551
|
Oliveira RLGS, Ueno M, de Souza CT, Pereira-da-Silva M, Gasparetti AL, Bezzera RMN, Alberici LC, Vercesi AE, Saad MJA, Velloso LA. Cold-induced PGC-1alpha expression modulates muscle glucose uptake through an insulin receptor/Akt-independent, AMPK-dependent pathway. Am J Physiol Endocrinol Metab 2004; 287:E686-95. [PMID: 15165993 DOI: 10.1152/ajpendo.00103.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) participates in control of expression of genes involved in adaptive thermogenesis, muscle fiber type differentiation, and fuel homeostasis. The objective of the present study was to evaluate the participation of cold-induced PGC-1alpha expression in muscle fiber type-specific activity of proteins that belong to the insulin-signaling pathway. Rats were exposed to 4 degrees C for 4 days and acutely treated with insulin in the presence or absence of an antisense oligonucleotide to PGC-1alpha. Cold exposure promoted a significant increase of PGC-1alpha and uncoupling protein-3 protein expression in type I and type II fibers of gastrocnemius muscle. In addition, cold exposure led to higher glucose uptake during a hyperinsulinemic clamp, which was accompanied by higher expression and membrane localization of GLUT4 in both muscle fiber types. Cold exposure promoted significantly lower insulin-induced tyrosine phosphorylation of the insulin receptor (IR) and Ser473 phosphorylation of acute transforming retrovirus thymoma (Akt) and an insulin-independent increase of Thr172 phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK). Inhibition of PGC-1alpha expression in cold-exposed rats by antisense oligonucleotide treatment diminished glucose clearance rates during a hyperinsulinemic clamp and reduced expression and membrane localization of GLUT4. Reduction of PGC-1alpha expression resulted in no modification of insulin-induced tyrosine phosphorylation of the IR and Ser473 phosphorylation of Akt. Finally, reduction of PGC-1alpha resulted in lower Thr172 phosphorylation of AMPK. Thus cold-induced hyperexpression of PGC-1alpha participates in control of skeletal muscle glucose uptake through a mechanism that controls GLUT4 expression and subcellular localization independent of the IR and Akt activities but dependent on AMPK.
Collapse
MESH Headings
- Animals
- Antimetabolites/pharmacology
- Carrier Proteins/metabolism
- Cold Temperature
- Cyclic AMP-Dependent Protein Kinase Type II
- Cyclic AMP-Dependent Protein Kinases/physiology
- Deoxyglucose/pharmacology
- Glucose/metabolism
- Glucose Transporter Type 4
- Heat-Shock Proteins/biosynthesis
- Hormones/blood
- Insulin/pharmacology
- Ion Channels
- Male
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondrial Proteins
- Monosaccharide Transport Proteins/metabolism
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Oligonucleotides, Antisense/pharmacology
- Oncogene Protein v-akt
- Oxygen Consumption/drug effects
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Phosphorylation
- Rats
- Rats, Wistar
- Receptor, Insulin/physiology
- Retroviridae Proteins, Oncogenic/physiology
- Signal Transduction/physiology
- Subcellular Fractions/drug effects
- Subcellular Fractions/metabolism
- Transcription Factors/biosynthesis
- Uncoupling Protein 3
Collapse
|
552
|
Abstract
The heart has a tremendous capacity for ATP generation, allowing it to function as an efficient pump throughout the life of the organism. The adult myocardium uses either fatty acid or glucose oxidation as its main energy source. Under normal conditions, the adult heart derives most of its energy through oxidation of fatty acids in mitochondria. However, the myocardium has a remarkable ability to switch between carbohydrate and fat fuel sources so that ATP production is maintained at a constant rate in diverse physiological and dietary conditions. This fuel selection flexibility is important for normal cardiac function. Although cardiac energy conversion capacity and metabolic flux is modulated at many levels, an important mechanism of regulation occurs at the level of gene expression. The expression of genes involved in multiple energy transduction pathways is dynamically regulated in response to developmental, physiological, and pathophysiological cues. This review is focused on gene transcription pathways involved in short- and long-term regulation of myocardial energy metabolism. Much of our knowledge about cardiac metabolic regulation comes from studies focused on mitochondrial fatty acid oxidation. The genes involved in this key energy metabolic pathway are transcriptionally regulated by members of the nuclear receptor superfamily, specifically the fatty acid-activated peroxisome proliferator-activated receptors (PPARs) and the nuclear receptor coactivator, PPARgamma coactivator-1alpha (PGC-1alpha). The dynamic regulation of the cardiac PPAR/PGC-1 complex in accordance with physiological and pathophysiological states will be described.
Collapse
Affiliation(s)
- Janice M Huss
- Center for Cardiovascular Research and Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
553
|
Pan L, Wang Y, Jones CA, Glenn ST, Baumann H, Gross KW. Enhancer-dependent inhibition of mouse renin transcription by inflammatory cytokines. Am J Physiol Renal Physiol 2004; 288:F117-24. [PMID: 15367390 DOI: 10.1152/ajprenal.00333.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammatory cytokines have been shown to inhibit renin gene expression in the kidney in vivo and the kidney tumor-derived As4.1 cell line. In this report, we show that cytokines oncostatin M (OSM), IL-6, and IL-1beta inhibit transcriptional activity associated with 4.1 kb of the mouse renin 5'-flanking sequence in As4.1 cells. The 242-bp enhancer (-2866 to -2625 bp) is sufficient to mediate the observed inhibitory effects. Sequences within the enhancer required for inhibition by each of these cytokines have been determined by deletional and mutational analysis. Results indicate that a 39-bp region (CEC) containing a cAMP-responsive element, an E-box, and a steroid receptor-binding site, previously identified as the most critical elements for enhancer activity, is sufficient for the inhibition induced by IL-1beta. However, mutation of each of the three component sites does not abolish the inhibition by IL-1beta, suggesting that the target(s) of cytokine action may not be the transcription factors binding directly to these sites. This CEC region is also critical, but not sufficient, for the inhibition mediated by OSM and IL-6. These data suggest that the direct target of the associated cytokines may be coactivators interacting with transcription factors binding at the enhancer. Finally, we show that OSM treatment caused a 17-fold increase in promoter activity when only 2,625 bp of the Ren-1(c) flanking sequence were tested, in which the enhancer is not present. Three regions including -2625 to -1217 bp, the HOX.PBX binding site at -60 bp, and -59 to +6 bp have been found to contribute to this induction.
Collapse
Affiliation(s)
- Li Pan
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm and Carlton St., Buffalo, NY 14263-0001, USA
| | | | | | | | | | | |
Collapse
|
554
|
Collins S, Cao W, Robidoux J. Learning new tricks from old dogs: beta-adrenergic receptors teach new lessons on firing up adipose tissue metabolism. Mol Endocrinol 2004; 18:2123-31. [PMID: 15243132 DOI: 10.1210/me.2004-0193] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The three beta AR (beta-adrenergic receptor) subtypes (beta(1)AR, beta(2)AR, and beta(3)AR) are members of the large family of G protein-coupled receptors, each of which is coupled to G alpha s and increases in intracellular cAMP levels. In white adipose tissues, catecholamine activation of the beta ARs leads to the mobilization of stored fatty acids and regulates release of several adipokines, whereas in brown adipose tissue they stimulate the specialized process of adaptive nonshivering thermogenesis. Noteworthy, in most models of obesity the beta AR system is dysfunctional, and its ability to stimulate lipolysis and thermogenesis are both impaired. Nevertheless, selective agonists for the beta(3)AR, a subtype that is found predominantly in adipocytes, have been able to prevent or reverse obesity and accompanying insulin resistance in animal models. Whether this is a viable therapeutic option for human obesity is much debated with regard to the existence of brown adipocytes in humans or their ability to be recruited. Nevertheless, probing the physiological changes in adrenoceptor function in rodent obesity, as well as the process by which beta(3)AR agonists promote a thermogenic shift in fuel use, have yielded unexpected new insights into beta AR signaling and adipocyte physiology. These include the recent discovery of an essential role of p38 MAPK in mediating adaptive thermogenesis, as well as the accessory role of the ERK MAPK pathway for the control of lipolysis. Because these metabolic events were traditionally ascribed solely to the cAMP/protein kinase A system, the integration of these signaling mechanisms may pose new therapeutic directions in the quest to counter the obesity epidemic in our midst.
