551
|
Suh A, Paus M, Kiefmann M, Churakov G, Franke FA, Brosius J, Kriegs JO, Schmitz J. Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat Commun 2011; 2:443. [PMID: 21863010 PMCID: PMC3265382 DOI: 10.1038/ncomms1448] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/21/2011] [Indexed: 12/03/2022] Open
Abstract
The relationships of passerines (such as the well-studied zebra finch) with non-passerine birds is one of the great enigmas of avian phylogenetic research, because decades of extensive morphological and molecular studies yielded highly inconsistent results between and within data sets. Here we show the first application of the virtually homoplasy-free retroposon insertions to this controversy. Our study examined ~200,000 retroposon-containing loci from various avian genomes and retrieved 51 markers resolving early bird phylogeny. Among these, we obtained statistically significant evidence that parrots are the closest and falcons the second-closest relatives of passerines, together constituting the Psittacopasserae and the Eufalconimorphae, respectively. Our new and robust phylogenetic framework has substantial implications for the interpretation of various conclusions drawn from passerines as model organisms. This includes insights of relevance to human neuroscience, as vocal learning (that is, birdsong) probably evolved in the psittacopasseran ancestor, >30 million years earlier than previously assumed.
Collapse
Affiliation(s)
- Alexander Suh
- Institute of Experimental Pathology (ZMBE), University of Münster, Von-Esmarch-Strasse 56, D-48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
552
|
Kumar A, Bhandari A, Sinha R, Goyal P, Grapputo A. Spliceosomal intron insertions in genome compacted ray-finned fishes as evident from phylogeny of MC receptors, also supported by a few other GPCRs. PLoS One 2011; 6:e22046. [PMID: 21850219 PMCID: PMC3151243 DOI: 10.1371/journal.pone.0022046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 06/16/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Insertions of spliceosomal introns are very rare events during evolution of vertebrates and the mechanisms governing creation of novel intron(s) remain obscure. Largely, gene structures of melanocortin (MC) receptors are characterized by intron-less architecture. However, recently a few exceptions have been reported in some fishes. This warrants a systematic survey of MC receptors for understanding intron insertion events during vertebrate evolution. METHODOLOGY/PRINCIPAL FINDINGS We have compiled an extended list of MC receptors from different vertebrate genomes with variations in fishes. Notably, the closely linked MC2Rs and MC5Rs from a group of ray-finned fishes have three and one intron insertion(s), respectively, with conserved positions and intron phase. In both genes, one novel insertion was in the highly conserved DRY motif at the end of helix TM3. Further, the proto-splice site MAG↑R is maintained at intron insertion sites in these two genes. However, the orthologs of these receptors from zebrafish and tetrapods are intron-less, suggesting these introns are simultaneously created in selected fishes. Surprisingly, these novel introns are traceable only in four fish genomes. We found that these fish genomes are severely compacted after the separation from zebrafish. Furthermore, we also report novel intron insertions in P2Y receptors and in CHRM3. Finally, we report ultrasmall introns in MC2R genes from selected fishes. CONCLUSIONS/SIGNIFICANCE The current repository of MC receptors illustrates that fishes have no MC3R ortholog. MC2R, MC5R, P2Y receptors and CHRM3 have novel intron insertions only in ray-finned fishes that underwent genome compaction. These receptors share one intron at an identical position suggestive of being inserted contemporaneously. In addition to repetitive elements, genome compaction is now believed to be a new hallmark that promotes intron insertions, as it requires rapid DNA breakage and subsequent repair processes to gain back normal functionality.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biology, University of Padua, Padova, Italy.
| | | | | | | | | |
Collapse
|
553
|
Maney D, Pinaud R. Estradiol-dependent modulation of auditory processing and selectivity in songbirds. Front Neuroendocrinol 2011; 32:287-302. [PMID: 21146556 PMCID: PMC3119742 DOI: 10.1016/j.yfrne.2010.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
Abstract
The steroid hormone estradiol plays an important role in reproductive development and behavior and modulates a wide array of physiological and cognitive processes. Recently, reports from several research groups have converged to show that estradiol also powerfully modulates sensory processing, specifically, the physiology of central auditory circuits in songbirds. These investigators have discovered that (1) behaviorally-relevant auditory experience rapidly increases estradiol levels in the auditory forebrain; (2) estradiol instantaneously enhances the responsiveness and coding efficiency of auditory neurons; (3) these changes are mediated by a non-genomic effect of brain-generated estradiol on the strength of inhibitory neurotransmission; and (4) estradiol regulates biochemical cascades that induce the expression of genes involved in synaptic plasticity. Together, these findings have established estradiol as a central regulator of auditory function and intensified the need to consider brain-based mechanisms, in addition to peripheral organ dysfunction, in hearing pathologies associated with estrogen deficiency.
Collapse
Affiliation(s)
- Donna Maney
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Raphael Pinaud
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
554
|
Data publishing and scientific journals: the future of the scientific paper in a world of shared data. Neuroinformatics 2011; 8:151-3. [PMID: 20835853 DOI: 10.1007/s12021-010-9084-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
555
|
Nabholz B, Künstner A, Wang R, Jarvis ED, Ellegren H. Dynamic evolution of base composition: causes and consequences in avian phylogenomics. Mol Biol Evol 2011; 28:2197-210. [PMID: 21393604 PMCID: PMC3144382 DOI: 10.1093/molbev/msr047] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Resolving the phylogenetic relationships among birds is a classical problem in systematics, and this is particularly so when it comes to understanding the relationships among Neoaves. Previous phylogenetic inference of birds has been limited to mitochondrial genomes or a few nuclear genes. Here, we apply deep brain transcriptome sequencing of nine bird species (several passerines, hummingbirds, dove, parrot, and emu), using next-generation sequencing technology to understand features of transcriptome evolution in birds and how this affects phylogenetic inference, and combine with data from two bird species using first generation technology. The phylogenomic data matrix comprises 1,995 genes and a total of 0.77 Mb of exonic sequence. First, we find an unexpected heterogeneity in the evolution of base composition among avian lineages. There is a pronounced increase in guanine + cytosine (GC) content in the third codon position in several independent lineages, with the strongest effect seen in passerines. Second, we evaluate the effect of GC content variation on phylogenetic reconstruction. We find important inconsistencies between the topologies obtained with or without taking GC variation into account, each supporting different conclusions of past studies and also influencing hypotheses on the evolution of the trait of vocal learning. Third, we demonstrate a link between GC content evolution and recombination rate and, focusing on the zebra finch lineage, find that recombination seems to drive GC content. Although we cannot reveal the causal relationships, this observation is consistent with the model of GC-biased gene conversion. Finally, we use this unparalleled amount of avian sequence data to study the rate of molecular evolution, calibrated by fossil evidence and augmented with data from alligator transcriptome sequencing. There is a 2- to 3-fold variation in substitution rate among lineages with passerines being the most rapidly evolving and ratites the slowest. This study illustrates the potential of next-generation sequencing for phylogenomic studies but also the pitfalls when using genome-wide data with heterogeneous base composition.
Collapse
Affiliation(s)
- Benoit Nabholz
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Axel Künstner
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Rui Wang
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham
| | - Erich D. Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
556
|
Ekblom R, Stapley J, Ball AD, Birkhead T, Burke T, Slate J. Genetic mapping of the major histocompatibility complex in the zebra finch (Taeniopygia guttata). Immunogenetics 2011; 63:523-30. [PMID: 21494955 DOI: 10.1007/s00251-011-0525-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/04/2011] [Indexed: 12/29/2022]
Abstract
Genes of the major histocompatibility complex (MHC) have received much attention in immunology, genetics, and ecology because they are highly polymorphic and play important roles in parasite resistance and mate choice. Until recently, the MHC of passerine birds was not well-described. However, the genome sequencing of the zebra finch (Taeniopygia guttata) has partially redressed this gap in our knowledge of avian MHC genes. Here, we contribute further to the understanding of the zebra finch MHC organization by mapping SNPs within or close to known MHC genes in the zebra finch genome. MHC class I and IIB genes were both mapped to zebra finch chromosome 16, and there was no evidence that MHC class I genes are located on chromosome 22 (as suggested by the genome assembly). We confirm the location in the MHC region on chromosome 16 for several other genes (BRD2, FLOT1, TRIM7.2, GNB2L1, and CSNK2B). Two of these (CSNK2B and FLOT1) have not previously been mapped in any other bird species. In line with previous results, we also find that orthologs to the immune-related genes B-NK and CLEC2D, which are part of the MHC region in chicken, are situated on zebra finch chromosome Z and not among other MHC genes in the zebra finch.
