551
|
Hand SC, Menze MA, Toner M, Boswell L, Moore D. LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 2011; 73:115-34. [PMID: 21034219 DOI: 10.1146/annurev-physiol-012110-142203] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are extremely hydrophilic proteins that were first identified in land plants. Intracellular accumulation is tightly correlated with acquisition of desiccation tolerance, and data support their capacity to stabilize other proteins and membranes during drying, especially in the presence of sugars like trehalose. Exciting reports now show that LEA proteins are not restricted to plants; multiple forms are expressed in desiccation-tolerant animals from at least four phyla. We evaluate here the expression, subcellular localization, biochemical properties, and potential functions of LEA proteins in animal species during water stress. LEA proteins are intrinsically unstructured in aqueous solution, but surprisingly, many assume their native conformation during drying. They are targeted to multiple cellular locations, including mitochondria, and evidence supports that LEA proteins stabilize vitrified sugar glasses thought to be important in the dried state. More in vivo experimentation will be necessary to fully unravel the multiple functional properties of these macromolecules during water stress.
Collapse
Affiliation(s)
- Steven C Hand
- Division of Cellular, Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, 70803, USA.
| | | | | | | | | |
Collapse
|
552
|
Dimitriadis D, Koumandou VL, Trimpalis P, Kossida S. Protein functional links in Trypanosoma brucei, identified by gene fusion analysis. BMC Evol Biol 2011; 11:193. [PMID: 21729286 PMCID: PMC3155505 DOI: 10.1186/1471-2148-11-193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 07/05/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and Drosophila. RESULTS In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in Trypanosoma brucei, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs. CONCLUSIONS This is the first study of protein functional links in T. brucei identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs.
Collapse
|
553
|
Winckler T, Schiefner J, Spaller T, Siol O. Dictyostelium transfer RNA gene-targeting retrotransposons: Studying mobile element-host interactions in a compact genome. Mob Genet Elements 2011; 1:145-150. [PMID: 22016864 DOI: 10.4161/mge.1.2.17369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 11/19/2022] Open
Abstract
The model species of social amoebae, Dictyostelium discoideum, has a compact genome consisting of about two thirds protein-coding regions, with intergenic regions that are rarely larger than 1,000 bp. We hypothesize that the haploid state of D. discoideum cells provides defense against the amplification of mobile elements whose transposition activities would otherwise lead to the accumulation of heterozygous, potentially lethal mutations in diploid populations. We further speculate that complex transposon clusters found on D. discoideum chromosomes do not a priori result from integration preferences of these transposons, but that the clusters instead result from negative selection against cells harboring insertional mutations in genes. D. discoideum cells contain a fraction of retrotransposons that are found in the close vicinity of tRNA genes. Growing evidence suggests that these retrotransposons use active recognition mechanisms to determine suitable integration sites. However, the question remains whether these retrotransposons also cause insertional mutagenesis of genes, resulting in their enrichment at tRNA genes, which are relatively safe sites in euchromatic regions. Recently developed in vivo retrotransposition assays will allow a detailed, genome-wide analysis of de novo integration events in the D. discoideum genome.
Collapse
Affiliation(s)
- Thomas Winckler
- Universität Jena; Institut für Pharmazie; Lehrstuhl für Pharmazeutische Biologie; Jena, Germany
| | | | | | | |
Collapse
|
554
|
Pole JCM, McCaughan F, Newman S, Howarth KD, Dear PH, Edwards PAW. Single-molecule analysis of genome rearrangements in cancer. Nucleic Acids Res 2011; 39:e85. [PMID: 21525129 PMCID: PMC3141271 DOI: 10.1093/nar/gkr227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 12/04/2022] Open
Abstract
Rearrangements of the genome can be detected by microarray methods and massively parallel sequencing, which identify copy-number alterations and breakpoint junctions, but these techniques are poorly suited to reconstructing the long-range organization of rearranged chromosomes, for example, to distinguish between translocations and insertions. The single-DNA-molecule technique HAPPY mapping is a method for mapping normal genomes that should be able to analyse genome rearrangements, i.e. deviations from a known genome map, to assemble rearrangements into a long-range map. We applied HAPPY mapping to cancer cell lines to show that it could identify rearrangement of genomic segments, even in the presence of normal copies of the genome. We could distinguish a simple interstitial deletion from a copy-number loss at an inversion junction, and detect a known translocation. We could determine whether junctions detected by sequencing were on the same chromosome, by measuring their linkage to each other, and hence map the rearrangement. Finally, we mapped an uncharacterized reciprocal translocation in the T-47D breast cancer cell line to about 2 kb and hence cloned the translocation junctions. We conclude that HAPPY mapping is a versatile tool for determining the structure of rearrangements in the human genome.
Collapse
Affiliation(s)
- Jessica C. M. Pole
- Hutchison/MRC Research Centre and Department of Pathology, University of Cambridge, Hills Road, Cambridge, CB2 0XZ and MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Frank McCaughan
- Hutchison/MRC Research Centre and Department of Pathology, University of Cambridge, Hills Road, Cambridge, CB2 0XZ and MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Scott Newman
- Hutchison/MRC Research Centre and Department of Pathology, University of Cambridge, Hills Road, Cambridge, CB2 0XZ and MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Karen D. Howarth
- Hutchison/MRC Research Centre and Department of Pathology, University of Cambridge, Hills Road, Cambridge, CB2 0XZ and MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Paul H. Dear
- Hutchison/MRC Research Centre and Department of Pathology, University of Cambridge, Hills Road, Cambridge, CB2 0XZ and MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Paul A. W. Edwards
- Hutchison/MRC Research Centre and Department of Pathology, University of Cambridge, Hills Road, Cambridge, CB2 0XZ and MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
555
|
Moncho-Amor V, Galardi-Castilla M, Perona R, Sastre L. The dual-specificity protein phosphatase MkpB, homologous to mammalian MKP phosphatases, is required for D. discoideum post-aggregative development and cisplatin response. Differentiation 2011; 81:199-207. [PMID: 21300429 DOI: 10.1016/j.diff.2011.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 01/07/2011] [Accepted: 01/09/2011] [Indexed: 10/18/2022]
Abstract
Dual-specificity protein phosphatases participate in signal transduction pathways inactivating mitogen-activated protein kinases (MAP kinases). These signaling pathways are of critical importance in the regulation of numerous biological processes, including cell proliferation, differentiation and development. The social ameba Dictyostelium discoideum harbors 14 genes coding for proteins containing regions very similar to the dual-specificity protein phosphatase domain. One of these genes, mkpB, additionally codes for a region similar to the Rhodanase domain, characteristic of animal MAP kinase-phosphatases, in its N-terminal region. Cells that over-express this gene show increased protein phosphatase activity. mkpB is expressed in D. discoideum ameba at growth but it is greatly induced at 12h of multicellular development. Although it is expressed in all the cells of developmental structures, mkpB mRNA is enriched in cells with a distribution typical of anterior-like cells. Cells that express a catalytically inactive mutant of MkpB grow and aggregate like wild-type cells but show a greatly impaired post-aggregative development. In addition, the expression of cell-type specific genes is very delayed, indicating that this protein plays an important role in cell differentiation and development. Cells expressing the MkpB catalytically inactive mutant show increased sensitivity to cisplatin, while cells over-expressing wild type MkpB, or MkpA, proteins or mutated in the MAP kinase erkB gene are more resistant to this chemotherapeutic drug, as also shown in human tumor cells.
Collapse
Affiliation(s)
- Verónica Moncho-Amor
- Instituto de Investigaciones Biomédicas, CSIC/UAM, C/ Arturo Duperie, 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
556
|
Yu B, Fey P, Kestin-Pilcher KE, Fedorov A, Prakash A, Chisholm RL, Wu JY. Spliceosomal genes in the D. discoideum genome: a comparison with those in H. sapiens, D. melanogaster, A. thaliana and S. cerevisiae. Protein Cell 2011; 2:395-409. [PMID: 21667333 DOI: 10.1007/s13238-011-1052-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 05/20/2011] [Indexed: 02/05/2023] Open
Abstract
Little is known about pre-mRNA splicing in Dictyostelium discoideum although its genome has been completely sequenced. Our analysis suggests that pre-mRNA splicing plays an important role in D. discoideum gene expression as two thirds of its genes contain at least one intron. Ongoing curation of the genome to date has revealed 40 genes in D. discoideum with clear evidence of alternative splicing, supporting the existence of alternative splicing in this unicellular organism. We identified 160 candidate U2-type spliceosomal proteins and related factors in D. discoideum based on 264 known human genes involved in splicing. Spliceosomal small ribonucleoproteins (snRNPs), PRP19 complex proteins and late-acting proteins are highly conserved in D. discoideum and throughout the metazoa. In non-snRNP and hnRNP families, D. discoideum orthologs are closer to those in A. thaliana, D. melanogaster and H. sapiens than to their counterparts in S. cerevisiae. Several splicing regulators, including SR proteins and CUG-binding proteins, were found in D. discoideum, but not in yeast. Our comprehensive catalog of spliceosomal proteins provides useful information for future studies of splicing in D. discoideum where the efficient genetic and biochemical manipulation will also further our general understanding of pre-mRNA splicing.
