551
|
Abstract
Neutrophil extracellular traps (NETs) are critical for the clearance of large pathogens and are also implicated in thrombosis, autoimmunity, and cancer. In this issue of Developmental Cell, Amulic et al. (2017) show that the terminally differentiated, non-cycling neutrophils repurpose cell-cycle proteins and pathways to form NETs.
Collapse
Affiliation(s)
- Jean Albrengues
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Robert W Wysocki
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Medical Scientist Training Program, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Laura Maiorino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
552
|
Löffler J, Ebel F. Size matters - how the immune system deals with fungal hyphae. Microbes Infect 2017; 20:521-525. [PMID: 29248637 DOI: 10.1016/j.micinf.2017.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
Fungal hyphae constitute a special challenge for the immune system, since they are too large to be phagocytosed. This review summarizes our current knowledge on those immune cells that are able to attack and eliminate hyphae and we discuss the different means that are employed by these cells in order to kill hyphae.
Collapse
Affiliation(s)
- Jürgen Löffler
- Medical Hospital II, WÜ4i, University Hospital Wuerzburg, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
553
|
Lionakis MS, Levitz SM. Host Control of Fungal Infections: Lessons from Basic Studies and Human Cohorts. Annu Rev Immunol 2017; 36:157-191. [PMID: 29237128 DOI: 10.1146/annurev-immunol-042617-053318] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the last few decades, the AIDS pandemic and the significant advances in the medical management of individuals with neoplastic and inflammatory conditions have resulted in a dramatic increase in the population of immunosuppressed patients with opportunistic, life-threatening fungal infections. The parallel development of clinically relevant mouse models of fungal disease and the discovery and characterization of several inborn errors of immune-related genes that underlie inherited human susceptibility to opportunistic mycoses have significantly expanded our understanding of the innate and adaptive immune mechanisms that protect against ubiquitous fungal exposures. This review synthesizes immunological knowledge derived from basic mouse studies and from human cohorts and provides an overview of mammalian antifungal host defenses that show promise for informing therapeutic and vaccination strategies for vulnerable patients.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655;
| |
Collapse
|
554
|
Naglik JR, König A, Hube B, Gaffen SL. Candida albicans-epithelial interactions and induction of mucosal innate immunity. Curr Opin Microbiol 2017; 40:104-112. [PMID: 29156234 PMCID: PMC5733685 DOI: 10.1016/j.mib.2017.10.030] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/24/2022]
Abstract
Candida albicans is a human fungal pathogen that causes millions of mucosal and life-threatening infections annually. C. albicans initially interacts with epithelial cells, resulting in fungal recognition and the formation of hyphae. Hypha formation is critical for host cell damage and immune activation, which are both driven by the secretion of Candidalysin, a recently discovered peptide toxin. Epithelial activation leads to the production of inflammatory mediators that recruit innate immune cells including neutrophils, macrophages and innate Type 17 cells, which together work with epithelial cells to clear the fungal infection. This review will focus on the recent discoveries that have advanced our understanding of C. albicans-epithelial interactions and the induction of mucosal innate immunity.
Collapse
Affiliation(s)
- Julian R Naglik
- Mucosal and Salivary Biology Division, King's College London Dental Institute, London SE1 1UL, United Kingdom.
| | - Annika König
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany; Friedrich Schiller University, Jena, Germany; Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
555
|
Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, Moghimi SM. Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol 2017; 34:33-51. [DOI: 10.1016/j.smim.2017.08.013] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
|
556
|
Peng HH, Liu YJ, Ojcius DM, Lee CM, Chen RH, Huang PR, Martel J, Young JD. Mineral particles stimulate innate immunity through neutrophil extracellular traps containing HMGB1. Sci Rep 2017; 7:16628. [PMID: 29192209 PMCID: PMC5709501 DOI: 10.1038/s41598-017-16778-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
Calcium phosphate-based mineralo-organic particles form spontaneously in the body and may represent precursors of ectopic calcification. We have shown earlier that these particles induce activation of caspase-1 and secretion of IL-1β by macrophages. However, whether the particles may produce other effects on immune cells is unclear. Here, we show that these particles induce the release of neutrophil extracellular traps (NETs) in a size-dependent manner by human neutrophils. Intracellular production of reactive oxygen species is required for particle-induced NET release by neutrophils. NETs contain the high-mobility group protein B1 (HMGB1), a DNA-binding protein capable of inducing secretion of TNF-α by a monocyte/macrophage cell line and primary macrophages. HMGB1 functions as a ligand of Toll-like receptors 2 and 4 on macrophages, leading to activation of the MyD88 pathway and TNF-α production. Furthermore, HMGB1 is critical to activate the particle-induced pro-inflammatory cascade in the peritoneum of mice. These results indicate that mineral particles promote pro-inflammatory responses by engaging neutrophils and macrophages via signaling of danger signals through NETs.
Collapse
Affiliation(s)
- Hsin-Hsin Peng
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan.,Laboratory Animal Center, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan
| | - Yu-Ju Liu
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan.,Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, 94103, USA
| | - Chiou-Mei Lee
- Laboratory Animal Center, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan
| | - Ren-Hao Chen
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan
| | - Pei-Rong Huang
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Department of Molecular and Cellular Biology, College of Medicine, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan
| | - Jan Martel
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan
| | - John D Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan. .,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan. .,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan. .,Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, NY, 10021, USA. .,Biochemical Engineering Research Center, Ming Chi University of Technology, Taishan, New Taipei City 24301, Taiwan.
| |
Collapse
|
557
|
Pellefigues C, Tang SC, Schmidt A, White RF, Lamiable O, Connor LM, Ruedl C, Dobrucki J, Le Gros G, Ronchese F. Toll-Like Receptor 4, but Not Neutrophil Extracellular Traps, Promote IFN Type I Expression to Enhance Th2 Responses to Nippostrongylus brasiliensis. Front Immunol 2017; 8:1575. [PMID: 29201030 PMCID: PMC5696323 DOI: 10.3389/fimmu.2017.01575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
The induction of Th2 responses is thought to be multifactorial, and emerge from specific pathways distinct from those associated with antagonistic antibacterial or antiviral Th1 responses. Here, we show that the recognition of non-viable Nippostrongylus brasiliensis (Nb) in the skin induces a strong recruitment of monocytes and neutrophils and the release of neutrophil extracellular traps (NETs). Nb also activates toll-like receptor 4 (TLR4) signaling with expression of Ifnb transcripts in the skin and the development of an IFN type I signature on helminth antigen-bearing dendritic cells in draining lymph nodes. Co-injection of Nb together with about 10,000 Gram-negative bacteria amplified this TLR4-dependent but NET-independent IFN type I response and enhanced the development of Th2 responses. Thus, a limited activation of antibacterial signaling pathways is able to boost antihelminthic responses, suggesting a role for bacterial sensing in the optimal induction of Th2 immunity.