Collapse
Affiliation(s)
- Robert Ekblom
- Department of Population Biology and Conservation Biology, Uppsala University, Norbyvägen, Sweden.
| | | | | | | | | | | |
Collapse
|
557
|
Gess A, Schneider DM, Vyas A, Woolley SMN. Automated auditory recognition training and testing. Anim Behav 2011; 82:285-293. [PMID: 21857717 DOI: 10.1016/j.anbehav.2011.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Laboratory training and testing of auditory recognition skills in animals is important for understanding animal communication systems that depend on auditory cues. Songbirds are commonly studied because of their exceptional ability to learn complex vocalizations. In recent years, mounting interest in the perceptual abilities of songbirds has increased the demand for laboratory behavioural training and testing paradigms. Here, we describe and demonstrate the success of a method for auditory discrimination experiments, including all the necessary hardware, training procedures and freely-available, versatile software. The system can run several behavioural training and testing paradigms, including operant (go-nogo, stimulus preference, and two-alternative forced choice) and classical conditioning tasks. The software and some hardware components can be used with any laboratory animal that learns and responds to sensory cues. The peripheral hardware and training procedures are designed for use with songbirds and auditory stimuli. Using the go-nogo paradigm of the training system, we show that adult zebra finches learn to recognize and correctly classify individual female calls and male songs. We also show that learning the task generalizes to new stimulus classes; birds that learned the task with calls subsequently learned to recognize songs faster than did birds that learned the task and songs at the same time.
Collapse
Affiliation(s)
- Austen Gess
- Department of Biology, Graduate Center of the City University of New York 365 Fifth Avenue New York, N.Y., 10016, USA
| | | | | | | |
Collapse
|
558
|
Amaya KR, Sweedler JV, Clayton DF. Small molecule analysis and imaging of fatty acids in the zebra finch song system using time-of-flight-secondary ion mass spectrometry. J Neurochem 2011; 118:499-511. [PMID: 21496023 PMCID: PMC3137756 DOI: 10.1111/j.1471-4159.2011.07274.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fatty acids are central to brain metabolism and signaling, but their distributions within complex brain circuits have been difficult to study. Here we applied an emerging technique, time-of-flight secondary ion mass spectrometry (ToF-SIMS), to image specific fatty acids in a favorable model system for chemical analyses of brain circuits, the zebra finch (Taeniopygia guttata). The zebra finch, a songbird, produces complex learned vocalizations under the control of an interconnected set of discrete, dedicated brain nuclei 'song nuclei'. Using ToF-SIMS, the major song nuclei were visualized by virtue of differences in their content of essential and non-essential fatty acids. Essential fatty acids (arachidonic acid and docosahexaenoic acid) showed distinctive distributions across the song nuclei, and the 18-carbon fatty acids stearate and oleate discriminated the different core and shell subregions of the lateral magnocellular nucleus of the anterior nidopallium. Principal component analysis of the spectral data set provided further evidence of chemical distinctions between the song nuclei. By analyzing the robust nucleus of the arcopallium at three different ages during juvenile song learning, we obtain the first direct evidence of changes in lipid content that correlate with progression of song learning. The results demonstrate the value of ToF-SIMS to study lipids in a favorable model system for probing the function of lipids in brain organization, development and function.
Collapse
Affiliation(s)
- Kensey R. Amaya
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801; Ph: 217-244-3668; fax: 217-244-1781
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801; Ph: 217-244-7359; fax: 217-244-8068
| | - David F. Clayton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801; Ph: 217-244-3668; fax: 217-244-1781
| |
Collapse
|
559
|
Wu HC, Lin RC, Hung HY, Yeh CF, Chu JH, Yang XJ, Yao CJ, Zou FS, Yao CT, Li SH, Lei FM. Molecular and morphological evidences reveal a cryptic species in the Vinaceous Rosefinch Carpodacus vinaceus (Fringillidae; Aves). ZOOL SCR 2011. [DOI: 10.1111/j.1463-6409.2011.00487.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
560
|
Gilbert C, Hernandez SS, Flores-Benabib J, Smith EN, Feschotte C. Rampant horizontal transfer of SPIN transposons in squamate reptiles. Mol Biol Evol 2011; 29:503-15. [PMID: 21771716 DOI: 10.1093/molbev/msr181] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) are highly abundant in the genome and capable of mobility, two properties that make them particularly prone to transfer horizontally between organisms. Although the impact of horizontal transfer (HT) of TEs is well recognized in prokaryotes, the frequency of this phenomenon and its contribution to genome evolution in eukaryotes remain poorly appreciated. Here, we provide evidence that a DNA transposon called SPIN has colonized the genome of 17 species of reptiles representing nearly every major lineage of squamates, including 14 families of lizards, snakes, and amphisbaenians. Slot blot analyses indicate that SPIN has amplified to high copy numbers in most of these species, ranging from 2,000-28,000 copies per haploid genome. In contrast, we could not detect the presence of SPIN in any of the turtles (seven species from seven families) and crocodiles (four species) examined. Genetic distances between SPIN sequences from species belonging to different squamate families are consistently very low (average = 0.1), considering the deep evolutionary divergence of the families investigated (most are >100 My diverged). Furthermore, these distances fall below interfamilial distances calculated for two genes known to have evolved under strong functional constraint in vertebrates (RAG1, average = 0.24 and C-mos, average = 0.27). These data, combined with phylogenetic analyses, indicate that the widespread distribution of SPIN among squamates is the result of at least 13 independent events of HTs. Molecular dating and paleobiogeographical data suggest that these transfers took place during the last 50 My on at least three different continents (North America, South America and, Africa). Together, these results triple the number of known SPIN transfer events among tetrapods, provide evidence for a previously hypothesized transoceanic movement of SPIN transposons during the Cenozoic, and further underscore the role of HT in the evolution of vertebrate genomes.
Collapse
|
561
|
Drillon G, Fischer G. Comparative study on synteny between yeasts and vertebrates. C R Biol 2011; 334:629-38. [PMID: 21819944 DOI: 10.1016/j.crvi.2011.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 03/29/2011] [Indexed: 11/16/2022]
Abstract
We studied synteny conservation between 18 yeast species and 13 vertebrate species in order to provide a comparative analysis of the chromosomal plasticity in these 2 phyla. By computing the regions of conserved synteny between all pairwise combinations of species within each group, we show that in vertebrates, the number of conserved synteny blocks exponentially increases along with the divergence between orthologous protein and that concomitantly; the number of genes per block exponentially decreases. The same trends are found in yeasts but only when the mean protein divergence between orthologs remains below 36%. When the average protein divergence exceeds this threshold, the total number of recognizable synteny blocks gradually decreases due to the repeated accumulation of rearrangements. We also show that rearrangement rates are on average 3-fold higher in vertebrates than in yeasts, and are estimated to be of 2 rearrangements/Myr. However, the genome sizes being on average 200 times larger in vertebrates than in yeasts, the normalized rates of chromosome rearrangements (per Mb) are about 50-fold higher in yeast than in vertebrate genomes.
Collapse
Affiliation(s)
- Guénola Drillon
- CNRS UMR7238, Laboratoire de Génomique des Microorganismes, Université Pierre-et-Marie-Curie, Institut des Cordeliers, 15 rue de l'École-de-Médecine, 75006 Paris, France
| | | |
Collapse
|
562
|
cDNA Cloning and Characterization of Adipose Triglyceride Lipase Gene in Zebra Finch (Taeniopygia guttata) and Java Sparrow (Padda oryzivora). DNA Cell Biol 2011; 30:461-8. [DOI: 10.1089/dna.2010.1168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
563
|
Tollis M, Boissinot S. The transposable element profile of the anolis genome: How a lizard can provide insights into the evolution of vertebrate genome size and structure. Mob Genet Elements 2011; 1:107-111. [PMID: 22016857 DOI: 10.4161/mge.1.2.17733] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 12/20/2022] Open
Abstract
The recent sequencing of the lizard genome provides a unique opportunity to examine the evolution of vertebrate genomes in a phylogenetic context. The lizard genome contains an extraordinary diversity of active transposable elements that far exceeds the diversity reported in extant mammals and birds. Retrotransposons and DNA transposons are represented by multiple active families, contributing to the very diverse repetitive landscape of the lizard. Surprisingly, ancient transposon copies are relatively rare suggesting that the transposon copy number is tightly controlled in lizard. This bias in favor of young copies results from the joint effect of purifying selection acting on novel insertions and a high rate of DNA loss. Recent analyses have revealed that the repetitive landscape of reptiles differ drastically from other extant amniotes by their diversity but also by the dynamics of amplification of their transposons. Thus, from the point of view of mobile elements, reptile genomes show more similarity to fish and amphibians than to other amniotes.
