HTT fibrils and oligomers can lead to a global collapse in neuronal proteostasis, a process that contributes to neurodegeneration. The ability to maintain proteostasis of HTT declines during the aging process. Conversely, mechanisms that preserve proteostasis delay the onset of HD. Here we will review the link between proteostasis, aging and HD-related changes.
Collapse
|
600
|
Dietrich P, Johnson IM, Alli S, Dragatsis I. Elimination of huntingtin in the adult mouse leads to progressive behavioral deficits, bilateral thalamic calcification, and altered brain iron homeostasis. PLoS Genet 2017; 13:e1006846. [PMID: 28715425 PMCID: PMC5536499 DOI: 10.1371/journal.pgen.1006846] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 07/31/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
Huntington's Disease (HD) is an autosomal dominant progressive neurodegenerative disorder characterized by cognitive, behavioral and motor dysfunctions. HD is caused by a CAG repeat expansion in exon 1 of the HD gene that is translated into an expanded polyglutamine tract in the encoded protein, huntingtin (HTT). While the most significant neuropathology of HD occurs in the striatum, other brain regions are also affected and play an important role in HD pathology. To date there is no cure for HD, and recently strategies aiming at silencing HTT expression have been initiated as possible therapeutics for HD. However, the essential functions of HTT in the adult brain are currently unknown and hence the consequence of sustained suppression of HTT expression is unpredictable and can potentially be deleterious. Using the Cre-loxP system of recombination, we conditionally inactivated the mouse HD gene homologue at 3, 6 and 9 months of age. Here we show that elimination of Htt expression in the adult mouse results in behavioral deficits, progressive neuropathological changes including bilateral thalamic calcification, and altered brain iron homeostasis.
Collapse
Affiliation(s)
- Paula Dietrich
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, Tennessee, United States of America
| | - Irudayam Maria Johnson
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, Tennessee, United States of America
| | - Shanta Alli
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, Tennessee, United States of America
| | - Ioannis Dragatsis
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|