Collapse
Affiliation(s)
- Bing Yu
- Department of Molecular and Clinical Genetics, Royal Prince Alfred Hospital and Sydney Medical School (Central), the University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
557
|
Roberge-White E, Katoh-Kurasawa M. Plasticity in the development and dedifferentiation of Dictyostelium discoideum. Dev Growth Differ 2011; 53:587-96. [DOI: 10.1111/j.1440-169x.2011.01256.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
558
|
Sugden C, Ross S, Annesley SJ, Cole C, Bloomfield G, Ivens A, Skelton J, Fisher PR, Barton G, Williams JG. A Dictyostelium SH2 adaptor protein required for correct DIF-1 signaling and pattern formation. Dev Biol 2011; 353:290-301. [PMID: 21396932 PMCID: PMC3085826 DOI: 10.1016/j.ydbio.2011.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 11/25/2022]
Abstract
Dictyostelium is the only non-metazoan with functionally analyzed SH2 domains and studying them can give insights into their evolution and wider potential. LrrB has a novel domain configuration with leucine-rich repeat, 14-3-3 and SH2 protein-protein interaction modules. It is required for the correct expression of several specific genes in early development and here we characterize its role in later, multicellular development. During development in the light, slug formation in LrrB null (lrrB-) mutants is delayed relative to the parental strain, and the slugs are highly defective in phototaxis and thermotaxis. In the dark the mutant arrests development as an elongated mound, in a hitherto unreported process we term dark stalling. The developmental and phototaxis defects are cell autonomous and marker analysis shows that the pstO prestalk sub-region of the slug is aberrant in the lrrB- mutant. Expression profiling, by parallel micro-array and deep RNA sequence analyses, reveals many other alterations in prestalk-specific gene expression in lrrB- slugs, including reduced expression of the ecmB gene and elevated expression of ampA. During culmination ampA is ectopically expressed in the stalk, there is no expression of ampA and ecmB in the lower cup and the mutant fruiting bodies lack a basal disc. The basal disc cup derives from the pstB cells and this population is greatly reduced in the lrrB- mutant. This anatomical feature is a hallmark of mutants aberrant in signaling by DIF-1, the polyketide that induces prestalk and stalk cell differentiation. In a DIF-1 induction assay the lrrB- mutant is profoundly defective in ecmB activation but only marginally defective in ecmA induction. Thus the mutation partially uncouples these two inductive events. In early development LrrB interacts physically and functionally with CldA, another SH2 domain containing protein. However, the CldA null mutant does not phenocopy the lrrB- in its aberrant multicellular development or phototaxis defect, implying that the early and late functions of LrrB are affected in different ways. These observations, coupled with its domain structure, suggest that LrrB is an SH2 adaptor protein active in diverse developmental signaling pathways.
Collapse
Affiliation(s)
- Christopher Sugden
- School of Life Sciences, University of Dundee, Dow St., Dundee, DD1 5EH, UK
| | - Susan Ross
- School of Life Sciences, University of Dundee, Dow St., Dundee, DD1 5EH, UK
| | - Sarah J. Annesley
- Department of Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Christian Cole
- School of Life Sciences, University of Dundee, Dow St., Dundee, DD1 5EH, UK
| | - Gareth Bloomfield
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | - Jason Skelton
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Paul R. Fisher
- Department of Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Geoffrey Barton
- School of Life Sciences, University of Dundee, Dow St., Dundee, DD1 5EH, UK
| | | |
Collapse
|
559
|
Sriskanthadevan S, Zhu Y, Manoharan K, Yang C, Siu CH. The cell adhesion molecule DdCAD-1 regulates morphogenesis through differential spatiotemporal expression in Dictyostelium discoideum. Development 2011; 138:2487-97. [PMID: 21561987 DOI: 10.1242/dev.060129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During development of Dictyostelium, multiple cell types are formed and undergo a coordinated series of morphogenetic movements guided by their adhesive properties and other cellular factors. DdCAD-1 is a unique homophilic cell adhesion molecule encoded by the cadA gene. It is synthesized in the cytoplasm and transported to the plasma membrane by contractile vacuoles. In chimeras developed on soil plates, DdCAD-1-expressing cells showed greater propensity to develop into spores than did cadA-null cells. When development was performed on non-nutrient agar, wild-type cells sorted from the cadA-null cells and moved to the anterior zone. They differentiated mostly into stalk cells and eventually died, whereas the cadA-null cells survived as spores. To assess the role of DdCAD-1 in this novel behavior of wild-type and mutant cells, cadA-null cells were rescued by the ectopic expression of DdCAD-1-GFP. Morphological studies have revealed major spatiotemporal changes in the subcellular distribution of DdCAD-1 during development. Whereas DdCAD-1 became internalized in most cells in the post-aggregation stages, it was prominent in the contact regions of anterior cells. Cell sorting was also restored in cadA(-) slugs by exogenous recombinant DdCAD-1. Remarkably, DdCAD-1 remained on the surface of anterior cells, whereas it was internalized in the posterior cells. Additionally, DdCAD-1-expressing cells migrated slower than cadA(-) cells and sorted to the anterior region of chimeric slugs. These results show that DdCAD-1 influences the sorting behavior of cells in slugs by its differential distribution on the prestalk and prespore cells.
Collapse
Affiliation(s)
- Shrivani Sriskanthadevan
- The Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
560
|
Abstract
The Dictyostelium model has a set of features uniquely well-suited to developing our understanding of transcriptional control. The complete Dictyostelium discoideum genome sequence has revealed that many of the molecular components regulating transcription in larger eukaryotes are conserved in Dictyostelium, from transcription factors and chromatin components to the enzymes and signals that regulate them. In addition, the system permits visualization of single gene firing events in living cells, which provides a more detailed view of transcription and its relationships to cell and developmental processes. This review will bring together the available knowledge of the structure and dynamics of the Dictyostelium nucleus and discuss recent transcription imaging studies and their implications for stability and accuracy of cell decisions.
Collapse
Affiliation(s)
- Michelle Stevense
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
561
|
Hasselbring BM, Patel MK, Schell MA. Dictyostelium discoideum as a model system for identification of Burkholderia pseudomallei virulence factors. Infect Immun 2011; 79:2079-88. [PMID: 21402765 PMCID: PMC3088138 DOI: 10.1128/iai.01233-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/01/2011] [Indexed: 02/07/2023] Open
Abstract
Burkholderia pseudomallei is an emerging bacterial pathogen and category B biothreat. Human infections with B. pseudomallei (called melioidosis) present as a range of manifestations, including acute septicemia and pneumonia. Although melioidosis can be fatal, little is known about the molecular basis of B. pseudomallei pathogenicity, in part because of the lack of simple, genetically tractable eukaryotic models to facilitate en masse identification of virulence determinants or explore host-pathogen interactions. Two assays, one high-throughput and one quantitative, were developed to monitor levels of resistance of B. pseudomallei and the closely related nearly avirulent species Burkholderia thailandensis to predation by the phagocytic amoeba Dictyostelium discoideum. The quantitative assay showed that levels of resistance to, and survival within, amoeba by these bacteria and their known virulence mutants correlate well with their published levels of virulence in animals. Using the high-throughput assay, we screened a 1,500-member B. thailandensis transposon mutant library and identified 13 genes involved in resistance to predation by D. discoideum. Orthologs of these genes were disrupted in B. pseudomallei, and nearly all mutants had similarly decreased resistance to predation by D. discoideum. For some mutants, decreased resistance also correlated with reduced survival in and cytotoxicity toward macrophages, as well as attenuated virulence in mice. These observations suggest that some factors required by B. pseudomallei for resistance to environmental phagocytes also aid in resistance to phagocytic immune cells and contribute to disease in animals. Thus, D. discoideum provides a novel, high-throughput model system for facilitating inquiry into B. pseudomallei virulence.
Collapse
Affiliation(s)
| | - Maharsh K. Patel
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Mark A. Schell
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
562
|
Schaap P. Evolution of developmental cyclic adenosine monophosphate signaling in the Dictyostelia from an amoebozoan stress response. Dev Growth Differ 2011; 53:452-62. [PMID: 21585352 PMCID: PMC3909795 DOI: 10.1111/j.1440-169x.2011.01263.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 10/27/2022]
Abstract
The Dictyostelid social amoebas represent one of nature's several inventions of multicellularity. Though normally feeding as single cells, nutrient stress triggers the collection of amoebas into colonies that form delicately shaped fruiting structures in which the cells differentiate into spores and up to three cell types to support the spore mass. Cyclic adenosine monophosphate (cAMP) plays a very dominant role in controlling morphogenesis and cell differentiation in the model species Dictyostelium discoideum. As a secreted chemoattractant cAMP coordinates cell movement during aggregation and fruiting body morphogenesis. Secreted cAMP also controls gene expression at different developmental stages, while intracellular cAMP is extensively used to transduce the effect of other stimuli that control the developmental program. In this review, I present an overview of the different roles of cAMP in the model D. discoideum and I summarize studies aimed to resolve how these roles emerged during Dictyostelid evolution.
Collapse
Affiliation(s)
- Pauline Schaap
- College of Life Sciences, University of Dundee, MSI/WTB/JBC Complex, Dow Street, Dundee DD15EH, UK.
| |
Collapse
|
563
|
Sixt BS, Heinz C, Pichler P, Heinz E, Montanaro J, Op den Camp HJM, Ammerer G, Mechtler K, Wagner M, Horn M. Proteomic analysis reveals a virtually complete set of proteins for translation and energy generation in elementary bodies of the amoeba symbiont Protochlamydia amoebophila. Proteomics 2011; 11:1868-92. [PMID: 21500343 DOI: 10.1002/pmic.201000510] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 12/16/2022]
Abstract
Chlamydiae belong to the most successful intracellular bacterial pathogens. They display a complex developmental cycle and an extremely broad host spectrum ranging from vertebrates to protozoa. The family Chlamydiaceae comprises exclusively well-known pathogens of humans and animals, whereas the members of its sister group, the Parachlamydiaceae, naturally occur as symbionts of free-living amoebae. Comparative analysis of these two groups provides valuable insights into chlamydial evolution and mechanisms for microbe-host interaction. Based on the complete genome sequence of the Acanthamoeba spp. symbiont Protochlamydia amoebophila UWE25, we performed the first detailed proteome analysis of the infectious stage of a symbiotic chlamydia. A 2-D reference proteome map was established and the analysis was extensively complemented by shotgun proteomics. In total, 472 proteins were identified, which represent 23.2% of all encoded proteins. These cover a wide range of functional categories, including typical house-keeping proteins, but also putative virulence-associated proteins. A number of proteins that are not encoded in genomes of Chlamydiaceae were observed and the expression of 162 proteins classified as hypothetical or unknown proteins could be demonstrated. Our findings indicate that P. amoebophila exploits its additional genetic repertoire (compared with the Chlamydiaceae), and that its elementary bodies are remarkably well equipped with proteins involved in transcription, translation, and energy generation.