Collapse
Affiliation(s)
- Marc Tollis
- Department of Biology; Queens College; The City University of New York; Flushing, NY USA; The Graduate Center; The City University of New York; New York, NY USA
| | | |
Collapse
|
564
|
OLANO-MARIN JUANITA, MUELLER JAKOBC, KEMPENAERS BART. Heterozygosity and survival in blue tits (Cyanistes caeruleus): contrasting effects of presumably functional and neutral loci. Mol Ecol 2011; 20:4028-41. [DOI: 10.1111/j.1365-294x.2011.05177.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
565
|
Reed KM, Bauer MM, Monson MS, Benoit B, Chaves LD, O'Hare TH, Delany ME. Defining the turkey MHC: identification of expressed class I- and class IIB-like genes independent of the MHC-B. Immunogenetics 2011; 63:753-71. [PMID: 21710346 DOI: 10.1007/s00251-011-0549-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 06/07/2011] [Indexed: 12/14/2022]
Abstract
The MHC of the turkey (Meleagris gallopavo) is divided into two genetically unlinked regions; the MHC-B and MHC-Y. Although previous studies found the turkey MHC-B to be highly similar to that of the chicken, little is known of the gene content and extent of the MHC-Y. This study describes two partially overlapping large-insert BAC clones that genetically and physically map to the turkey MHC chromosome (MGA18) but to a region that assorts independently of MHC-B. Within the sequence assembly, 14 genes were predicted including new class I- and class IIB-like loci. Additional unassembled sequences corresponded to multiple copies of the ribosomal RNA repeat unit (18S-5.8S-28S). Thus, this newly identified MHC region appears to represent a physical boundary of the turkey MHC-Y. High-resolution multi-color fluorescence in situ hybridization studies confirm rearrangement of MGA18 relative to the orthologous chicken chromosome (GGA16) in regard to chromosome architecture, but not gene order. The difference in centromere position between the species is indicative of multiple chromosome rearrangements or alternate events such as neocentromere formation/centromere inactivation in the evolution of the MHC chromosome. Comparative sequencing of commercial turkeys (six amplicons totaling 7.6 kb) identified 68 single nucleotide variants defining nine MHC-Y haplotypes. Sequences of the new class I- and class IIB-like genes are most similar to MHC-Y genes in the chicken. All three loci are expressed in the spleen. Differential transcription of the MHC-Y class IIB-like loci was evident as one class IIB-like locus was only expressed in some individuals.
Collapse
Affiliation(s)
- Kent M Reed
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA,
| | | | | | | | | | | | | |
Collapse
|
566
|
Olano-Marin J, Mueller JC, Kempenaers B. CORRELATIONS BETWEEN HETEROZYGOSITY AND REPRODUCTIVE SUCCESS IN THE BLUE TIT (CYANISTES CAERULEUS): AN ANALYSIS OF INBREEDING AND SINGLE LOCUS EFFECTS. Evolution 2011; 65:3175-94. [DOI: 10.1111/j.1558-5646.2011.01369.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
567
|
Romanov MN, Dodgson JB, Gonser RA, Tuttle EM. Comparative BAC-based mapping in the white-throated sparrow, a novel behavioral genomics model, using interspecies overgo hybridization. BMC Res Notes 2011; 4:211. [PMID: 21693052 PMCID: PMC3155834 DOI: 10.1186/1756-0500-4-211] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 06/21/2011] [Indexed: 12/23/2022] Open
Abstract
Background The genomics era has produced an arsenal of resources from sequenced organisms allowing researchers to target species that do not have comparable mapping and sequence information. These new "non-model" organisms offer unique opportunities to examine environmental effects on genomic patterns and processes. Here we use comparative mapping as a first step in characterizing the genome organization of a novel animal model, the white-throated sparrow (Zonotrichia albicollis), which occurs as white or tan morphs that exhibit alternative behaviors and physiology. Morph is determined by the presence or absence of a complex chromosomal rearrangement. This species is an ideal model for behavioral genomics because the association between genotype and phenotype is absolute, making it possible to identify the genomic bases of phenotypic variation. Findings We initiated a genomic study in this species by characterizing the white-throated sparrow BAC library via filter hybridization with overgo probes designed for the chicken, turkey, and zebra finch. Cross-species hybridization resulted in 640 positive sparrow BACs assigned to 77 chicken loci across almost all macro-and microchromosomes, with a focus on the chromosomes associated with morph. Out of 216 overgos, 36% of the probes hybridized successfully, with an average number of 3.0 positive sparrow BACs per overgo. Conclusions These data will be utilized for determining chromosomal architecture and for fine-scale mapping of candidate genes associated with phenotypic differences. Our research confirms the utility of interspecies hybridization for developing comparative maps in other non-model organisms.
Collapse
Affiliation(s)
- Michael N Romanov
- Dept, of Biology, Indiana State University, Terre Haute, Indiana 47809, USA.
| | | | | | | |
Collapse
|
568
|
CHAPMAN JR, SHELDON BC. Heterozygosity is unrelated to adult fitness measures in a large, noninbred population of great tits (Parus major). J Evol Biol 2011; 24:1715-26. [DOI: 10.1111/j.1420-9101.2011.02295.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
569
|
Santure AW, Gratten J, Mossman JA, Sheldon BC, Slate J. Characterisation of the transcriptome of a wild great tit Parus major population by next generation sequencing. BMC Genomics 2011; 12:283. [PMID: 21635727 PMCID: PMC3125266 DOI: 10.1186/1471-2164-12-283] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The recent development of next generation sequencing technologies has made it possible to generate very large amounts of sequence data in species with little or no genome information. Combined with the large phenotypic databases available for wild and non-model species, these data will provide an unprecedented opportunity to "genomicise" ecological model organisms and establish the genetic basis of quantitative traits in natural populations. RESULTS This paper describes the sequencing, de novo assembly and analysis from the transcriptome of eight tissues of ten wild great tits. Approximately 4.6 million sequences and 1.4 billion bases of DNA were generated and assembled into 95,979 contigs, one third of which aligned with known Taeniopygia guttata (zebra finch) and Gallus gallus (chicken) transcripts. The majority (78%) of the remaining contigs aligned within or very close to regions of the zebra finch genome containing known genes, suggesting that they represented precursor mRNA rather than untranscribed genomic DNA. More than 35,000 single nucleotide polymorphisms and 10,000 microsatellite repeats were identified. Eleven percent of contigs were expressed in every tissue, while twenty one percent of contigs were expressed in only one tissue. The function of those contigs with strong evidence for tissue specific expression and contigs expressed in every tissue was inferred from the gene ontology (GO) terms associated with these contigs; heart and pancreas had the highest number of highly tissue specific GO terms (21.4% and 28.5% respectively). CONCLUSIONS In summary, the transcriptomic data generated in this study will contribute towards efforts to assemble and annotate the great tit genome, as well as providing the markers required to perform gene mapping studies in wild populations.
Collapse
Affiliation(s)
- Anna W Santure
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jake Gratten
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jim A Mossman
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Ben C Sheldon
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Jon Slate
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
570
|
Gunaratne PH, Lin YC, Benham AL, Drnevich J, Coarfa C, Tennakoon JB, Creighton CJ, Kim JH, Milosavljevic A, Watson M, Griffiths-Jones S, Clayton DF. Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain. BMC Genomics 2011; 12:277. [PMID: 21627805 PMCID: PMC3118218 DOI: 10.1186/1471-2164-12-277] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 05/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In an important model for neuroscience, songbirds learn to discriminate songs they hear during tape-recorded playbacks, as demonstrated by song-specific habituation of both behavioral and neurogenomic responses in the auditory forebrain. We hypothesized that microRNAs (miRNAs or miRs) may participate in the changing pattern of gene expression induced by song exposure. To test this, we used massively parallel Illumina sequencing to analyse small RNAs from auditory forebrain of adult zebra finches exposed to tape-recorded birdsong or silence. RESULTS In the auditory forebrain, we identified 121 known miRNAs conserved in other vertebrates. We also identified 34 novel miRNAs that do not align to human or chicken genomes. Five conserved miRNAs showed significant and consistent changes in copy number after song exposure across three biological replications of the song-silence comparison, with two increasing (tgu-miR-25, tgu-miR-192) and three decreasing (tgu-miR-92, tgu-miR-124, tgu-miR-129-5p). We also detected a locus on the Z sex chromosome that produces three different novel miRNAs, with supporting evidence from Northern blot and TaqMan qPCR assays for differential expression in males and females and in response to song playbacks. One of these, tgu-miR-2954-3p, is predicted (by TargetScan) to regulate eight song-responsive mRNAs that all have functions in cellular proliferation and neuronal differentiation. CONCLUSIONS The experience of hearing another bird singing alters the profile of miRNAs in the auditory forebrain of zebra finches. The response involves both known conserved miRNAs and novel miRNAs described so far only in the zebra finch, including a novel sex-linked, song-responsive miRNA. These results indicate that miRNAs are likely to contribute to the unique behavioural biology of learned song communication in songbirds.