Collapse
Affiliation(s)
| | | | - Alfonso Schmidt
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Ruby F White
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Lisa M Connor
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jurek Dobrucki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biophysics, Jagiellonian University, Kraków, Poland
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
558
|
Amulic B, Knackstedt SL, Abu Abed U, Deigendesch N, Harbort CJ, Caffrey BE, Brinkmann V, Heppner FL, Hinds PW, Zychlinsky A. Cell-Cycle Proteins Control Production of Neutrophil Extracellular Traps. Dev Cell 2017; 43:449-462.e5. [DOI: 10.1016/j.devcel.2017.10.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 07/12/2017] [Accepted: 10/09/2017] [Indexed: 01/09/2023]
|
559
|
Innate Immunity to Mucosal Candida Infections. J Fungi (Basel) 2017; 3:jof3040060. [PMID: 29371576 PMCID: PMC5753162 DOI: 10.3390/jof3040060] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 02/05/2023] Open
Abstract
Mucosal epithelial tissues are exposed to high numbers of microbes, including commensal fungi, and are able to distinguish between those that are avirulent and those that cause disease. Epithelial cells have evolved multiple mechanisms to defend against colonization and invasion by Candida species. The interplay between mucosal epithelial tissues and immune cells is key for control and clearance of fungal infections. Our understanding of the mucosal innate host defense system has expanded recently with new studies bringing to light the importance of epithelial cell responses, innate T cells, neutrophils, and other phagocytes during Candida infections. Epithelial tissues release cytokines, host defense peptides, and alarmins during Candida invasion that act in concert to limit fungal proliferation and recruit immune effector cells. The innate T cell/IL-17 axis and recruitment of neutrophils are of central importance in controlling mucosal fungal infections. Here, we review current knowledge of the innate immunity at sites of mucosal Candida infection, with a focus on infections caused by C. albicans.
Collapse
|
560
|
Johnson CJ, Kernien JF, Hoyer AR, Nett JE. Mechanisms involved in the triggering of neutrophil extracellular traps (NETs) by Candida glabrata during planktonic and biofilm growth. Sci Rep 2017; 7:13065. [PMID: 29026191 PMCID: PMC5638821 DOI: 10.1038/s41598-017-13588-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Candida spp. adhere to medical devices, such as catheters, forming drug-tolerant biofilms that resist killing by the immune system. Little is known about how C. glabrata, an emerging pathogen, resists attack by phagocytes. Here we show that upon encounter with planktonic (non-biofilm) C. glabrata, human neutrophils initially phagocytose the yeast and subsequently release neutrophil extracellular traps (NETs), complexes of DNA, histones, and proteins capable of inhibiting fungal growth and dissemination. When exposed to C. glabrata biofilms, neutrophils also release NETs, but significantly fewer than in response to planktonic cells. Impaired killing of biofilm parallels the decrease in NET production. Compared to biofilm, neutrophils generate higher levels of reactive oxygen species (ROS) when presented with planktonic organisms, and pharmacologic inhibition of NADPH-oxidase partially impairs NET production. In contrast, inhibition of phagocytosis nearly completely blocks NET release to both biofilm and planktonic organisms. Imaging of the host response to C. glabrata in a rat vascular model of infection supports a role for NET release in vivo. Taken together, these findings show that C. glabrata triggers NET release. The diminished NET response to C. glabrata biofilms likely contributes to the resilience of these structured communities to host defenses.
Collapse
Affiliation(s)
- Chad J Johnson
- Department of Medicine, University of Wisconsin, Madison, WI, United States of America
| | - John F Kernien
- Department of Medicine, University of Wisconsin, Madison, WI, United States of America
| | - Amanda R Hoyer
- Department of Medicine, University of Wisconsin, Madison, WI, United States of America
| | - Jeniel E Nett
- Department of Medicine, University of Wisconsin, Madison, WI, United States of America. .,Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States of America.
| |
Collapse
|
561
|
Abstract
Neutrophils are innate immune phagocytes that have a central role in immune defence. Our understanding of the role of neutrophils in pathogen clearance, immune regulation and disease pathology has advanced dramatically in recent years. Web-like chromatin structures known as neutrophil extracellular traps (NETs) have been at the forefront of this renewed interest in neutrophil biology. The identification of molecules that modulate the release of NETs has helped to refine our view of the role of NETs in immune protection, inflammatory and autoimmune diseases and cancer. Here, I discuss the key findings and concepts that have thus far shaped the field of NET biology.
Collapse
|
562
|
Zawrotniak M, Bochenska O, Karkowska-Kuleta J, Seweryn-Ozog K, Aoki W, Ueda M, Kozik A, Rapala-Kozik M. Aspartic Proteases and Major Cell Wall Components in Candida albicans Trigger the Release of Neutrophil Extracellular Traps. Front Cell Infect Microbiol 2017; 7:414. [PMID: 28983472 PMCID: PMC5613151 DOI: 10.3389/fcimb.2017.00414] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
Neutrophils use different mechanisms to cope with pathogens that invade the host organism. The most intriguing of these responses is a release of neutrophil extracellular traps (NETs) composed of decondensed chromatin and granular proteins with antimicrobial activity. An important potential target of NETs is Candida albicans-an opportunistic fungal pathogen that employs morphological and phenotype switches and biofilm formation during contact with neutrophils, accompanied by changes in epitope exposition that mask the pathogen from host recognition. These processes differ depending on infection conditions and are thus influenced by the surrounding environment. In the current study, we compared the NET release by neutrophils upon contact with purified main candidal cell surface components. We show here for the first time that in addition to the main cell wall-building polysaccharides (mannans and β-glucans), secreted aspartic proteases (Saps) trigger NETs with variable intensities. The most efficient NET-releasing response is with Sap4 and Sap6, which are known to be secreted by fungal hyphae. This involves mixed, ROS-dependent and ROS-independent signaling pathways, mainly through interactions with the CD11b receptor. In comparison, upon contact with the cell wall-bound Sap9 and Sap10, neutrophils responded via a ROS-dependent mechanism using CD16 and CD18 receptors for protease recognition. In addition to the Saps tested, the actuation of selected mediating kinases (Src, Syk, PI3K, and ERK) was also investigated. β-Glucans were found to trigger a ROS-dependent process of NET production with engagement of Dectin-1 as well as CD11b and CD18 receptors. Mannans were observed to be recognized by TLRs, CD14, and Dectin-1 receptors and triggered NET release mainly via a ROS-independent pathway. Our results thus strongly suggest that neutrophils activate NET production in response to different candidal components that are presented locally at low concentrations at the initial stages of infection. However, NET release seemed to be blocked by increasing numbers of fungal cells.