Collapse
Affiliation(s)
- Sheila Collins
- CIIT Centers for Health Research, Six Davis Drive, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
555
|
Libera LD, Vescovo G. Muscle wastage in chronic heart failure, between apoptosis, catabolism and altered anabolism: a chimaeric view of inflammation? Curr Opin Clin Nutr Metab Care 2004; 7:435-41. [PMID: 15192447 DOI: 10.1097/01.mco.0000134374.24181.5b] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF THE REVIEW The mechanisms involved in determining skeletal muscle wastage and cachexia in heart failure are complex and not unequivocal. There are however three different mechanisms that are in some way related to each other and play a very important role. These are inflammation, the catabolic/anabolic imbalance and apoptosis. We have tried to link these pathophysiological processes with the aim of giving a holistic view. RECENT FINDINGS Recent experiments have demonstrated that a major determinant of muscle atrophy in congestive heart failure is apoptosis of skeletal myocytes. Apoptosis is triggered by tumour necrosis factor alpha and its second messenger sphingosine. The source of tumour necrosis factor alpha has to be searched for in inflammation, which may have its origin in the bowel, in the heart, in peripheral hypoxic tissues or in neurohormonal activation. It has also been shown that the growth hormone/insulin-like growth factor 1 axis regulates contractile protein synthesis (transition from slow to fast fibres) and apoptosis, through calcineurin, FK506-FK506-binding protein, mitogen-activated protein kinase and nuclear factor kappaB. Tumour necrosis factor alpha also intervenes in this interplay by activating nuclear factor kappaB. SUMMARY According to these new pathophysiological insights, some strategies aiming to prevent or revert congestive heart failure myopathy with pharmacological interventions blocking inflammation, tumour necrosis factor alpha and apoptosis have been proposed. Future perspectives are based on stem cell implantation, transcription and gene therapy, for instance by overexpression of insulin-like growth factor 1.
Collapse
|
556
|
Schwamborn JC, Fiore R, Bagnard D, Kappler J, Kaltschmidt C, Püschel AW. Semaphorin 3A stimulates neurite extension and regulates gene expression in PC12 cells. J Biol Chem 2004; 279:30923-6. [PMID: 15155748 DOI: 10.1074/jbc.c400082200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The secreted semaphorin 3A (Sema3A) is a member of a large family of proteins that act as guidance signals for axons and dendrites. While the receptors and signaling pathways that mediate the repulsive effects of semaphorins are beginning to be understood in some detail, the mechanisms that are responsible for the ability of Sema3A to stimulate the extension of dendrites remain to be elucidated. Here we show that PC12 cells, a model widely used to study neuronal differentiation, can be used to dissect this pathway. Sema3A is as effective as nerve growth factor in stimulating the extension of neurites from PC12 cells. We show that Sema3A is able to regulate gene expression and identify mitochondria as a novel target of Sema3A signaling. Pharmacological block of mitochondrial reactive oxygen species production abolishes the extension of neurites in response to Sema3A. These results show that the characterization of transcripts that are regulated by axon guidance signals may help to identify novel components of their signaling pathways.
Collapse
Affiliation(s)
- Jens C Schwamborn
- Institut für Allgemeine Zoologie und Genetik, Westfälische Wilhelms-Universität Münster, Schlossplatz 5, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
557
|
Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X, Floering LM, Spiegelman BM, Collins S. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol 2004; 24:3057-67. [PMID: 15024092 PMCID: PMC371122 DOI: 10.1128/mcb.24.7.3057-3067.2004] [Citation(s) in RCA: 475] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is well established that catecholamine-stimulated thermogenesis in brown fat requires beta-adrenergic elevations in cyclic AMP (cAMP) to increase expression of the uncoupling protein 1 (UCP1) gene. However, little is known about the downstream components of the signaling cascade or the relevant transcription factor targets thereof. Here we demonstrate that cAMP- and protein kinase A-dependent activation of p38 mitogen-activated protein kinase (MAPK) in brown adipocytes is an indispensable step in the transcription of the UCP1 gene in mice. By phosphorylating activating transcription factor 2 (ATF-2) and peroxisome proliferator-activated receptor gamma (PPARgamma) coativator 1alpha (PGC-1alpha), members of two distinct nuclear factor families, p38 MAPK controls the expression of the UCP1 gene through their respective interactions with a cAMP response element and a PPAR response element that both reside within a critical enhancer motif of the UCP1 gene. Activation of ATF-2 by p38 MAPK additionally serves as the cAMP sensor that increases expression of the PGC-1alpha gene itself in brown adipose tissue. In conclusion, our findings illustrate that by orchestrating the activity of multiple transcription factors, p38 MAPK is a central mediator of the cAMP signaling mechanism of brown fat that promotes thermogenesis.
Collapse
Affiliation(s)
- Wenhong Cao
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
558
|
Abstract
Nuclear receptors (also known as nuclear hormone receptors) are hormone-regulated transcription factors that control many important physiological and developmental processes in animals and humans. Defects in receptor function result in disease. The diverse biological roles of these receptors reflect their surprisingly versatile transcriptional properties, with many receptors possessing the ability to both repress and activate target gene expression. These bipolar transcriptional properties are mediated through the interactions of the receptors with two distinct classes of auxiliary proteins: corepressors and coactivators. This review focuses on how corepressors work together with nuclear receptors to repress gene transcription in the normal organism and on the aberrations in this process that lead to neoplasia and endocrine disorders. The actions of coactivators and the contributions of the same corepressors to the functions of nonreceptor transcription factors are also touched on.
Collapse
Affiliation(s)
- Martin L Privalsky
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
559
|
Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 2004; 18:357-68. [PMID: 15004004 DOI: 10.1101/gad.1177604] [Citation(s) in RCA: 965] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel P Kelly
- Center for Cardiovascula Research, Departments of Medicine, Molecular Biology & Pharmacology, and Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63119, USA.
| | | |
Collapse
|
560
|
Tsuda T, Ueno Y, Aoki H, Koda T, Horio F, Takahashi N, Kawada T, Osawa T. Anthocyanin enhances adipocytokine secretion and adipocyte-specific gene expression in isolated rat adipocytes. Biochem Biophys Res Commun 2004; 316:149-57. [PMID: 15003523 DOI: 10.1016/j.bbrc.2004.02.031] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Indexed: 10/26/2022]
Abstract
Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine secretion or the adipocyte-specific gene expression is one of the most important targets for the prevention of obesity and amelioration of insulin sensitivity. In this study, we demonstrated that anthocyanins (cyanidin or cyanidin 3-glucoside) have the potency of a unique pharmacological function in isolated rat adipocytes. Treated adipocytes with anthocyanins enhanced adipocytokine (adiponectin and leptin) secretion and up-regulated the adipocyte specific gene expression without activation of PPARgamma in isolated rat adipocytes. The gene expression of adiponectin was also up-regulated in white adipose tissue in mice fed an anthocyanin supplemented diet. As one of the possible mechanisms, AMP-activated protein kinase activation would be associated with these changes, nevertheless, the AMP:ATP ratio was significantly decreased by administration of the anthocyanins. These data suggest that anthocyanins have a potency of unique therapeutic advantage and also have important implications for preventing obesity and diabetes.
Collapse
Affiliation(s)
- Takanori Tsuda
- Research Center for Biomarkers of Preventive Medicine, Doshisha University, Kamigyo-ku, Kyoto 602-8580, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
561
|
Rim JS, Xue B, Gawronska-Kozak B, Kozak LP. Sequestration of thermogenic transcription factors in the cytoplasm during development of brown adipose tissue. J Biol Chem 2004; 279:25916-26. [PMID: 15073176 DOI: 10.1074/jbc.m402102200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors that regulate gene expression during adipogenesis also control the expression of genes of thermogenesis in brown adipose tissue, in particular, the mitochondrial uncoupling protein gene (Ucp1). There is evidence that a plasticity exists among adipocytes in which activation of the Ucp1 gene together with mitochondrial biogenesis can increase the brown adipocyte character of white fat. To understand this process, we have characterized the changes in transcription that occur in interscapular brown adipocytes during development. We have found dramatic reductions in both DNA-binding activity to probes and immunoreactive protein for peroxisome proliferator-activated receptor, retinoid X receptor, CCAAT/enhancer binding protein, and cAMP-response element-binding protein regulatory motifs in nuclear extracts when mice reach adulthood. Exposure of adult mice to the cold, which reactivates Ucp1 expression, leads to a re-accumulation of factors in the nucleus. We propose that transcription factors are sequestered in the cytoplasm as mice age under conditions of reduced thermogenesis. Changes in isoform sub-types for peroxisome proliferator-activated receptor-gamma and cAMP-response element-binding proteins indicate an additional level of control on gene expression during thermogenesis. The increased movement of the RIIbeta protein kinase A regulatory subunit into the nucleus with age suggests a mechanism for regulating the phosphorylation of transcription factors in the nucleus in response to the thermogenic requirements of the animal. Nuclear factor-kappaB has been used as a model to demonstrate that the nuclear localization of transcription factors in brown fat are reduced during post-natal development. Furthermore, it was found by immunofluorescence that adrenergic stimulation of primary adipocyte cultures causes an increase of both the protein kinase A catalytic alpha-subunit and nuclear factor-kappaB into the nucleus.