Collapse
Affiliation(s)
- Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
- Departments of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ya-Chi Lin
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Ashley L Benham
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Jenny Drnevich
- W.M. Keck Center for Comparative and Functional Genomics, Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Cristian Coarfa
- Bioinformatics Research Laboratory (BRL), Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jayantha B Tennakoon
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Chad J Creighton
- Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jong H Kim
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Aleksandar Milosavljevic
- Bioinformatics Research Laboratory (BRL), Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Watson
- ARK-Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | | | - David F Clayton
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, IL 61801, USA
| |
Collapse
|
571
|
Groenen MAM, Megens HJ, Zare Y, Warren WC, Hillier LW, Crooijmans RPMA, Vereijken A, Okimoto R, Muir WM, Cheng HH. The development and characterization of a 60K SNP chip for chicken. BMC Genomics 2011; 12:274. [PMID: 21627800 PMCID: PMC3117858 DOI: 10.1186/1471-2164-12-274] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/31/2011] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In livestock species like the chicken, high throughput single nucleotide polymorphism (SNP) genotyping assays are increasingly being used for whole genome association studies and as a tool in breeding (referred to as genomic selection). To be of value in a wide variety of breeds and populations, the success rate of the SNP genotyping assay, the distribution of the SNP across the genome and the minor allele frequencies (MAF) of the SNPs used are extremely important. RESULTS We describe the design of a moderate density (60k) Illumina SNP BeadChip in chicken consisting of SNPs known to be segregating at high to medium minor allele frequencies (MAF) in the two major types of commercial chicken (broilers and layers). This was achieved by the identification of 352,303 SNPs with moderate to high MAF in 2 broilers and 2 layer lines using Illumina sequencing on reduced representation libraries. To further increase the utility of the chip, we also identified SNPs on sequences currently not covered by the chicken genome assembly (Gallus_gallus-2.1). This was achieved by 454 sequencing of the chicken genome at a depth of 12x and the identification of SNPs on 454-derived contigs not covered by the current chicken genome assembly. In total we added 790 SNPs that mapped to 454-derived contigs as well as 421 SNPs with a position on Chr_random of the current assembly. The SNP chip contains 57,636 SNPs of which 54,293 could be genotyped and were shown to be segregating in chicken populations. Our SNP identification procedure appeared to be highly reliable and the overall validation rate of the SNPs on the chip was 94%. We were able to map 328 SNPs derived from the 454 sequence contigs on the chicken genome. The majority of these SNPs map to chromosomes that are already represented in genome build Gallus_gallus-2.1.0. Twenty-eight SNPs were used to construct two new linkage groups most likely representing two micro-chromosomes not covered by the current genome assembly. CONCLUSIONS The high success rate of the SNPs on the Illumina chicken 60K Beadchip emphasizes the power of Next generation sequence (NGS) technology for the SNP identification and selection step. The identification of SNPs from sequence contigs derived from NGS sequencing resulted in improved coverage of the chicken genome and the construction of two new linkage groups most likely representing two chicken micro-chromosomes.
Collapse
Affiliation(s)
- Martien AM Groenen
- Animal Breeding and Genomics Centre, Wageningen University, The Netherlands
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University, The Netherlands
| | - Yalda Zare
- Animal Breeding and Genomics Centre, Wageningen University, The Netherlands
| | - Wesley C Warren
- The Genome Institute, Washington University, School of Medicine, St. Louis, USA
| | - LaDeana W Hillier
- The Genome Institute, Washington University, School of Medicine, St. Louis, USA
| | | | - Addie Vereijken
- Hendrix Genetics Research, Technology & Services B.V., Boxmeer, The Netherlands
| | - Ron Okimoto
- Cobb-Vantress Inc., Siloam Springs, AR, 72761, USA
| | - William M Muir
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Hans H Cheng
- USDA-ARS, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| |
Collapse
|
572
|
Blank M, Kiger L, Thielebein A, Gerlach F, Hankeln T, Marden MC, Burmester T. Oxygen supply from the bird's eye perspective: globin E is a respiratory protein in the chicken retina. J Biol Chem 2011; 286:26507-15. [PMID: 21622558 DOI: 10.1074/jbc.m111.224634] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The visual process in the vertebrate eye requires high amounts of metabolic energy and thus oxygen. Oxygen supply of the avian retina is a challenging task because birds have large eyes, thick retinae, and high metabolic rates but neither deep retinal nor superficial capillaries. Respiratory proteins such as myoglobin may enhance oxygen supply to certain tissues, and thus the mammalian retina harbors high amounts of neuroglobin. Globin E (GbE) was recently identified as an eye-specific globin of chicken (Gallus gallus). Orthologous GbE genes were found in zebra finch and turkey genomes but appear to be absent in non-avian vertebrate classes. Analyses of globin phylogeny and gene synteny showed an ancient origin of GbE but did not help to assign it to any specific globin type. We show that the photoreceptor cells of the chicken retina have a high level of GbE protein, which accumulates to ∼10 μM in the total eye. Quantitative real-time RT-PCR revealed an ∼50,000-fold higher level of GbE mRNA in the eye than in the brain. Spectroscopic analysis and ligand binding kinetics of recombinant chicken GbE reveal a penta-coordinated globin with an oxygen affinity of P(50) = 5.8 torrs at 25 °C and 15 torrs at 41 °C. Together these data suggest that GbE helps to sustain oxygen supply to the avian retina.
Collapse
Affiliation(s)
- Miriam Blank
- Institute of Zoology and Zoological Museum, University of Hamburg, D-20146 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
573
|
Braun EL, Kimball RT, Han KL, Iuhasz-Velez NR, Bonilla AJ, Chojnowski JL, Smith JV, Bowie RCK, Braun MJ, Hackett SJ, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Reddy S, Sheldon FH, Witt CC, Yuri T. Homoplastic microinversions and the avian tree of life. BMC Evol Biol 2011; 11:141. [PMID: 21612607 PMCID: PMC3123225 DOI: 10.1186/1471-2148-11-141] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 05/25/2011] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Microinversions are cytologically undetectable inversions of DNA sequences that accumulate slowly in genomes. Like many other rare genomic changes (RGCs), microinversions are thought to be virtually homoplasy-free evolutionary characters, suggesting that they may be very useful for difficult phylogenetic problems such as the avian tree of life. However, few detailed surveys of these genomic rearrangements have been conducted, making it difficult to assess this hypothesis or understand the impact of microinversions upon genome evolution. RESULTS We surveyed non-coding sequence data from a recent avian phylogenetic study and found substantially more microinversions than expected based upon prior information about vertebrate inversion rates, although this is likely due to underestimation of these rates in previous studies. Most microinversions were lineage-specific or united well-accepted groups. However, some homoplastic microinversions were evident among the informative characters. Hemiplasy, which reflects differences between gene trees and the species tree, did not explain the observed homoplasy. Two specific loci were microinversion hotspots, with high numbers of inversions that included both the homoplastic as well as some overlapping microinversions. Neither stem-loop structures nor detectable sequence motifs were associated with microinversions in the hotspots. CONCLUSIONS Microinversions can provide valuable phylogenetic information, although power analysis indicates that large amounts of sequence data will be necessary to identify enough inversions (and similar RGCs) to resolve short branches in the tree of life. Moreover, microinversions are not perfect characters and should be interpreted with caution, just as with any other character type. Independent of their use for phylogenetic analyses, microinversions are important because they have the potential to complicate alignment of non-coding sequences. Despite their low rate of accumulation, they have clearly contributed to genome evolution, suggesting that active identification of microinversions will prove useful in future phylogenomic studies.
