551
|
Näär AM, Beaurang PA, Robinson KM, Oliner JD, Avizonis D, Scheek S, Zwicker J, Kadonaga JT, Tjian R. Chromatin, TAFs, and a novel multiprotein coactivator are required for synergistic activation by Sp1 and SREBP-1a in vitro. Genes Dev 1998; 12:3020-31. [PMID: 9765204 PMCID: PMC317191 DOI: 10.1101/gad.12.19.3020] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/1998] [Accepted: 08/10/1998] [Indexed: 01/09/2023]
Abstract
The promoter selectivity factor Sp1 often cooperates with other enhancer-binding proteins to activate transcription. To study the molecular underpinnings of these regulatory events, we have reconstituted in vitro the synergy observed in vivo between Sp1 and the sterol-regulated factor SREBP-1a at the low density lipoprotein receptor (LDLR) promoter. Using a highly purified human transcription system, we found that chromatin, TAFs, and a novel SREBP-binding coactivator activity, which includes CBP, are all required to mediate full synergistic activation by Sp1 and SREBP-1a. The SREBP-binding domain of CBP inhibits activation by SREBP-1a and Sp1 in a dominant-negative fashion that is both chromatin- and activator-specific. Whereas recombinant CBP alone is not sufficient to mediate activation, a human cellular fraction containing CBP can support high levels of chromatin-dependent synergistic activation. Purification of this activity to near homogeneity resulted in the identification of a multiprotein coactivator, including CBP, that selectively binds to the SREBP-1a activation domain and is capable of mediating high levels of synergistic activation by SREBP/Sp1 on chromatin templates. The development of a reconstituted chromatin transcription system has allowed us to isolate a novel coactivator that is recruited by the SREBP-1a activation domain and that functions in concert with TFIID to coordinate the action of multiple activators at complex promoters in the context of chromatin.
Collapse
Affiliation(s)
- A M Näär
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
552
|
Chang CJ, Chen YL, Lee SC. Coactivator TIF1beta interacts with transcription factor C/EBPbeta and glucocorticoid receptor to induce alpha1-acid glycoprotein gene expression. Mol Cell Biol 1998; 18:5880-7. [PMID: 9742105 PMCID: PMC109174 DOI: 10.1128/mcb.18.10.5880] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1998] [Accepted: 07/14/1998] [Indexed: 11/20/2022] Open
Abstract
The transcription of the alpha1-acid glycoprotein gene is induced by inflammatory cytokines and glucocorticoids. C/EBPbeta is a major transcription factor involved in the induction of the agp gene by some cytokines. In this report, we have identified a novel transcriptional intermediary factor, TIF1beta, which could enhance the transcription of the agp gene by the glucocorticoid receptor (GR) and C/EBPbeta. TIF1beta belongs to a subgroup of RING (really interesting new gene) finger proteins that contain a RING finger preceding two B box-type fingers and a putative coiled-coil domain (RBCC domain). Immunoprecipitation experiments showed that the interaction between GR and TIF1beta is ligand independent. The overexpression of the TIF1beta gene enhances GR-regulated expression in a ligand- and glucocorticoid-responsive element (GRE)-dependent manner. TIF1beta can also augment C/EBPbeta-mediated activity on wild-type and GRE-mutated agp genes, but this augmentation is diminished when all three C/EBPbeta-binding elements are mutated. Functional and biochemical characterizations indicated that the bZIP domain of C/EBPbeta and the RBCC domain, plant homeodomain finger, and bromodomain of TIF1beta are crucial for the interactions of these proteins. Taken together, these results suggest that TIF1beta serves as a converging mediator of signal transduction pathways of glucocorticoids and some inflammatory cytokines.
Collapse
Affiliation(s)
- C J Chang
- Institute of Biological Chemistry, Academia Sinica, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
553
|
Benkirane M, Chun RF, Xiao H, Ogryzko VV, Howard BH, Nakatani Y, Jeang KT. Activation of integrated provirus requires histone acetyltransferase. p300 and P/CAF are coactivators for HIV-1 Tat. J Biol Chem 1998; 273:24898-905. [PMID: 9733796 DOI: 10.1074/jbc.273.38.24898] [Citation(s) in RCA: 237] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A unique aspect of the retrovirus life cycle is the obligatory integration of the provirus into host cell chromosomes. Unlike viruses that do not integrate, retroviruses must conserve an ability to activate transcription from a chromatin context. Human immunodeficiency virus (HIV)-1 encodes an unusual and an unusually potent transcriptional transactivator, Tat, which binds to a nascent viral leader RNA, TAR. The action of Tat has been well studied in various reductive model systems; however, the physiological mechanism through which Tat gains access to chromatin-associated proviral long terminal repeats (LTRs) is not understood. We show here that a nuclear histone acetyltransferase activity associates with Tat. Intracellularly, we found that Tat forms a ternary complex with p300 and P/CAF, two histone acetyltransferases (HATs). A murine cell defect in Tat transactivation of the HIV-1 LTR was linked to the reduced abundance of p300 and P/CAF. Thus, overexpression of p300 and P/CAF reconstituted Tat transactivation of the HIV-1 LTR in NIH3T3 cells to a level similar to that observed for human cells. By using transdominant p300 or P/CAF mutants that lack enzymatic activity, we delineated a requirement for the HAT component from the latter but not the former in Tat function. Finally, we observed that Tat-associated HAT is preferentially important for transactivation of integrated, but not unintegrated, HIV-1 LTR.
Collapse
Affiliation(s)
- M Benkirane
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
554
|
Jeannin E, Robyr D, Desvergne B. Transcriptional regulatory patterns of the myelin basic protein and malic enzyme genes by the thyroid hormone receptors alpha1 and beta1. J Biol Chem 1998; 273:24239-48. [PMID: 9727048 DOI: 10.1074/jbc.273.37.24239] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While there is evidence that the two ubiquitously expressed thyroid hormone (T3) receptors, TRalpha1 and TRbeta1, have distinct functional specificities, the mechanism by which they discriminate potential target genes remains largely unexplained. In this study, we demonstrate that the thyroid hormone response elements (TRE) from the malic enzyme and myelin basic protein genes (METRE and MBPTRE) respectively, are not functionally equivalent. The METRE, which is a direct repeat motif with a 4-base pair gap between the two half-site hexamers binds thyroid hormone receptor as a heterodimer with 9-cis-retinoic acid receptor (RXR) and mediates a high T3-dependent activation in response to TRalpha1 or TRbeta1 in NIH3T3 cells. In contrast, the MBPTRE, which consists of an inverted palindrome formed by two hexamers spaced by 6 base pairs, confers an efficient transactivation by TRbeta1 but a poor transactivation by TRalpha1. While both receptors form heterodimers with RXR on MBPTRE, the poor transactivation by TRalpha1 correlates also with its ability to bind efficiently as a monomer. This monomer, which is only observed with TRalpha1 bound to MBPTRE, interacts neither with N-CoR nor with SRC-1, explaining its functional inefficacy. However, in Xenopus oocytes, in which RXR proteins are not detectable, the transactivation mediated by TRalpha1 and TRbeta1 is equivalent and independent of a RXR supply, raising the question of the identity of the thyroid hormone receptor partner in these cells. Thus, in mammalian cells, the binding characteristics of TRalpha1 to MBPTRE (i.e. high monomer binding efficiency and low transactivation activity) might explain the particular pattern of T3 responsiveness of MBP gene expression during central nervous system development.
Collapse
Affiliation(s)
- E Jeannin
- Institut de Biologie Animale, Université de Lausanne, Bâtiment de Biologie, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
555
|
Westin S, Kurokawa R, Nolte RT, Wisely GB, McInerney EM, Rose DW, Milburn MV, Rosenfeld MG, Glass CK. Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature 1998; 395:199-202. [PMID: 9744281 DOI: 10.1038/26040] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinoic-acid receptor-alpha (RAR-alpha) and peroxisome proliferator-activated receptor-gamma (PPAR-gamma) are members of the nuclear-receptor superfamily that bind to DNA as heterodimers with retinoid-X receptors (RXRs). PPAR-RXR heterodimers can be activated by PPAR or RXR ligands, whereas RAR-RXR heterodimers are selectively activated by RAR ligands only, because of allosteric inhibition of the binding of ligands to RXR by RAR. However, RXR ligands can potentiate the transcriptional effects of RAR ligands in cells. Transcriptional activation by nuclear receptors requires a carboxy-terminal helical region, termed activation function-2 (AF-2), that forms part of the ligand-binding pocket and undergoes a conformational change required for the recruitment of co-activator proteins, including NCoA-1/SRC-1. Here we show that allosteric inhibition of RXR results from a rotation of the RXR AF-2 helix that places it in contact with the RAR coactivator-binding site. Recruitment of an LXXLL motif of SRC-1 to RAR in response to ligand displaces the RXR AF-2 domain, allowing RXR ligands to bind and promote the binding of a second LXXLL motif from the same SRC-1 molecule. These results may partly explain the different responses of nuclear-receptor heterodimers to RXR-specific ligands.
Collapse
Affiliation(s)
- S Westin
- Division of Cellular and Molecular Medicine, University of California, San Diego, La Jolla 92093-0651, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
556
|
Chawla S, Hardingham GE, Quinn DR, Bading H. CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science 1998; 281:1505-9. [PMID: 9727976 DOI: 10.1126/science.281.5382.1505] [Citation(s) in RCA: 339] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Recruitment of the coactivator, CREB binding protein (CBP), by signal-regulated transcription factors, such as CREB [adenosine 3', 5'-monophosphate (cAMP) response element binding protein], is critical for stimulation of gene expression. The mouse pituitary cell line AtT20 was used to show that the CBP recruitment step (CREB phosphorylation on serine-133) can be uncoupled from CREB/CBP-activated transcription. CBP was found to contain a signal-regulated transcriptional activation domain that is controlled by nuclear calcium and calcium/calmodulin-dependent (CaM) protein kinase IV and by cAMP. Cytoplasmic calcium signals that stimulate the Ras mitogen-activated protein kinase signaling cascade or expression of the activated form of Ras provided the CBP recruitment signal but did not increase CBP activity and failed to activate CREB- and CBP-mediated transcription. These results identify CBP as a signal-regulated transcriptional coactivator and define a regulatory role for nuclear calcium and cAMP in CBP-dependent gene expression.