Collapse
Affiliation(s)
- Barbara S Sixt
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
564
|
Narita TB, Koide K, Morita N, Saito T. Dictyostelium hybrid polyketide synthase, SteelyA, produces 4-methyl-5-pentylbenzene-1,3-diol and induces spore maturation. FEMS Microbiol Lett 2011; 319:82-7. [PMID: 21438914 DOI: 10.1111/j.1574-6968.2011.02273.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The genome of Dictyostelium contains two novel hybrid-type polyketide synthases (PKSs) known as 'Steely'; the Steely enzyme is formed by the fusion of type I and type III PKSs. One of these enzymes, SteelyB, is known to be responsible for the production of the stalk cell-inducing factor DIF-1 in vivo. On the other hand, the product(s) and expression pattern of SteelyA are not clearly understood, because there are two different reports associated with the in vitro products of SteelyA and its expression pattern. To solve this problem, we first examined the expression pattern using two different primer sets and found that it was quite similar to that shown in the dictyExpress database. stlA expression peaked at approximately 3 h and declined, but showed a small peak around the end of development. Next, we examined the in vivo product of SteelyA using a stlA null mutant and found that the mutant lacked 4-methyl-5-pentylbenzene-1,3-diol (MPBD). This null mutant showed aberrant, glassy sori, and most of the cells in the sori remained amoeba-like without a cell wall. This defect was restored by adding 200 nM of MPBD to the agar. These results indicate that SteelyA produces MPBD in vivo and induces spore maturation.
Collapse
Affiliation(s)
- Takaaki B Narita
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | | | | | | |
Collapse
|
565
|
Crystal Structure of Type III Glutamine Synthetase: Surprising Reversal of the Inter-Ring Interface. Structure 2011; 19:471-83. [DOI: 10.1016/j.str.2011.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/31/2011] [Accepted: 02/07/2011] [Indexed: 11/19/2022]
|
566
|
Abad MG, Long Y, Willcox A, Gott JM, Gray MW, Jackman JE. A role for tRNA(His) guanylyltransferase (Thg1)-like proteins from Dictyostelium discoideum in mitochondrial 5'-tRNA editing. RNA (NEW YORK, N.Y.) 2011; 17:613-23. [PMID: 21307182 PMCID: PMC3062173 DOI: 10.1261/rna.2517111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Genes with sequence similarity to the yeast tRNA(His) guanylyltransferase (Thg1) gene have been identified in all three domains of life, and Thg1 family enzymes are implicated in diverse processes, ranging from tRNA(His) maturation to 5'-end repair of tRNAs. All of these activities take advantage of the ability of Thg1 family enzymes to catalyze 3'-5' nucleotide addition reactions. Although many Thg1-containing organisms have a single Thg1-related gene, certain eukaryotic microbes possess multiple genes with sequence similarity to Thg1. Here we investigate the activities of four Thg1-like proteins (TLPs) encoded by the genome of the slime mold, Dictyostelium discoideum (a member of the eukaryotic supergroup Amoebozoa). We show that one of the four TLPs is a bona fide Thg1 ortholog, a cytoplasmic G(-1) addition enzyme likely to be responsible for tRNA(His) maturation in D. discoideum. Two other D. discoideum TLPs exhibit biochemical activities consistent with a role for these enzymes in mitochondrial 5'-tRNA editing, based on their ability to efficiently repair the 5' ends of mitochondrial tRNA editing substrates. Although 5'-tRNA editing was discovered nearly two decades ago, the identity of the protein(s) that catalyze this activity has remained elusive. This article provides the first identification of any purified protein that appears to play a role in the 5'-tRNA editing reaction. Moreover, the presence of multiple Thg1 family members in D. discoideum suggests that gene duplication and divergence during evolution has resulted in paralogous proteins that use 3'-5' nucleotide addition reactions for diverse biological functions in the same organism.
Collapse
Affiliation(s)
- Maria G Abad
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
567
|
Abstract
Mitogen activated protein kinases (MAPKs) play important roles in the development of eukaryotic organisms through the regulation of signal transduction pathways stimulated by external signals. MAPK signaling pathways have been associated with the regulation of cell growth, differentiation, and chemotaxis, indicating MAPKs contribute to a diverse set of developmental processes. In most eukaryotes, the diversity of external signals is likely to far exceed the diversity of MAPKs, suggesting that multiple signaling pathways might share MAPKs. Do different signaling pathways converge before MAPK function or can MAPKs maintain signaling specificity through interactions with specific proteins? The genetic and biochemical analysis of MAPK pathways in simple eukaryotes such as Dictyostelium offers opportunities to investigate functional specificity of MAPKs in G protein-mediated signal transduction pathways. This review considers the regulation and specificity of MAPK function in pathways that control Dictyostelium growth and development.
Collapse
Affiliation(s)
- Jeffrey A. Hadwiger
- Department of Microbiology and Molecular Genetics Oklahoma State University 74078-3020, USA
| | - Hoai-Nghia Nguyen
- Department of Microbiology and Molecular Genetics Oklahoma State University 74078-3020, USA
| |
Collapse
|
568
|
Collins SR, Meyer T. Evolutionary origins of STIM1 and STIM2 within ancient Ca2+ signaling systems. Trends Cell Biol 2011; 21:202-11. [PMID: 21288721 PMCID: PMC3175768 DOI: 10.1016/j.tcb.2011.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/17/2010] [Accepted: 01/04/2011] [Indexed: 11/26/2022]
Abstract
Human stromal interaction molecule (STIM) proteins are parts of elaborate eukaryotic Ca(2+) signaling systems that include numerous plasma membrane (PM), endoplasmic reticulum (ER), and mitochondrial Ca(2+) transporters, channels and regulators. STIM2 and STIM1 function as Ca(2+) sensors with different sensitivities for ER Ca(2+). They translocate to ER-PM junctions and open PM Orai Ca(2+) influx channels when receptor-mediated Ca(2+) release lowers ER Ca(2+) levels. The resulting increase in cytosolic Ca(2+) leads to the activation of numerous Ca(2+) effector proteins that in turn regulate differentiation, cell contraction, secretion and other cell functions. In this review, we use an evolutionary perspective to survey molecular activation mechanisms in the Ca(2+) signaling system, with a particular focus on regulatory motifs and functions of the two STIM proteins. We discuss the presence and absence of STIM genes in different species, the order of appearance of STIM versus Orai, and the evolutionary addition of new signaling domains to STIM proteins.
Collapse
Affiliation(s)
- Sean R Collins
- Department of Chemical and Systems Biology, Stanford University, 318 Campus Drive, Clark Building W2.1, Stanford, CA 94305-5174, USA
| | | |
Collapse
|
569
|
Uchikawa T, Yamamoto A, Inouye K. Origin and function of the stalk-cell vacuole in Dictyostelium. Dev Biol 2011; 352:48-57. [DOI: 10.1016/j.ydbio.2011.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 01/20/2023]
|
570
|
Uncovering a role for the tail of the Dictyostelium discoideum SadA protein in cell-substrate adhesion. EUKARYOTIC CELL 2011; 10:662-71. [PMID: 21441344 DOI: 10.1128/ec.00221-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous work from our laboratory showed that the Dictyostelium discoideum SadA protein plays a central role in cell-substrate adhesion. SadA null cells exhibit a loss of adhesion, a disrupted actin cytoskeleton, and a cytokinesis defect. How SadA mediates these phenotypes is unknown. This work addresses the mechanism of SadA function, demonstrating an important role for the C-terminal cytoplasmic tail in SadA function. We found that a SadA tailless mutant was unable to rescue the sadA adhesion deficiency, and overexpression of the SadA tail domain reduced adhesion in wild-type cells. We also show that SadA is closely associated with the actin cytoskeleton. Mutagenesis studies suggested that four serine residues in the tail, S924/S925 and S940/S941, may regulate association of SadA with the actin cytoskeleton. Glutathione S-transferase pull-down assays identified at least one likely interaction partner of the SadA tail, cortexillin I, a known actin bundling protein. Thus, our data demonstrate an important role for the carboxy-terminal cytoplasmic tail in SadA function and strongly suggest that a phosphorylation event in this tail regulates an interaction with cortexillin I. Based on our data, we propose a model for the function of SadA.
Collapse
|
571
|
Andersson JO. Evolution of patchily distributed proteins shared between eukaryotes and prokaryotes: Dictyostelium as a case study. J Mol Microbiol Biotechnol 2011; 20:83-95. [PMID: 21430389 DOI: 10.1159/000324505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protein families are often patchily distributed in the tree of life; they are present in distantly related organisms, but absent in more closely related lineages. This could either be the result of lateral gene transfer between ancestors of organisms that encode them, or losses in the lineages that lack them. Here a novel approach is developed to study the evolution of patchily distributed proteins shared between prokaryotes and eukaryotes. Proteins encoded in the genome of cellular slime mold Dictyostelium discoideum and a restricted number of other lineages, including at least one prokaryote, were identified. Analyses of the phylogenetic distribution of 49 such patchily distributed protein families showed conflicts with organismal phylogenies; 25 are shared with the distantly related amoeboflagellate Naegleria (Excavata), whereas only two are present in the more closely related Entamoeba. Most protein families show unexpected topologies in phylogenetic analyses; eukaryotes are polyphyletic in 85% of the trees. These observations suggest that gene transfers have been an important mechanism for the distribution of patchily distributed proteins across all domains of life. Further studies of this exchangeable gene fraction are needed for a better understanding of the origin and evolution of eukaryotic genes and the diversification process of eukaryotes.
Collapse
Affiliation(s)
- Jan O Andersson
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden. jan.andersson @ ebc.uu.se
| |
Collapse
|
572
|
The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. Res Microbiol 2011; 162:607-18. [PMID: 21392573 DOI: 10.1016/j.resmic.2011.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/29/2011] [Indexed: 11/24/2022]
Abstract
Naegleria gruberi, a free-living protist, has long been treasured as a model for basal body and flagellar assembly due to its ability to differentiate from crawling amoebae into swimming flagellates. The full genome sequence of Naegleria gruberi has recently been used to estimate gene families ancestral to all eukaryotes and to identify novel aspects of Naegleria biology, including likely facultative anaerobic metabolism, extensive signaling cascades, and evidence for sexuality. Distinctive features of the Naegleria genome and nuclear biology provide unique perspectives for comparative cell biology, including cell division, RNA processing and nucleolar assembly. We highlight here exciting new and novel aspects of Naegleria biology identified through genomic analysis.