Collapse
Affiliation(s)
- Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Kin-Lan Han
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | | | - Amber J Bonilla
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Jena L Chojnowski
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Jordan V Smith
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Rauri CK Bowie
- Zoology Department, Field Museum of Natural History, 1400 S. Lakeshore Drive, Chicago, IL 60605, USA
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael J Braun
- Department of Vertebrate Zoology, Smithsonian Institution, 4210 Silver Hill Road, Suitland, MD 20746, USA
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD 20742, USA
| | - Shannon J Hackett
- Zoology Department, Field Museum of Natural History, 1400 S. Lakeshore Drive, Chicago, IL 60605, USA
| | - John Harshman
- Zoology Department, Field Museum of Natural History, 1400 S. Lakeshore Drive, Chicago, IL 60605, USA
- 4869 Pepperwood Way, San Jose, CA 95124, USA
| | - Christopher J Huddleston
- Department of Vertebrate Zoology, Smithsonian Institution, 4210 Silver Hill Road, Suitland, MD 20746, USA
| | - Ben D Marks
- Museum of Natural Science and Department of Biological Sciences, 119 Foster Hall, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kathleen J Miglia
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - William S Moore
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Sushma Reddy
- Zoology Department, Field Museum of Natural History, 1400 S. Lakeshore Drive, Chicago, IL 60605, USA
- Biology Department, Loyola University Chicago, Chicago, IL 60626, USA
| | - Frederick H Sheldon
- Museum of Natural Science and Department of Biological Sciences, 119 Foster Hall, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Christopher C Witt
- Museum of Natural Science and Department of Biological Sciences, 119 Foster Hall, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Tamaki Yuri
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Department of Vertebrate Zoology, Smithsonian Institution, 4210 Silver Hill Road, Suitland, MD 20746, USA
- Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK 73072, USA
| |
Collapse
|
574
|
Davis JK, Mittel LB, Lowman JJ, Thomas PJ, Maney DL, Martin CL, Thomas JW. Haplotype-based genomic sequencing of a chromosomal polymorphism in the white-throated sparrow (Zonotrichia albicollis). J Hered 2011; 102:380-90. [PMID: 21613376 DOI: 10.1093/jhered/esr043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inversion polymorphisms have been linked to a variety of fundamental biological and evolutionary processes. Yet few studies have used large-scale genomic sequencing to directly compare the haplotypes associated with the standard and inverted chromosome arrangements. Here we describe the targeted genomic sequencing and comparison of haplotypes representing alternative arrangements of a common inversion polymorphism linked to a suite of phenotypes in the white-throated sparrow (Zonotrichia albicollis). More than 7.4 Mb of genomic sequence was generated and assembled from both the standard (ZAL2) and inverted (ZAL2(m)) arrangements. Sequencing of a pair of inversion breakpoints led to the identification of a ZAL2-specific segmental duplication, as well as evidence of breakpoint reusage. Comparison of the haplotype-based sequence assemblies revealed low genetic differentiation outside versus inside the inversion indicative of historical patterns of gene flow and suppressed recombination between ZAL2 and ZAL2(m). Finally, despite ZAL2(m) being maintained in a near constant state of heterozygosity, no signatures of genetic degeneration were detected on this chromosome. Overall, these results provide important insights into the genomic attributes of an inversion polymorphism linked to mate choice and variation in social behavior.
Collapse
Affiliation(s)
- Jamie K Davis
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Suite 301, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
575
|
Castoe TA, Hall KT, Guibotsy Mboulas ML, Gu W, de Koning APJ, Fox SE, Poole AW, Vemulapalli V, Daza JM, Mockler T, Smith EN, Feschotte C, Pollock DD. Discovery of highly divergent repeat landscapes in snake genomes using high-throughput sequencing. Genome Biol Evol 2011; 3:641-53. [PMID: 21572095 PMCID: PMC3157835 DOI: 10.1093/gbe/evr043] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We conducted a comprehensive assessment of genomic repeat content in two snake genomes, the venomous copperhead (Agkistrodon contortrix) and the Burmese python (Python molurus bivittatus). These two genomes are both relatively small (∼1.4 Gb) but have surprisingly extensive differences in the abundance and expansion histories of their repeat elements. In the python, the readily identifiable repeat element content is low (21%), similar to bird genomes, whereas that of the copperhead is higher (45%), similar to mammalian genomes. The copperhead's greater repeat content arises from the recent expansion of many different microsatellites and transposable element (TE) families, and the copperhead had 23-fold greater levels of TE-related transcripts than the python. This suggests the possibility that greater TE activity in the copperhead is ongoing. Expansion of CR1 LINEs in the copperhead genome has resulted in TE-mediated microsatellite expansion ("microsatellite seeding") at a scale several orders of magnitude greater than previously observed in vertebrates. Snakes also appear to be prone to horizontal transfer of TEs, particularly in the copperhead lineage. The reason that the copperhead has such a small genome in the face of so much recent expansion of repeat elements remains an open question, although selective pressure related to extreme metabolic performance is an obvious candidate. TE activity can affect gene regulation as well as rates of recombination and gene duplication, and it is therefore possible that TE activity played a role in the evolution of major adaptations in snakes; some evidence suggests this may include the evolution of venom repertoires.
Collapse
Affiliation(s)
- Todd A Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
576
|
Caspers BA, Krause ET. Odour-based natal nest recognition in the zebra finch (Taeniopygia guttata), a colony-breeding songbird. Biol Lett 2011; 7:184-6. [PMID: 20880859 PMCID: PMC3061170 DOI: 10.1098/rsbl.2010.0775] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 09/08/2010] [Indexed: 11/12/2022] Open
Abstract
Passerine birds have an extensive repertoire of olfactory receptor genes. However, the circumstances in which passerine birds use olfactory signals are poorly understood. The aim of this study is to investigate whether olfactory cues play a role in natal nest recognition in fledged juvenile passerines. The natal nest provides fledglings with a safe place for sleeping and parental food provisioning. There is a particular demand in colony-breeding birds for fledglings to be able to identify their nests because many pairs breed close to each other. Olfactory orientation might thus be of special importance for the fledglings, because they do not have a visual representation of the nest site and its position in the colony when leaving the nest for the first time. We investigated the role of olfaction in nest recognition in zebra finches, which breed in dense colonies of up to 50 pairs. We performed odour preference tests, in which we offered zebra finch fledglings their own natal nest odour versus foreign nest odour. Zebra finch fledglings significantly preferred their own natal nest odour, indicating that fledglings of a colony breeding songbird may use olfactory cues for nest recognition.
Collapse
Affiliation(s)
- Barbara A Caspers
- Department of Behavioural Biology, Bielefeld University, Bielefeld, Germany.
| | | |
Collapse
|
577
|
Matsunaga E, Okanoya K. Comparative gene expression analysis among vocal learners (bengalese finch and budgerigar) and non-learners (quail and ring dove) reveals variable cadherin expressions in the vocal system. Front Neuroanat 2011; 5:28. [PMID: 21541260 PMCID: PMC3083831 DOI: 10.3389/fnana.2011.00028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 04/07/2011] [Indexed: 11/13/2022] Open
Abstract
Birds use various vocalizations to communicate with one another, and some are acquired through learning. So far, three families of birds (songbirds, parrots, and hummingbirds) have been identified as having vocal learning ability. Previously, we found that cadherins, a large family of cell-adhesion molecules, show vocal control-area-related expression in a songbird, the Bengalese finch. To investigate the molecular basis of evolution in avian species, we conducted comparative analysis of cadherin expressions in the vocal and other neural systems among vocal learners (Bengalese finch and budgerigar) and a non-learner (quail and ring dove). The gene expression analysis revealed that cadherin expressions were more variable in vocal and auditory areas compared to vocally unrelated areas such as the visual areas among these species. Thus, it appears that such diverse cadherin expressions might have been related to generating species diversity in vocal behavior during the evolution of avian vocal learning.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako Saitama, Japan
| | | |
Collapse
|
578
|
Künstner A, Nabholz B, Ellegren H. Evolutionary constraint in flanking regions of avian genes. Mol Biol Evol 2011; 28:2481-9. [PMID: 21393603 DOI: 10.1093/molbev/msr066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An important comprehension from comparative genomic analysis is that sequence conservation beyond neutral expectations is frequently found outside protein-coding regions, indicating important functional roles of noncoding DNA. Understanding the causes of constraint on noncoding sequence evolution forms an important area of research, not least in light of the importance for understanding the evolution of gene expression. We aligned all orthologous genes of chicken and zebra finch together with 5 kb of their upstream and downstream noncoding sequences, to study the evolution of gene flanking sequences in the avian genome. Using ancestral repeats as a neutral reference, we detected significant evolutionary constraint in the 3' flanking region, highest directly after termination (60%) and then gradually decreasing to about 20% 5 kb downstream. Constraint was higher in annotated 3' untranslated regions (UTRs) than in non-UTRs at the same distance from the stop codon and higher in sequences annotated as microRNA (miRNA)-binding sites than in non-miRNA-binding sites within 3' UTRs. Constraint was also higher when estimated for a smaller data set of genes from more closely related songbird species, indicating turnover of functional elements during avian evolution. On the 5' flanking side constraint was readily seen within the first 125 bp immediately upstream of the start codon (34%) and was about 10% for remaining sequence within 5 kb upstream. Analysis of chicken polymorphism data gave further support for the highest constraint directly before and after the translated region. Finally, we found that genes evolving under the highest constraint measured by d(N)/d(S) also had the highest level of constraint in the 3' flanking region. This study broadens the insights into gene flanking sequence evolution by adding new findings from a vertebrate lineage other than mammals.