Collapse
Affiliation(s)
- Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Karolina Seweryn-Ozog
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto UniversityKyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto UniversityKyoto, Japan
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
563
|
Abstract
Aspergillus fumigatus is an environmental filamentous fungus that can cause life-threatening disease in immunocompromised individuals. The interactions between A. fumigatus and the host environment are dynamic and complex. The host immune system needs to recognize the distinct morphological forms of A. fumigatus to control fungal growth and prevent tissue invasion, whereas the fungus requires nutrients and needs to adapt to the hostile environment by escaping immune recognition and counteracting host responses. Understanding these highly dynamic interactions is necessary to fully understand the pathogenesis of aspergillosis and to facilitate the design of new therapeutics to overcome the morbidity and mortality caused by A. fumigatus. In this Review, we describe how A. fumigatus adapts to environmental change, the mechanisms of host defence, and our current knowledge of the interplay between the host immune response and the fungus.
Collapse
|
564
|
Nicolás-Ávila JÁ, Adrover JM, Hidalgo A. Neutrophils in Homeostasis, Immunity, and Cancer. Immunity 2017; 46:15-28. [PMID: 28099862 DOI: 10.1016/j.immuni.2016.12.012] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/12/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022]
Abstract
Neutrophils were among the first leukocytes described and visualized by early immunologists. Prominent effector functions during infection and sterile inflammation classically placed them low in the immune tree as rapid, mindless aggressors with poor regulatory functions. This view is currently under reassessment as we uncover new aspects of their life cycle and identify transcriptional and phenotypic diversity that endows them with regulatory properties that extend beyond their lifetime in the circulation. These properties are revealing unanticipated roles for neutrophils in supporting homeostasis, as well as complex disease states such as cancer. We focus this review on these emerging functions in order to define the true roles of neutrophils in homeostasis, immunity, and disease.
Collapse
Affiliation(s)
- José Ángel Nicolás-Ávila
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 20829, Spain
| | - José M Adrover
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 20829, Spain
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 20829, Spain; Institute for Cardiovascular Prevention, Ludwig Maximilians University, Munich 80539, Germany.
| |
Collapse
|
565
|
Abstract
Candida albicans biofilms are difficult to eradicate due to their resistance to host defenses and antifungal drugs. Although neutrophils are the primary responder to C. albicans during invasive candidiasis, biofilms resist killing by neutrophils. Prior investigation, with the commonly used laboratory strain SC5314, linked this phenotype to the impaired release of neutrophil extracellular traps (NETs), which are structures of DNA, histones, and antimicrobial proteins involved in extracellular microbial killing. Considering the diversity of C. albicans biofilms, we examined the neutrophil response to a subset of clinical isolates forming biofilms with varying depths and architectures. Using fluorescent staining of DNA and scanning electron microscopy, we found that inhibition of NET release was conserved across the clinical isolates. However, the dampening of the production of reactive oxygen species (ROS) by neutrophils was strain-dependent, suggesting an uncoupling of ROS and NET inhibition. Our findings show that biofilms formed by clinical C. albicans isolates uniformly impair the release of NETs. Further investigation of this pathway may reveal novel approaches to augment immunity to C. albicans biofilm infections.
Collapse
|
566
|
Abstract
Lectins recognize a diverse array of carbohydrate structures and perform numerous essential biological functions. Here we focus on only two families of lectins, the Siglecs and C-type lectins. Triggering of intracellular signaling cascades following ligand recognition by these receptors can have profound effects on the induction and modulation of immunity. In this chapter, we provide a brief overview of each family and then focus on selected examples that highlight how these lectins can influence myeloid cell functioning in health and disease. Receptors that are discussed include Sn (Siglec-1), CD33 (Siglec-3), and Siglec-5, -7, -8, -9, -10, -11, -14, -15, -E, -F, and -G as well as Dectin-1, MICL, Dectin-2, Mincle/MCL, and the macrophage mannose receptor.
Collapse
|
567
|
Control of Mucosal Candidiasis in the Zebrafish Swim Bladder Depends on Neutrophils That Block Filament Invasion and Drive Extracellular-Trap Production. Infect Immun 2017; 85:IAI.00276-17. [PMID: 28607100 DOI: 10.1128/iai.00276-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is a ubiquitous mucosal commensal that is normally prevented from causing acute or chronic invasive disease. Neutrophils contribute to protection in oral infection but exacerbate vulvovaginal candidiasis. To dissect the role of neutrophils during mucosal candidiasis, we took advantage of a new, transparent zebrafish swim bladder infection model. Intravital microscopic tracking of individual animals revealed that the blocking of neutrophil recruitment leads to rapid mortality in this model through faster disease progression. Conversely, artificial recruitment of neutrophils during early infection reduces disease pressure. Noninvasive longitudinal tracking showed that mortality is a consequence of C. albicans breaching the epithelial barrier and invading surrounding tissues. Accordingly, we found that a hyperfilamentous C. albicans strain breaches the epithelial barrier more frequently and causes mortality in immunocompetent zebrafish. A lack of neutrophils at the infection site is associated with less fungus-associated extracellular DNA and less damage to fungal filaments, suggesting that neutrophil extracellular traps help to protect the epithelial barrier from C. albicans breach. We propose a homeostatic model where C. albicans disease pressure is balanced by neutrophil-mediated damage of fungi, maintaining this organism as a commensal while minimizing the risk of damage to host tissue. The unequaled ability to dissect infection dynamics at a high spatiotemporal resolution makes this zebrafish model a unique tool for understanding mucosal host-pathogen interactions.
Collapse
|
568
|
An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 2017; 23:279-287. [PMID: 28267716 DOI: 10.1038/nm.4294] [Citation(s) in RCA: 794] [Impact Index Per Article: 113.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/25/2017] [Indexed: 12/12/2022]
Abstract
The production of neutrophil extracellular traps (NETs) is a process that enables neutrophils to help catch and kill bacteria. However, increasing evidence suggests that this process might also occur in noninfectious, sterile inflammation. In this Review, we describe the role of NETosis in autoimmunity, coagulation, acute injuries and cancer, and discuss NETs as potential therapeutic targets. Furthermore, we consider whether extracellular DNA is always detrimental in sterile inflammation and whether the source is always NETs.