Collapse
|
573
|
Boesler C, Kruse J, Söderbom F, Hammann C. Sequence and generation of mature ribosomal RNA transcripts in Dictyostelium discoideum. J Biol Chem 2011; 286:17693-703. [PMID: 21454536 DOI: 10.1074/jbc.m110.208306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The amoeba Dictyostelium discoideum is a well established model organism for studying numerous aspects of cellular and developmental functions. Its ribosomal RNA (rRNA) is encoded in an extrachromosomal palindrome that exists in ∼100 copies in the cell. In this study, we have set out to investigate the sequence of the expressed rRNA. For this, we have ligated the rRNA ends and performed RT-PCR on these circular RNAs. Sequencing revealed that the mature 26 S, 17 S, 5.8 S, and 5 S rRNAs have sizes of 3741, 1871, 162, and 112 nucleotides, respectively. Unlike the published data, all mature rRNAs of the same type uniformly display the same start and end nucleotides in the analyzed AX2 strain. We show the existence of a short lived primary transcript covering the rRNA transcription unit of 17 S, 5.8 S, and 26 S rRNA. Northern blots and RT-PCR reveal that from this primary transcript two precursor molecules of the 17 S and two precursors of the 26 S rRNA are generated. We have also determined the sequences of these precursor molecules, and based on these data, we propose a model for the maturation of the rRNAs in Dictyostelium discoideum that we compare with the processing of the rRNA transcription unit of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Carsten Boesler
- Heisenberg Research Group Ribogenetics, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | | | | | | |
Collapse
|
574
|
Kimura K, Kuwayama H, Amagai A, Maeda Y. Developmental significance of cyanide-resistant respiration under stressed conditions: experiments in Dictyostelium cells. Dev Growth Differ 2011; 52:645-56. [PMID: 20887565 DOI: 10.1111/j.1440-169x.2010.01200.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously reported that benzohydroxamic acid (BHAM), a potent inhibitor of cyanide (CN)-resistant respiration mediated by alternative oxidase (AOX), induces formation of unique cell masses (i.e., stalk-like cells with a large vacuole and thick cell wall) in starved Dictyostelium cells. Unexpectedly, however, aox-null cells prepared by homologous recombination exhibited normal development under normal culture conditions on agar, indicating that BHAM-induced stalk formation is not solely attributable to inhibition of CN-resistant respiration. This also suggests that a series of pharmacological approaches in the field of life science has serious limitations. Under stress (e.g., in submerged culture), starved aox-null cells exhibited slightly delayed aggregation compared with parental Ax-2 cells; most cells remained as loose aggregates even after prolonged incubation. Also, the developmental defects of aox-null cells became more marked upon incubation for 30 min just after starvation in the presence of ≥ 1.75 mmol/L H(2)O(2). This seems to indicate that CN-resistant respiration could mitigate cellular damage through reactive oxygen species (ROS), because AOX has a potential role in reduction of ROS production. Starved aox-null cells did not develop in the presence of 5 mmol/L KCN (which completely inhibited the conventional cytochrome-mediated respiration) and remained as non-aggregated single cells on agar even after prolonged incubation. Somewhat surprisingly, however, parental Ax-2 cells were found to develop normally, forming fruiting bodies even in the presence of 10 mmol/L KCN. Taken together, these results suggest that CN-resistant respiration might compensate for the production of adenosine tri-phosphate via oxidative phosphorylation.
Collapse
Affiliation(s)
- Kei Kimura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | | | | |
Collapse
|
575
|
Nordström KJV, Sällman Almén M, Edstam MM, Fredriksson R, Schiöth HB. Independent HHsearch, Needleman--Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families. Mol Biol Evol 2011; 28:2471-80. [PMID: 21402729 DOI: 10.1093/molbev/msr061] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several families of G protein-coupled receptors (GPCRs) show no significant sequence similarities to each other, and it has been debated which of them share a common origin. We developed and performed integrated and independent HHsearch, Needleman--Wunsch-based and motif analyses on more than 6,600 unique GPCRs from 12 species. Moreover, we mined the evolutionary important Trichoplax adhaerens, Nematostella vectensis, Thalassiosira pseudonana, and Strongylocentrotus purpuratus genomes, revealing remarkably rich vertebrate-like GPCR repertoires already in the early Metazoan species. We found strong evidence that the Adhesion and Frizzled families are children to the cyclic AMP (cAMP) family with HHsearch homology probabilities of 99.8% and 99.4%, respectively, also supported by the Needleman--Wunsch analysis and several motifs. We also found that the large Rhodopsin family is likely a child of the cAMP family with an HHsearch homology probability of 99.4% and conserved motifs. Therefore, we suggest that the Adhesion and Frizzled families originated from the cAMP family in an event close to that which gave rise to the Rhodopsin family. We also found convincing evidence that the Rhodopsin family is parent to the important sensory families; Taste 2 and Vomeronasal type 1 as well as the Nematode chemoreceptor families. The insect odorant, gustatory, and Trehalose receptors, frequently referred to as GPCRs, form a separate cluster without relationship to the other families, and we propose, based on these and others' results, that these families are ligand-gated ion channels rather than GPCRs. Overall, we suggest common descent of at least 97% of the GPCRs sequences found in humans.
Collapse
Affiliation(s)
- Karl J V Nordström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
576
|
A genetic interaction between NDPK and AMPK in Dictyostelium discoideum that affects motility, growth and development. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:341-9. [PMID: 21374069 PMCID: PMC3390704 DOI: 10.1007/s00210-011-0615-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/16/2011] [Indexed: 11/25/2022]
Abstract
Many of the expanding roles of nucleoside diphosphate kinase have been attributed to its ability to interact with other proteins. One proposal is an interaction with the cellular energy sensor AMP-activated protein kinase, and here, we apply the simple eukaryotic organism, Dictyostelium discoideum as a test model. Stable cotransformants were created in which NDPK expression was knocked down by antisense inhibition, and AMPK activity was chronically elevated either by constitutive overexpression of its active, catalytic domain (AMPKαT) or as a result of mitochondrial dysfunction (created by antisense inhibition of expression of a mitochondrial chaperone protein, chaperonin 60). To investigate a biochemical interaction, transformants were created which contained constructs expressing FLAG-NDPK and hexahistidine-tagged full-length AMPK or AMPKαT. The protein extract from these transformants was used in coimmunoprecipitations. Knock down of NDPK expression suppressed the phenotypic defects that are caused by AMPK hyperactivity resulting either from overexpression of AMPKαT or from mitochondrial dysfunction. These included rescue of defects in slug phototaxis, fruiting body morphology and growth in a liquid medium. Coimmunoprecipitation experiments failed to demonstrate a biochemical interaction between the two proteins. The results demonstrate a genetic interaction between NDPK and AMPK in Dictyostelium in that NDPK is required for the phenotypic effects of activated AMPK. Coimmunoprecipitations suggest that this interaction is not mediated by a direct interaction between the two proteins.
Collapse
|
577
|
Ball S, Colleoni C, Cenci U, Raj JN, Tirtiaux C. The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1775-801. [PMID: 21220783 DOI: 10.1093/jxb/erq411] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Solid semi-crystalline starch and hydrosoluble glycogen define two distinct physical states of the same type of storage polysaccharide. Appearance of semi-crystalline storage polysaccharides appears linked to the requirement of unicellular diazotrophic cyanobacteria to fuel nitrogenase and protect it from oxygen through respiration of vast amounts of stored carbon. Starch metabolism itself resulted from the merging of the bacterial and eukaryote pathways of storage polysaccharide metabolism after endosymbiosis of the plastid. This generated the three Archaeplastida lineages: the green algae and land plants (Chloroplastida), the red algae (Rhodophyceae), and the glaucophytes (Glaucophyta). Reconstruction of starch metabolism in the common ancestor of Archaeplastida suggests that polysaccharide synthesis was ancestrally cytosolic. In addition, the synthesis of cytosolic starch from the ADP-glucose exported from the cyanobacterial symbiont possibly defined the original metabolic flux by which the cyanobiont provided photosynthate to its host. Additional evidence supporting this scenario include the monophyletic origin of the major carbon translocators of the inner membrane of eukaryote plastids which are sisters to nucleotide-sugar transporters of the eukaryote endomembrane system. It also includes the extent of enzyme subfunctionalization that came as a consequence of the rewiring of this pathway to the chloroplasts in the green algae. Recent evidence suggests that, at the time of endosymbiosis, obligate intracellular energy parasites related to extant Chlamydia have donated important genes to the ancestral starch metabolism network.
Collapse
Affiliation(s)
- Steven Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Bâtiment C9, Cité Scientifique, F-59655 Villeneuve d'Ascq, France.
| | | | | | | | | |
Collapse
|
578
|
Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Feasley CL, Dalin E, Tu H, Huang E, Barry K, Lindquist E, Shapiro H, Bruce D, Schmutz J, Salamov A, Fey P, Gaudet P, Anjard C, Babu MM, Basu S, Bushmanova Y, van der Wel H, Katoh-Kurasawa M, Dinh C, Coutinho PM, Saito T, Elias M, Schaap P, Kay RR, Henrissat B, Eichinger L, Rivero F, Putnam NH, West CM, Loomis WF, Chisholm RL, Shaulsky G, Strassmann JE, Queller DC, Kuspa A, Grigoriev IV. Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol 2011; 12:R20. [PMID: 21356102 PMCID: PMC3188802 DOI: 10.1186/gb-2011-12-2-r20] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 12/09/2010] [Accepted: 02/28/2011] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum. RESULTS We have produced a draft genome sequence of another group dictyostelid, Dictyostelium purpureum, and compare it to the D. discoideum genome. The assembly (8.41 × coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. Interesting patterns of gene conservation and divergence are also evident, suggesting function differences; some protein families, such as the histidine kinases, have undergone little functional change, whereas others, such as the polyketide synthases, have undergone extensive diversification. The abundant amino acid homopolymers encoded in both genomes are generally not found in homologous positions within proteins, so they are unlikely to derive from ancestral DNA triplet repeats. Genes involved in the social stage evolved more rapidly than others, consistent with either relaxed selection or accelerated evolution due to social conflict. CONCLUSIONS The findings from this new genome sequence and comparative analysis shed light on the biology and evolution of the Dictyostelia.