Collapse
Affiliation(s)
- S Chawla
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | |
Collapse
|
557
|
Moilanen AM, Poukka H, Karvonen U, Häkli M, Jänne OA, Palvimo JJ. Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription. Mol Cell Biol 1998; 18:5128-39. [PMID: 9710597 PMCID: PMC109098 DOI: 10.1128/mcb.18.9.5128] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/1997] [Accepted: 06/02/1998] [Indexed: 11/20/2022] Open
Abstract
Using the DNA-binding domain of androgen receptor (AR) as a bait in a yeast two-hybrid screening, we have identified a small nuclear RING finger protein, termed SNURF, that interacts with AR in a hormone-dependent fashion in both yeast and mammalian cells. Physical interaction between AR and SNURF was demonstrated by coimmunoprecipitation from cell extracts and by protein-protein affinity chromatography. Rat SNURF is a highly hydrophilic protein consisting of 194 amino acid residues and comprising a consensus C3HC4 zinc finger (RING) structure in the C-terminal region and a bipartite nuclear localization signal near the N terminus. Immunohistochemical experiments indicated that SNURF is a nuclear protein. SNURF mRNA is expressed in a variety of human and rat tissues. Overexpression of SNURF in cultured mammalian cells enhanced not only androgen, glucocorticoid, and progesterone receptor-dependent transactivation but also basal transcription from steroid-regulated promoters. Mutation of two of the potential Zn2+ coordinating cysteines to serines in the RING finger completely abolished the ability of SNURF to enhance basal transcription, whereas its ability to activate steroid receptor-dependent transcription was maintained, suggesting that there are separate domains in SNURF that mediate interactions with different regulatory factors. SNURF is capable of interacting in vitro with the TATA-binding protein, and the RING finger domain is needed for this interaction. Collectively, we have identified and characterized a ubiquitously expressed RING finger protein, SNURF, that may function as a bridging factor and regulate steroid receptor-dependent transcription by a mechanism different from those of previously identified coactivator or integrator proteins.
Collapse
Affiliation(s)
- A M Moilanen
- Department of Physiology, Institute of Biomedicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
558
|
Moilanen AM, Karvonen U, Poukka H, Jänne OA, Palvimo JJ. Activation of androgen receptor function by a novel nuclear protein kinase. Mol Biol Cell 1998; 9:2527-43. [PMID: 9725910 PMCID: PMC25523 DOI: 10.1091/mbc.9.9.2527] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Androgen receptor (AR) belongs to the nuclear receptor superfamily and mediates the biological actions of male sex steroids. In this work, we have characterized a novel 130-kDa Ser/Thr protein kinase ANPK that interacts with the zinc finger region of AR in vivo and in vitro. The catalytic kinase domain of ANPK shares considerable sequence similarity with the minibrain gene product, a protein kinase suggested to contribute to learning defects associated with Down syndrome. However, the rest of ANPK sequence, including the AR-interacting interface, exhibits no apparent homology with other proteins. ANPK is a nuclear protein that is widely expressed in mammalian tissues. Its overexpression enhances AR-dependent transcription in various cell lines. In addition to the zinc finger region, ligand-binding domain and activation function AF1 of AR are needed, as the activity of AR mutants devoid of these domains was not influenced by ANPK. The receptor protein does not appear to be a substrate for ANPK in vitro, and overexpression of ANPK does not increase the extent of AR phosphorylation in vivo. In view of this, it is likely that ANPK-mediated activation of AR function is exerted through modification of AR-associated proteins, such as coregulatory factors, and/or through stabilization of the receptor protein against degradation.
Collapse
Affiliation(s)
- A M Moilanen
- Department of Physiology, Institute of Biomedicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
559
|
Barrera-Hernandez G, Zhan Q, Wong R, Cheng SY. Thyroid hormone receptor is a negative regulator in p53-mediated signaling pathways. DNA Cell Biol 1998; 17:743-50. [PMID: 9778033 DOI: 10.1089/dna.1998.17.743] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thyroid hormone nuclear receptors (TRs) are ligand-dependent transcription factors which regulate growth, differentiation, and development. The molecular mechanism by which TRs mediated these effects remains unclear. A prevailing hypothesis is that TRs exert their biological effects by cooperating with other transcription factors. We have recently shown that the human TR subtype beta1 (hTRbeta1) interacts with the tumor suppressor p53, which plays a critical role in cell-cycle regulation and tumorigenesis. This interaction of hTRbeta1 with p53 leads to an impairment of TR function. The present study examined whether hTRbeta1 could modulate the function of p53. Mapping of the domains of p53 responsible for the interaction with hTRbeta1 indicated that the regions involved resided in the DNA-binding domain and carboxy terminus of p53. In agreement with this finding, hTRbeta1 increased the binding of p53 to p53 DNA-binding elements. This increase in DNA binding, however, resulted in repression of p53-dependent transcription activation in transfected cells. Furthermore, hTRbeta1 led to an inhibition of the p53-mediated induction of bax and gadd45 expression. In contrast, the p53-induced expression of p21 was not affected by hTRbeta1, suggesting that the expression of p53-regulated genes is differentially modulated by hTRbeta1. Because the expressions of bax, gadd45, and p21 are directly regulated by p53, these results indicate that hTRbeta1 can modulate p53-regulated gene expression and support the hypothesis that there is cross-talk between these two regulatory pathways. The cross-talk between these two transcription factors could play an important role in the biology of normal and cancer cells.
Collapse
Affiliation(s)
- G Barrera-Hernandez
- Laboratory of Molecular Biology, Division of Basic Sciences, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | | | | | | |
Collapse
|
560
|
Takemaru K, Harashima S, Ueda H, Hirose S. Yeast coactivator MBF1 mediates GCN4-dependent transcriptional activation. Mol Cell Biol 1998; 18:4971-6. [PMID: 9710580 PMCID: PMC109081 DOI: 10.1128/mcb.18.9.4971] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional coactivators play a crucial role in gene expression by communicating between regulatory factors and the basal transcription machinery. The coactivator multiprotein bridging factor 1 (MBF1) was originally identified as a bridging molecule that connects the Drosophila nuclear receptor FTZ-F1 and TATA-binding protein (TBP). The MBF1 sequence is highly conserved across species from Saccharomyces cerevisiae to human. Here we provide evidence acquired in vitro and in vivo that yeast MBF1 mediates GCN4-dependent transcriptional activation by bridging the DNA-binding region of GCN4 and TBP. These findings indicate that the coactivator MBF1 functions by recruiting TBP to promoters where DNA-binding regulators are bound.
Collapse
Affiliation(s)
- K Takemaru
- Department of Developmental Genetics, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka-ken 411-8540, Japan
| | | | | | | |
Collapse
|
561
|
Nephew KP, Sheeler CQ, Dudley MD, Gordon S, Nayfield SG, Khan SA. Studies of dehydroepiandrosterone (DHEA) with the human estrogen receptor in yeast. Mol Cell Endocrinol 1998; 143:133-42. [PMID: 9806358 DOI: 10.1016/s0303-7207(98)00128-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dehydroepiandrosterone (DHEA) is a C19 adrenal steroid synthesized in the human adrenal cortex and serving as a biosynthetic precursor to testosterone and 17beta-estradiol. Despite the fact that it is one of the most abundant steroid hormones in circulation, the physiological role of DHEA in humans remains unclear. The action of DHEA itself, such as its interactions with receptors and nuclear transcription factors, is not well understood, and a specific DHEA receptor has yet to be identified. Although the activity of DHEA can be due to its metabolism into androgens and estrogens, DHEA has been shown to interact with the androgen receptor and the estrogen receptor (ER) in vitro. We demonstrate in this study that DHEA (3beta-Hydroxy-5alpha-androstan-17-one) inhibits 17beta-estradiol (E2) binding to its receptor in vivo in yeast. DHEA stimulates human ER dimerization in yeast, as determined by ER fusion protein interactions, GAL4 reconstitution and subsequent measurement of increased beta-galactosidase activity. DHEA causes an increase in estrogen response element-dependent beta-galactosidase activity, demonstrating that the ER dimer induced by DHEA is transcriptionally active, but at a concentration of DHEA about 1000 times greater than E2. Inclusion of the nuclear receptor co-activator RIP140 in the yeast enhances ER transactivation by DHEA or E2 in a ligand-dependent manner; moreover, only in the presence of RIP140 is DHEA able to stimulate beta-galactosidase activity to levels similar to those achieved by E2. Ligand-receptor interaction for other C19-steroids was also examined. While 5-androstene-3beta, 17beta-diol (ADIOL) displayed estrogenic activity in this system, 4-androstene-17-dione (androstenedione) and 4-androstene-17beta-ol,3-one (testosterone) did not. We have investigated whether DHEA can interact with the human ER in vivo. Our findings demonstrate a mechanism by which DHEA interacts directly with estrogen signaling systems; however, because DHEA is several orders of magnitude less potent than E2 in this system, we conclude that it essentially is not an estrogen agonist.