Collapse
|
569
|
Orsi RO, Santos VGD, Pezzato LE, Carvalho PLPFDE, Teixeira CP, Freitas JMA, Padovani CR, Sartori MMP, Barros MM. Activity of Brazilian propolis against Aeromonas hydrophila and its effect on Nile tilapia growth, hematological and non-specific immune response under bacterial infection. AN ACAD BRAS CIENC 2017; 89:1785-1799. [PMID: 28767889 DOI: 10.1590/0001-3765201720160630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/21/2017] [Indexed: 01/18/2023] Open
Abstract
The effect of the ethanolic extract of propolis (EEP) on Aeromonas hydrophila was analyzed by determination of minimum inhibitory concentration (MIC). Then, the effects of crude propolis powder (CPP) on growth, hemato-immune parameters of the Nile tilapia, as well as its effects on resistance to A. hydrophila challenge were investigated. The CPP (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0%) was added to the diet of 280 Nile tilapia (50.0 ± 5.7 g fish-1). Hemato-immune parameters were analyzed before and after the bacterial challenge. Red blood cell, hematocrit, hemoglobin, mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), and hydrogen peroxide (H2O2) and nitric oxide (NO) were evaluated. The MIC of the EEP was 13% (v/v) with a bactericidal effect after 24 hours. Growth performance was significantly lower for those fish fed diets containing 2.5 and 3% of CPP compared to the control diet. Differences in CPP levels affected fish hemoglobin, neutrophils number and NO following the bacterial challenge. For others parameters no significant differences were observed. Our results show that although propolis has bactericidal properties in vitro, the addition of crude propolis powder to Nile tilapia extruded diets does not necessarily lead to an improvement of fish health.
Collapse
Affiliation(s)
- Ricardo O Orsi
- Departamento de Produção Animal, Faculdade de Medicina Veterinária e Zootecnia/FMVZ, Grupo NECTAR, Rua Prof. Doutor Walter Mauricio Correa, s/n, Caixa Postal 560, Universidade Estadual Paulista/UNESP, Campus de Botucatu, 18618-681 Botucatu, SP, Brazil
| | - Vivian G Dos Santos
- Departamento de Melhoramento e Nutrição Animal, Faculdade de Medicina Veterinária e Zootecnia/FMVZ, Grupo AQUANUTRI, Rua Prof. Doutor Walter Mauricio Correa, s/n, Caixa Postal 560, Universidade Estadual Paulista/UNESP, Campus de Botucatu, 18618-681 Botucatu, SP, Brazil
| | - Luiz E Pezzato
- Departamento de Melhoramento e Nutrição Animal, Faculdade de Medicina Veterinária e Zootecnia/FMVZ, Grupo AQUANUTRI, Rua Prof. Doutor Walter Mauricio Correa, s/n, Caixa Postal 560, Universidade Estadual Paulista/UNESP, Campus de Botucatu, 18618-681 Botucatu, SP, Brazil
| | - Pedro L P F DE Carvalho
- Departamento de Melhoramento e Nutrição Animal, Faculdade de Medicina Veterinária e Zootecnia/FMVZ, Grupo AQUANUTRI, Rua Prof. Doutor Walter Mauricio Correa, s/n, Caixa Postal 560, Universidade Estadual Paulista/UNESP, Campus de Botucatu, 18618-681 Botucatu, SP, Brazil
| | - Caroline P Teixeira
- Departamento de Melhoramento e Nutrição Animal, Faculdade de Medicina Veterinária e Zootecnia/FMVZ, Grupo AQUANUTRI, Rua Prof. Doutor Walter Mauricio Correa, s/n, Caixa Postal 560, Universidade Estadual Paulista/UNESP, Campus de Botucatu, 18618-681 Botucatu, SP, Brazil
| | - Jakeline M A Freitas
- Departamento de Melhoramento e Nutrição Animal, Faculdade de Medicina Veterinária e Zootecnia/FMVZ, Grupo AQUANUTRI, Rua Prof. Doutor Walter Mauricio Correa, s/n, Caixa Postal 560, Universidade Estadual Paulista/UNESP, Campus de Botucatu, 18618-681 Botucatu, SP, Brazil
| | - Carlos R Padovani
- Departamento de Bioestatística, Instituto de Biociências de Botucatu, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Junior, Universidade Estadual Paulista/UNESP, Campus de Botucatu, 18618-689 Botucatu, SP, Brazil
| | - Maria M P Sartori
- Departamento de Agricultura, Faculdade de Ciências Agronômicas/FCA, Rua Prof. Doutor Walter Mauricio Correa, s/n, Caixa Postal 560, Universidade Estadual Paulista/UNESP, Campus de Botucatu, 18618-681 Botucatu, SP, Brazil
| | - Margarida M Barros
- Departamento de Melhoramento e Nutrição Animal, Faculdade de Medicina Veterinária e Zootecnia/FMVZ, Grupo AQUANUTRI, Rua Prof. Doutor Walter Mauricio Correa, s/n, Caixa Postal 560, Universidade Estadual Paulista/UNESP, Campus de Botucatu, 18618-681 Botucatu, SP, Brazil
| |
Collapse
|
570
|
Chen SM, Shen H, Zhang T, Huang X, Liu XQ, Guo SY, Zhao JJ, Wang CF, Yan L, Xu GT, Jiang YY, An MM. Dectin-1 plays an important role in host defense against systemic Candida glabrata infection. Virulence 2017; 8:1643-1656. [PMID: 28658592 DOI: 10.1080/21505594.2017.1346756] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Candida glabrata is the second most common pathogen of severe candidiasis in immunocompromised hosts, following C. albicans. Although C. glabrata and C. albicans belong to the same genus, they are phylogenetically distinct. C-type lectin receptors (CLRs), acting as pattern-recognition receptors (PRRs), play critical roles in host defense against C. albicans infections. However, our understanding of the specific roles of CLRs in host defense against C. glabrata is limited. Here, we explored the potential roles of the C-type lectins Dectin-1 and Dectin-2 in host defense against C. glabrata. We found that both Dectin-1-deficient mice (Dectin-1-/-) and Dectin-2-deficient mice (Dectin-2-/-) are more susceptible to C. glabrata infection. Dectin-1confers host higher sensitivity for sensing C. glabrata infections, while the effect of Dectin-2 in the host defense against C. glabrata is infection dose dependent. Dectin-1 is required for host myeloid cells recognition, killing of C. glabrata, and development of subsequent Th1 and Th17 cell-mediated adaptive immune response. Significantly impaired inflammatory responses such as inflammatory cells recruitment and cytokines release that were induced by C. glabrata were manifested in Dectin-1-deficient mice. Together, our study demonstrates that Dectin-1 plays an important role in host defense against systemic Candida glabrata infections, indicating a previous unknown control mechanism for this particular type of infection in host. Our study, therefore, provides new insights into the host defense against C. glabrata.