Collapse
Affiliation(s)
- Jong S Rim
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA
| | | | | | | |
Collapse
|
562
|
Abstract
Transcriptional coregulators modulate the activity of transcription factors and are required for the proper regulation of gene expression. One transcriptional coactivator, peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), plays an important role in the control of energy metabolism and has been associated with type 2 diabetes. A recent paper by Fan et al. provides new information about the posttranslational regulation of PGC-1alpha activity. This Perspective discusses the implications of these findings with respect to diabetes and aging.
Collapse
Affiliation(s)
- Danielle Melloul
- Department of Endocrinology at Hadassah University Hospital, Jerusalem 91120, Israel
| | | |
Collapse
|
563
|
Smith CL, O'Malley BW. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 2004; 25:45-71. [PMID: 14769827 DOI: 10.1210/er.2003-0023] [Citation(s) in RCA: 645] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ligands for the nuclear receptor superfamily control many aspects of biology, including development, reproduction, and homeostasis, through regulation of the transcriptional activity of their cognate receptors. Selective receptor modulators (SRMs) are receptor ligands that exhibit agonistic or antagonistic biocharacter in a cell- and tissue context-dependent manner. The prototypical SRM is tamoxifen, which as a selective estrogen receptor modulator, can activate or inhibit estrogen receptor action. SRM-induced alterations in the conformation of the ligand-binding domains of nuclear receptors influence their abilities to interact with other proteins, such as coactivators and corepressors. It has been postulated, therefore, that the relative balance of coactivator and corepressor expression within a given target cell determines the relative agonist vs. antagonist activity of SRMs. However, recent evidence reveals that the cellular environment also plays a critical role in determining SRM biocharacter. Cellular signaling influences the activity and subcellular localization of coactivators and corepressors as well as nuclear receptors, and this contributes to gene-, cell-, and tissue-specific responses to SRM ligands. Increased understanding of the effect of cellular environment on nuclear receptors and their coregulators has the potential to open the field of SRM discovery and research to many members of the nuclear receptor superfamily.
Collapse
Affiliation(s)
- Carolyn L Smith
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
564
|
Fan M, Rhee J, St-Pierre J, Handschin C, Puigserver P, Lin J, Jäeger S, Erdjument-Bromage H, Tempst P, Spiegelman BM. Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: modulation by p38 MAPK. Genes Dev 2004; 18:278-89. [PMID: 14744933 PMCID: PMC338281 DOI: 10.1101/gad.1152204] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transcriptional coactivator PPAR gamma coactivator 1 alpha (PGC-1alpha) is a key regulator of metabolic processes such as mitochondrial biogenesis and respiration in muscle and gluconeogenesis in liver. Reduced levels of PGC-1alpha in humans have been associated with type II diabetes. PGC-1alpha contains a negative regulatory domain that attenuates its transcriptional activity. This negative regulation is removed by phosphorylation of PGC-1alpha by p38 MAPK, an important kinase downstream of cytokine signaling in muscle and beta-adrenergic signaling in brown fat. We describe here the identification of p160 myb binding protein (p160MBP) as a repressor of PGC-1alpha. The binding and repression of PGC-1alpha by p160MBP is disrupted by p38 MAPK phosphorylation of PGC-1alpha. Adenoviral expression of p160MBP in myoblasts strongly reduces PGC-1alpha's ability to stimulate mitochondrial respiration and the expression of the genes of the electron transport system. This repression does not require removal of PGC-1alpha from chromatin, suggesting that p160MBP is or recruits a direct transcriptional suppressor. Overall, these data indicate that p160MBP is a powerful negative regulator of PGC-1alpha function and provide a molecular mechanism for the activation of PGC-1alpha by p38 MAPK. The discovery of p160MBP as a PGC-1alpha regulator has important implications for the understanding of energy balance and diabetes.
Collapse
Affiliation(s)
- Melina Fan
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
565
|
Russell LK, Mansfield CM, Lehman JJ, Kovacs A, Courtois M, Saffitz JE, Medeiros DM, Valencik ML, McDonald JA, Kelly DP. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res 2004; 94:525-33. [PMID: 14726475 DOI: 10.1161/01.res.0000117088.36577.eb] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent evidence has identified the peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) as a regulator of cardiac energy metabolism and mitochondrial biogenesis. We describe the development of a transgenic system that permits inducible, cardiac-specific overexpression of PGC-1alpha. Expression of the PGC-1alpha transgene in this system (tet-on PGC-1alpha) is cardiac-specific in the presence of doxycycline (dox) and is not leaky in the absence of dox. Overexpression of PGC-1alpha in tet-on PGC-1alpha mice during the neonatal stages leads to a dramatic increase in cardiac mitochondrial number and size coincident with upregulation of gene markers associated with mitochondrial biogenesis. In contrast, overexpression of PGC-1alpha in the hearts of adult mice leads to a modest increase in mitochondrial number, derangements of mitochondrial ultrastructure, and development of cardiomyopathy. The cardiomyopathy in adult tet-on PGC-1alpha mice is characterized by an increase in ventricular mass and chamber dilatation. Surprisingly, removal of dox and cessation of PGC-1alpha overexpression in adult mice results in complete reversal of cardiac dysfunction within 4 weeks. These results indicate that PGC-1alpha drives mitochondrial biogenesis in a developmental stage-dependent manner permissive during the neonatal period. This unique murine model should prove useful for the study of the molecular regulatory programs governing mitochondrial biogenesis and characterization of the relationship between mitochondrial dysfunction and cardiomyopathy and as a general model of inducible, reversible cardiomyopathy.
Collapse
MESH Headings
- Adenosine Triphosphate/biosynthesis
- Age Factors
- Animals
- Animals, Newborn
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Disease Models, Animal
- Doxycycline/pharmacology
- Energy Metabolism
- Gene Expression Regulation, Developmental/drug effects
- Genes, Synthetic
- Mice
- Mice, Transgenic
- Mitochondria, Heart/physiology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Myosin Heavy Chains/genetics
- Organ Specificity
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Promoter Regions, Genetic/genetics
- Recombinant Fusion Proteins/physiology
- Regulatory Sequences, Nucleic Acid/drug effects
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transcription Factors
- Transgenes
Collapse
Affiliation(s)
- Laurie K Russell
- Department of Medicine, Washington University School of Medicine, St Louis, Mo 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
566
|
Abstract
A major function of the mitogen-activated protein kinase (MAPK) pathways is to control eukaryotic gene expression programmes in response to extracellular signals. MAPKs directly control gene expression by phosphorylating transcription factors. However, it is becoming clear that transcriptional regulation in response to MAPK signaling is more complex. MAPKs can also target coactivators and corepressors and affect nucleosomal structure by inducing histone modifications. Furthermore, multiple inputs into individual promoters can be elicited by MAPKs by targeting different components of the same coregulatory complex or by triggering different events on the same transcription factor. "Postgenomic approaches" are beginning to impact on our understanding of these gene regulatory networks. In this review, we summarise the current knowledge of MAPK-mediated gene regulation, and focus on how complexities in signaling outcomes are achieved and how this relates to physiological processes.