Collapse
Affiliation(s)
- K P Nephew
- Medical Sciences Program, Indiana University School of Medicine, Bloomington 47405-4401, USA.
| | | | | | | | | | | |
Collapse
|
562
|
Takeshita A, Yen PM, Ikeda M, Cardona GR, Liu Y, Koibuchi N, Norwitz ER, Chin WW. Thyroid hormone response elements differentially modulate the interactions of thyroid hormone receptors with two receptor binding domains in the steroid receptor coactivator-1. J Biol Chem 1998; 273:21554-62. [PMID: 9705285 DOI: 10.1074/jbc.273.34.21554] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand-dependent transcriptional activation by nuclear receptors is mediated by interactions with coactivators. Recently, a consensus interaction motif (LXXLL) has been identified in a number of coactivators such as steroid receptor coactivator-1 (SRC-1). SRC-1 contains three such motifs in the central (nuclear receptor binding domain-1, NBD-1) and a single one in the C-terminal (NBD-2) regions. To define the nature and role of the two NBDs in SRC-1, interaction studies between the two NBDs and thyroid hormone receptor (TR) were performed. Although NBD-1 and NBD-2 showed similar ligand- and AF-2-dependent interactions with TR in solution, these two NBDs possessed distinct interaction properties with TR when TR is bound to a thyroid hormone-response element (TRE). Both in vitro and in vivo interaction studies demonstrate that NBD-1, but not NBD-2, exhibits ligand-dependent interaction with TR in the presence of TREs. In addition, a natural isoform of SRC-1, SRC-1E, which lacks NBD-2, preserved TR as well as progesterone receptor-mediated coactivator function on reporter gene expression. Finally, we found that NBD-1 failed to interact with a TR and retinoid X receptor heterodimer complex on a transcriptionally inactive direct repeat +4 TRE in electrophoretic mobility shift assays. These observations indicate that DNA-induced, as well as ligand-induced, conformational change(s) of TR may influence the nature of its binding to SRC-1, and that the two NBDs of SRC-1 may play different roles to regulate ligand-dependent transactivation of TRs.
Collapse
Affiliation(s)
- A Takeshita
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
563
|
Collingwood TN, Wagner R, Matthews CH, Clifton-Bligh RJ, Gurnell M, Rajanayagam O, Agostini M, Fletterick RJ, Beck-Peccoz P, Reinhardt W, Binder G, Ranke MB, Hermus A, Hesch RD, Lazarus J, Newrick P, Parfitt V, Raggatt P, de Zegher F, Chatterjee VK. A role for helix 3 of the TRbeta ligand-binding domain in coactivator recruitment identified by characterization of a third cluster of mutations in resistance to thyroid hormone. EMBO J 1998; 17:4760-70. [PMID: 9707435 PMCID: PMC1170805 DOI: 10.1093/emboj/17.16.4760] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Resistance to thyroid hormone (RTH) has hitherto been associated with thyroid hormone beta receptor (TRbeta) mutations which cluster in two regions (alphaalpha 310-353 and alphaalpha 429-461) of the hormone-binding domain and closely approximate the ligand-binding cavity. Here, we describe a third cluster of RTH mutations extending from alphaalpha 234-282 which constitute a third boundary of the ligand pocket. One mutant, T277A, exhibits impaired transactivation which is disproportionate to its mildly reduced ligand affinity (Ka). T3-dependent recruitment of coactivators (SRC-1, ACTR) by mutant receptor-RXR heterodimers was reduced in comparison with wild-type. Cotransfection of SRC-1 restored transactivation by T277A. In the TRbeta crystal structure this helix 3 residue is surface-exposed and is in close proximity to residues L454 and E457 in helix 12 which are known to be critical for coactivator interaction, suggesting that they all constitute part of a receptor-coactivator interface. The transcriptional function of other mutants (A234T, R243W/Q, A268D, Delta276I, A279V, R282S) in this cluster correlated with their reduced Ka and they inhibited wild-type TRbeta action in a dominant negative manner. DNA binding, heterodimerization and corepressor recruitment were preserved in all mutants, signifying the importance of these attributes for dominant negative activity and correlating with the absence of natural mutations in regions bordering the third cluster which mediate these functions.
Collapse
Affiliation(s)
- T N Collingwood
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
564
|
Venditti P, Di Croce L, Kauer M, Blank T, Becker PB, Beato M. Assembly of MMTV promoter minichromosomes with positioned nucleosomes precludes NF1 access but not restriction enzyme cleavage. Nucleic Acids Res 1998; 26:3657-66. [PMID: 9685480 PMCID: PMC147780 DOI: 10.1093/nar/26.16.3657] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To generate long arrays of nucleosomes within a topologically defined chromatin domain we have assembled minichromosomes on negatively supercoiled plasmid DNA with extracts from Drosophila preblastoderm embryos. These minichromosomes are dynamic substrates for energy-dependent nucleosome remodeling machines that facilitate the binding of various transcription factors but do not exhibit nucleosome positioning. In contrast, if such minichromosomes include the mouse mammary tumour virus (MMTV) promoter we find it wrapped around a nucleosome with similar translational and rotational position as in vivo . This structure precluded binding of NF1 to its cognate site at -75/-65 at salt concentrations between 60 and 120 mM, even in the presence of ATP, which rendered the NF1 site accessible to the restriction enzyme Hin fI. However, insertion of 30 bp just upstream of the NF1 site, which moves the site to the linker DNA, allowed ATP-dependent binding of NF1 to a fraction of the minichromosomes, even in the presence ofstoichiometric amounts of histone H1. The minichromosomes assembled in the Drosophila embryo extract reproduce important features of the native MMTV promoter chromatin and reveal differences in the ability of transcription factors and restriction enzymes to access their binding sites in positioned nucleosomes.
Collapse
Affiliation(s)
- P Venditti
- IMT, Institut für Molekularbiologie und Tumorforschung, Marburg, Emil-Mannkopff-Strasse 2, D-35033 Marburg, Germany and EMBL, Meyerhofstrasse 1, D-649117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
565
|
Um S, Harbers M, Benecke A, Pierrat B, Losson R, Chambon P. Retinoic acid receptors interact physically and functionally with the T:G mismatch-specific thymine-DNA glycosylase. J Biol Chem 1998; 273:20728-36. [PMID: 9694815 DOI: 10.1074/jbc.273.33.20728] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pleiotropic effects of retinoids are mediated by nuclear receptors that are activated by 9-cis- or all-trans-retinoic acid to function as ligand-dependent transcription factors. In a yeast one-hybrid screen for proteins capable of interacting with native retinoic acid receptor (RAR), we have isolated the T:G mismatch-specific thymine-DNA glycosylase (TDG), which initiates the repair of T:G mismatches caused by spontaneous deamination of methylated cytosines. Here, we report that TDG can interact with RAR and the retinoid X receptor (RXR) in a ligand-independent manner, both in yeast and in vitro. Mapping of the binding sites revealed interaction with a region of the ligand binding domain harboring alpha-helix 1 in both RAR and RXR. In transient transfection experiments, TDG potentiated transactivation by RXR from a direct repeat element spaced by one nucleotide (DR1) and by RXR/RAR heterodimers from a direct repeat element spaced by five nucleotides (DR5). In vitro, TDG enhanced RXR and RXR/RAR binding to their response elements. These data indicate that TDG is not only a repair enzyme, but could also function in the control of transcription.
Collapse
Affiliation(s)
- S Um
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, BP 163, 67404 Illkirch Cedex, France
| | | | | | | | | | | |
Collapse
|
566
|
Topper JN, DiChiara MR, Brown JD, Williams AJ, Falb D, Collins T, Gimbrone MA. CREB binding protein is a required coactivator for Smad-dependent, transforming growth factor beta transcriptional responses in endothelial cells. Proc Natl Acad Sci U S A 1998; 95:9506-11. [PMID: 9689110 PMCID: PMC21368 DOI: 10.1073/pnas.95.16.9506] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/1998] [Indexed: 02/08/2023] Open
Abstract
The transforming growth factor-beta (TGF-beta) superfamily of growth factors and cytokines has been implicated in a variety of physiological and developmental processes within the cardiovascular system. Smad proteins are a recently described family of intracellular signaling proteins that transduce signals in response to TGF-beta superfamily ligands. We demonstrate by both a mammalian two-hybrid and a biochemical approach that human Smad2 and Smad4, two essential Smad proteins involved in mediating TGF-beta transcriptional responses in endothelial and other cell types, can functionally interact with the transcriptional coactivator CREB binding protein (CBP). This interaction is specific in that it requires ligand (TGF-beta) activation and is mediated by the transcriptional activation domains of the Smad proteins. A closely related, but distinct endothelial-expressed Smad protein, Smad7, which does not activate transcription in endothelial cells, does not interact with CBP. Furthermore, Smad2,4-CBP interactions involve the COOH terminus of CBP, a region that interacts with other regulated transcription factors such as certain signal transduction and transcription proteins and nuclear receptors. Smad-CBP interactions are required for Smad-dependent TGF-beta-induced transcriptional responses in endothelial cells, as evidenced by inhibition with overexpressed 12S E1A protein and reversal of this inhibition with exogenous CBP. This report demonstrates a functional interaction between Smad proteins and an essential component of the mammalian transcriptional apparatus (CBP) and extends our insight into how Smad proteins may regulate transcriptional responses in many cell types. Thus, functional Smad-coactivator interactions may be an important locus of signal integration in endothelial cells.
Collapse
Affiliation(s)
- J N Topper
- Vascular Research Division, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
567
|
Abstract
In the absence of triiodothyronine (T3), thyroid hormone receptors (TRs) repress transcription of many genes; in the presence of T3, TRs activate transcription of those same genes. Both of these events are dependent on interactions between TRs and other nuclear proteins. TRs bind to specific DNA sequences, generally found in the 5' flanking regions of target genes. In the unliganded state, TRs interact with one of several corepressor proteins. These proteins, in turn, interact with a series of other proteins, which includes histone deacetylases. Histone deacetylation tightens chromatin structure, thus impairing access of critical transcription factors and thereby repressing transcription. In addition, corepressors may invoke mechanisms of gene repression independent of histone deacetylation. The binding of T3 causes a conformational change in the TR that results in release of the corepressor and recruitment of coactivator proteins. Several coactivator proteins appear to bind the ligand-occupied TR as a multiprotein complex. Opposite to corepressors, coactivators acetylate histones, thereby loosening chromatin structure and facilitating access of key transcription factors. Again, mechanisms independent of histone acetylation also may be involved. Overall, gene activation by T3 is a two-step process; removal of active repression, and induction of transcription to levels above the "neutral" state.