Collapse
Affiliation(s)
- Si Min Chen
- a Shanghai Tenth People's Hospital, and Department of Pharmacology , Tongji University School of Medicine , Shanghai , P.R. China
| | - Hui Shen
- b Department of Laboratory Medicine , Shanghai East Hospital, Tongji University School of Medicine , Shanghai , P.R. China
| | - Teng Zhang
- a Shanghai Tenth People's Hospital, and Department of Pharmacology , Tongji University School of Medicine , Shanghai , P.R. China
| | - Xin Huang
- c Department of Dermatology , Shanghai Tongji Hospital, Tongji University School of Medicine , Shanghai , P.R. China
| | - Xiao Qi Liu
- a Shanghai Tenth People's Hospital, and Department of Pharmacology , Tongji University School of Medicine , Shanghai , P.R. China
| | - Shi Yu Guo
- a Shanghai Tenth People's Hospital, and Department of Pharmacology , Tongji University School of Medicine , Shanghai , P.R. China
| | - Jing Jun Zhao
- c Department of Dermatology , Shanghai Tongji Hospital, Tongji University School of Medicine , Shanghai , P.R. China
| | - Chun Fang Wang
- d R&D Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| | - Lan Yan
- d R&D Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| | - Guo Tong Xu
- a Shanghai Tenth People's Hospital, and Department of Pharmacology , Tongji University School of Medicine , Shanghai , P.R. China
| | - Yuan Ying Jiang
- a Shanghai Tenth People's Hospital, and Department of Pharmacology , Tongji University School of Medicine , Shanghai , P.R. China.,d R&D Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| | - Mao Mao An
- a Shanghai Tenth People's Hospital, and Department of Pharmacology , Tongji University School of Medicine , Shanghai , P.R. China
| |
Collapse
|
571
|
Differential Signalling and Kinetics of Neutrophil Extracellular Trap Release Revealed by Quantitative Live Imaging. Sci Rep 2017; 7:6529. [PMID: 28747804 PMCID: PMC5529471 DOI: 10.1038/s41598-017-06901-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023] Open
Abstract
A wide variety of microbial and inflammatory factors induce DNA release from neutrophils as neutrophil extracellular traps (NETs). Consensus on the kinetics and mechanism of NET release has been hindered by the lack of distinctive methods to specifically quantify NET release in time. Here, we validate and refine a semi-automatic live imaging approach for quantification of NET release. Importantly, our approach is able to correct for neutrophil input and distinguishes NET release from neutrophil death by other means, aspects that are lacking in many NET quantification methods. Real time visualization shows that opsonized S. aureus rapidly induces cell death by toxins, while actual NET formation occurs after 90 minutes, similar to the kinetics of NET release by immune complexes and PMA. Inhibition of SYK, PI3K and mTORC2 attenuates NET release upon challenge with physiological stimuli but not with PMA. In contrast, neutrophils from chronic granulomatous disease patients show decreased NET release only in response to PMA. With this refined method, we conclude that NET release in primary human neutrophils is dependent on the SYK-PI3K-mTORC2 pathway and that PMA stimulation should be regarded as mechanistically distinct from NET formation induced by natural triggers.
Collapse
|
572
|
Ueki S, Tokunaga T, Fujieda S, Honda K, Hirokawa M, Spencer LA, Weller PF. Eosinophil ETosis and DNA Traps: a New Look at Eosinophilic Inflammation. Curr Allergy Asthma Rep 2017; 16:54. [PMID: 27393701 DOI: 10.1007/s11882-016-0634-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The traditional paradigm of eosinophils as end-stage damaging cells has mainly relied on their release of cytotoxic proteins. Cytokine-induced cell survival and secretion of granular contents from tissue-dwelling eosinophil are thought to be important mechanisms for eosinophilic inflammatory disorders, although the occurrence of cytolysis and its products (i.e., free extracellular granules) has been observed in affected lesions. Recent evidence indicates that activated eosinophils can exhibit a non-apoptotic cell death pathway, namely extracellular trap cell death (ETosis) that mediates the eosinophil cytolytic degranulation. Here, we discuss the current concept of eosinophil ETosis which provides a new look at eosinophilic inflammation. Lessons from eosinophilic chronic rhinosinusitis revealed that ETosis-derived DNA traps, composed of stable web-like chromatin, contribute to the properties of highly viscous eosinophilic mucin and impairments in its clearance. Intact granules entrapped in DNA traps are causing long-lasting inflammation but also might have immunoregulatory roles. Eosinophils possess a way to have post-postmortem impacts on innate immunity, local immune response, sterile inflammation, and tissue damage.
Collapse
Affiliation(s)
- Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan.
| | - Takahiro Tokunaga
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Fukui, Fukui, Japan
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Fukui, Fukui, Japan
| | - Kohei Honda
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita Graduate School of Medicine, Akita, Japan
| | - Makoto Hirokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Lisa A Spencer
- Divisions of Allergy and Inflammation and Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter F Weller
- Divisions of Allergy and Inflammation and Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
573
|
Storisteanu DML, Pocock JM, Cowburn AS, Juss JK, Nadesalingam A, Nizet V, Chilvers ER. Evasion of Neutrophil Extracellular Traps by Respiratory Pathogens. Am J Respir Cell Mol Biol 2017; 56:423-431. [PMID: 27854516 DOI: 10.1165/rcmb.2016-0193ps] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The release of neutrophil extracellular traps (NETs) is a major immune mechanism intended to capture pathogens. These histone- and protease-coated DNA structures are released by neutrophils in response to a variety of stimuli, including respiratory pathogens, and have been identified in the airways of patients with respiratory infection, cystic fibrosis, acute lung injury, primary graft dysfunction, and chronic obstructive pulmonary disease. NET production has been demonstrated in the lungs of mice infected with Staphylococcus aureus, Klebsiella pneumoniae, and Aspergillus fumigatus. Since the discovery of NETs over a decade ago, evidence that "NET evasion" might act as an immune protection strategy among respiratory pathogens, including group A Streptococcus, Bordetella pertussis, and Haemophilus influenzae, has been growing, with the majority of these studies being published in the past 2 years. Evasion strategies fall into three main categories: inhibition of NET release by down-regulating host inflammatory responses; degradation of NETs using pathogen-derived DNases; and resistance to the microbicidal components of NETs, which involves a variety of mechanisms, including encapsulation. Hence, the evasion of NETs appears to be a widespread strategy to allow pathogen proliferation and dissemination, and is currently a topic of intense research interest. This article outlines the evidence supporting the three main strategies of NET evasion-inhibition, degradation, and resistance-with particular reference to common respiratory pathogens.