Collapse
Affiliation(s)
- Shen-Hsi Yang
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
567
|
Shin DJ, Campos JA, Gil G, Osborne TF. PGC-1alpha activates CYP7A1 and bile acid biosynthesis. J Biol Chem 2003; 278:50047-52. [PMID: 14522988 DOI: 10.1074/jbc.m309736200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholesterol 7-alpha-hydroxylase (CYP7A1) is the key enzyme that commits cholesterol to the neutral bile acid biosynthesis pathway and is highly regulated. In the current studies, we have uncovered a role for the transcriptional co-activator PGC-1alpha in CYP7A1 gene transcription. PGC-1alpha plays a vital role in adaptive thermogenesis in brown adipose tissue and stimulates genes important to mitochondrial function and oxidative metabolism. It is also involved in the activation of hepatic gluconeogenesic gene expression during fasting. Because the mRNA for CYP7A1 was also induced in mouse liver by fasting, we reasoned that PGC-1alpha might be an important co-activator for CYP7A1. Here we show that PGC-1alpha and CYP7A1 are also co-induced in livers of mice in response to streptozotocin induced diabetes. Additionally, infection of cultured HepG2 cells with a recombinant adenovirus expressing PGC-1alpha directly activates CYP7A1 gene expression and increases bile acid biosynthesis as well. Furthermore, we show that PGC-1alpha activates the CYP7A1 promoter directly in transient transfection assays in cultured cells. Thus, PGC-1alpha is a key activator of CYP7A1 and bile acid biosynthesis and is likely responsible for the fasting and diabetes dependent induction of CYP7A1. PGC-1alpha has already been shown to be a critical activator of several other oxidative processes including adaptive thermogenesis and fatty acid oxidation. Our studies provide further evidence of the fundamental role played by PGC-1alpha in oxidative metabolism and define PGC-1alpha as a link between diabetes and bile acid metabolism.
Collapse
Affiliation(s)
- Dong-Ju Shin
- Department of Molecular Biology and Biochemistry, University of California, Irvine California 92697-3900, USA
| | | | | | | |
Collapse
|
568
|
Argilés JM, Moore-Carrasco R, Busquets S, López-Soriano FJ. Catabolic mediators as targets for cancer cachexia. Drug Discov Today 2003; 8:838-44. [PMID: 12963320 DOI: 10.1016/s1359-6446(03)02826-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cachexia syndrome, characterized by a marked weight loss, anorexia, asthenia and anaemia, is invariably associated with the growth of a tumour and leads to a malnutrition status caused by the induction of anorexia or decreased food intake. In addition, the competition for nutrients between the tumour and the host results in an accelerated catabolism state, which promotes severe metabolic disturbances in the patient. The search for the cachectic factor(s) started a long time ago, and many scientific and economic efforts have been devoted to its discovery, but we are still a long way from a complete answer. The present review aims to evaluate the different molecular mechanisms and catabolic mediators (both humoural and tumoural) that are involved in cancer cachexia and to discuss their potential as targets for future clinical investigations.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028-Barcelona, Spain
| | | | | | | |
Collapse
|
569
|
Baar K, Song Z, Semenkovich CF, Jones TE, Han DH, Nolte LA, Ojuka EO, Chen M, Holloszy JO. Skeletal muscle overexpression of nuclear respiratory factor 1 increases glucose transport capacity. FASEB J 2003; 17:1666-73. [PMID: 12958173 DOI: 10.1096/fj.03-0049com] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nuclear respiratory factor 1 (NRF-1) is a transcriptional activator of nuclear genes that encode a range of mitochondrial proteins including cytochrome c, various other respiratory chain subunits, and delta-aminolevulinate synthase. Activation of NRF-1 in fibroblasts has been shown to induce increases in cytochrome c expression and mitochondrial respiratory capacity. To further evaluate the role of NRF-1 in the regulation of mitochondrial biogenesis and respiratory capacity, we generated transgenic mice overexpressing NRF-1 in skeletal muscle. Cytochrome c expression was increased approximately twofold and delta-aminolevulinate synthase was increased approximately 50% in NRF-1 transgenic muscle. The levels of some mitochondrial proteins were increased 50-60%, while others were unchanged. Muscle respiratory capacity was not increased in the NRF-1 transgenic mice. A finding that provides new insight regarding the role of NRF-1 was that expression of MEF2A and GLUT4 was increased in NRF-1 transgenic muscle. The increase in GLUT4 was associated with a proportional increase in insulin-stimulated glucose transport. These results show that an isolated increase in NRF-1 is not sufficient to bring about a coordinated increase in expression of all of the proteins necessary for assembly of functional mitochondria. They also provide the new information that NRF-1 overexpression results in increased expression of GLUT4.
Collapse
Affiliation(s)
- Keith Baar
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
570
|
Lin J, Tarr PT, Yang R, Rhee J, Puigserver P, Newgard CB, Spiegelman BM. PGC-1beta in the regulation of hepatic glucose and energy metabolism. J Biol Chem 2003; 278:30843-8. [PMID: 12807885 DOI: 10.1074/jbc.m303643200] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) is a transcriptional coactivator that regulates multiple aspects of cellular energy metabolism, including mitochondrial biogenesis, hepatic gluconeogenesis, and beta-oxidation of fatty acids. PGC-1alpha mRNA levels are increased in both type-1 and type-2 diabetes and may contribute to elevated hepatic glucose production in diabetic states. We have recently described PGC-1beta, a novel transcriptional coactivator that is a homolog of PGC-1alpha. Although PGC-1beta shares significant sequence similarity and tissue distribution with PGC-1alpha, the biological activities of PGC-1beta in the regulation of cellular metabolism is unknown. In this study, we used an adenoviral-mediated expression system to study the function of PGC-1beta both in cultured hepatocytes and in the liver of rats. PGC-1beta, like PGC-1alpha, potently induces the expression of an array of mitochondrial genes involved in oxidative metabolism. However, in contrast to PGC-1alpha, PGC-1beta poorly activates the expression of gluconeogenic genes in hepatocytes or liver in vivo, illustrating that these two coactivators play distinct roles in hepatic glucose metabolism. The reduced ability of PGC-1beta to induce gluconeogenic genes is due, at least in part, to its inability to physically associate with and coactivate hepatic nuclear receptor 4alpha (HNF4alpha) and forkhead transcription factor O1 (FOXO1), two critical transcription factors that mediate the activation of gluconeogenic gene expression by PGC-1alpha. These data illustrate that PGC-1beta and PGC-1alpha have distinct arrays of activities in hepatic energy metabolism.
Collapse
Affiliation(s)
- Jiandie Lin
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
571
|
Abstract
PURPOSE OF REVIEW The aim of the present review is to summarize and update the role of different cytokines in the pathogenesis of cancer cachexia and to provide therapeutic strategies based on cytokine action. RECENT FINDINGS Cancer cachexia is a syndrome characterized by a marked weight loss, anorexia, asthenia and anemia. The cachectic state is invariably associated with the presence and growth of the tumor and leads to a malnutrition status due to the induction of anorexia or decreased food intake. In addition, the competition for nutrients between the tumor and the host leads to an accelerated starvation state which promotes severe metabolic disturbances in the host, including hypermetabolism, which leads to an increased energetic inefficiency. Different cytokines are clearly implicated in this process, possibly being responsible for anorexia, hypermetabolism and many other metabolic abnormalities, such as muscle proteolysis and apoptosis. SUMMARY Although the search for the cachectic factor(s) started a long time ago, and although many scientific and economic efforts have been devoted to its discovery, we are still a long way from knowing the whole truth. A lot of progress has been made, however, in understanding the role of different cytokines - tumor necrosis factor and IL-6 in particular - in muscle wasting associated with cancer cachexia, perhaps the most paradigmatic feature of this complex syndrome.
Collapse
Affiliation(s)
- Josep M Argilés
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | | | | |
Collapse
|
572
|
Abstract
This review addresses the mechanisms by which mitochondrial structure and function are regulated, with a focus on vertebrate muscle. We consider the adaptive remodeling that arises during physiological transitions such as differentiation, development, and contractile activity. Parallels are drawn between such phenotypic changes and the pattern of change arising over evolutionary time, as suggested by interspecies comparisons. We address the physiological and evolutionary relationships between ATP production, thermogenesis, and superoxide generation in the context of mitochondrial function. Our discussion of mitochondrial structure focuses on the regulation of membrane composition and maintenance of the three-dimensional reticulum. Current studies of mitochondrial biogenesis strive to integrate muscle functional parameters with signal transduction and molecular genetics, providing insight into the origins of variation arising between physiological states, fiber types, and species.