Collapse
Affiliation(s)
- R J Koenig
- Division of Endocrinology, University of Michigan Medical Center, Ann Arbor 48109-0678, USA
| |
Collapse
|
568
|
Durston AJ, van der Wees J, Pijnappel WW, Godsave SF. Retinoids and related signals in early development of the vertebrate central nervous system. Curr Top Dev Biol 1998; 40:111-75. [PMID: 9673850 DOI: 10.1016/s0070-2153(08)60366-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- A J Durston
- Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
569
|
Lee SK, Kim HJ, Na SY, Kim TS, Choi HS, Im SY, Lee JW. Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits. J Biol Chem 1998; 273:16651-4. [PMID: 9642216 DOI: 10.1074/jbc.273.27.16651] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid receptor coactivator-1 (SRC-1) specifically bound to the transcription factor AP-1 subunits c-Jun and c-Fos, as demonstrated by the yeast two-hybrid tests and glutathione S-transferase pull down assays. The c-Jun and c-Fos binding sites were localized to the C-terminal subregion of SRC-1 (amino acids 1101-1441) that encompasses the previously described histone acetyltransferase and receptor-binding domains. In mammalian cells, SRC-1, similar to the previous results with CBP-p300 (Arias, J., Alberts, A. S., Brindle, P., Claret, F. X., Smeal, T., Karin, M., Feramisco, J., and Montminy, M. (1994) Nature 370, 226-229; Bannister, A. J., and Kouzarides, T. (1995) EMBO J. 14, 4758-4762), potentiated the AP-1-mediated transactivations in a dose-dependent manner and derepressed the mutual inhibitions between nuclear receptors and AP-1. Furthermore, coexpression of p300 further enhanced this SRC-1-potentiated level of transactivations. Thus, we concluded that at least two distinct coactivator molecules may cooperate to regulate AP-1-dependent transactivations and mediate transrepression between AP-1 and nuclear receptors in vivo.
Collapse
Affiliation(s)
- S K Lee
- College of Pharmacy, Chonnam National University, Kwangju 500-757, Korea
| | | | | | | | | | | | | |
Collapse
|
570
|
Xavier-Neto J, Pereira AC, Motoyama AH, Krieger JE. A luciferase-engineered cell line for study of cAMP regulation in endothelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C75-81. [PMID: 9688837 DOI: 10.1152/ajpcell.1998.275.1.c75] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
cAREL is a cAMP-responsive endothelial cell line carrying a luciferase reporter gene introduced by stable transfection of a luciferase enhancer trap into rabbit aortic endothelial cells. Luciferase gene expression in cAREL was stimulated 233-fold by 8-BrcAMP. Treatment with the beta-adrenoceptor agonist isoproterenol induced a 7.0-fold increase in luciferase expression, which was partially blocked by either beta1- or beta2-adrenoceptor antagonists and totally blocked by propranolol and by a combination of beta1- plus beta2-adrenoceptor antagonists. Receptor stimulation was mimicked by cholera toxin, forskolin, 8-BrcAMP, and isobutylmethylxanthine but not by 8BrcGMP, dexamethasone, or phorbol 12-myristate 13-acetate. Stimulation by isoproterenol was completely blocked by H-89, a protein kinase A inhibitor. cAREL was also stimulated by A-23187, and this effect was abrogated by EGTA and H-89. cAREL is the first cAMP-sensitive endothelial cell line described, and it can be useful as a positive control, as a model for cAMP regulation, as a background to genetic introduction of receptors, as an indicator of intracellular pathway activation, and as a tool to investigate cAMP effects on other signaling pathways.
Collapse
Affiliation(s)
- J Xavier-Neto
- Laboratório de Biologia Molecular, Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
571
|
Chung E, Lee KY, Lee YJ, Lee YH, Lee SK. Ginsenoside Rg1 down-regulates glucocorticoid receptor and displays synergistic effects with cAMP. Steroids 1998; 63:421-4. [PMID: 9654649 DOI: 10.1016/s0039-128x(98)00043-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ginsenoside-Rg1 (G-Rg1) from the roots of Panax ginseng C. A. Meyer has been shown to bind to the glucocorticoid receptor (GR). To further explore the effect of G-Rg1 binding to GR, a luciferase reporter gene containing two copies of a glucocorticoid response element was constructed and transiently transfected into FTO2B rat hepatoma cells. A dose-dependent induction of the reporter gene was observed in response to G-Rg1, and the inductive effect was blocked by treatment with the antiglucocorticoid RU486. In addition, both G-Rg1- and dexamethasone (Dex)-induced transcription was synergistically enhanced by the treatment of dibutyryl cAMP (Bt2-cAMP). G-Rg1 treatment also led to the down-regulation of intracellular GR content, which was similar to the effect of Dex. By showing that G-Rg1 down-regulates GR and induces GR-mediated transcription synergistically with cAMP, we conclude that G-Rg1 is a functional GR ligand in FTO2B cells.
Collapse
Affiliation(s)
- E Chung
- College of Pharmacy, Seoul National University, Korea
| | | | | | | | | |
Collapse
|
572
|
Kim HJ, Lee SK, Na SY, Choi HS, Lee JW. Molecular cloning of xSRC-3, a novel transcription coactivator from Xenopus, that is related to AIB1, p/CIP, and TIF2. Mol Endocrinol 1998; 12:1038-47. [PMID: 9658407 DOI: 10.1210/mend.12.7.0139] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nuclear receptors regulate transcription by binding to specific DNA response elements of target genes. Herein, we report the molecular cloning and characterization of a novel Xenopus cDNA encoding a transcription coactivator xSRC-3 by using retinoid X receptor (RXR) as a bait in the yeast two-hybrid screening. It belongs to a growing coactivator family that includes a steroid receptor coactivator amplified in breast cancer (AIB1), p300/ CREB-binding protein (CBP)-interacting protein (p/ CIP), and transcriptional intermediate factor 2 (TIF2). It also interacts with a series of nuclear receptors including retinoic acid receptor (RAR), thyroid hormone receptor (TR), and orphan nuclear receptors [hepatocyte nuclear receptor 4 (HNF4) and constitutive androstane receptor (CAR)]. However, it does not interact with small heterodimer partner (SHP), an orphan nuclear receptor known to antagonize ligand-dependent transactivation of other nuclear receptors. In CV-1 cells, cotransfection of xSRC-3 differentially stimulates ligand-induced transactivation of RXR, TR, and RAR in a dose-dependent manner. Interestingly, xSRC-3 is highly expressed in adult liver and early stages of oocyte development, suggesting that studies of xSRC-3 may lead to better understanding of the roles nuclear receptors play in oocyte development as well as liver-specific gene expression.
Collapse
Affiliation(s)
- H J Kim
- College of Pharmacy, Chonnam National University, Kwangju, South Korea
| | | | | | | | | |
Collapse
|
573
|
Ebert BL, Bunn HF. Regulation of transcription by hypoxia requires a multiprotein complex that includes hypoxia-inducible factor 1, an adjacent transcription factor, and p300/CREB binding protein. Mol Cell Biol 1998; 18:4089-96. [PMID: 9632793 PMCID: PMC108993 DOI: 10.1128/mcb.18.7.4089] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/1997] [Accepted: 04/16/1998] [Indexed: 02/07/2023] Open
Abstract
Molecular adaptation to hypoxia depends on the binding of hypoxia-inducible factor 1 (HIF-1) to cognate response elements in oxygen-regulated genes. In addition, adjacent sequences are required for hypoxia-inducible transcription. To investigate the mechanism of interaction between these cis-acting sequences, the multiprotein complex binding to the lactate dehydrogenase A (LDH-A) promoter was characterized. The involvement of HIF-1, CREB-1/ATF-1, and p300/CREB binding protein (CBP) was demonstrated by techniques documenting in vitro binding, in combination with transient transfections that test the in vivo functional importance of each protein. In both the LDH-A promoter and the erythropoietin 3' enhancer, formation of multiprotein complexes was analyzed by using biotinylated probes encompassing functionally critical cis-acting sequences. Strong binding of p300/CBP required interactions with multiple DNA binding proteins. Thus, the necessity of transcription factor binding sites adjacent to a HIF-1 site for hypoxically inducible transcription may be due to the requirement of p300 to interact with multiple transcription factors for high-affinity binding and activation of transcription. Since it has been found to interact with a wide range of transcription factors, p300 is likely to play a similar role in other genes, mediating interactions between DNA binding proteins, thereby activating stimulus-specific and tissue-specific gene transcription.
Collapse
Affiliation(s)
- B L Ebert
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
574
|
Lefebvre B, Mouchon A, Formstecher P, Lefebvre P. H11-H12 loop retinoic acid receptor mutants exhibit distinct trans-activating and trans-repressing activities in the presence of natural or synthetic retinoids. Biochemistry 1998; 37:9240-9. [PMID: 9649304 DOI: 10.1021/bi9804840] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Retinoids, such as the naturally occurring all-trans-retinoic acid (atRA) and synthetic ligand CD367 modulate ligand-dependent transcription through retinoic acid receptors (RARs). Retinoid binding to RAR is believed to trigger structural transitions in the ligand-binding domain (LBD), leading to helix H1 and helix H12 repositioning and coactivator recruitment and corepressor release. Here, we carried out a detailed mutagenesis analysis of the H11-H12 loop (designated the L box) to study its contribution to hRARalpha activation process. Point mutations that reduced transactivation by atRA also reduced atRA-induced transrepression of AP1 transcription, correlating ligand-induced activation and repression. However, a correlation was not observed with these mutations when tested with another ligand CD367, a synthetic agonist with binding properties identical to those of atRA. Transcription was strongly inhibited in the presence of CD367 for some mutants, thus leading to an inverse agonist activity of this ligand. None of these mutations significantly altered binding affinity for either ligand, indicating that altered transcription was not caused by altered ligand binding by these mutations. Although simple correlations with transcriptional activities were not found, these mutations were also characterized by altered ligand-induced structural transitions, which were distinct for the atRA-hRARalpha or CD367-hRARalpha complexes. These results indicate that amino acids in the L box are involved in specifying trans-repressive and trans-activating properties of the hRARalpha, and support the notion that different agonists induce distinct conformations in the LBD of the receptor.