Collapse
Affiliation(s)
| | | | - Andrew S Cowburn
- Departments of 1 Medicine and.,2 Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jatinder K Juss
- Departments of 1 Medicine and.,3 Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | | | - Victor Nizet
- 4 Department of Pediatrics, University of California-La Jolla, San Diego, California
| | | |
Collapse
|
574
|
Iba T, Sasaki T, Ohshima K, Sato K, Nagaoka I, Thachil J. The Comparison of the Protective Effects of α- and β-Antithrombin against Vascular Endothelial Cell Damage Induced by Histone in Vitro. TH OPEN 2017; 1:e3-e10. [PMID: 31249909 PMCID: PMC6524836 DOI: 10.1055/s-0037-1603926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Antithrombin is a promising option for the treatment of sepsis, and vascular endothelium is an important target for this fatal condition. Here, we aimed to evaluate the protective effects of different glycoforms of antithrombin on histone-induced endothelial cell damage and explore the responsible mechanisms in an experimental model in vitro. Endothelial cells were treated in vitro using histone H4 to induce cellular damage. Various doses of either α- or β-antithrombin were used as treatment interventions, and both cell viability and the levels of lactate dehydrogenase (LDH) in the medium were assessed. Endothelial cell damage was also assessed using microscopic examination and immunofluorescent staining with anti-syndecan-4 and anti-antithrombin antibodies. As a result, both glycoforms of antithrombin significantly improved cell viability when administered at a physiological dose (150 μg/mL). Cellular injury as evaluated using the LDH level was significantly suppressed by β-antithrombin at a supranormal dose (600 μg/mL). Microscopic observation suggested that β-antithrombin suppressed the endothelial cell damage more efficiently than α-antithrombin. β-Antithrombin suppressed the intensity of syndecan-4 staining which became evident after treatment with histone H4, more prominently than α-antithrombin. The distribution of antithrombin was identical to that of syndecan-4. In conclusion, both α- and β-antithrombin can protect vascular endothelial cells from histone H4-induced damage, although the effect was stronger for β-antithrombin. The responsible mechanisms might involve the binding of antithrombin to the glycocalyx on the endothelial surface. These results provide a theoretical basis for the application of antithrombin to the prevention and treatment of sepsis-related endothelial damage.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsuya Sasaki
- Nihon Pharmaceutical Co. Ltd., Research Laboratory, Narita, Japan
| | | | - Koichi Sato
- Department of Surgery, Juntendo Shizuoka Hospital, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jecko Thachil
- Department of Haematology, Manchester Royal Infirmary, Manchester, United Kingdom
| |
Collapse
|
575
|
Kalsum S, Braian C, Koeken VACM, Raffetseder J, Lindroth M, van Crevel R, Lerm M. The Cording Phenotype of Mycobacterium tuberculosis Induces the Formation of Extracellular Traps in Human Macrophages. Front Cell Infect Microbiol 2017; 7:278. [PMID: 28695112 PMCID: PMC5483443 DOI: 10.3389/fcimb.2017.00278] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
The causative agent of tuberculosis, Mycobacterium tuberculosis, shares several characteristics with organisms that produce biofilms during infections. One of these is the ability to form tight bundles also known as cords. However, little is known of the physiological relevance of the cording phenotype. In this study, we investigated whether cord-forming M. tuberculosis induce the formation of macrophage extracellular traps (METs) in human monocyte-derived macrophages. Macrophages have previously been shown to produce extracellular traps in response to various stimuli. We optimized bacterial culturing conditions that favored the formation of the cord-forming phenotype as verified by scanning electron microscopy. Microscopy analysis of METs formation during experimental infection of macrophages with M. tuberculosis revealed that cord-forming M. tuberculosis induced significantly more METs compared to the non-cording phenotype. Deletion of early secreted antigenic target-6 which is an important virulence factor of M. tuberculosis, abrogated the ability of the bacteria to induce METs. The release of extracellular DNA from host cells during infection may represent a defense mechanism against pathogens that are difficult to internalize, including cord-forming M. tuberculosis.
Collapse
Affiliation(s)
- Sadaf Kalsum
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping UniversityLinköping, Sweden
| | - Clara Braian
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping UniversityLinköping, Sweden
| | - Valerie A C M Koeken
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping UniversityLinköping, Sweden.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical CenterNijmegen, Netherlands
| | - Johanna Raffetseder
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping UniversityLinköping, Sweden
| | - Margaretha Lindroth
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping UniversityLinköping, Sweden
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical CenterNijmegen, Netherlands
| | - Maria Lerm
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping UniversityLinköping, Sweden
| |
Collapse
|
576
|
Mukherjee SP, Bottini M, Fadeel B. Graphene and the Immune System: A Romance of Many Dimensions. Front Immunol 2017; 8:673. [PMID: 28659915 PMCID: PMC5468375 DOI: 10.3389/fimmu.2017.00673] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/24/2017] [Indexed: 11/18/2022] Open
Abstract
Graphene-based materials (GBMs) are emerging as attractive materials for biomedical applications. Understanding how these materials are perceived by and interact with the immune system is of fundamental importance. Phagocytosis is a major mechanism deployed by the immune system to remove pathogens, particles, and cellular debris. Here, we discuss recent studies on the interactions of GBMs with different phagocytic cells, including macrophages, neutrophils, and dendritic cells. The importance of assessing GBMs for endotoxin contamination is discussed as this may skew results. We also explore the role of the bio-corona for interactions of GBMs with immune cells. Finally, we highlight recent evidence for direct plasma membrane interactions of GBMs.
Collapse
Affiliation(s)
- Sourav P Mukherjee
- Nanosafety and Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Bengt Fadeel
- Nanosafety and Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
577
|
Lood C, Arve S, Ledbetter J, Elkon KB. TLR7/8 activation in neutrophils impairs immune complex phagocytosis through shedding of FcgRIIA. J Exp Med 2017; 214:2103-2119. [PMID: 28606989 PMCID: PMC5502427 DOI: 10.1084/jem.20161512] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/21/2016] [Accepted: 04/19/2017] [Indexed: 12/24/2022] Open
Abstract
Lood et al. find that neutrophil TLR7/8 activation shifts neutrophils from phagocytosis of immune complexes to NETosis. Reduced phagocytosis of immune complexes is associated with partial proteolytic cleavage of FcgRIIA. Cleaved FcgRIIA is found in SLE neutrophils ex vivo. Neutrophils play a crucial role in host defense. However, neutrophil activation is also linked to autoimmune diseases such as systemic lupus erythematosus (SLE), where nucleic acid–containing immune complexes (IC) drive inflammation. The role of Toll-like receptor (TLR) signaling in processing of SLE ICs and downstream inflammatory neutrophil effector functions is not known. We observed that TLR7/8 activation leads to a furin-dependent proteolytic cleavage of the N-terminal part of FcgRIIA, shifting neutrophils away from phagocytosis of ICs toward the programmed form of necrosis, NETosis. TLR7/8-activated neutrophils promoted cleavage of FcgRIIA on plasmacytoid dendritic cells and monocytes, resulting in impaired overall clearance of ICs and increased complement C5a generation. Importantly, ex vivo derived activated neutrophils from SLE patients demonstrated a similar cleavage of FcgRIIA that was correlated with markers of disease activity, as well as complement activation. Therapeutic approaches aimed at blocking TLR7/8 activation would be predicted to increase phagocytosis of circulating ICs, while disarming their inflammatory potential.