Collapse
Affiliation(s)
- Christopher D Moyes
- Departments of Biology and Physiology, Queen's University, Kingston, Ontario Canada, K7L 3N6.
| | | |
Collapse
|
573
|
Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423:762-9. [PMID: 12802337 DOI: 10.1038/nature01705] [Citation(s) in RCA: 2308] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2002] [Accepted: 05/01/2003] [Indexed: 12/12/2022]
Abstract
Adiponectin (also known as 30-kDa adipocyte complement-related protein; Acrp30) is a hormone secreted by adipocytes that acts as an antidiabetic and anti-atherogenic adipokine. Levels of adiponectin in the blood are decreased under conditions of obesity, insulin resistance and type 2 diabetes. Administration of adiponectin causes glucose-lowering effects and ameliorates insulin resistance in mice. Conversely, adiponectin-deficient mice exhibit insulin resistance and diabetes. This insulin-sensitizing effect of adiponectin seems to be mediated by an increase in fatty-acid oxidation through activation of AMP kinase and PPAR-alpha. Here we report the cloning of complementary DNAs encoding adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) by expression cloning. AdipoR1 is abundantly expressed in skeletal muscle, whereas AdipoR2 is predominantly expressed in the liver. These two adiponectin receptors are predicted to contain seven transmembrane domains, but to be structurally and functionally distinct from G-protein-coupled receptors. Expression of AdipoR1/R2 or suppression of AdipoR1/R2 expression by small-interfering RNA supports our conclusion that they serve as receptors for globular and full-length adiponectin, and that they mediate increased AMP kinase and PPAR-alpha ligand activities, as well as fatty-acid oxidation and glucose uptake by adiponectin.
Collapse
Affiliation(s)
- Toshimasa Yamauchi
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
574
|
Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A 2003; 100:7111-6. [PMID: 12764228 PMCID: PMC165838 DOI: 10.1073/pnas.1232352100] [Citation(s) in RCA: 594] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle adapts to chronic physical activity by inducing mitochondrial biogenesis and switching proportions of muscle fibers from type II to type I. Several major factors involved in this process have been identified, such as the calcium/calmodulin-dependent protein kinase IV (CaMKIV), calcineurin A (CnA), and the transcriptional component peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha). Transgenic expression of PGC-1alpha recently has been shown to dramatically increase the content of type I muscle fibers in skeletal muscle, but the relationship between PGC-1alpha expression and the key components in calcium signaling is not clear. In this report, we show that the PGC-1alpha promoter is regulated by both CaMKIV and CnA activity. CaMKIV activates PGC-1alpha largely through the binding of cAMP response element-binding protein to the PGC-1alpha promoter. Moreover, we show that a positive feedback loop exists between PGC-1alpha and members of the myocyte enhancer factor 2 (MEF2) family of transcription factors. MEF2s bind to the PGC-1alpha promoter and activate it, predominantly when coactivated by PGC-1alpha. MEF2 activity is stimulated further by CnA signaling. These findings imply a unified pathway, integrating key regulators of calcium signaling with the transcriptional switch PGC-1alpha. Furthermore, these data suggest an autofeedback loop whereby the calcium-signaling pathway may result in a stable induction of PGC-1alpha, contributing to the relatively stable nature of muscle fiber-type determination.
Collapse
Affiliation(s)
- Christoph Handschin
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
575
|
Irrcher I, Adhihetty PJ, Sheehan T, Joseph AM, Hood DA. PPARgamma coactivator-1alpha expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations. Am J Physiol Cell Physiol 2003; 284:C1669-77. [PMID: 12734114 DOI: 10.1152/ajpcell.00409.2002] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcriptional coactivator the peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) has been identified as an important mediator of mitochondrial biogenesis based on its ability to interact with transcription factors that activate nuclear genes encoding mitochondrial proteins. The induction of PGC-1alpha protein expression under conditions that provoke mitochondrial biogenesis, such as contractile activity or thyroid hormone (T(3)) treatment, is not fully characterized. Thus we related PGC-1alpha protein expression to cytochrome c oxidase (COX) activity in 1) tissues of varying oxidative capacities, 2) tissues from animals treated with T(3), and 3) skeletal muscle subject to contractile activity both in cell culture and in vivo. Our results demonstrate a strong positive correlation (r = 0.74; P < 0.05) between changes in PGC-1alpha and COX activity, used as an index of mitochondrial adaptations. The highest constitutive levels of PGC-1alpha were found in the heart, whereas the lowest were measured in fast-twitch white muscle and liver. T(3) increased PGC-1alpha content similarly in both fast- and slow-twitch muscle, as well as in the liver, but not in heart. T(3) also induced early (6 h) increases in AMP-activated protein kinase (AMPKalpha) activity, as well as later (5 day) increases in p38 MAP kinase activity in slow-twitch, but not in fast-twitch, muscle. Contractile activity provoked early increases in PGC-1alpha, coincident with increases in mitochondrial transcription factor A (Tfam), and nuclear respiratory factor-1 (NRF-1) protein expression, suggesting that PGC-1alpha is physiologically important in coordinating the expression of the nuclear and mitochondrial genomes. Ca(2+) ionophore treatment of muscle cells led to an approximately threefold increase in PGC-1alpha protein, and contractile activity induced rapid and marked increases in both p38 MAP kinase and AMPKalpha activities. 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) treatment of muscle cells also led to parallel increases in AMPKalpha activity and PGC-1alpha protein levels. These data are consistent with observations that indicate that increases in PGC-1alpha protein are affected by Ca(2+) signaling mechanisms, AMPKalpha activity, as well as posttranslational phosphorylation events that increase PGC-1alpha protein stability. Our data support a role for PGC-1alpha in the physiological regulation of mitochondrial content in a variety of tissues and suggest that increases in PGC-1alpha expression form part of a unifying pathway that promotes both T(3)- and contractile activity-induced mitochondrial adaptations.
Collapse
Affiliation(s)
- Isabella Irrcher
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | |
Collapse
|
576
|
Weng S, Zemany L, Standley KN, Novack DV, La Regina M, Bernal-Mizrachi C, Coleman T, Semenkovich CF. Beta3 integrin deficiency promotes atherosclerosis and pulmonary inflammation in high-fat-fed, hyperlipidemic mice. Proc Natl Acad Sci U S A 2003; 100:6730-5. [PMID: 12746502 PMCID: PMC164515 DOI: 10.1073/pnas.1137612100] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hyperlipidemia promotes the chronic inflammatory disease atherosclerosis through poorly understood mechanisms. Atherogenic lipoproteins activate platelets, but it is unknown whether platelets contribute to early inflammatory atherosclerotic lesions. To address the role of platelet aggregation in diet-induced vascular disease, we studied beta3 integrin-deficient mice (lacking platelet integrin alphaIIbbeta3 and the widely expressed nonplatelet integrin alphavbeta3) in two models of atherosclerosis, apolipoprotein E (apoE)-null and low-density lipoprotein receptor (LDLR)-null mice. Unexpectedly, a high-fat, Western-type (but not a low-fat) diet caused death in two-thirds of the beta3-/-apoE-/- and half of the beta3-/-LDLR-/- mice due to noninfectious pneumonitis. In animals from both models surviving high-fat feeding, pneumonitis was absent, but aortic atherosclerosis was 2- to 6-fold greater in beta3-/- compared with beta+/+ littermates. Expression of CD36, CD40L, and CD40 was increased in lungs of beta3-/-LDLR-/- mice. Each was also increased in smooth muscle cells cultured from beta3-deficient mice and suppressed by retroviral reconstitution of beta3. These data show that the platelet defect caused by alphaIIbbeta3 deficiency does not impair atherosclerotic lesion initiation. They also suggest that alphavbeta3 has a suppressive effect on inflammation, the loss of which induces atherogenic mediators that are amplified by diet-induced hyperlipidemia.