Collapse
Affiliation(s)
- B Lefebvre
- INSERM U 459, Laboratoire de Biochimie Structurale, Faculté de Médecine Henri Warembourg 1, Lille, France.
| | | | | | | |
Collapse
|
575
|
The Molecular Mechanism Underlying the Acquisition of the Antiestrogen-Resistant Phenotype in Breast Cancer. Breast Cancer 1998; 5:25-31. [PMID: 11091623 DOI: 10.1007/bf02967412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Breast Cancer is thought to develope as an estrogen-dependent tumor. Approximately 30% of breast cancers can be treated by agents that block estrogen. However, all breast cancers have been known to acquire the hormone therapy-resistant phenotype with ultimate fatal results. Recent progress in breast cancer research has porvided the important clues for elucidating the molecular mechanism of this conversion. The presence of the cross-talk between estrogen signaling and other mitogen-dependent signaling has been clarified at the estrogen recepter level. In addition, an estrogen-dependent transcriptional control mechanism has been characterized in detail. These breakthrough and the development of a pure antiestrogen would make it possible to consider the more sophisticated hormone therapy. In this review article, I summarized the current findings which seem to be essential in the treatment of breast cancer.
Collapse
|
576
|
Almlöf T, Wallberg AE, Gustafsson JA, Wright AP. Role of important hydrophobic amino acids in the interaction between the glucocorticoid receptor tau 1-core activation domain and target factors. Biochemistry 1998; 37:9586-94. [PMID: 9649342 DOI: 10.1021/bi973029x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this work, we determined how altered-function mutants affecting hydrophobic residues within the tau 1-core activation domain of the human glucocorticoid receptor (GR) influence its physical interaction with different target proteins of the transcriptional machinery. Screening of putative target proteins showed that the tau 1-core can interact with the C-terminal part of the CREB-binding protein (CBP). In addition, the previously identified interactions of the tau 1-core with the TATA-binding protein (TBP) and the Ada2 adaptor protein were localized to the C- and N-terminal regions of these proteins, respectively. A panel of mutations within the tau 1-core that either decrease or increase activation potential was used to probe the interaction of the tau 1-core domain with TBP, Ada2, and CBP. We found that the pattern of effects caused by the mutations was similar for each of the interactions and that the effects on binding generally reflected effects on gene activation potential. Thus, the predominant effect of the mutations appears to influence a property of the tau 1-core that is common to all three interactions, rather than properties that are differentially required by each of the target factor interactions, individually. Such a property could be the ability of the domain to adopt a folded conformation that is generally necessary for interaction with target factors. We have also shown that TBP, Ada2, and CBP can interact with both the tau 1-core and the GR ligand-binding domain, offering a possible mechanism for synergistic interaction between the tau 1-core and other receptor activation domains. However, other target proteins (e.g., RIP140, and SRC-1), which interact with the GR C terminus, did not show significant interactions with the tau 1-core under our conditions.
Collapse
Affiliation(s)
- T Almlöf
- Department of Biosciences, Karolinska Institute, Huddinge, Sweden.
| | | | | | | |
Collapse
|
577
|
Snowden AW, Perkins ND. Cell cycle regulation of the transcriptional coactivators p300 and CREB binding protein. Biochem Pharmacol 1998; 55:1947-54. [PMID: 9714314 DOI: 10.1016/s0006-2952(98)00020-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To respond to changes in its environment, the cell utilizes mechanisms that integrate extracellular signals with specific changes in gene expression. To better understand these critical regulatory mechanisms, research has focused, for the most part, on the identification of sequence-specific DNA-binding proteins, such as the nuclear factor kappaB (NF-kappaB) or activator protein 1 (AP-1) families of transcription factors, that interact with the promoter and enhancer elements of genes induced or repressed during cellular activation. More recently, however, it has become apparent that non-DNA-binding transcriptional coactivators, such as p300 and CREB binding protein (CBP), previously thought to function primarily as "bridging" proteins between DNA-bound transcription factors and the basal transcription complex, play a critical regulatory role as integrators of diverse signalling pathways with the selective induction of gene expression. In this commentary, we shall discuss the implications of a particular aspect of this growing and expanding field: how cell cycle regulation of p300 and CBP impacts our understanding of cellular differentiation, the response to DNA damage, and oncogenesis.
Collapse
Affiliation(s)
- A W Snowden
- Department of Biochemistry, University of Dundee, Scotland, UK
| | | |
Collapse
|
578
|
Karas RH, Gauer EA, Bieber HE, Baur WE, Mendelsohn ME. Growth factor activation of the estrogen receptor in vascular cells occurs via a mitogen-activated protein kinase-independent pathway. J Clin Invest 1998; 101:2851-61. [PMID: 9637719 PMCID: PMC508876 DOI: 10.1172/jci1416] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The classical estrogen receptor ERalpha mediates many of the known cardiovascular effects of estrogen and is expressed in male and female vascular cells. Estrogen-independent activation of ERalpha is known to occur in cells from reproductive tissues, but has not been investigated previously in vascular cells. In this study, transient transfection assays in human saphenous vein smooth muscle cells (HSVSMC) and pulmonary vein endothelial cells (PVEC) demonstrated ERalpha-dependent activation of estrogen response element-based, and vascular endothelial growth factor-based reporter plasmids by both estrogen-deficient FBS (ED-FBS) and EGF. In nonvascular cells, ERalpha-mediated gene expression can be activated via mitogen-activated protein (MAP) kinase- induced phosphorylation of serine 118 of ERalpha. However, in vascular cells, we found that pharmacologic inhibition of MAP kinase did not alter EGF-mediated ERalpha activation. In addition, a mutant ER containing an alanine-for-serine substitution at position 118 was activated to the same degree as the wild-type receptor by ED-FBS and EGF in both HSVSMC and PVEC. Furthermore, constitutively active MAP kinase kinase (MAPKK) activated ERalpha in Cos1 cells as expected, but MAPKK inhibited ER activation in PVEC. We conclude that growth factors also stimulate ERalpha-mediated gene expression in vascular cells, but find that this occurs via a MAP kinase-independent pathway distinct from that reported previously in nonvascular cells.
Collapse
Affiliation(s)
- R H Karas
- Molecular Cardiology Research Center, Tupper Research Institute, New England Medical Center/Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | | | | | |
Collapse
|
579
|
García-Rodríguez C, Rao A. Nuclear factor of activated T cells (NFAT)-dependent transactivation regulated by the coactivators p300/CREB-binding protein (CBP). J Exp Med 1998; 187:2031-6. [PMID: 9625762 PMCID: PMC2212364 DOI: 10.1084/jem.187.12.2031] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/1998] [Revised: 04/03/1998] [Indexed: 11/28/2022] Open
Abstract
p300 and cAMP response element-binding protein (CREB)-binding protein (CBP) are members of a family of coactivators involved in the regulation of transcription and chromatin. We show that transcription factors of the nuclear factor of activated T cells (NFAT) family bind p300/CBP and recruit histone acetyltransferase activity from T cell nuclear extracts. The NH2-terminal transactivation domain of NFAT1 and the phospho-CREB- and E1A-binding sites of p300/CBP are involved in the interaction. The viral oncoprotein E1A inhibits NFAT-dependent transactivation in a p300-dependent manner. Recruitment of the coactivators p300/CBP by the transactivation domains of NFAT proteins is likely to play a critical role in NFAT-dependent gene expression during the immune response.
Collapse
Affiliation(s)
- C García-Rodríguez
- Department of Pathology, Harvard Medical School, and the Center for Blood Research, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
580
|
Dallas PB, Cheney IW, Liao DW, Bowrin V, Byam W, Pacchione S, Kobayashi R, Yaciuk P, Moran E. p300/CREB binding protein-related protein p270 is a component of mammalian SWI/SNF complexes. Mol Cell Biol 1998; 18:3596-603. [PMID: 9584200 PMCID: PMC108941 DOI: 10.1128/mcb.18.6.3596] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1997] [Accepted: 03/11/1998] [Indexed: 02/07/2023] Open
Abstract
p300 and the closely related CREB binding protein (CBP) are transcriptional adaptors that are present in intracellular complexes with TATA binding protein (TBP) and bind to upstream activators including p53 and nuclear hormone receptors. They have intrinsic and associated histone acetyltransferase activity, suggesting that chromatin modification is an essential part of their role in regulating transcription. Detailed characterization of a panel of antibodies raised against p300/CBP has revealed the existence of a 270-kDa cellular protein, p270, distinct from p300 and CBP but sharing at least two independent epitopes with p300. The subset of p300/CBP-derived antibodies that cross-reacts with p270 consistently coprecipitates a series a cellular proteins with relative molecular masses ranging from 44 to 190 kDa. Purification and analysis of various proteins in this group reveals that they are components of the human SWI/SNF complex and that p270 is an integral member of this complex.
Collapse
Affiliation(s)
- P B Dallas
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
581
|
Affiliation(s)
- P P Hu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
582
|
Kitabayashi I, Yokoyama A, Shimizu K, Ohki M. Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation. EMBO J 1998; 17:2994-3004. [PMID: 9606182 PMCID: PMC1170639 DOI: 10.1093/emboj/17.11.2994] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The AML1 transcription factor and the transcriptional coactivators p300 and CBP are the targets of chromosome translocations associated with acute myeloid leukemia and myelodysplastic syndrome. In the t(8;21) translocation, the AML1 (CBFA2/PEBP2alphaB) gene becomes fused to the MTG8 (ETO) gene. We previously found that the terminal differentiation step leading to mature neutrophils in response to granulocyte colony-stimulating factor (G-CSF) was inhibited by the ectopic expression of the AML1-MTG8 fusion protein in L-G murine myeloid progenitor cells. We show here that overexpression of normal AML1 proteins reverses this inhibition and restores the competence to differentiate. Immunoprecipitation analysis shows that p300 and CREB-binding protein (CBP) interact with AML1. The C-terminal region of AML1 is responsible for the induction of cell differentiation and for the interaction with p300. Overexpression of p300 stimulates AML1-dependent transcription and the induction of cell differentiation. These results suggest that p300 plays critical roles in AML1-dependent transcription during the differentiation of myeloid cells. Thus, AML1 and its associated factors p300 and CBFbeta, all of which are targets of chromosomal rearrangements in human leukemia, function cooperatively in the differentiation of myeloid cells.