Collapse
Affiliation(s)
- Richard Sucgang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - Xiangjun Tian
- Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - William Salerno
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Anup Parikh
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Christa L Feasley
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, 110 N. Lindsay, Oklahoma City, OK 73104, USA
| | - Eileen Dalin
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - Hank Tu
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - Eryong Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - Harris Shapiro
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - David Bruce
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - Jeremy Schmutz
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - Petra Fey
- dictyBase, Center for Genetic Medicine, Northwestern University, 750 N. Lake Shore Drive, Chicago, IL 60611, USA
| | - Pascale Gaudet
- dictyBase, Center for Genetic Medicine, Northwestern University, 750 N. Lake Shore Drive, Chicago, IL 60611, USA
| | - Christophe Anjard
- Section of Cell and Developmental Biology, Division of Biology, University of California, 9500 Gilman Dr, San Diego, La Jolla, CA 92093, USA
| | - M Madan Babu
- Laboratory of Molecular Biology, MRC Centre, Hills Road, Cambridge CB2 2QH, UK
| | - Siddhartha Basu
- dictyBase, Center for Genetic Medicine, Northwestern University, 750 N. Lake Shore Drive, Chicago, IL 60611, USA
| | - Yulia Bushmanova
- dictyBase, Center for Genetic Medicine, Northwestern University, 750 N. Lake Shore Drive, Chicago, IL 60611, USA
| | - Hanke van der Wel
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, 110 N. Lindsay, Oklahoma City, OK 73104, USA
| | - Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Christopher Dinh
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Pedro M Coutinho
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Universities of Aix-Marseille I & II, 13288 Marseille, France
| | - Tamao Saito
- Department of Materials and Life Sciences, Sophia University 7-1 Kioi-Cho, Chiyoda-Ku, Tokyo 102-8554, Japan
| | - Marek Elias
- Departments of Botany and Parasitology, Faculty of Science, Charles University in Prague, Albertov 6, Prague 128 43, Czech Republic
| | - Pauline Schaap
- College of Life Sciences, University of Dundee, Dow Street, Dundee, DD15EH, UK
| | - Robert R Kay
- Laboratory of Molecular Biology, MRC Centre, Hills Road, Cambridge CB2 2QH, UK
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Universities of Aix-Marseille I & II, 13288 Marseille, France
| | - Ludwig Eichinger
- Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Francisco Rivero
- Centre for Biomedical Research, The Hull York Medical School and Department of Biological Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Nicholas H Putnam
- Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, 110 N. Lindsay, Oklahoma City, OK 73104, USA
| | - William F Loomis
- Section of Cell and Developmental Biology, Division of Biology, University of California, 9500 Gilman Dr, San Diego, La Jolla, CA 92093, USA
| | - Rex L Chisholm
- dictyBase, Center for Genetic Medicine, Northwestern University, 750 N. Lake Shore Drive, Chicago, IL 60611, USA
| | - Gad Shaulsky
- Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Joan E Strassmann
- Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - David C Queller
- Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Adam Kuspa
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| |
Collapse
|
579
|
Gomolplitinant KM, Saier MH. Evolution of the oligopeptide transporter family. J Membr Biol 2011; 240:89-110. [PMID: 21347612 PMCID: PMC3061005 DOI: 10.1007/s00232-011-9347-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/21/2011] [Indexed: 12/31/2022]
Abstract
The oligopeptide transporter (OPT) family of peptide and iron-siderophore transporters includes members from both prokaryotes and eukaryotes but with restricted distribution in the latter domain. Eukaryotic members were found only in fungi and plants with a single slime mold homologue clustering with the fungal proteins. All functionally characterized eukaryotic peptide transporters segregate from the known iron-siderophore transporters on a phylogenetic tree. Prokaryotic members are widespread, deriving from many different phyla. Although they belong only to the iron-siderophore subdivision, genome context analyses suggest that many of them are peptide transporters. OPT family proteins have 16 or occasionally 17 transmembrane-spanning α-helical segments (TMSs). We provide statistical evidence that the 16-TMS topology arose via three sequential duplication events followed by a gene-fusion event for proteins with a seventeenth TMS. The proposed pathway is as follows: 2 TMSs → 4 TMSs → 8 TMSs → 16 TMSs → 17 TMSs. The seventeenth C-terminal TMS, which probably arose just once, is found in just one phylogenetic group of these homologues. Analyses for orthology revealed that a few phylogenetic clusters consist exclusively of orthologues but most have undergone intermixing, suggestive of horizontal transfer. It appears that in this family horizontal gene transfer was frequent among prokaryotes, rare among eukaryotes and largely absent between prokaryotes and eukaryotes as well as between plants and fungi. These observations provide guides for future structural and functional analyses of OPT family members.
Collapse
Affiliation(s)
- Kenny M Gomolplitinant
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
580
|
Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 2011; 12:R18. [PMID: 21338519 PMCID: PMC3188800 DOI: 10.1186/gb-2011-12-2-r18] [Citation(s) in RCA: 784] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/23/2010] [Accepted: 02/21/2011] [Indexed: 01/18/2023] Open
Abstract
Despite the ever-increasing output of Illumina sequencing data, loci with extreme base compositions are often under-represented or absent. To evaluate sources of base-composition bias, we traced genomic sequences ranging from 6% to 90% GC through the process by quantitative PCR. We identified PCR during library preparation as a principal source of bias and optimized the conditions. Our improved protocol significantly reduces amplification bias and minimizes the previously severe effects of PCR instrument and temperature ramp rate.
Collapse
Affiliation(s)
- Daniel Aird
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, 320 Charles Street, Cambridge, MA 02141, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
581
|
Haerty W, Golding GB. Low-complexity sequences and single amino acid repeats: not just "junk" peptide sequences. Genome 2011; 53:753-62. [PMID: 20962881 DOI: 10.1139/g10-063] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For decades proteins were thought to interact in a "lock and key" system, which led to the definition of a paradigm linking stable three-dimensional structure to biological function. As a consequence, any non-structured peptide was considered to be nonfunctional and to evolve neutrally. Surprisingly, the most commonly shared peptides between eukaryotic proteomes are low-complexity sequences that in most conditions do not present a stable three-dimensional structure. However, because these sequences evolve rapidly and because the size variation of a few of them can have deleterious effects, low-complexity sequences have been suggested to be the target of selection. Here we review evidence that supports the idea that these simple sequences should not be considered just "junk" peptides and that selection drives the evolution of many of them.
Collapse
Affiliation(s)
- Wilfried Haerty
- Biology Department, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
582
|
Carnell MJ, Insall RH. Actin on disease--studying the pathobiology of cell motility using Dictyostelium discoideum. Semin Cell Dev Biol 2011; 22:82-8. [PMID: 21145982 DOI: 10.1016/j.semcdb.2010.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 11/29/2022]
Abstract
The actin cytoskeleton in eukaryotic cells provides cell structure and organisation, and allows cells to generate forces against membranes. As such it is a central component of a variety of cellular structures involved in cell motility, cytokinesis and vesicle trafficking. In multicellular organisms these processes contribute towards embryonic development and effective functioning of cells of all types, most obviously rapidly moving cells like lymphocytes. Actin also defines and maintains the architecture of complex structures such as neuronal synapses and stereocillia, and is required for basic housekeeping tasks within the cell. It is therefore not surprising that misregulation of the actin cytoskeleton can cause a variety of disease pathologies, including compromised immunity, neurodegeneration, and cancer spread. Dictyostelium discoideum has long been used as a tool for dissecting the mechanisms by which eukaryotic cells migrate and chemotax, and recently it has gained precedence as a model organism for studying the roles of conserved pathways in disease processes. Dictyostelium's unusual lifestyle, positioned between unicellular and multicellular organisms, combined with ease of handling and strong conservation of actin regulatory machinery with higher animals, make it ideally suited for studying actin-related diseases. Here we address how research in Dictyostelium has contributed to our understanding of immune deficiencies and neurological defects in humans, and briefly discuss its future prospects for furthering our understanding of neurodegenerative disorders.
Collapse
|
583
|
Ludtmann MH, Boeckeler K, Williams RS. Molecular pharmacology in a simple model system: implicating MAP kinase and phosphoinositide signalling in bipolar disorder. Semin Cell Dev Biol 2011; 22:105-13. [PMID: 21093602 PMCID: PMC3032892 DOI: 10.1016/j.semcdb.2010.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 01/20/2023]
Abstract
Understanding the mechanisms of drug action has been the primary focus for pharmacological researchers, traditionally using rodent models. However, non-sentient model systems are now increasingly being used as an alternative approach to better understand drug action or targets. One of these model systems, the social amoeba Dictyostelium, enables the rapid ablation or over-expression of genes, and the subsequent use of isogenic cell culture for the analysis of cell signalling pathways in pharmacological research. The model also supports an increasingly important ethical view of research, involving the reduction, replacement and refinement of animals in biomedical research. This review outlines the use of Dictyostelium in understanding the pharmacological action of two commonly used bipolar disorder treatments (valproic acid and lithium). Both of these compounds regulate mitogen activated protein (MAP) kinase and inositol phospholipid-based signalling by unknown means. Analysis of the molecular pathways targeted by these drugs in Dictyostelium and translation of discoveries to animal systems has helped to further understand the molecular mechanisms of these bipolar disorder treatments.