Collapse
Affiliation(s)
- Axel Künstner
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
579
|
Sánchez-Guardado LÓ, Irimia M, Sánchez-Arrones L, Burguera D, Rodríguez-Gallardo L, Garcia-Fernández J, Puelles L, Ferran JL, Hidalgo-Sánchez M. Distinct and redundant expression and transcriptional diversity of MEIS gene paralogs during chicken development. Dev Dyn 2011; 240:1475-92. [PMID: 21465619 DOI: 10.1002/dvdy.22621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2011] [Indexed: 01/20/2023] Open
|
580
|
Adkins-Regan E. Neuroendocrine contributions to sexual partner preference in birds. Front Neuroendocrinol 2011; 32:155-63. [PMID: 21277320 DOI: 10.1016/j.yfrne.2011.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/13/2011] [Accepted: 01/23/2011] [Indexed: 10/18/2022]
Abstract
A majority of birds are socially monogamous, providing exceptional opportunities to discover neuroendocrine mechanisms underlying preferences for opposite-sex partners where the sexes form extended affiliative relationships. Zebra finches have been the focus of the most systematic program of research to date in any socially monogamous animal. In this species, sexual partner preference can be partially or largely sex reversed with hormone manipulations during early development, suggesting a role for organizational hormone actions. This same conclusion emerges from research with Japanese quail, which do not form long-term pairs. In zebra finches, social experience manipulations during juvenile development also can sex reverse partner preference, either alone or in combination with an early hormone manipulation. Although there are several candidate brain regions where neural mechanisms could underlie these effects of hormones or social experience, the necessary research has not yet been done to determine their involvement. The neuroendocrinology of avian sexual partner preference is still frontier territory.
Collapse
Affiliation(s)
- Elizabeth Adkins-Regan
- Department of Psychology and Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853-7601, USA.
| |
Collapse
|
581
|
Silva MC, Duarte MA, Coelho MM. Anonymous nuclear loci in the white-faced storm-petrel Pelagodroma marina and their applicability to other Procellariiform seabirds. J Hered 2011; 102:362-5. [PMID: 21447754 DOI: 10.1093/jhered/esr016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Procellariiform seabirds are among the avian species with the fastest rates of extinction due to interactions with fisheries and introduction of alien predators to the breeding colonies. Conservation and management policies targeting populations of these species must include information on colony demographics and levels of isolation and genetic markers go a long way toward providing reliable estimates of these parameters. To this end, we report isolation and characterization of 14 anonymous nuclear loci, with average length of 657 bp, in the pelagic seabird White-faced Storm-petrel Pelagodroma marina, a species for which there is virtually no genetic information available. These loci, initially isolated from a genomic library built from P. marina, were further tested, for a range of conditions, in 7 other species representing all Procellariiform families. We found high levels of cross-species amplification success, varying between 79% and 86% in representatives of Diomedeidae, Procellariidae, Pelecanoididae, and other Hydrobatidae. We also sequenced 11 loci for 22 P. marina individuals and report higher levels of anonymous genetic variation (π = 0.002), with an average of 1 single nucleotide polymorphism every 100 bp surveyed, relative to the levels found on a typically variable intron in avian species. These markers will be a valuable tool in future population genetics and phylogenetic studies, particularly of nonmodel seabird species.
Collapse
Affiliation(s)
- Mónica C Silva
- Centro de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, Portugal
| | | | | |
Collapse
|
582
|
Selective loss of glycogen synthase kinase-3α in birds reveals distinct roles for GSK-3 isozymes in tau phosphorylation. FEBS Lett 2011; 585:1158-62. [PMID: 21419127 DOI: 10.1016/j.febslet.2011.03.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/06/2011] [Accepted: 03/11/2011] [Indexed: 01/05/2023]
Abstract
Mammalian glycogen synthase kinase-3 (GSK-3), a critical regulator in neuronal signaling, cognition, and behavior, exists as two isozymes GSK-3α and GSK-3β. Their distinct biological functions remains largely unknown. Here, we examined the evolutionary significance of each of these isozymes. Surprisingly, we found that unlike other vertebrates that harbor both GSK-3 genes, the GSK-3α gene is missing in birds. GSK-3-mediated tau phosphorylation was significantly lower in adult bird brains than in mouse brains, a phenomenon that was reproduced in GSK-3α knockout mouse brains. Tau phosphorylation was detected in brains from bird embryos suggesting that GSK-3 isozymes play distinct roles in tau phosphorylation during development. Birds are natural GSK-3α knockout organisms and may serve as a novel model to study the distinct functions of GSK-3 isozymes.
Collapse
|
583
|
Quantification of developmental birdsong learning from the subsyllabic scale to cultural evolution. Proc Natl Acad Sci U S A 2011; 108 Suppl 3:15572-9. [PMID: 21436035 DOI: 10.1073/pnas.1012941108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Quantitative analysis of behavior plays an important role in birdsong neuroethology, serving as a common denominator in studies spanning molecular to system-level investigation of sensory-motor conversion, developmental learning, and pattern generation in the brain. In this review, we describe the role of behavioral analysis in facilitating cross-level integration. Modern sound analysis approaches allow investigation of developmental song learning across multiple time scales. Combined with novel methods that allow experimental control of vocal changes, it is now possible to test hypotheses about mechanisms of vocal learning. Further, song analysis can be done at the population level across generations to track cultural evolution and multigenerational behavioral processes. Complementing the investigation of song development with noninvasive brain imaging technology makes it now possible to study behavioral dynamics at multiple levels side by side with developmental changes in brain connectivity and in auditory responses.
Collapse
|
584
|
Wu J, Xiao J, Zhang R, Yu J. DNA sequencing leads to genomics progress in China. SCIENCE CHINA-LIFE SCIENCES 2011; 54:290-2. [PMID: 21416330 DOI: 10.1007/s11427-011-4148-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/13/2011] [Indexed: 01/14/2023]
Affiliation(s)
- Jiayan Wu
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China
| | | | | | | |
Collapse
|
585
|
Itoh Y, Arnold AP. Zebra finch cell lines from naturally occurring tumors. In Vitro Cell Dev Biol Anim 2011; 47:280-2. [PMID: 21359817 PMCID: PMC3082043 DOI: 10.1007/s11626-011-9392-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 01/26/2011] [Indexed: 10/29/2022]
Abstract
The zebra finch (Taeniopygia guttata) has been intensively studied in many research fields including neuroscience, behavioral neurobiology, and evolution of the genome. Although numerous molecular and genomic resources are available for this model species, immortalized cell lines have been lacking. We have established two zebra finch cell lines derived from spontaneous tumors. ZFTMA is a tetraploid female cell line and G266 as a diploid male cell line. These first zebra finch cell lines should facilitate development of research on this model species.
Collapse
Affiliation(s)
- Yuichiro Itoh
- Department of Integrative Biology and Physiology, University of California, UCLA 610 Charles E. Young Drive South, Room 1146, Los Angeles, CA 90095-1606, USA.
| | | |
Collapse
|
586
|
Lovell PV, Olson CR, Mello CV. Singing under the influence: examining the effects of nutrition and addiction on a learned vocal behavior. Mol Neurobiol 2011; 44:175-84. [PMID: 21340665 DOI: 10.1007/s12035-011-8169-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 02/03/2011] [Indexed: 02/04/2023]
Abstract
The songbird model is widely established in a number of laboratories for the investigation of the neurobiology and development of vocal learning. While vocal learning is rare in the animal kingdom, it is a trait that songbirds share with humans. The neuroanatomical and physiological organization of the brain circuitry that controls learned vocalizations has been extensively characterized, particularly in zebra finches (Taeniopygia guttata). Recently, several powerful molecular and genomic tools have become available in this organism, making it an attractive choice for neurobiologists interested in the neural and genetic basis of a complex learned behavior. Here, we briefly review some of the main features of vocal learning and associated brain structures in zebra finches and comment on some examples that illustrate how themes related to nutrition and addiction can be explored using this model organism.