Collapse
Affiliation(s)
- I Kitabayashi
- Radiobiology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104, Japan.
| | | | | | | |
Collapse
|
583
|
Préfontaine GG, Lemieux ME, Giffin W, Schild-Poulter C, Pope L, LaCasse E, Walker P, Haché RJ. Recruitment of octamer transcription factors to DNA by glucocorticoid receptor. Mol Cell Biol 1998; 18:3416-30. [PMID: 9584182 PMCID: PMC108923 DOI: 10.1128/mcb.18.6.3416] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1997] [Accepted: 03/20/1998] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoid receptor (GR) and octamer transcription factors 1 and 2 (Oct-1/2) interact synergistically to activate the transcription of mouse mammary tumor virus and many cellular genes. Synergism correlates with cooperative DNA binding of the two factors in vitro. To examine the molecular basis for these cooperative interactions, we have studied the consequences of protein-protein binding between GR and Oct-1/2. We have determined that GR binds in solution to the octamer factor POU domain. Binding is mediated through an interface in the GR DNA binding domain that includes amino acids C500 and L501. In transfected mammalian cells, a transcriptionally inert wild-type but not an L501P GR peptide potentiated transcriptional activation by Oct-2 100-fold above the level that could be attained in the cell by expressing Oct-2 alone. Transcriptional activation correlated closely with a striking increase in the occupancy of octamer motifs adjacent to glucocorticoid response elements (GREs) on transiently transfected DNAs. Intriguingly, GR-Oct-1/2 binding was interrupted by the binding of GR to a GRE. We propose a model for transcriptional cooperativity in which GR-Oct-1/2 binding promotes an increase in the local concentration of octamer factors over glucocorticoid-responsive regulatory regions. These results reveal transcriptional cooperativity through a direct protein interaction between two sequence-specific transcription factors that is mediated in a way that is expected to restrict transcriptional effects to regulatory regions with DNA binding sites for both factors.
Collapse
Affiliation(s)
- G G Préfontaine
- Department of Biochemistry, Ottawa Civic Hospital Loeb Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1Y 4E9
| | | | | | | | | | | | | | | |
Collapse
|
584
|
Blanco JC, Minucci S, Lu J, Yang XJ, Walker KK, Chen H, Evans RM, Nakatani Y, Ozato K. The histone acetylase PCAF is a nuclear receptor coactivator. Genes Dev 1998; 12:1638-51. [PMID: 9620851 PMCID: PMC316869 DOI: 10.1101/gad.12.11.1638] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/1997] [Accepted: 04/14/1998] [Indexed: 02/07/2023]
Abstract
Whereas the histone acetylase PCAF has been suggested to be part of a coactivator complex mediating transcriptional activation by the nuclear hormone receptors, the physical and functional interactions between nuclear receptors and PCAF have remained unclear. Our efforts to clarify these relationships have revealed two novel properties of nuclear receptors. First, we demonstrate that the RXR/RAR heterodimer directly recruits PCAF from mammalian cell extracts in a ligand-dependent manner and that increased expression of PCAF leads to enhanced retinoid-responsive transcription. Second, we demonstrate that, in vitro, PCAF directly associates with the DNA-binding domain of nuclear receptors, independently of p300/CBP binding, therefore defining a novel cofactor interaction surface. Furthermore, our results show that dissociation of corepressors enables ligand-dependent PCAF binding to the receptors. This observation illuminates how a ligand-dependent receptor function can be propagated to regions outside the ligand-binding domain itself. On the basis of these observations, we suggest that PCAF may play a more central role in nuclear receptor function than previously anticipated.
Collapse
Affiliation(s)
- J C Blanco
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland 20892-2753 USA
| | | | | | | | | | | | | | | | | |
Collapse
|
585
|
Schulman IG, Shao G, Heyman RA. Transactivation by retinoid X receptor-peroxisome proliferator-activated receptor gamma (PPARgamma) heterodimers: intermolecular synergy requires only the PPARgamma hormone-dependent activation function. Mol Cell Biol 1998; 18:3483-94. [PMID: 9584188 PMCID: PMC108929 DOI: 10.1128/mcb.18.6.3483] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability of DNA sequence-specific transcription factors to synergistically activate transcription is a common property of genes transcribed by RNA polymerase II. The present work characterizes a unique form of intermolecular transcriptional synergy between two members of the nuclear hormone receptor superfamily. Heterodimers formed between peroxisome proliferator-activated receptor gamma (PPARgamma), an adipocyte-enriched member of the superfamily required for adipogenesis, and retinoid X receptors (RXRs) can activate transcription in response to ligands specific for either subunit of the dimer. Simultaneous treatment with ligands specific for both PPARgamma and RXR has a synergistic effect on the transactivation of reporter genes and on adipocyte differentiation in cultured cells. Mutation of the PPARgamma hormone-dependent activation domain (named tauc or AF-2) inhibits the ability of RXR-PPARgamma heterodimers to respond to ligands specific for either subunit. In contrast, the ability of RXR- and PPARgamma-specific ligands to synergize does not require the hormone-dependent activation domain of RXR. The results of in vitro and in vivo experiments indicate that binding of ligands to RXR alters the conformation of the dimerization partner, PPARgamma, and modulates the activity of the heterodimer in a manner independent of the RXR hormone-dependent activation domain.
Collapse
Affiliation(s)
- I G Schulman
- Department of Retinoid Research, Ligand Pharmaceuticals, San Diego, California 92121, USA.
| | | | | |
Collapse
|
586
|
Kawasaki H, Eckner R, Yao TP, Taira K, Chiu R, Livingston DM, Yokoyama KK. Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature 1998; 393:284-9. [PMID: 9607768 DOI: 10.1038/30538] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The related proteins p300 and CBP (cAMP-response-element-binding protein (CREB)-binding protein)) are transcriptional co-activators that act with other factors to regulate gene expression and play roles in many cell-differentiation and signal transduction pathways. Both proteins have intrinsic histone-acetyltransferase activity and may act directly on chromatin, of which histone is a component, to facilitate transcription. They are also involved in growth control pathways, as shown by their interaction with the tumour suppressor p53 and the viral oncogenes E1A and SV40 T antigen. Here we report functional differences of p300 and CBP in vivo. We examined their roles during retinoic-acid-induced differentiation, cell-cycle exit and programmed cell death (apoptosis) of embryonal carcinoma F9 cells, using hammerhead ribozymes capable of cleaving either p300 or CBP messenger RNAs. F9 cells expressing a p300-specific ribozyme became resistant to retinoic-acid-induced differentiation, whereas cells expressing a CBP-specific ribozyme were unaffected. Similarly, retinoic-acid-induced transcriptional upregulation of the cell-cycle inhibitor p21Cip1 required normal levels of p300, but not CBP, whereas the reverse was true for p27Kip1. In contrast, both ribozymes blocked retinoic-acid-induced apoptosis, indicating that both co-activators are required for this process. Thus, despite their similarities, p300 and CBP have distinct functions during retinoic-acid-induced differentiation of F9 cells.
Collapse
Affiliation(s)
- H Kawasaki
- Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), Tsukuba Science City, Japan
| | | | | | | | | | | | | |
Collapse
|
587
|
Martinez-Balbás MA, Bannister AJ, Martin K, Haus-Seuffert P, Meisterernst M, Kouzarides T. The acetyltransferase activity of CBP stimulates transcription. EMBO J 1998; 17:2886-93. [PMID: 9582282 PMCID: PMC1170629 DOI: 10.1093/emboj/17.10.2886] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The CBP co-activator protein possesses an intrinsic acetyltransferase (AT) activity capable of acetylating nucleosomal histones, as well as other proteins such as the transcription factors TFIIE and TFIIF. In addition, CBP associates with two other TSs, P/CAF and SRC1. We set out to establish whether the intrinsic AT activity of CBP contributes to transcriptional activation. We show that a region of CBP, encompassing the previously defined histone AT (HAT) domain, can stimulate transcription when tethered to a promoter. The stimulatory effect of this activation domain shows some promoter preference and is dependent on AT activity. Analysis of 14 point mutations reveals a direct correlation between CBP's ability to acetylate histones in vitro and to activate transcription in vivo. We also find that the HAT domains of CBP and P/CAF share sequence similarity. Four conserved motifs are identified, three of which are analogous to motifs A, B and D, found in other N-acetyltransferases. The fourth motif, termed E, is unique to CBP and P/CAF. Mutagenesis shows that all four motifs in CBP contribute to its HAT activity in vitro and its ability to activate transcription in vivo. These results demonstrate that the AT activity of CBP is directly involved in stimulating gene transcription. The identification of specific HAT domain motifs, conserved between CBP and P/CAF, should facilitate the identification of other members of this AT family.
Collapse
|
588
|
Spangenberg C, Eisfeld K, Stünkel W, Luger K, Flaus A, Richmond TJ, Truss M, Beato M. The mouse mammary tumour virus promoter positioned on a tetramer of histones H3 and H4 binds nuclear factor 1 and OTF1. J Mol Biol 1998; 278:725-39. [PMID: 9614938 DOI: 10.1006/jmbi.1998.1718] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulation of eukaryotic gene expression is influenced by the organization of regulatory DNA-elements in chromatin. The mouse mammary tumor virus (MMTV) promoter exhibits regularly positioned nucleosomes that reduce the accessibility of the binding sites for sequence-specific transcription factors, in particular nuclear factor (NF1). Hormonal induction of the MMTV promoter is accompanied by remodeling of the nucleosomal structure, but the biochemical nature of these structural changes is unknown. Using recombinant histones, we have now assembled the MMTV promoter in particles containing either an octamer of the histones H3, H4, H2A and H2B or a tetramer of histones H3 and H4, and have compared the two particles in terms of structure, positioning, and exclusion of transcription factors. Using site-directed hydroxy radicals to map histone locations, two main nucleosome positions are found with dyads at position -107 and at -127. The same two main positions are found for particles containing only the H3/H4 tetramer, showing that the absence of H2A/H2B dimers does not alter positioning. The rotational orientation of the DNA double helix in both types of particles is essentially identical. However, the ends of the nucleosomal DNA as well as its central region are more accessible to cleavage reagents in the tetramer particle than in the octamer particle. In agreement with these structural features, the transcription factors NF1 and OTF1 were able to bind to their cognate sites on the tetramer particle, while they could not gain access to the same sites on the surface of the octamer particle. The DNase I digestion pattern of octamers treated with partially purified SWI/SNF complex from HeLa cells in the presence of ATP is indistinguishable from that of tetramer particles, suggesting that the SWI/SNF complex promotes ATP-dependent remodeling of the octamer particle but not of tetramer particles. These results are compatible with a hormone-induced removal of histone H2A/H2B during MMTV induction.