Collapse
Key Words
- dag, diacylglycerol
- gsk3/a, mammalian/dictyostelium glycogen synthase kinase 3/a
- impase, inositol monophophatase
- ippase, inositol polyphosphate phosphatase
- insp3, inositol 1,4,5-triphosphate
- 2m2p, 2-methyl-2-pentenoic acid
- pi, phosphatidylinositol
- pip2, phosphatidylinositol 4,5-biphosphate
- pi3k, phosphatidylinositol 3-kinase
- pip, phosphatidylinositol monophosphate
- po, prolyl oligopeptidase
- mapk, mitogen activated protein kinase
- mek, mapk kinase
- mekk, mek kinase
- mkp, map kinase phosphatase
- pka, protein kinase a
- plc, phospholipase c
- remi, restriction enzyme mediated integration
- vpa, valproic acid
- bipolar disorder
- dictyostelium
- lithium
- map kinase
- pharmacology
- phosphoinositol
- valproic acid
Collapse
Affiliation(s)
| | | | - Robin S.B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
584
|
The cooperative amoeba: Dictyostelium as a model for social evolution. Trends Genet 2011; 27:48-54. [DOI: 10.1016/j.tig.2010.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 11/20/2022]
|
585
|
Abstract
Dictyostelium discoideum belongs to a group of multicellular life forms that can also exist for long periods as single cells. This ability to shift between uni- and multicellularity makes the group ideal for studying the genetic changes that occurred at the crossroads between uni- and multicellular life. In this Primer, I discuss the mechanisms that control multicellular development in Dictyostelium discoideum and reconstruct how some of these mechanisms evolved from a stress response in the unicellular ancestor.
Collapse
Affiliation(s)
- Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
586
|
Ray S, Chen Y, Ayoung J, Hanna R, Brazill D. Phospholipase D controls Dictyostelium development by regulating G protein signaling. Cell Signal 2011; 23:335-43. [PMID: 20950684 PMCID: PMC3013293 DOI: 10.1016/j.cellsig.2010.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/21/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
Abstract
Dictyostelium discoideum cells normally exist as individual amoebae, but will enter a period of multicellular development upon starvation. The initial stages of development involve the aggregation of individual cells, using cAMP as a chemoattractant. Chemotaxis is initiated when cAMP binds to its receptor, cAR1, and activates the associated G protein, Gα2βγ. However, chemotaxis will not occur unless there is a high density of starving cells present, as measured by high levels of the secreted quorum sensing molecule, CMF. We previously demonstrated that cells lacking PldB bypass the need for CMF and can aggregate at low cell density, whereas cells overexpressing pldB do not aggregate even at high cell density. Here, we found that PldB controlled both cAMP chemotaxis and cell sorting. PldB was also required by CMF to regulate G protein signaling. Specifically, CMF used PldB, to regulate the dissociation of Gα2 from Gβγ. Using fluorescence resonance energy transfer (FRET), we found that along with cAMP, CMF increased the dissociation of the G protein. In fact, CMF augmented the dissociation induced by cAMP. This augmentation was lost in cells lacking PldB. PldB appears to mediate the CMF signal through the production of phosphatidic acid, as exogenously added phosphatidic acid phenocopies overexpression of pldB. These results suggest that phospholipase D activity is required for CMF to alter the kinetics of cAMP-induced G protein signaling.
Collapse
Affiliation(s)
- Sibnath Ray
- Department of Biological Sciences, Hunter College, New York, New York 10065
| | - Yi Chen
- Department of Biological Sciences, Hunter College, New York, New York 10065
| | - Joanna Ayoung
- Department of Biological Sciences, Hunter College, New York, New York 10065
| | - Rachel Hanna
- Department of Biological Sciences, Hunter College, New York, New York 10065
| | - Derrick Brazill
- Department of Biological Sciences, Hunter College, New York, New York 10065
| |
Collapse
|
587
|
Meyer I, Kuhnert O, Gräf R. Functional analyses of lissencephaly-related proteins in Dictyostelium. Semin Cell Dev Biol 2011; 22:89-96. [DOI: 10.1016/j.semcdb.2010.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 10/15/2010] [Accepted: 10/20/2010] [Indexed: 02/05/2023]
|
588
|
Boulais J, Trost M, Landry CR, Dieckmann R, Levy ED, Soldati T, Michnick SW, Thibault P, Desjardins M. Molecular characterization of the evolution of phagosomes. Mol Syst Biol 2011; 6:423. [PMID: 20959821 PMCID: PMC2990642 DOI: 10.1038/msb.2010.80] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 09/15/2010] [Indexed: 11/23/2022] Open
Abstract
First large-scale comparative proteomics/phosphoproteomics study characterizing some of the key steps that contributed to the remodeling of phagosomes that occurred during evolution. Comparison of profiling analyses of isolated phagosomes from three distant organisms (Dictyostelium, Drosophila, and mouse) revealed a protein core that defines a potential ‘ancient' phagosome and a set of 50 proteins that emerged while adaptive immunity was already well established. Gene duplication events of mouse phagosome paralogs occurred mostly in Bilateria and Euteleostomi, coinciding with the emergence of innate and adaptive immunity, and thus, provided the functional innovations needed for the establishment of these two crucial evolutionary steps of the immune system. Phosphoproteomics of isolated phagosomes from the same three distant species indicate that the phagosome phosphoproteome has been extensively modified during evolution. Still, some phosphosites have been maintained for >1.2 billion years, and thus, highlight their particular significance in the regulation of key phagosomal functions.
Phagocytosis is the process by which multiple cell types internalize large particulate material from the external milieu. The functional properties of phagosomes are acquired through a complex maturation process, referred to as phagolysosome biogenesis. This pathway involves a series of rapid interactions with organelles of the endocytic apparatus, enabling the gradual transformation of newly formed phagosomes into phagolysosomes in which proteolytic degradation occurs. The degradative environment encountered in the phagosome lumen has enabled the use of phagocytosis as a predation mechanism for feeding (phagotrophy) in amoeba, whereas multicellular organisms utilize this process as a defense mechanism to kill microbes and, in jawed vertebrates (fish), initiate a sustained immune response. High-throughput proteomics profiling of isolated phagosomes has been tremendously helpful for the molecular comprehension of this organelle. This approach is achieved by feeding low buoyancy latex beads to phagocytic cells, enabling the subsequent isolation of latex bead-containing phagosomes, away from all the other cell organelles, by a single-isopicnic centrifugation in sucrose gradient. In order to characterize some of the key steps that contributed to the remodeling of phagosomes during evolution, we isolated this organelle from three distant organisms: the amoeba Dictyostelium discoideum, the fruit fly Drosophila melanogaster, and mouse (Mus musculus) that use phagocytosis for different purposes, and performed detailed proteomics and phosphoproteomics analyses with unparallel protein coverage for this organelle (two- to four-fold enhancements in identified proteins). In order to establish the origin of the mouse phagosome proteome, we performed comparative analyses among 39 taxa including plants/algea, unicellular organisms, fungi, and more complex animal multicellular organisms. These genomic comparisons indicated that a large proportion of the mouse phagosome proteome is of ancient origin (73.1% of the proteome is conserved in eukaryotic organisms) (Figure 2A). This stresses the fact that phagocytosis is a very ancient process, as shown by its possible involvement in the emergence of eukaryotic cells (eukaryogenesis). Indeed, we identified close to 300 phagosome mouse proteins also present on Drosophila and Dictyostelium phagosomes, defining a potential ‘ancient' core of proteins from which the immune functions of phagosomes likely evolved. Around 16.7% of the mouse phagosome proteins appeared in organisms that use phagocytosis for innate immunity (Bilateria to Chordata), whereas 10.2% appeared in Euteleostomi or Tetrapoda where phagosomes have an important function in linking the killing of microorganisms with the development of a specific sustained immune response following antigen recognition. The phagosome is made of molecules taken from a variety of sources within the cell, including the cytoplasm, the cytoskeleton and membrane organelles. Despite the evolution and diversification of these various cellular systems, the mammalian phagosome proteome is made preferentially of ancient proteins (Figure 2B). Comparison of functional annotation during evolution highlighted the emergence of specific phagosomal functions at various steps during evolution (Figure 2C). Some of these proteins and their point of origin during evolution are highlighted in Figure 2D. Strikingly, we identified in Tetrapods a set of 50 proteins that arose while adaptive immunity was already well established in teleosts (fish), indicating that the phagocytic system is still evolving. Our study highlights the fact that the functional properties of phagosomes emerged by the remodeling of ancient molecules, the addition of novel components, and the duplication of existing proteins (paralogs) leading to the formation of molecular machines of mixed origin. Gene duplication is a process that contributed continuously to the complexification of the mouse proteome during evolution. In sharp contrast, paralog analysis indicated that the phagosome proteome was mainly reorganized through two periods of gene duplication, in Bilateria and Euteleostomi, coinciding with the emergence of adaptive immunity (in jawed fish), and innate immunity (at the split between Metazoa and Bilateria). These results strongly suggest that selective constraints may have favored the maintenance of phagosome paralogs to ensure the establishment of novel functions associated with this organelle at these two crucial evolutionary steps of the immune system. The emergence of genes associated to the MHC locus in mammals that appeared originally in the genome of jawed fishes, contributed to the development of complex molecular mechanisms linking innate (our immune system that defends the host from infection in a non-specific manner) and adaptive immunity (the part of the immune system triggered specifically after antigen recognition). Several of the genes of this locus encode proteins known to have important functions in antigen presentation, such as subunits of the immunoproteasome (LMP2 and LMP7), MHC class I and class II molecules, as well as tapasin and the transporter associated with antigen processing (TAP1 and TAP2), involved in the transport and loading of peptides on MHC class I molecules (Figure 6). In addition to their ability to present peptides on MHC class II molecules, phagosomes of vertebrates have been shown to be competent for the presentation of exogenous peptides on MHC class I molecules, a process referred to as cross-presentation. From a functional point of view, the involvement of phagosomes in antigen cross-presentation is the outcome of the successful integration of a wide range of multimolecular components that emerged throughout evolution (Figure 6). The trimming of exogenous proteins into small peptides that can be loaded on MHC class I molecules is inherited from the phagotrophic properties of unicellular organisms, where internalized bacteria are degraded into basic molecules and used as a source of nutrients. Ancient processes have therefore been co-opted (the use of an existing biological structure or feature for a new function) for new functionalities. A summarizing model of the various steps that enabled phagosome antigen presentation is presented in Figure 6. This model highlights the fact that although antigen presentation is unique to evolutionary recent phagosomes (starting in jawed fishes about 450 million years ago), it uses and integrates molecular machines composed of proteins that emerged throughout evolution. In summary, we present here the first large-scale comparative proteomics/phosphoproteomics study characterizing some of the key evolutionary steps that contributed to the remodeling of phagosomes during evolution. Functional properties of this organelle emerged by the remodeling of ancient molecules, the addition of novel components, the extensive adaption of protein phosphorylation sites and the duplication of existing proteins leading to the formation of molecular machines of mixed origin. Amoeba use phagocytosis to internalize bacteria as a source of nutrients, whereas multicellular organisms utilize this process as a defense mechanism to kill microbes and, in vertebrates, initiate a sustained immune response. By using a large-scale approach to identify and compare the proteome and phosphoproteome of phagosomes isolated from distant organisms, and by comparative analysis over 39 taxa, we identified an ‘ancient' core of phagosomal proteins around which the immune functions of this organelle have likely organized. Our data indicate that a larger proportion of the phagosome proteome, compared with the whole cell proteome, has been acquired through gene duplication at a period coinciding with the emergence of innate and adaptive immunity. Our study also characterizes in detail the acquisition of novel proteins and the significant remodeling of the phagosome phosphoproteome that contributed to modify the core constituents of this organelle in evolution. Our work thus provides the first thorough analysis of the changes that enabled the transformation of the phagosome from a phagotrophic compartment into an organelle fully competent for antigen presentation.