Collapse
Affiliation(s)
- Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA 98109
| | - Sabine Arve
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA 98109
| | - Jeffrey Ledbetter
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA 98109
| | - Keith B Elkon
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA 98109
| |
Collapse
|
578
|
Sharma A, Simonson TJ, Jondle CN, Mishra BB, Sharma J. Mincle-Mediated Neutrophil Extracellular Trap Formation by Regulation of Autophagy. J Infect Dis 2017; 215:1040-1048. [PMID: 28186242 DOI: 10.1093/infdis/jix072] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/30/2017] [Indexed: 12/30/2022] Open
Abstract
Background Neutrophil extracellular traps (NETs) constitute antimicrobial function of neutrophils but have also been linked to perpetuation of inflammation. Despite this evident physiological relevance, mechanistic understanding of NET formation is poor. In this study, we examined the mechanism by which Mincle, a C-type lectin receptor, regulates NET formation. Methods NET formation, reactive oxygen species, autophagy activation and intracellular signaling pathways were analyzed in Mincle-sufficient and -deficient neutrophils stimulated in vitro with various stimuli and in vivo during Klebsiella infection. Results We found that Mincle mediates NET formation in response to several activation stimuli in vitro and in vivo during pneumoseptic infection with Klebsiella pneumoniae, indicating its regulatory role in NET formation. Mechanistically, we show that attenuated NET formation in Mincle-/- neutrophils correlates with an impaired autophagy activation in vitro and in vivo, whereas reactive oxygen species (ROS) formation in these neutrophils remained intact. The requirement of autophagy in Mincle-mediated NET formation was further supported by exogenous treatment with autophagy inducer tamoxifen, which rescued the NET formation defect in Mincle-/- neutrophils. Conclusions Our findings identify a previously unrecognized role of Mincle as a regulator of autophagy, which mediates NET formation without affecting ROS generation. Our study addresses a major challenge in the field by positing this pathway to be targeted for modulation of NETs while preserving ROS production, an important innate immune defense.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks
| | - Tanner J Simonson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks
| | - Christopher N Jondle
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks
| | - Bibhuti B Mishra
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks
| | - Jyotika Sharma
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks
| |
Collapse
|
579
|
Wang Y, Wang W, Wang N, Tall AR, Tabas I. Mitochondrial Oxidative Stress Promotes Atherosclerosis and Neutrophil Extracellular Traps in Aged Mice. Arterioscler Thromb Vasc Biol 2017; 37:e99-e107. [PMID: 28596373 DOI: 10.1161/atvbaha.117.309580] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
Abstract
RATIONALE Mitochondrial oxidative stress (mitoOS) has been shown to be increased in various cell types in human atherosclerosis and with aging. However, the role of cell type-specific mitoOS in atherosclerosis in the setting of advanced age and the molecular mechanisms remains to be determined in vivo. OBJECTIVE The aim of this study was to examine the role of myeloid cell mitoOS in atherosclerosis in aged mice. APPROACH AND RESULTS Lethally irradiated low-density lipoprotein receptor-deficient mice (Ldlr-/-) were reconstituted with bone marrow from either wild-type or mitochondrial catalase (mCAT) mice. mCAT transgenic mice contain ectopically expressed human catalase gene in mitochondria, which reduces mitoOS. Starting at the age of 36 weeks, mice were fed the Western-type diet for 16 weeks. We found that mitoOS in lesional myeloid cells was suppressed in aged mCAT→Ldlr-/- chimeric mice compared with aged controls, and this led to a significant reduction in aortic root atherosclerotic lesion area despite higher plasma cholesterol levels. Neutrophil extracellular traps (NETs), a proinflammatory extracellular structure that contributes to atherosclerosis progression, were significantly increased in the lesions of aged mice compared with lesions of younger mice. Aged mCAT→Ldlr-/- mice had less lesional neutrophils and decreased NETs compared with age-matched wild-type→Ldlr-/- mice, whereas young mCAT→ and wild-type→Ldlr-/- mice had comparable numbers of neutrophils and similar low levels of lesional NETs. Using cultured neutrophils, we showed that suppression of mitoOS reduced 7-ketocholesterol-induced NET release from neutrophils of aged but not younger mice. CONCLUSIONS MitoOS in lesional myeloid cells enhanced atherosclerosis development in aged mice, and this enhancement was associated with increased lesional NETs. Thus, mitoOS-induced NET formation is a potentially new therapeutic target to prevent atherosclerosis progression during aging.
Collapse
Affiliation(s)
- Ying Wang
- From the Division of Cardiology (Y.W.), Division of Molecular Medicine (W.W, A.R.T., I.T.), Division of Molecular Medicine, Department of Medicine (N.W.), Columbia University Medical Center, New York, NY.
| | - Wei Wang
- From the Division of Cardiology (Y.W.), Division of Molecular Medicine (W.W, A.R.T., I.T.), Division of Molecular Medicine, Department of Medicine (N.W.), Columbia University Medical Center, New York, NY
| | - Nan Wang
- From the Division of Cardiology (Y.W.), Division of Molecular Medicine (W.W, A.R.T., I.T.), Division of Molecular Medicine, Department of Medicine (N.W.), Columbia University Medical Center, New York, NY
| | - Alan R Tall
- From the Division of Cardiology (Y.W.), Division of Molecular Medicine (W.W, A.R.T., I.T.), Division of Molecular Medicine, Department of Medicine (N.W.), Columbia University Medical Center, New York, NY
| | - Ira Tabas
- From the Division of Cardiology (Y.W.), Division of Molecular Medicine (W.W, A.R.T., I.T.), Division of Molecular Medicine, Department of Medicine (N.W.), Columbia University Medical Center, New York, NY.
| |
Collapse
|
580
|
Interaction of Candida Species with the Skin. Microorganisms 2017; 5:microorganisms5020032. [PMID: 28590443 PMCID: PMC5488103 DOI: 10.3390/microorganisms5020032] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
The human skin is commonly colonized by diverse fungal species. Some Candida species, especially C. albicans, do not only reside on the skin surface as commensals, but also cause infections by growing into the colonized tissue. However, defense mechanisms at the skin barrier level are very efficient, involving residential non-immune and immune cells as well as immune cells specifically recruited to the site of infection. Therefore, the skin is an effective barrier against fungal infection. While most studies about commensal and pathogenic interaction of Candida species with host epithelia focus on the interaction with mucosal surfaces such as the vaginal and gastrointestinal epithelia, less is known about the mechanisms underlying Candida interaction with the skin. In this review, we focus on the ecology and molecular pathogenesis of Candida species on the skin and give an overview of defense mechanisms against C. albicans in this context. We also discuss new research avenues in dermal infection, including the involvement of neurons, fibroblasts, and commensal bacteria in both mouse and human model systems.