Collapse
Affiliation(s)
- C Spangenberg
- Institut für Molekularbiologie und Tumorforshung, Philipps-Universität, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
589
|
Lefebvre P, Mouchon A, Lefebvre B, Formstecher P. Binding of retinoic acid receptor heterodimers to DNA. A role for histones NH2 termini. J Biol Chem 1998; 273:12288-95. [PMID: 9575180 DOI: 10.1074/jbc.273.20.12288] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinoic acid signaling pathway is controlled essentially through two types of nuclear receptors, RARs and RXRs. Ligand dependent activation or repression of retinoid-regulated genes is dependent on the binding of retinoic acid receptor (RAR)/9-cis-retinoic acid receptor (RXR) heterodimers to retinoic acid response element (RARE). Although unliganded RXR/RAR heterodimers bind constitutively to DNA in vitro, a clear in vivo ligand-dependent occupancy of the RARE present in the RARbeta2 gene promoter has been reported (Dey, A., Minucci, S., and Ozato, K. (1994) Mol. Cell. Biol. 14, 8191-8201). Nucleosomes are viewed as general repressors of the transcriptional machinery, in part by preventing the access of transcription factors to DNA. The ability of hRXRalpha/hRARalpha heterodimers to bind to a nucleosomal template in vitro has therefore been examined. The assembly of a fragment from the RARbeta2 gene promoter, which contains a canonical DR5 RARE, into a nucleosome core prevented hRXRalpha/hRARalpha binding to this DNA, in conditions where a strong interaction is observed with a linear DNA template. However, histone tails removal by limited proteolysis and histone hyperacetylation yielded nucleosomal RAREs able to bind to hRXRalpha/hRARalpha heterodimers. These data establish therefore the role of histones NH2 termini as a major impediment to retinoid receptors access to DNA, and identify histone hyperacetylation as a potential physiological regulator of retinoid-induced transcription.
Collapse
Affiliation(s)
- P Lefebvre
- INSERM U459, Laboratoire de Biochimie Structurale, Faculté de Médecine Henri Warembourg, 1, place de Verdun, 59045 Lille cedex, France
| | | | | | | |
Collapse
|
590
|
Onate SA, Boonyaratanakornkit V, Spencer TE, Tsai SY, Tsai MJ, Edwards DP, O'Malley BW. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J Biol Chem 1998; 273:12101-8. [PMID: 9575154 DOI: 10.1074/jbc.273.20.12101] [Citation(s) in RCA: 295] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid receptors are ligand-inducible transcription factors, and their association with steroid receptor coactivators (SRCs) upon binding to DNA is necessary for them to achieve full transcriptional potential. To understand the mechanism of SRC-1 action, its ability to interact and enhance the transcriptional activity of steroid receptors was analyzed. First, we show that SRC-1 is a modular coactivator that possesses intrinsic transcriptional activity when tethered to DNA and that it harbors two distinct activation domains, AD1 and AD2, needed for the maximum coactivation function of steroid receptors. We also demonstrate that SRC-1 interacts with both the amino-terminal A/B or AF1-containing domain and the carboxyl-terminal D/E or AF2-containing domain of the steroid receptors. These interactions are carried out by multiple regions of SRC-1, and they are relevant for transactivation. In addition to the inherent histone acetyltransferase activity of SRC-1, the presence of multiple receptor-coactivator interaction sites in SRC-1 and its ability to interact with components of the basic transcriptional machinery appears to be, at least in part, the mechanism by which the individual activation functions of the steroid receptors act cooperatively to achieve full transcriptional activity.
Collapse
Affiliation(s)
- S A Onate
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
591
|
Fryer CJ, Archer TK. Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature 1998; 393:88-91. [PMID: 9590696 DOI: 10.1038/30032] [Citation(s) in RCA: 386] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The assembly of transcriptional regulatory DNA sequences into chromatin plays a fundamental role in modulating gene expression. The promoter of the mouse mammary-tumour virus (MMTV) is packaged into a regular array of nucleosomes when it becomes stably integrated into mammalian chromosomes, and has been used to investigate the relationship between chromatin architecture and transcriptional activation by the hormone-bound glucocorticoid and progesterone receptors. In mammalian cells that express both of these receptors, the progesterone receptor activates transcription from transiently transfected MMTV DNA but not from organized chromatin templates. Moreover, the activated progesterone receptor inhibits the chromatin remodelling and consequent transcriptional stimulation that is mediated by the glucocorticoid receptor. Here we investigate the mechanism of this inhibition by characterizing the interaction of the glucocorticoid receptor with transcriptional co-activator and chromatin remodelling protein complexes. We show that when this receptor is prevented from interacting with the hBRG1/BAF chromatin remodelling complex, it can activate transcription from transiently transfected DNA but not from organized chromatin templates. Our results indicate that it may be possible to separate the transcriptional activation and chromatin remodelling activities of proteins that interact with hormone receptors.
Collapse
Affiliation(s)
- C J Fryer
- Department of Obstetrics & Gynaecology, University of Western Ontario, London Regional Cancer Centre, Canada
| | | |
Collapse
|
592
|
Romine LE, Wood JR, Lamia LA, Prendergast P, Edwards DP, Nardulli AM. The high mobility group protein 1 enhances binding of the estrogen receptor DNA binding domain to the estrogen response element. Mol Endocrinol 1998; 12:664-74. [PMID: 9605929 DOI: 10.1210/mend.12.5.0111] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have examined the ability of the high-mobility group protein 1 (HMG1) to alter binding of the estrogen receptor DNA-binding domain (DBD) to the estrogen response element (ERE). HMG1 dramatically enhanced binding of purified, bacterially expressed DBD to the consensus vitellogenin A2 ERE in a dose-dependent manner. The ability of HMG1 to stabilize the DBD-ERE complex resulted in part from a decrease in the dissociation rate of the DBD from the ERE. Antibody supershift experiments demonstrated that HMG1 was also capable of forming a ternary complex with the ERE-bound DBD in the presence of HMG1-specific antibody. HMG1 did not substantially affect DBD-ERE contacts as assessed by methylation interference assays, nor did it alter the ability of the DBD to induce distortion in ERE-containing DNA fragments. Because HMG1 dramatically enhanced estrogen receptor DBD binding to the ERE, and the DBD is the most highly conserved region among the nuclear receptor superfamily members, HMG1 may function to enhance binding of other nuclear receptors to their respective response elements and act in concert with coactivator proteins to regulate expression of hormone-responsive genes.
Collapse
Affiliation(s)
- L E Romine
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana 61801, USA
| | | | | | | | | | | |
Collapse
|
593
|
Yan ZH, Karam WG, Staudinger JL, Medvedev A, Ghanayem BI, Jetten AM. Regulation of peroxisome proliferator-activated receptor alpha-induced transactivation by the nuclear orphan receptor TAK1/TR4. J Biol Chem 1998; 273:10948-57. [PMID: 9556573 DOI: 10.1074/jbc.273.18.10948] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we reported the cloning of the nuclear orphan receptor TAK1. In this study, we characterized the sequence requirements for optimal TAK1 binding and analyzed the repression of the peroxisome proliferator-activated receptor alpha (PPARalpha) signaling pathway by TAK1. Site selection analysis showed that TAK1 has the greatest affinity for direct repeat-1 response elements (RE) containing AGGTCAAAGGTCA (TAK1-RE) to which it binds as a homodimer. TAK1 is a very weak inducer of TAK1-RE-dependent transcriptional activation. We observed that TAK1, as PPARalpha, is expressed within rat hepatocytes and is able to bind the peroxisome proliferator response elements (PPREs) present in the promoter of the PPARalpha target genes rat enoyl-CoA hydratase (HD) and peroxisomal fatty acyl-CoA oxidase (ACOX). TAK1 is unable to induce PPRE-dependent transcriptional activation and represses PPARalpha-mediated transactivation through these elements in a dose-dependent manner. Two-hybrid analysis showed that TAK1 does not form heterodimers with either PPARalpha or retinoid X receptor (RXRalpha), indicating that this repression does not involve a mechanism by which TAK1 titrates out PPARalpha or RXRalpha from PPAR.RXR complexes. Further studies demonstrated that the PPARalpha ligand 8(S)-hydroxyeicosatetraenoic acid strongly promotes the interaction of PPARalpha with the co-activator RIP-140 but decreases the interaction of PPARalpha with the co-repressor SMRT. In contrast, TAK1 interacts with RIP-140 but not with SMRT and competes with PPARalpha for RIP-140 binding. These observations indicated that the antagonistic effects of TAK1 on PPARalpha.RXRalpha transactivation act at least at two levels in the PPARalpha signaling pathway: competition of TAK1 with PPARalpha.RXR for binding to PPREs as well as to common co-activators, such as RIP-140. Our results suggest an important role for TAK1 in modulating PPARalpha-controlled gene expression in hepatocytes.
Collapse
Affiliation(s)
- Z H Yan
- Cell Biology Section, Laboratory of Pulmonary Pathobiology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
594
|
Abstract
Abstract
Chromosomal abnormalities of band 8p11 are associated with a distinct subtype of acute myeloid leukemia with French-American-British M4/5 morphology and prominent erythrophagocytosis by the blast cells. This subtype is usually associated with the t(8;16)(p11;p13), a translocation that has recently been shown to result in a fusion between the MOZ and CBP genes. We have cloned the inv(8)(p11q13), an abnormality associated with the same leukemia phenotype, and found a novel fusion between MOZ and the nuclear receptor transcriptional coactivatorTIF2/GRIP-1/NCoA-2. This gene has not previously been implicated in the pathogenesis of leukemia or other malignancies. MOZ-TIF2 retains the histone acetyltransferase homology domains of both proteins and also the CBP binding domain of TIF2. We speculate that the apparently identical leukemia cell phenotype observed in cases with the t(8;16) and the inv(8) arises by recruitment of CBP by MOZ-TIF2, resulting in modulation of the transcriptional activity of target genes by a mechanism involving abnormal histone acetylation.