Collapse
Affiliation(s)
- Jonathan Boulais
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
589
|
Adamska M, Larroux C, Adamski M, Green K, Lovas E, Koop D, Richards GS, Zwafink C, Degnan BM. Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica. Evol Dev 2011; 12:494-518. [PMID: 20883218 DOI: 10.1111/j.1525-142x.2010.00435.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wnt-signalling plays a critical role in animal development, and its misregulation results in serious human diseases, including cancer. While the Wnt pathway is well studied in eumetazoan models, little is known about the evolutionary origin of its components and their functions. Here, we have identified key machinery of the Wnt-β-catenin (canonical)-signalling pathway that is encoded in the Amphimedon queenslandica (Demospongiae; Porifera) genome, namely Wnt, Fzd, SFRP, Lrp5/6, Dvl, Axin, APC, GSK3, β-catenin, Tcf, and Groucho. Most of these genes are not detected in the choanoflagellate and other nonmetazoan eukaryotic genomes. In contrast, orthologues of some of key components of bilaterian Wnt-planar cell polarity and Wnt/Ca(2+) are absent from the Amphimedon genome, suggesting these pathways evolved after demosponge and eumetazoan lineages diverged. Sequence analysis of the identified proteins of the Wnt-β-catenin pathway has revealed the presence of most of the conserved motifs and domains responsible for protein-protein and protein-DNA interactions in vertebrates and insects. However, several protein-protein interaction domains appear to be absent from the Amphimedon Axin and APC proteins. These are also missing from their orthologues in the cnidarian Nematostella vectensis, suggesting that they are bilaterian novelties. All of the analyzed Wnt pathway genes are expressed in specific patterns during Amphimedon embryogenesis. Most are expressed in especially striking and highly dynamic patterns during formation of a simple organ-like larval structure, the pigment ring. Overall, our results indicate that the Wnt-β-catenin pathway was used in embryonic patterning in the last common ancestor of living metazoans. Subsequently, gene duplications and a possible increase in complexity of protein interactions have resulted in the precisely regulated Wnt pathway observed in extant bilaterian animals.
Collapse
Affiliation(s)
- Maja Adamska
- School of Integrative Biology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
590
|
Greene DM, Bloomfield G, Skelton J, Ivens A, Pears CJ. Targets downstream of Cdk8 in Dictyostelium development. BMC DEVELOPMENTAL BIOLOGY 2011; 11:2. [PMID: 21255384 PMCID: PMC3037916 DOI: 10.1186/1471-213x-11-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 01/21/2011] [Indexed: 11/11/2022]
Abstract
Background Cdk8 is a component of the mediator complex which facilitates transcription by RNA polymerase II and has been shown to play an important role in development of Dictyostelium discoideum. This eukaryote feeds as single cells but starvation triggers the formation of a multicellular organism in response to extracellular pulses of cAMP and the eventual generation of spores. Strains in which the gene encoding Cdk8 have been disrupted fail to form multicellular aggregates unless supplied with exogenous pulses of cAMP and later in development, cdk8- cells show a defect in spore production. Results Microarray analysis revealed that the cdk8- strain previously described (cdk8-HL) contained genome duplications. Regeneration of the strain in a background lacking detectable gene duplication generated strains (cdk8-2) with identical defects in growth and early development, but a milder defect in spore generation, suggesting that the severity of this defect depends on the genetic background. The failure of cdk8- cells to aggregate unless rescued by exogenous pulses of cAMP is consistent with a failure to express the catalytic subunit of protein kinase A. However, overexpression of the gene encoding this protein was not sufficient to rescue the defect, suggesting that this is not the only important target for Cdk8 at this stage of development. Proteomic analysis revealed two potential targets for Cdk8 regulation, one regulated post-transcriptionally (4-hydroxyphenylpyruvate dioxygenase (HPD)) and one transcriptionally (short chain dehydrogenase/reductase (SDR1)). Conclusions This analysis has confirmed the importance of Cdk8 at multiple stages of Dictyostelium development, although the severity of the defect in spore production depends on the genetic background. Potential targets of Cdk8-mediated gene regulation have been identified in Dictyostelium which will allow the mechanism of Cdk8 action and its role in development to be determined.
Collapse
Affiliation(s)
- David M Greene
- Biochemistry Department, Oxford University, South Parks Road, Oxford OX1 3QU UK.
| | | | | | | | | |
Collapse
|
591
|
Gaudet P, Fey P, Basu S, Bushmanova YA, Dodson R, Sheppard KA, Just EM, Kibbe WA, Chisholm RL. dictyBase update 2011: web 2.0 functionality and the initial steps towards a genome portal for the Amoebozoa. Nucleic Acids Res 2011; 39:D620-4. [PMID: 21087999 PMCID: PMC3013695 DOI: 10.1093/nar/gkq1103] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/16/2010] [Accepted: 10/18/2010] [Indexed: 11/14/2022] Open
Abstract
dictyBase (http://www.dictybase.org), the model organism database for Dictyostelium, aims to provide the broad biomedical research community with well integrated, high quality data and tools for Dictyostelium discoideum and related species. dictyBase houses the complete genome sequence, ESTs, and the entire body of literature relevant to Dictyostelium. This information is curated to provide accurate gene models and functional annotations, with the goal of fully annotating the genome to provide a 'reference genome' in the Amoebozoa clade. We highlight several new features in the present update: (i) new annotations; (ii) improved interface with web 2.0 functionality; (iii) the initial steps towards a genome portal for the Amoebozoa; (iv) ortholog display; and (v) the complete integration of the Dicty Stock Center with dictyBase.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rex L. Chisholm
- dictyBase, Northwestern University Biomedical Informatics Center and Center for Genetic Medicine, 420 E. Superior St., Chicago, IL 60611, USA
| |
Collapse
|
592
|
Lahr DJG, Nguyen TB, Barbero E, Katz LA. Evolution of the actin gene family in testate lobose amoebae (Arcellinida) is characterized by two distinct clades of paralogs and recent independent expansions. Mol Biol Evol 2011; 28:223-36. [PMID: 20679092 PMCID: PMC3108602 DOI: 10.1093/molbev/msq200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolution of actin gene families is characterized by independent expansions and contractions across the eukaryotic tree of life. Here, we assess diversity of actin gene sequences within three lineages of the genus Arcella, a free-living testate (shelled) amoeba in the Arcellinida. We established four clonal lines of two morphospecies, Arcella hemisphaerica and A. vulgaris, and assessed their phylogenetic relationship within the "Amoebozoa" using small subunit ribosomal DNA (SSU-rDNA) genealogy. We determined that the two lines of A. hemisphaerica are identical in SSU-rDNA, while the two A. vulgaris are independent genetic lineages. Furthermore, we characterized multiple actin gene copies from all lineages. Analyses of the resulting sequences reveal numerous diverse actin genes, which differ mostly by synonymous substitutions. We estimate that the actin gene family contains 40-50 paralogous members in each lineage. None of the three independent lineages share the same paralog with another, and divergence between actins reaches 29% in contrast to just 2% in SSU-rDNA. Analyses of effective number of codons (ENC), compositional bias, recombination signatures, and genetic diversity in the context of a gene tree indicate that there are two groups of actins evolving with distinct patterns of molecular evolution. Within these groups, there have been multiple independent expansions of actin genes within each lineage. Together, these data suggest that the two groups are located in different regions of the Arcella genome. Furthermore, we compare the Arcella actin gene family with the relatively well-described gene family in the slime mold Dictyostelium discoideum and other members of the Amoebozoa clade. Overall patterns of molecular evolution are similar in Arcella and Dictyostelium. However, the separation of genes in two distinct groups coupled with recent expansion is characteristic of Arcella and might reflect an unusual pattern of gene family evolution in the lobose testate amoebae. We provide a model to account for both the existence of two distinct groups and the pattern of recent independent expansion leading to a large number of actins in each lineage.
Collapse
Affiliation(s)
- Daniel J. G. Lahr
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts
| | | | | | - Laura A. Katz
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts
- Department of Biological Sciences, Smith College
| |
Collapse
|
593
|
Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 2011. [PMID: 21338519 DOI: 10.1186/1465-6906-12-s1-i18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Despite the ever-increasing output of Illumina sequencing data, loci with extreme base compositions are often under-represented or absent. To evaluate sources of base-composition bias, we traced genomic sequences ranging from 6% to 90% GC through the process by quantitative PCR. We identified PCR during library preparation as a principal source of bias and optimized the conditions. Our improved protocol significantly reduces amplification bias and minimizes the previously severe effects of PCR instrument and temperature ramp rate.