Collapse
Affiliation(s)
- Sherry Weng
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
577
|
Moore ML, Park EA, McMillin JB. Upstream stimulatory factor represses the induction of carnitine palmitoyltransferase-Ibeta expression by PGC-1. J Biol Chem 2003; 278:17263-8. [PMID: 12611894 DOI: 10.1074/jbc.m210486200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional regulation of carnitine palmitoyltransferase-1beta (CPT-1beta) is coordinated with contractile gene expression through cardiac-enriched transcription factors, GATA4 and SRF. Metabolic modulation of CPT-1beta promoter activity has been described with the stimulation of gene expression by oleate that is mediated through the peroxisome proliferator-activated receptor (PPAR) pathway. The coactivator, peroxisomal proliferator-activated receptor gamma coactivator (PGC-1), enhances gene expression through interactions with nuclear hormone receptors and the myocyte enhancer factor 2 (MEF2) family. PGC-1 and MEF2A synergistically activate CPT-1beta promoter activity. This stimulation is enhanced by mutation of the E-box sequences that flank the MEF2A binding site. These elements bind the upstream stimulatory factors (USF1 and USF2), which activate transcription in CV-1 fibroblasts. However, overexpression of the USF proteins in myocytes depresses CPT-1beta activity and significantly reduces MEF2A and PGC-1 synergy. Co-immunoprecipitation studies demonstrate that PGC-1 and USF2 proteins can physically interact. Our studies demonstrate that PGC-1 stimulates CPT-1beta gene expression through MEF2A. USF proteins have a novel role in repressing the expression of the CPT-1beta gene and modulating the induction by the coactivator, PGC-1.
Collapse
Affiliation(s)
- Meredith L Moore
- Department of Pathology and Laboratory Medicine, The University of Texas Medical School at Houston, UT-Houston Health Science Center, The Texas Medical Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
578
|
Dubuquoy L, Jansson EA, Deeb S, Rakotobe S, Karoui M, Colombel JF, Auwerx J, Pettersson S, Desreumaux P. Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology 2003; 124:1265-76. [PMID: 12730867 DOI: 10.1016/s0016-5085(03)00271-3] [Citation(s) in RCA: 310] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS The peroxisome proliferator-activated receptor gamma (PPAR gamma) has been proposed as a key inhibitor of colitis through attenuation of nuclear factor kappa B (NF-kappa B) activity. In inflammatory bowel disease, activators of NF-kappa B, including the bacterial receptor toll-like receptor (TLR)4, are elevated. We aimed to determine the role of bacteria and their signaling effects on PPAR gamma regulation during inflammatory bowel disease (IBD). METHODS TLR4-transfected Caco-2 cells, germ-free mice, and mice devoid of functional TLR4 (Lps(d)/Lps(d) mice) were assessed for their expression of PPAR gamma in colonic tissues in the presence or absence of bacteria. This nuclear receptor expression and the polymorphisms of gene also were assessed in patients with Crohn's disease (CD) and ulcerative colitis (UC), 2 inflammatory bowel diseases resulting from an abnormal immune response to bacterial antigens. RESULTS TLR4-transfected Caco-2 cells showed that the TLR4 signaling pathway elevated PPAR gamma expression and a PPAR gamma-dependent reporter in an I kappa kappa beta dependent fashion. Murine and human intestinal flora induced PPAR gamma expression in colonic epithelial cells of control mice. PPAR gamma expression was significantly higher in the colon of control compared with Lps(d)/Lps(d) mice. Although PPAR gamma levels appeared normal in patients with CD and controls, UC patients displayed a reduced expression of PPAR gamma confined to colonic epithelial cells, without any mutation in the PPAR gamma gene. CONCLUSIONS These data showed that the commensal intestinal flora affects the expression of PPAR gamma and that PPAR gamma expression is considerably impaired in patients with UC.
Collapse
Affiliation(s)
- Laurent Dubuquoy
- Equipe Propre INSERM 0114 sur la Physiopathologie des Maladies Inflammatoires Intestinales, Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
579
|
Oberkofler H, Schraml E, Krempler F, Patsch W. Potentiation of liver X receptor transcriptional activity by peroxisome-proliferator-activated receptor gamma co-activator 1 alpha. Biochem J 2003; 371:89-96. [PMID: 12470296 PMCID: PMC1223253 DOI: 10.1042/bj20021665] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2002] [Revised: 12/06/2002] [Accepted: 12/09/2002] [Indexed: 01/11/2023]
Abstract
Peroxisome-proliferator-activated receptor (PPAR) gamma co-activator 1 alpha (PGC-1 alpha/PPARGC1) plays an important role in energy metabolism by co-ordinating transcriptional programmes of mitochondrial biogenesis, adaptive thermogenesis and fatty acid beta-oxidation. PGC-1 alpha has also been identified to play a role in the intermediary metabolism by co-activating key transcription factors of hepatic gluconeogenesis and glucose uptake in muscles. In the present study, we show that PGC-1 alpha serves as a co-activator for the liver X receptor (LXR) alpha, known to contribute to the regulation of cellular cholesterol homoeostasis. In transient transfection studies, PGC-1 alpha amplified the LXR-mediated autoregulation of the LXR alpha promoter in a human brown adipocyte line and in 3T3-L1 cells via an LXR response element described previously. LXR-mediated transactivation via a natural LXR response element from the cholesteryl ester transfer-protein gene promoter was also enhanced by PGC-1 alpha in a ligand-dependent manner. Mutational analysis showed that the LXXLL signature motif (L2) of PGC-1 alpha was essential for co-activation of LXR-mediated transcriptional responses. This motif is located in the vicinity of the binding region for a putative repressor described previously. The repressor sequesters PGC-1 alpha from PPAR alpha and the glucocorticoid receptor, and this repressor did not interfere with PGC-1 alpha-mediated co-activation of LXR-dependent gene transcription. Moreover, inhibition of p38 mitogen-activated protein kinase signalling, shown to abolish the co-activation of PPAR alpha by PGC-1 alpha, had only a moderate inhibitory effect on the co-activation of LXR. These results identify PGC-1 alpha as a bona fide LXR co-activator and implicate distinct interfaces of PGC-1 alpha and/or additional cofactors in the modulation of LXR and PPAR alpha transcriptional activities.
Collapse
Affiliation(s)
- Hannes Oberkofler
- Department of Laboratory Medicine, Landeskliniken Salzburg, A-5020 Salzburg, Austria
| | | | | | | |
Collapse
|
580
|
Hammarstedt A, Jansson PA, Wesslau C, Yang X, Smith U. Reduced expression of PGC-1 and insulin-signaling molecules in adipose tissue is associated with insulin resistance. Biochem Biophys Res Commun 2003; 301:578-82. [PMID: 12565902 DOI: 10.1016/s0006-291x(03)00014-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR gamma) co-activator 1 (PGC-1) regulates glucose metabolism and energy expenditure and, thus, potentially insulin sensitivity. We examined the expression of PGC-1, PPAR gamma, insulin receptor substrate-1 (IRS-1), glucose transporter isoform-4 (GLUT-4), and mitochondrial uncoupling protein-1 (UCP-1) in adipose tissue and skeletal muscle from non-obese, non-diabetic insulin-resistant, and insulin-sensitive individuals. PGC-1, both mRNA and protein, was expressed in human adipose tissue and the expression was significantly reduced in insulin-resistant subjects. The expression of PGC-1 correlated with the mRNA levels of IRS-1, GLUT-4, and UCP-1 in adipose tissue. Furthermore, the adipose tissue expression of PGC-1 and IRS-1 correlated with insulin action in vivo. In contrast, no differential expression of PGC-1, GLUT-4, or IRS-1 was found in the skeletal muscle of insulin-resistant vs insulin-sensitive subjects. The findings suggest that PGC-1 may be involved in the differential gene expression and regulation between adipose tissue and skeletal muscle. The combined reduction of PGC-1 and insulin signaling molecules in adipose tissue implicates adipose tissue dysfunction which, in turn, can impair the systemic insulin response in the insulin-resistant subjects.
Collapse
Affiliation(s)
- A Hammarstedt
- The Lundberg Laboratory for Diabetes Research, Department of Internal Medicine, Sahlgrenska University Hospital, SE-413 45 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
581
|
Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 2003; 24:78-90. [PMID: 12588810 DOI: 10.1210/er.2002-0012] [Citation(s) in RCA: 1600] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Investigations of biological programs that are controlled by gene transcription have mainly studied the regulation of transcription factors. However, there are examples in which the primary focus of biological regulation is at the level of a transcriptional coactivator. We have reviewed here the molecular mechanisms and biological programs controlled by the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha). Key cellular signals that control energy and nutrient homeostasis, such as cAMP and cytokine pathways, strongly activate PGC-1 alpha. Once PGC-1 alpha is activated, it powerfully induces and coordinates gene expression that stimulates mitochondrial oxidative metabolism in brown fat, fiber-type switching in skeletal muscle, and multiple aspects of the fasted response in liver. The regulation of these metabolic and cell fate decisions by PGC-1 alpha is achieved through specific interaction with a variety of transcription factors such as nuclear hormone receptors, nuclear respiratory factors, and muscle-specific transcription factors. PGC-1 alpha therefore constitutes one of the first and clearest examples in which biological programs are chiefly regulated by a transcriptional coactivator in response to environmental stimuli. Finally, PGC-1 alpha's control of energy homeostasis suggests that it could be a target for anti-obesity or diabetes drugs.