Collapse
|
595
|
Xie Z, Bikle DD. Differential regulation of vitamin D responsive elements in normal and transformed keratinocytes. J Invest Dermatol 1998; 110:730-3. [PMID: 9579536 DOI: 10.1046/j.1523-1747.1998.00175.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Squamous cell carcinomas (SCC) derived from human epidermis fail to differentiate normally under the influence of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] despite the presence of the vitamin D receptor. Previous studies from our laboratory showed that phospholipase C-gamma1 (PLC-gamma1) was upregulated transcriptionally by 1,25(OH)2D3 in normal human keratinocytes, and a vitamin D responsive element (VDRE) in its promoter region has been identified. To examine the inducibility of human PLC-gamma1 transcription by 1,25(OH)2D3 and/or retinoic acid in SCC cell lines, we transiently transfected SCC4 and SCC12B2 cells with human PLC-gamma1 promoter-luciferase constructs containing the VDRE and tested the response of these constructs to 1,25(OH)2D3 and/or all-trans retinoic acid. The induction of the human PLC-gamma1 VDRE by 1,25(OH)2D3 was synergistic with all-trans retinoic acid in normal human keratinocytes, but none of the constructs was induced by 1,25(OH)2D3 and/or all-trans retinoic acid in SCC4 and SCC12B2 cells. In contrast, the construct containing the VDRE of the human 24-hydroxylase gene was induced several fold by 1,25(OH)2D3 in normal human keratinocytes and by both 1,25(OH)2D3 and all-trans retinoic acid in SCC4 and SCC12B2 cells. DNA mobility shift assays showed that both the vitamin D receptor and the retinoic acid receptor in SCC4 and SCC12B2 cells bound the human PLC-gamma1 VDRE similarly to that seen in normal keratinocytes. The data indicate that the VDRE in the human PLC-gamma1 gene is not functional in SCC4 and SCC12B2 cells, unlike normal human keratinocytes, even though vitamin D receptors bind normally to it. Failure of transcriptional control of the PLC-gamma1 gene by 1,25(OH)2D3 suggests the lack of a cofactor(s) linking the VDRE to the transcriptional machinery.
Collapse
Affiliation(s)
- Z Xie
- Endocrine Unit, VA Medical Center, University of California, San Francisco 94121, USA
| | | |
Collapse
|
596
|
Na SY, Lee SK, Han SJ, Choi HS, Im SY, Lee JW. Steroid receptor coactivator-1 interacts with the p50 subunit and coactivates nuclear factor kappaB-mediated transactivations. J Biol Chem 1998; 273:10831-4. [PMID: 9556555 DOI: 10.1074/jbc.273.18.10831] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid receptor coactivator-1 (SRC-1) specifically bound to the transcription factor NFkappaB subunit p50 but not to p65 as demonstrated by the yeast two hybrid tests and glutathione S-transferase pull down assays. The p50-binding site was localized to a subregion of SRC-1 (amino acids 759-1141) that encompasses the previously described CBP-p300-binding domain. In mammalian cells, SRC-1 potentiated the NFkappaB-mediated transactivations in a dose-dependent manner. Coexpression of p300 further enhanced this SRC-1-potentiated level of transactivations, consistent with the recent findings in which CBP and p300 were shown to be transcription coactivators of the p65 subunit (Perkins, N. D., Felzien, L. K., Betts, J. C., Leung, K., Beach, D. H., and Nabel, G. J. (1997) Science 275, 523-527; Gerritsen, M. E., Williams, A. J., Neish, A. S. , Moore, S., Shi, Y., and Collins, T. (1997) Proc. Acad. Natl. Sci. U. S. A. 94, 2927-2932). These results suggest that at least two distinct coactivator molecules may cooperate to regulate the NFkappaB-dependent transactivations in vivo and SRC-1, originally identified as a coactivator for the nuclear receptors, may constitute a more widely used coactivation complex.
Collapse
Affiliation(s)
- S Y Na
- Department of Biology, Chonnam National University, Kwangju 500-757, Korea
| | | | | | | | | | | |
Collapse
|
597
|
Abstract
Chromosomal abnormalities of band 8p11 are associated with a distinct subtype of acute myeloid leukemia with French-American-British M4/5 morphology and prominent erythrophagocytosis by the blast cells. This subtype is usually associated with the t(8;16)(p11;p13), a translocation that has recently been shown to result in a fusion between the MOZ and CBP genes. We have cloned the inv(8)(p11q13), an abnormality associated with the same leukemia phenotype, and found a novel fusion between MOZ and the nuclear receptor transcriptional coactivatorTIF2/GRIP-1/NCoA-2. This gene has not previously been implicated in the pathogenesis of leukemia or other malignancies. MOZ-TIF2 retains the histone acetyltransferase homology domains of both proteins and also the CBP binding domain of TIF2. We speculate that the apparently identical leukemia cell phenotype observed in cases with the t(8;16) and the inv(8) arises by recruitment of CBP by MOZ-TIF2, resulting in modulation of the transcriptional activity of target genes by a mechanism involving abnormal histone acetylation.
Collapse
|
598
|
Nakajima S, Yamagata M, Sakai N, Ozono K. Characterization of the activation function-2 domain of the human 1,25-dihydroxyvitamin D3 receptor. Mol Cell Endocrinol 1998; 139:15-24. [PMID: 9705070 DOI: 10.1016/s0303-7207(98)00077-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, we determined the ligand-dependent activation function domain 2 (AF-2) of the human vitamin D receptor (hVDR) and characterized it using site-directed mutagenesis. A single mutation at glutamic acid-420 (E420Q) and an additional mutation at leucine-417 (L417A-E420Q) eliminated ligand-dependent transcriptional activation. In addition, lysine-264 was also demonstrated to be vital for ligand-induced transactivation. However, bacterial-overexpressed transcriptional factor IIB (TFIIB) was able to bind to both AF-2 and lysine-264 mutant hVDRs in vitro. The ligand-dependent transactivation via wild type hVDR was interfered with weakly only when a 10-fold molar excess of L417A-E420Q plasmid was co-transfected. This suppressive effect was diminished by introducing an additional mutation at a cysteine residue in the DNA binding domain. Thus, we conclude that the AF-2 domain of the hVDR located between amino acids 417 and 420, as well as lysine-264, are essential for ligand-dependent transactivation, and that TFIIB was not necessary for the function of these two regions of the hVDR. Our finding that AF-2 mutant hVDRs exhibit only very weak suppressive effect may indicate a difference in the molecular mechanism of the VDR-mediated transactivation from other nuclear receptors.
Collapse
Affiliation(s)
- S Nakajima
- Department of Environmental Medicine, Research Institute, Osaka Medical Center for Maternal and Child Health, Izumi, Japan
| | | | | | | |
Collapse
|
599
|
LaMorte VJ, Dyck JA, Ochs RL, Evans RM. Localization of nascent RNA and CREB binding protein with the PML-containing nuclear body. Proc Natl Acad Sci U S A 1998; 95:4991-6. [PMID: 9560216 PMCID: PMC20201 DOI: 10.1073/pnas.95.9.4991] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cellular role of the PML-containing nuclear bodies also known as ND10 or PODs remains elusive despite links to oncogenesis and viral replication. Although a potential role in transcription has been considered, direct evidence has been lacking. By developing a novel in vivo nucleic acid labeling approach, we demonstrate the existence of nascent RNA polymerase II transcripts within this nuclear body. In addition, PML and the transactivation cofactor, CREB binding protein (CBP), colocalize within the nucleus. Furthermore, we show that CBP in contrast to PML is distributed throughout the internal core of the structure. Collectively, these findings support a role for this nuclear body in transcriptional regulation.
Collapse
Affiliation(s)
- V J LaMorte
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
600
|
Hua QX, Jia WH, Bullock BP, Habener JF, Weiss MA. Transcriptional activator-coactivator recognition: nascent folding of a kinase-inducible transactivation domain predicts its structure on coactivator binding. Biochemistry 1998; 37:5858-66. [PMID: 9558319 DOI: 10.1021/bi9800808] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A model of transcriptional activator-coactivator recognition is provided by the mammalian CREB activation domain and the KIX domain of coactivator CBP. The CREB kinase-inducible activation domain (pKID, 60 residues) is disordered in solution and undergoes an alpha-helical folding transition on binding to CBP [Radhakrishan, I., Perez-Alvarado, G. C., Parker, D., Dyson, H. J., Montminy, M. R., and Wright, P. E. (1997) Cell 91, 741-752]. Binding requires phosphorylation of a conserved serine (RPpSYR) in pKID associated in vivo with the biological activation of CREB signaling pathways. The CBP-bound structure of CREB contains two alpha-helices (designated alphaA and alphaB) flanking the phosphoserine; the bound structure is stabilized by specific interactions with CBP. Here, the nascent structure of an unbound pKID domain is characterized by multidimensional NMR spectroscopy. The solubility of the phosphopeptide (46 residues) was enhanced by truncation of N- and C-terminal residues not involved in pKID-CBP interactions. Although disordered under physiologic conditions, the pKID fragment and its unphosphorylated parent peptide exhibit partial folding at low temperatures. One recognition helix (alphaA) is well-defined at 4 degreesC, whereas the other (alphaB) is disordered but inducible in 40% trifluoroethanol (TFE). Such nascent structure is independent of serine phosphorylation and correlates with the relative extent of engagement of the two alpha-helices in the pKID-KIX complex; whereas alphaA occupies a peripheral binding site with few intermolecular contacts, the TFE-inducible alphaB motif is deeply engaged in a hydrophobic groove. Our results support the use of TFE as an empirical probe of hidden structural propensities and define a correspondence between induced fit and the nascent structure of peptide fragments.
Collapse
Affiliation(s)
- Q X Hua
- Department of Biochemistry, Center for Molecular Oncology, The University of Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|