Collapse
Affiliation(s)
- Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 Sam Jackson Park Rd L470, Portland, OR 97239, USA
| | | | | |
Collapse
|
587
|
Thompson CK. Cell death and the song control system: A model for how sex steroid hormones regulate naturally-occurring neurodegeneration. Dev Growth Differ 2011; 53:213-24. [DOI: 10.1111/j.1440-169x.2011.01257.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
588
|
Dodgson JB, Delany ME, Cheng HH. Poultry genome sequences: progress and outstanding challenges. Cytogenet Genome Res 2011; 134:19-26. [PMID: 21335957 DOI: 10.1159/000324413] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2010] [Indexed: 11/19/2022] Open
Abstract
The first build of the chicken genome sequence appeared in March, 2004 - the first genome sequence of any animal agriculture species. That sequence was done primarily by whole genome shotgun Sanger sequencing, along with the use of an extensive BAC contig-based physical map to assemble the sequence contigs and scaffolds and align them to the known chicken chromosomes and linkage groups. Subsequent sequencing and mapping efforts have improved upon that first build, and efforts continue in search of missing and/or unassembled sequence, primarily on the smaller microchromosomes and the sex chromosomes. In the past year, a draft turkey genome sequence of similar quality has been obtained at a much lower cost primarily due to the development of 'next-generation' sequencing techniques. However, assembly and alignment of the sequence contigs and scaffolds still depended on a detailed BAC contig map of the turkey genome that also utilized comparison to the existing chicken sequence. These 2 land fowl (Galliformes) genomes show a remarkable level of similarity, despite an estimated 30-40 million years of separate evolution since their last common ancestor. Among the advantages offered by these sequences are routine re-sequencing of commercial and research lines to identify the genetic correlates of phenotypic change (for example, selective sweeps), a much improved understanding of poultry diversity and linkage disequilibrium, and access to high-density SNP typing and association analysis, detailed transcriptomic and proteomic studies, and the use of genome-wide marker- assisted selection to enhance genetic gain in commercial stocks.
Collapse
Affiliation(s)
- J B Dodgson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA.
| | | | | |
Collapse
|
589
|
Abstract
In order to develop novel solutions to avian disease problems, including novel vaccines and/or vaccine adjuvants, and the identification of disease resistance genes which can feed into conventional breeding programmes, it is necessary to gain a more thorough understanding of the avian immune response and how pathogens can subvert that response. Birds occupy the same habitats as mammals, have similar ranges of longevity and body mass, and face similar pathogen challenges, yet birds have a different repertoire of organs, cells, molecules and genes of the immune system compared to mammals. This review summarises the current state of knowledge of the chicken's immune response, highlighting differences in the bird compared to mammals, and discusses how the availability of the chicken genome sequence and the associated postgenomics technologies are contributing to theses studies and also to the development of novel intervention strategies againts avian and zoonotic disease.
Collapse
Affiliation(s)
- Pete Kaiser
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian, UK.
| |
Collapse
|
590
|
Roulhac PL, Ward JM, Thompson JW, Soderblom EJ, Silva M, Moseley MA, Jarvis ED. Microproteomics: quantitative proteomic profiling of small numbers of laser-captured cells. Cold Spring Harb Protoc 2011; 2011:pdb.prot5573. [PMID: 21285273 PMCID: PMC4404020 DOI: 10.1101/pdb.prot5573] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTIONDuring the last decade, significant progress in the analysis of whole genomes and transcriptomes has triggered efforts to analyze the proteome. Advancements in protein extraction, purification, and identification have been driven by the development of mass spectrometers with greater sensitivity and resolution. Nevertheless, comparative and quantitative proteomic technologies have not progressed to the extent of genomic and transcriptomic technologies for accessing gene expression differences. Unlike the genome, which is similar throughout all cells in a given organism, the proteome varies in different cells. Also, there is no self-replicating amplification mechanism for proteins such as the polymerase chain reaction (PCR) for DNA. Therefore, developing methods that extract, separate, detect, and identify proteins from extremely small samples are needed. The advent of laser capture microdissection (LCM) has expanded the analytical capabilities of proteomics. LCM has proven an effective technique to harvest pure cell populations from tissue sections. This protocol describes a microproteomic platform that uses nanoscale liquid chromatography/tandem mass spectrometry (nano-LC-MS/MS) to simultaneously identify and quantify hundreds of proteins from LCMs of tissue sections from small tissue samples containing as few as 1000 cells. The LCM-dissected tissues are subjected to protein extraction, reduction, alkylation, and digestion, followed by injection into a nano-LC-MS/MS system for chromatographic separation and protein identification. The approach can be validated by secondary screening using immunological techniques such as immunohistochemistry or immunoblots.
Collapse
Affiliation(s)
- Petra L. Roulhac
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - James M. Ward
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - J. Will Thompson
- Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Erik J. Soderblom
- Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Michael Silva
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - M. Arthur Moseley
- Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Erich D. Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
591
|
Olveczky BP, Gardner TJ. A bird's eye view of neural circuit formation. Curr Opin Neurobiol 2011; 21:124-31. [PMID: 20943369 PMCID: PMC3041870 DOI: 10.1016/j.conb.2010.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 11/29/2022]
Abstract
Neural circuits underlying complex learned behaviors, such as speech in humans, develop under genetic constraints and in response to environmental influences. Little is known about the rules and mechanisms through which such circuits form. We argue that songbirds, with their discrete and well studied neural pathways underlying a complex and naturally learned behavior, provide a powerful model for addressing these questions. We briefly review current knowledge of how the song circuit develops during learning and discuss new possibilities for advancing the field given recent technological advances.
Collapse
Affiliation(s)
- Bence P Olveczky
- Harvard University, Department of Organismic and Evolutionary Biology and Center for Brain Science, 52 Oxford Street, Cambridge, MA 02138, USA.
| | | |
Collapse
|
592
|
Alcaide M, Edwards SV. Molecular Evolution of the Toll-Like Receptor Multigene Family in Birds. Mol Biol Evol 2011; 28:1703-15. [DOI: 10.1093/molbev/msq351] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
593
|
Itoh Y, Kampf K, Balakrishnan CN, Arnold AP. Karyotypic polymorphism of the zebra finch Z chromosome. Chromosoma 2011; 120:255-64. [PMID: 21369954 PMCID: PMC3099001 DOI: 10.1007/s00412-010-0308-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 12/02/2010] [Accepted: 12/16/2010] [Indexed: 01/28/2023]
Abstract
We describe a karyotypic polymorphism on the zebra finch Z chromosome. This polymorphism was discovered because of a difference in the position of the centromere and because it occurs at varying frequencies in domesticated colonies in the USA and Germany and among two zebra finch subspecies. Using DNA fluorescent in situ hybridization to map specific Z genes and measurements of DNA replication, we show that this polymorphism is the result of a large pericentric inversion involving the majority of the chromosome. We sequenced a likely breakpoint for the inversion and found many repetitive sequences. Around the breakpoint, there are numerous repetitive sequences and several copies of PAK3 (p21-activated kinase 3)-related sequences (PAK3Z) which showed testes-specific expression by RT-PCR. Our findings further suggest that the sequenced genome of the zebra finch may be derived from a male heterozygote for the Z chromosome polymorphism. This finding, in combination with regional differences in the frequency of the polymorphism, has important consequences for future studies using zebra finches.
Collapse
Affiliation(s)
- Yuichiro Itoh
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-1606, USA.
| | | | | | | |
Collapse
|
594
|
Abstract
In wild populations, individuals are regularly exposed to a wide range of pathogens. In this context, organisms must elicit and regulate effective immune responses to protect their health while avoiding immunopathology. However, most of our knowledge about the function and dynamics of immune responses comes from laboratory studies performed on inbred mice in highly controlled environments with limited exposure to infection. Natural populations, on the other hand, exhibit wide genetic and environmental diversity. We argue that now is the time for immunology to be taken into the wild. The goal of 'wild immunology' is to link immune phenotype with host fitness in natural environments. To achieve this requires relevant measures of immune responsiveness that are both applicable to the host-parasite interaction under study and robustly associated with measures of host and parasite fitness. Bringing immunology to nonmodel organisms and linking that knowledge host fitness, and ultimately population dynamics, will face difficult challenges, both technical (lack of reagents and annotated genomes) and statistical (variation among individuals and populations). However, the affordability of new genomic technologies will help immunologists, ecologists and evolutionary biologists work together to translate and test our current knowledge of immune mechanisms in natural systems. From this approach, ecologists will gain new insight into mechanisms relevant to host health and fitness, while immunologists will be given a measure of the real-world health impacts of the immune factors they study. Thus, wild immunology can be the missing link between laboratory-based immunology and human, wildlife and domesticated animal health.