Collapse
Affiliation(s)
- Pere Puigserver
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
582
|
Tritos NA, Mastaitis JW, Kokkotou EG, Puigserver P, Spiegelman BM, Maratos-Flier E. Characterization of the peroxisome proliferator activated receptor coactivator 1 alpha (PGC 1alpha) expression in the murine brain. Brain Res 2003; 961:255-60. [PMID: 12531492 DOI: 10.1016/s0006-8993(02)03961-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The peroxisome proliferator activated receptor coactivator 1 alpha (PGC-1alpha) is a nuclear transcriptional coactivator that is expressed in brown adipose tissue, brain, heart and kidney as well as cold-exposed skeletal muscle. In liver, white and brown adipose tissue, PGC-1alpha expression is regulated in a manner suggesting a role in energy homeostasis. To characterize PGC-1alpha expression in the rodent brain and to determine brain PGC-1alpha regulation, we used in situ hybridization histochemistry in C57Bl/6J mice and Sprague-Dawley rats. We found that PGC-1alpha is widely expressed in brain areas, including in the olfactory bulb, cerebral cortex, the diagonal band of Broca, the medial septal nucleus, reticular thalamic nucleus, the striatum and globus pallidus, the hippocampus, the substantia nigra, the mesencephalic nucleus of the trigeminal nerve, the cochlear nucleus and the superior olivary complex. In contrast, PGC-1alpha expression was absent in the hypothalamus. To evaluate PGC-1alpha expression under different physiologic states in these various brain areas, we examined expression with fasting, leptin treatment and cold exposure (4 h at 4 degrees C) and found no change, nor was expression changed in the brain of the leptin-deficient ob/ob mice and the hyperleptinemic UCP-DTA mice. Hence, PGC-1alpha is widely expressed in the rodent brain, but is not regulated by states of caloric deficiency, leptin, obesity or cold exposure. Its functional role in the brain requires further study.
Collapse
Affiliation(s)
- Nicholas A Tritos
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
583
|
Teruel T, Hernandez R, Benito M, Lorenzo M. Rosiglitazone and retinoic acid induce uncoupling protein-1 (UCP-1) in a p38 mitogen-activated protein kinase-dependent manner in fetal primary brown adipocytes. J Biol Chem 2003; 278:263-9. [PMID: 12414803 DOI: 10.1074/jbc.m207200200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brown adipose tissue expresses the thermogenic uncoupling protein-1 (UCP-1), which is positively regulated by peroxisome proliferator-activated receptor (PPAR) agonists and retinoids through the activation of the heterodimers PPAR/retinoid X receptor (RXR) and retinoic acid receptor (RAR)/RXR and binding to specific elements in the ucp-1 enhancer. In this study we show that in fetal rat brown adipocyte primary cultures the PPARgamma agonist rosiglitazone (Rosi), as well as retinoic acids 9-cis-retinoic acid and all-trans-retinoic acid also have "extragenic" effects and induce p44/p42 and p38 mitogen-activated protein kinase (p38MAPK) activation. The latter is involved in UCP-1 gene expression, because inhibition of p38MAPK activity with PD169316 impairs the ability of Rosi and retinoids for UCP-1 induction. The inhibitory effects of PD169316 are mimicked by the antioxidant GSH, suggesting a role for reactive oxygenated species (ROS) generation in the increase of UCP-1 expression in response either to Rosi or 9-cis-retinoic acid. Thus, we propose that Rosi and retinoids act as PPAR/RXR and RAR/RXR agonists and also activate p38MAPK. These two coordinated actions could result in a high increase of transcriptional activity on the ucp-1 enhancer and hence on thermogenesis. PPARalpha and gamma agonists but not retinoids also increase UCP-3 expression in fetal brown adipocytes. However, the regulation of UCP-3, which is not involved in thermogenesis, seems to differ from UCP-1 given the fact that is not affected by p38MAPK inhibition.
Collapse
Affiliation(s)
- Teresa Teruel
- Departamento de Bioquimica y Biologia Molecular II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
584
|
Hellemans K, Michalik L, Dittie A, Knorr A, Rombouts K, De Jong J, Heirman C, Quartier E, Schuit F, Wahli W, Geerts A. Peroxisome proliferator-activated receptor-beta signaling contributes to enhanced proliferation of hepatic stellate cells. Gastroenterology 2003; 124:184-201. [PMID: 12512042 DOI: 10.1053/gast.2003.50015] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The peroxisome proliferator-activated nuclear receptors (PPAR-alpha, PPAR-beta, and PPAR-gamma), which modulate the expression of genes involved in energy homeostasis, cell cycle, and immune function, may play a role in hepatic stellate cell activation. Previous studies focused on the decreased expression of PPAR-gamma in hepatic stellate cell activation but did not investigate the expression and role of the PPAR-alpha and -beta isotypes. The aim of this study was to evaluate the expression of the different PPARs during hepatic stellate cell activation in vitro and in situ and to analyze possible factors that might contribute to their expression. In a second part of the study, the effect of a PPAR-beta agonist on acute liver injury was evaluated. METHODS The effects of PPAR isotype-specific ligands on hepatic stellate cell transition were evaluated by bromodeoxyuridine incorporation, gel shifts, immunoprecipitation, and use of antisense PPAR-beta RNA-expressing adenoviruses. Tumor necrosis factor alpha-induced PPAR-beta phosphorylation and expression was evaluated by metabolic labeling and by using specific P38 inhibitors. RESULTS Hepatic stellate cells constitutively express high levels of PPAR-beta, which become further induced during culture activation and in vivo fibrogenesis. No significant expression of PPAR-alpha or -gamma was found. Stimulation of the P38 mitogen-activated protein kinase pathway modulated the expression of PPAR-beta. Transcriptional activation of PPAR-beta by L165041 enhanced hepatic stellate cell proliferation. Treatment of rats with a single bolus of CCl(4) in combination with L165041 further enhanced the expression of fibrotic markers. CONCLUSIONS PPAR-beta is an important signal-transducing factor contributing to hepatic stellate cell proliferation during acute and chronic liver inflammation.
Collapse
Affiliation(s)
- Karine Hellemans
- Laboratory of Molecular Liver Cell Biology, Faculty of Medicine and Pharmacy, Free University of Brussels, Laarbeeklaan 103, 1090 Brussel-Jette, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
585
|
Ichida M, Nemoto S, Finkel T. Identification of a specific molecular repressor of the peroxisome proliferator-activated receptor gamma Coactivator-1 alpha (PGC-1alpha). J Biol Chem 2002; 277:50991-5. [PMID: 12397057 DOI: 10.1074/jbc.m210262200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear co-activator PGC-1alpha is a pivotal regulator of numerous pathways controlling both metabolism and overall energy homeostasis. Inappropriate increases in PGC-1alpha activity have been linked to a number of pathological conditions including heart failure and diabetes mellitus. Previous studies (Puigserver, P., Adelmant, G., Wu, Z., Fan, M., Xu, J., O'Malley, B., and Spiegelman, B. M. (1999) Science 286, 1368-1371) have demonstrated an inhibitory domain within PGC-1alpha that limits transcriptional activity. Using this inhibitory domain in a yeast two-hybrid screen, we demonstrate that PGC-1alpha directly associates with the orphan nuclear receptor estrogen-related receptor-alpha (ERR-alpha). The binding of ERR-alpha to PGC-1alpha requires the C-terminal AF2 domain of ERR-alpha. PGC-1alpha and ERR-alpha have a similar pattern of expression in human tissues, with both being present predominantly in organs with high metabolic needs such as skeletal muscle and kidney. Similarly, we show that in mice physiological stimuli such as fasting coordinately induces PGC-1alpha and ERR-alpha transcription. We also demonstrate that under normal conditions PGC-1alpha is located within discrete nuclear speckles, whereas the expression of ERR-alpha results in PGC-1alpha redistributing uniformly throughout the nucleoplasm. Finally, we show that the expression of ERR-alpha can dramatically and specifically repress PGC-1alpha transcriptional activity. These results suggest a novel mechanism of transcriptional control wherein ERR-alpha can function as a specific molecular repressor of PGC-1alpha activity. In addition, our results suggest that other co-activators might also have specific repressors, thereby identifying another layer of combinatorial complexity in transcriptional regulation.