Collapse
Affiliation(s)
- Daniel Aird
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, 320 Charles Street, Cambridge, MA 02141, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
594
|
Tanaka T, Shima Y, Ogawa N, Nagayama K, Yoshida T, Ohmachi T. Expression, identification and purification of Dictyostelium acetoacetyl-coa thiolase expressed in Escherichia coli. Int J Biol Sci 2010; 7:9-17. [PMID: 21209787 PMCID: PMC3014551 DOI: 10.7150/ijbs.7.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/22/2010] [Indexed: 11/05/2022] Open
Abstract
Acetoacetyl-CoA thiolase (AT) is an enzyme that catalyses the CoA-dependent thiolytic cleavage of acetoacetyl-CoA to yield 2 molecules of acetyl-CoA, or the reverse condensation reaction. A full-length cDNA clone pBSGT-3, which has homology to known thiolases, was isolated from Dictyostelium cDNA library. Expression of the protein encoded in pBSGT-3 in Escherichia coli, its thiolase enzyme activity, and the amino acid sequence homology search revealed that pBSGT-3 encodes an AT. The recombinant AT (r-thiolase) was expressed in an active form in an E. coli expression system, and purified to homogeneity by selective ammonium sulfate fractionation and two steps of column chromatography. The purified enzyme exhibited a specific activity of 4.70 mU/mg protein. Its N-terminal sequence was (NH₂)-Arg-Met-Tyr-Thr-Thr-Ala-Lys-Asn-Leu-Glu-, which corresponds to the sequence from positions 15 to 24 of the amino acid sequence deduced from pBSGT-3 clone. The r-thiolase in the inclusion body expressed highly in E. coli was the precursor form, which is slightly larger than the purified r-thiolase. When incubated with the cell-free extract of Dictyostelium cells, the precursor was converted to the same size to the purified r-thiolase, suggesting that the presequence at the N-terminus is removed by a Dictyostelium processing peptidase.
Collapse
Affiliation(s)
- Takeshi Tanaka
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan
| | | | | | | | | | | |
Collapse
|
595
|
Characterization of the Dictyostelium homolog of chromatin binding protein DET1 suggests a conserved pathway regulating cell type specification and developmental plasticity. EUKARYOTIC CELL 2010; 10:352-62. [PMID: 21193547 DOI: 10.1128/ec.00196-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DET1 (De-etiolated 1) is a chromatin binding protein involved in developmental regulation in both plants and animals. DET1 is largely restricted to multicellular eukaryotes, and here we report the characterization of a DET1 homolog from the social amoeba Dictyostelium discoideum. As in other species, Dictyostelium DET1 is nuclear localized. In contrast to other species, where it is an essential protein, loss of DET1 is nonlethal in Dictyostelium, although viability is significantly reduced. The phenotype of the det1(-) mutant is highly pleiotropic and results in a large degree of heterogeneity in developmental parameters. Loss of DET1 results in delayed and abnormal development with enlarged aggregation territories. Mutant slugs displayed cell type patterning with a bias toward the prestalk pathway. A number of DET1-interacting proteins are conserved in Dictyostelium, and the apparently conserved role of DET1 in regulatory pathways involving the bZIP transcription factors DimB, c-Jun, and HY5 suggests a highly conserved mechanism regulating development in multicellular eukaryotes. While the mechanism by which DET1 functions is unclear, it appears that it has a key role in regulation of developmental plasticity and integration of information on environmental conditions into the developmental program of an organism.
Collapse
|
596
|
Karpov PA, Rayevsky AV, Blume YB. Bioinformatic search for plant homologs of the protein kinase Bub1—a key component of the mitotic spindle assembly checkpoint. CYTOL GENET+ 2010. [DOI: 10.3103/s0095452710060095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
597
|
Höglund PJ, Nordström KJV, Schiöth HB, Fredriksson R. The solute carrier families have a remarkably long evolutionary history with the majority of the human families present before divergence of Bilaterian species. Mol Biol Evol 2010; 28:1531-41. [PMID: 21186191 PMCID: PMC3058773 DOI: 10.1093/molbev/msq350] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Solute Carriers (SLCs) are membrane proteins that regulate transport of many types of substances over the cell membrane. The SLCs are found in at least 46 gene families in the human genome. Here, we performed the first evolutionary analysis of the entire SLC family based on whole genome sequences. We systematically mined and analyzed the genomes of 17 species to identify SLC genes. In all, we identified 4,813 SLC sequences in these genomes, and we delineated the evolutionary history of each of the subgroups. Moreover, we also identified ten new human sequences not previously classified as SLCs, which most likely belong to the SLC family. We found that 43 of the 46 SLC families found in Homo sapiens were also found in Caenorhabditis elegans, whereas 42 of them were also found in insects. Mammals have a higher number of SLC genes in most families, perhaps reflecting important roles for these in central nervous system functions. This study provides a systematic analysis of the evolutionary history of the SLC families in Eukaryotes showing that the SLC superfamily is ancient with multiple branches that were present before early divergence of Bilateria. The results provide foundation for overall classification of SLC genes and are valuable for annotation and prediction of substrates for the many SLCs that have not been tested in experimental transport assays.
Collapse
Affiliation(s)
- Pär J Höglund
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
598
|
Bloomfield G, Skelton J, Ivens A, Tanaka Y, Kay RR. Sex determination in the social amoeba Dictyostelium discoideum. Science 2010; 330:1533-6. [PMID: 21148389 PMCID: PMC3648785 DOI: 10.1126/science.1197423] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The genetics of sex determination remain mysterious in many organisms, including some that are otherwise well studied. Here we report the discovery and analysis of the mating-type locus of the model organism Dictyostelium discoideum. Three forms of a single genetic locus specify this species' three mating types: two versions of the locus are entirely different in sequence, and the third resembles a composite of the other two. Single, unrelated genes are sufficient to determine two of the mating types, whereas homologs of both these genes are required in the composite type. The key genes encode polypeptides that possess no recognizable similarity to established protein families. Sex determination in the social amoebae thus appears to use regulators that are unrelated to any others currently known.
Collapse
Affiliation(s)
- Gareth Bloomfield
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| | | | | | | | | |
Collapse
|
599
|
Vlahou G, Eliáš M, von Kleist-Retzow JC, Wiesner RJ, Rivero F. The Ras related GTPase Miro is not required for mitochondrial transport in Dictyostelium discoideum. Eur J Cell Biol 2010; 90:342-55. [PMID: 21131095 DOI: 10.1016/j.ejcb.2010.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 01/12/2023] Open
Abstract
Ras-related GTPases of the Miro family have been implicated in mitochondrial homeostasis and microtubule-dependent transport. They consist of two GTP-binding domains separated by calcium-binding motifs and of a C-terminal transmembrane domain that targets the protein to the outer mitochondrial membrane. We disrupted the single Miro-encoding gene in Dictyostelium discoideum and observed a substantial growth defect that we attribute to a decreased mitochondrial mass and cellular ATP content. However, mutant cells even showed an increased rate of oxygen consumption, while glucose consumption, mitochondrial transmembrane potential and production of reactive oxygen species were unaltered. Processes characteristic of the multicellular stage of the D. discoideum life cycle were also unaltered. Although mitochondria occasionally use microtubules for transport in D. discoideum, their size and distribution were not visibly affected. We found Miro in all branches of the eukaryotic tree with the exception of a few protist lineages (mainly those lacking typical mitochondria). Trypanosomatids and ciliates possess structurally unique homologs lacking the N-terminal or the C-terminal GTPase domain, respectively. We propose that in D. discoideum, as in yeasts and plants, Miro plays roles in mitochondrial homeostasis, but the ability to build a complex that regulates its association to kinesin for microtubule-dependent transport probably arose in metazoans.
Collapse
Affiliation(s)
- Georgia Vlahou
- Zentrum für Biochemie, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany
| | | | | | | | | |
Collapse
|
600
|
Francione LM, Annesley SJ, Carilla-Latorre S, Escalante R, Fisher PR. The Dictyostelium model for mitochondrial disease. Semin Cell Dev Biol 2010; 22:120-30. [PMID: 21129494 DOI: 10.1016/j.semcdb.2010.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/19/2010] [Accepted: 11/24/2010] [Indexed: 12/31/2022]
Abstract
Mitochondrial diseases are a diverse family of genetic disorders caused by mutations affecting mitochondrial proteins encoded in either the nuclear or the mitochondrial genome. By impairing mitochondrial oxidative phosphorylation, they compromise cellular energy production and the downstream consequences in humans are a bewilderingly complex array of signs and symptoms that can affect any of the major organ systems in unpredictable combinations. This complexity and unpredictability has limited our understanding of the cytopathological consequences of mitochondrial dysfunction. By contrast, in Dictyostelium the mitochondrial disease phenotypes are consistent, measurable "readouts" of dysregulated intracellular signalling pathways. When the underlying genetic defects would produce coordinate, generalized deficiencies in multiple mitochondrial respiratory complexes, the disease phenotypes are mediated by chronic activation of an energy-sensing protein kinase, AMP-activated protein kinase (AMPK). This chronic AMPK hyperactivity maintains mitochondrial mass and cellular ATP concentrations at normal levels, but chronically impairs growth, cell cycle progression, multicellular development, photosensory and thermosensory signal transduction. It also causes the cells to support greater proliferation of the intracellular bacterial pathogen, Legionella pneumophila. Notably however, phagocytic and macropinocytic nutrient uptake are impervious both to AMPK signalling and to these types of mitochondrial dysfunction. Surprisingly, a Complex I-specific deficiency (midA knockout) not only causes the foregoing AMPK-mediated defects, but also produces a dramatic deficit in endocytic nutrient uptake accompanied by an additional secondary defect in growth. More restricted and specific phenotypic outcomes are produced by knocking out genes for nuclear-encoded mitochondrial proteins that are not required for respiration. The Dictyostelium model for mitochondrial disease has thus revealed consistent patterns of sublethal dysregulation of intracellular signalling pathways that are produced by different types of underlying mitochondrial dysfunction.
Collapse
|