Collapse
Affiliation(s)
- Amy B Pedersen
- Centre for Immunity, Infection and Evolution, Institutes of Immunology & Infection Research and Evolutionary Biology, University of Edinburgh, Ashworth Labs, West Mains Road, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|
595
|
Maney DL, Goodson JL. Neurogenomic mechanisms of aggression in songbirds. ADVANCES IN GENETICS 2011; 75:83-119. [PMID: 22078478 DOI: 10.1016/b978-0-12-380858-5.00002-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Our understanding of the biological basis of aggression in all vertebrates, including humans, has been built largely upon discoveries first made in birds. A voluminous literature now indicates that hormonal mechanisms are shared between humans and a number of avian species. Research on genetics mechanisms in birds has lagged behind the more typical laboratory species because the necessary tools have been lacking until recently. Over the past 30 years, three major technical advances have propelled forward our understanding of the hormonal, neural, and genetic bases of aggression in birds: (1) the development of assays to measure plasma levels of hormones in free-living individuals, or "field endocrinology"; (2) the immunohistochemical labeling of immediate early gene products to map neural responses to social stimuli; and (3) the sequencing of the zebra finch genome, which makes available a tremendous set of genomic tools for studying gene sequences, expression, and chromosomal structure in species for which we already have large datasets on aggressive behavior. This combination of hormonal, neuroendocrine, and genetic tools has established songbirds as powerful models for understanding the neural basis and evolution of aggression in vertebrates. In this chapter, we discuss the contributions of field endocrinology toward a theoretical framework linking aggression with sex steroids, explore evidence that the neural substrates of aggression are conserved across vertebrate species, and describe a promising new songbird model for studying the molecular genetic mechanisms underlying aggression.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
596
|
Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, Gordon L, Hendrix M, Hourlier T, Johnson N, Kähäri A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Larsson P, Longden I, McLaren W, Overduin B, Pritchard B, Riat HS, Rios D, Ritchie GRS, Ruffier M, Schuster M, Sobral D, Spudich G, Tang YA, Trevanion S, Vandrovcova J, Vilella AJ, White S, Wilder SP, Zadissa A, Zamora J, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernández-Suarez XM, Herrero J, Hubbard TJP, Parker A, Proctor G, Vogel J, Searle SMJ. Ensembl 2011. Nucleic Acids Res 2011; 39:D800-6. [PMID: 21045057 PMCID: PMC3013672 DOI: 10.1093/nar/gkq1064] [Citation(s) in RCA: 566] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/13/2010] [Indexed: 11/13/2022] Open
Abstract
The Ensembl project (http://www.ensembl.org) seeks to enable genomic science by providing high quality, integrated annotation on chordate and selected eukaryotic genomes within a consistent and accessible infrastructure. All supported species include comprehensive, evidence-based gene annotations and a selected set of genomes includes additional data focused on variation, comparative, evolutionary, functional and regulatory annotation. The most advanced resources are provided for key species including human, mouse, rat and zebrafish reflecting the popularity and importance of these species in biomedical research. As of Ensembl release 59 (August 2010), 56 species are supported of which 5 have been added in the past year. Since our previous report, we have substantially improved the presentation and integration of both data of disease relevance and the regulatory state of different cell types.
Collapse
Affiliation(s)
- Paul Flicek
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
597
|
Janes DE, Chapus C, Gondo Y, Clayton DF, Sinha S, Blatti CA, Organ CL, Fujita MK, Balakrishnan CN, Edwards SV. Reptiles and mammals have differentially retained long conserved noncoding sequences from the amniote ancestor. Genome Biol Evol 2010; 3:102-13. [PMID: 21183607 PMCID: PMC3035132 DOI: 10.1093/gbe/evq087] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2010] [Indexed: 12/14/2022] Open
Abstract
Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation.
Collapse
Affiliation(s)
- D E Janes
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
598
|
Liu W, Zhao C. Molecular Phylogenetic Analysis of Zebra Finch Basic Helix-Loop-Helix Transcription Factors. Biochem Genet 2010; 49:226-41. [DOI: 10.1007/s10528-010-9401-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Accepted: 10/04/2010] [Indexed: 11/25/2022]
|
599
|
Subramanian S, Huynen L, Millar CD, Lambert DM. Next generation sequencing and analysis of a conserved transcriptome of New Zealand's kiwi. BMC Evol Biol 2010; 10:387. [PMID: 21156082 PMCID: PMC3009673 DOI: 10.1186/1471-2148-10-387] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 12/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kiwi is a highly distinctive, flightless and endangered ratite bird endemic to New Zealand. To understand the patterns of molecular evolution of the nuclear protein-coding genes in brown kiwi (Apteryx australis mantelli) and to determine the timescale of avian history we sequenced a transcriptome obtained from a kiwi embryo using next generation sequencing methods. We then assembled the conserved protein-coding regions using the chicken proteome as a scaffold. RESULTS Using 1,543 conserved protein coding genes we estimated the neutral evolutionary divergence between the kiwi and chicken to be ~45%, which is approximately equal to the divergence computed for the human-mouse pair using the same set of genes. A large fraction of genes was found to be under high selective constraint, as most of the expressed genes appeared to be involved in developmental gene regulation. Our study suggests a significant relationship between gene expression levels and protein evolution. Using sequences from over 700 nuclear genes we estimated the divergence between the two basal avian groups, Palaeognathae and Neognathae to be 132 million years, which is consistent with previous studies using mitochondrial genes. CONCLUSIONS The results of this investigation revealed patterns of mutation and purifying selection in conserved protein coding regions in birds. Furthermore this study suggests a relatively cost-effective way of obtaining a glimpse into the fundamental molecular evolutionary attributes of a genome, particularly when no closely related genomic sequence is available.
Collapse
Affiliation(s)
- Sankar Subramanian
- Griffith School of Environment and the School of Biomolecular and Physical Sciences, Griffith University, 170 Kessels Road, Nathan, Qld 4111 Australia
- Allan Wilson Centre for Molecular Ecology and Evolution, Institute of Molecular BioSciences, Massey University, Auckland, New Zealand
| | - Leon Huynen
- Griffith School of Environment and the School of Biomolecular and Physical Sciences, Griffith University, 170 Kessels Road, Nathan, Qld 4111 Australia
- Allan Wilson Centre for Molecular Ecology and Evolution, Institute of Molecular BioSciences, Massey University, Auckland, New Zealand
| | - Craig D Millar
- Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - David M Lambert
- Griffith School of Environment and the School of Biomolecular and Physical Sciences, Griffith University, 170 Kessels Road, Nathan, Qld 4111 Australia
- Allan Wilson Centre for Molecular Ecology and Evolution, Institute of Molecular BioSciences, Massey University, Auckland, New Zealand
| |
Collapse
|
600
|
Kelley DB, Bass AH. Neurobiology of vocal communication: mechanisms for sensorimotor integration and vocal patterning. Curr Opin Neurobiol 2010; 20:748-53. [PMID: 20829032 PMCID: PMC3025055 DOI: 10.1016/j.conb.2010.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 08/10/2010] [Indexed: 01/22/2023]
Abstract
This review will focus on recent developments in the sensorimotor integration of vocal communication. Two broad themes are emphasized: the evolution of vocal production and perception, and the role of social context. Advances include: a proposal for the emergence of vocal patterning during vertebrate evolution, the role of sensory mechanisms such as categorical perception in decoding communication signals, contributions of sensorimotor integration phenomena including mirror neurons and vocal learning, and mechanisms of hormone-dependent plasticity in both auditory and vocal systems. Transcriptional networks activated in humans but not in chimps by the FoxP2 gene suggest molecular mechanisms underlying vocal gestures and the emergence of human language.
Collapse
Affiliation(s)
- Darcy B Kelley
- Department of Biological Sciences, MC2432, Columbia University, New York, NY 10025, USA.
| | | |
Collapse
|