Collapse
Affiliation(s)
- Masaru Ichida
- Laboratory of Molecular Biology, Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
586
|
Huss JM, Kopp RP, Kelly DP. Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J Biol Chem 2002; 277:40265-74. [PMID: 12181319 DOI: 10.1074/jbc.m206324200] [Citation(s) in RCA: 409] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The transcriptional coactivator PPARgamma coactivator-1alpha (PGC-1alpha) has been characterized as a broad regulator of cellular energy metabolism. Although PGC-1alpha functions through many transcription factors, the PGC-1alpha partners identified to date are unlikely to account for all of its biologic actions. The orphan nuclear receptor estrogen-related receptor alpha (ERRalpha) was identified in a yeast two-hybrid screen of a cardiac cDNA library as a novel PGC-1alpha-binding protein. ERRalpha was implicated previously in regulating the gene encoding medium-chain acyl-CoA dehydrogenase (MCAD), which catalyzes the initial step in mitochondrial fatty acid oxidation. The cardiac perinatal expression pattern of ERRalpha paralleled that of PGC-1alpha and MCAD. Adenoviral-mediated ERRalpha overexpression in primary neonatal cardiac mycoytes induced endogenous MCAD expression. Furthermore, PGC-1alpha enhanced the transactivation of reporter plasmids containing an estrogen response element or the MCAD gene promoter by ERRalpha and the related isoform ERRgamma. In vitro binding experiments demonstrated that ERRalpha interacts with PGC-1alpha via its activation function-2 homology region. Mutagenesis studies revealed that the LXXLL motif at amino acid position 142-146 of PGC-1alpha (L2), necessary for PGC-1alpha interactions with other nuclear receptors, is not required for the PGC-1alpha.ERRalpha interaction. Rather, ERRalpha binds PGC-1alpha primarily through a Leu-rich motif at amino acids 209-213 (Leu-3) and utilizes additional LXXLL-containing domains as accessory binding sites. Thus, the PGC-1alpha.ERRalpha interaction is distinct from that of other nuclear receptor PGC-1alpha partners, including PPARalpha, hepatocyte nuclear factor-4alpha, and estrogen receptor alpha. These results identify ERRalpha and ERRgamma as novel PGC-1alpha interacting proteins, implicate ERR isoforms in the regulation of mitochondrial energy metabolism, and suggest a potential mechanism whereby PGC-1alpha selectively binds transcription factor partners.
Collapse
Affiliation(s)
- Janice M Huss
- Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
587
|
Shi Y, Gaestel M. In the cellular garden of forking paths: how p38 MAPKs signal for downstream assistance. Biol Chem 2002; 383:1519-36. [PMID: 12452429 DOI: 10.1515/bc.2002.173] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved enzymes which connect cell-surface receptors to regulatory targets within cells and convert receptor signals into various outputs. In mammalian cells, four distinct MAPKs have been identified: the extracellular signal-related kinases (ERK)-1/2, the c-jun N-terminal kinases or stress-activated protein kinases 1 (JNK1/2/3, or SAPK1s), the p38 MAPKs (p38 alpha/beta/gamma/delta, or SAPK2s), and the ERK5 or big MAP kinase 1 (BMK1). The p38 MAPK cascade is activated by stress or cytokines and leads to phosphorylation of its central elements, the p38 MAPKs. Downstream of p38 MAPKs there is a diversification and extensive branching of signalling pathways. For that reason, we will focus in this review on the different signalling events that are triggered by p38 activity, and analyse how these events contribute to specific gene expression and cellular responses.
Collapse
Affiliation(s)
- Yu Shi
- Hannover Medical School, Institute of Biochemistry, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | |
Collapse
|
588
|
Abstract
PURPOSE OF REVIEW This review summarizes recent developments concerning the mechanisms of skeletal muscle and adipose tissue breakdown, which are a hallmark of cachexia during many diseases. Current knowledge on the hypermetabolism which often contributes to cachexia is also considered. RECENT FINDINGS Recent studies have identified interactions between Ca2+, proinflammatory cytokines (in particular tumor necrosis factor-alpha) and the activation of transcription factors (e.g. nuclear factor-kappaB) in the stimulation of major proteolytic pathways in cachexia. Progress has also been made in explaining the inhibiting effects of several drugs on protein breakdown. Advances in our understanding of the mechanisms of adipose tissue catabolism in cachexia include demonstrations that (1) tumor necrosis factor-alpha, in addition to its direct lipolytic effect, promotes adipose tissue breakdown by inhibiting adipocyte differentiation and increasing adipocyte apoptosis, (2) interleukin-6 has a lipolytic effect, and (3) chemokines are expressed by adipocytes and interact with tumor necrosis factor-alpha to cause lipolysis. Concerning the hypermetabolism in cachexia, new evidence supports previous theories that uncoupling protein-2 and 3 are primarily involved in the generation of reactive oxygen species and in the control of fatty acid flux across the mitochondrial membrane, respectively. Furthermore, the cytokine-induced transcriptional coactivator-1 for the peroxysome proliferator-activated receptor-gamma was recently identified as a contributor to hypermetabolism. SUMMARY These new insights into major catabolic pathways during cachexia provide a focus for future studies in this area and may help to develop promising therapeutic approaches.
Collapse
Affiliation(s)
- Wolfgang Langhans
- Institute of Animal Sciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.
| |
Collapse
|
589
|
Oberkofler H, Esterbauer H, Linnemayr V, Strosberg AD, Krempler F, Patsch W. Peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1 recruitment regulates PPAR subtype specificity. J Biol Chem 2002; 277:16750-7. [PMID: 11875072 DOI: 10.1074/jbc.m200475200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPAR) alpha and gamma play key roles in the transcriptional control of contrasting metabolic pathways such as adipogenesis and fatty acid beta-oxidation. Both ligand-activated nuclear receptors bind to common target gene response elements and interact with distinct domains of the transcriptional coactivator PGC-1 to attain their full transcriptional potency. Thus, PPAR subtype specificity may be determined by ligand availability and transcription factor or coactivator expression levels. To identify other, perhaps more precise mechanisms contributing to PPAR subtype specificity, we studied PGC-1 recruitment by PPARs using a previously described hormone response element in the human UCP1 promoter and a human brown adipocyte cell line as our model system. As in rodents, PGC-1 is involved in the transcriptional regulation of the UCP1 gene in humans and mediates the effects of PPARalpha and PPARgamma agonists and retinoic acid. Interestingly, a previously postulated PGC-1 repressor selectively affects the PPARalpha-mediated activation of UCP1 gene expression. Furthermore, inhibition of p38 MAPK signaling, known to regulate the PGC-1/repressor interaction, decreases the stimulatory effect of PPARalpha agonist treatment without reducing the response to thiazolidinedione or retinoic acid. These data support a model whereby PPAR subtype specificity is regulated by recruitment of PGC-1.
Collapse
Affiliation(s)
- Hannes Oberkofler
- Department of Laboratory Medicine, Landeskliniken Salzburg, A-5020 Austria
| | | | | | | | | | | |
Collapse
|
590
|
Tracey KJ. Lethal weight loss: the focus shifts to signal transduction. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pe21. [PMID: 11983938 DOI: 10.1126/stke.2002.130.pe21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A hallmark of life-threatening disease in vertebrates is cachexia, a syndrome of weight loss with progressive erosion of body protein. Tumor necrosis factor (TNF) and other endogenously derived factors are sufficient to mediate the pathophysiology of cachexia in vivo, but the downstream signaling pathways have remained a mystery until recently. Tracey describes the involvement of the stress-activated protein kinase p38 and the transcriptional regulators nuclear factor kappa B and peroxisome proliferator-activated receptor gamma coactivator-1 in causing alterations in myocytes and skeletal muscle physiology. Furthermore, soluble factors including TNF and proteolysis-inducing factor may enhance protein degradation through the ubiquitin-proteosome pathway.
Collapse
Affiliation(s)
- Kevin J Tracey
- North Shore-Long Island Jewish Research Institute, Manhasset, NY 11020, USA.
| |
Collapse
|
591
|
|