Collapse
|
581
|
Abstract
Pathogenic fungi cause a wide range of syndromes in immune-competent and immune-compromised individuals, with life-threatening disease primarily seen in humans with HIV/AIDS and in patients receiving immunosuppressive therapies for cancer, autoimmunity, and end-organ failure. The discovery that specific primary immune deficiencies manifest with fungal infections and the development of animal models of mucosal and invasive mycoses have facilitated insight into fungus-specific recognition, signaling, effector pathways, and adaptive immune responses. Progress in deciphering the molecular and cellular basis of immunity against fungi is guiding preclinical studies into vaccine and immune reconstitution strategies for vulnerable patient groups. Furthermore, recent work has begun to address the role of endogenous fungal communities in human health and disease. In this review, we summarize a contemporary understanding of protective immunity against fungi.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Iliyan D Iliev
- Jill Roberts Institute for Research in IBD, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
582
|
Toussaint M, Jackson DJ, Swieboda D, Guedán A, Tsourouktsoglou TD, Ching YM, Radermecker C, Makrinioti H, Aniscenko J, Bartlett NW, Edwards MR, Solari R, Farnir F, Papayannopoulos V, Bureau F, Marichal T, Johnston SL. Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat Med 2017; 23:681-691. [PMID: 28459437 PMCID: PMC5821220 DOI: 10.1038/nm.4332] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
Abstract
Respiratory viral infections represent the most common cause of allergic asthma exacerbations. Amplification of the type-2 immune response is strongly implicated in asthma exacerbation, but how virus infection boosts type-2 responses is poorly understood. We report a significant correlation between the release of host double-stranded DNA (dsDNA) following rhinovirus infection and the exacerbation of type-2 allergic inflammation in humans. In a mouse model of allergic airway hypersensitivity, we show that rhinovirus infection triggers dsDNA release associated with the formation of neutrophil extracellular traps (NETs), known as NETosis. We further demonstrate that inhibiting NETosis by blocking neutrophil elastase or by degrading NETs with DNase protects mice from type-2 immunopathology. Furthermore, the injection of mouse genomic DNA alone is sufficient to recapitulate many features of rhinovirus-induced type-2 immune responses and asthma pathology. Thus, NETosis and its associated extracellular dsDNA contribute to the pathogenesis and may represent potential therapeutic targets of rhinovirus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Marie Toussaint
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - David J Jackson
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
- Imperial College Healthcare NHS Trust, London, UK
- Guy's and St Thomas' NHS Trust, London, UK
| | - Dawid Swieboda
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Anabel Guedán
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | | - Yee Man Ching
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Coraline Radermecker
- Laboratory of Cellular and Molecular Immunology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), University of Liège, Liège, Belgium
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Heidi Makrinioti
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Julia Aniscenko
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Nathan W Bartlett
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Michael R Edwards
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Roberto Solari
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Frédéric Farnir
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Fundamental and Applied Research for Animals &Health, University of Liège, Liège, Belgium
| | | | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), University of Liège, Liège, Belgium
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), University of Liège, Liège, Belgium
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
583
|
Robinson RT, Huppler AR. The Goldilocks model of immune symbiosis with Mycobacteria and Candida colonizers. Cytokine 2017; 97:49-65. [PMID: 28570933 DOI: 10.1016/j.cyto.2017.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
Abstract
Mycobacteria and Candida species include significant human pathogens that can cause localized or disseminated infections. Although these organisms may appear to have little in common, several shared pathways of immune recognition and response are important for both control and infection-related pathology. In this article, we compare and contrast the innate and adaptive components of the immune system that pertain to these infections in humans and animal models. We also explore a relatively new concept in the mycobacterial field: biological commensalism. Similar to the well-established model of Candida infection, Mycobacteria species colonize their human hosts in equilibrium with the immune response. Perturbations in the immune response permit the progression to pathologic disease at the expense of the host. Understanding the immune factors required to maintain commensalism may aid with the development of diagnostic and treatment strategies for both categories of pathogens.
Collapse
Affiliation(s)
- Richard T Robinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Anna R Huppler
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Children's Hospital and Health System, Children's Research Institute, Milwaukee, WI, USA.
| |
Collapse
|
584
|
Sahakian E, Chen J, Powers JJ, Chen X, Maharaj K, Deng SL, Achille AN, Lienlaf M, Wang HW, Cheng F, Sodré AL, Distler A, Xing L, Perez-Villarroel P, Wei S, Villagra A, Seto E, Sotomayor EM, Horna P, Pinilla-Ibarz J. Essential role for histone deacetylase 11 (HDAC11) in neutrophil biology. J Leukoc Biol 2017; 102:475-486. [PMID: 28550123 DOI: 10.1189/jlb.1a0415-176rrr] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/18/2022] Open
Abstract
Epigenetic changes in chromatin structure have been recently associated with the deregulated expression of critical genes in normal and malignant processes. HDAC11, the newest member of the HDAC family of enzymes, functions as a negative regulator of IL-10 expression in APCs, as previously described by our lab. However, at the present time, its role in other hematopoietic cells, specifically in neutrophils, has not been fully explored. In this report, for the first time, we present a novel physiologic role for HDAC11 as a multifaceted regulator of neutrophils. Thus far, we have been able to demonstrate a lineage-restricted overexpression of HDAC11 in neutrophils and committed neutrophil precursors (promyelocytes). Additionally, we show that HDAC11 appears to associate with the transcription machinery, possibly regulating the expression of inflammatory and migratory genes in neutrophils. Given the prevalence of neutrophils in the peripheral circulation and their central role in the first line of defense, our results highlight a unique and novel role for HDAC11. With the consideration of the emergence of new, selective HDAC11 inhibitors, we believe that our findings will have significant implications in a wide range of diseases spanning malignancies, autoimmunity, and inflammation.
Collapse
Affiliation(s)
- Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; .,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jie Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - John J Powers
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Kamira Maharaj
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Susan L Deng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Alex N Achille
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Maritza Lienlaf
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hong Wei Wang
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Fengdong Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Andressa L Sodré
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Allison Distler
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Limin Xing
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | | | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Alejandro Villagra
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ed Seto
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Eduardo M Sotomayor
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Pedro Horna
- Department of Hematopathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; and
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; .,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
585
|
Angiotensin-converting enzyme enhances the oxidative response and bactericidal activity of neutrophils. Blood 2017; 130:328-339. [PMID: 28515091 DOI: 10.1182/blood-2016-11-752006] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/15/2017] [Indexed: 01/04/2023] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitors are widely used to reduce blood pressure. Here, we examined if an ACE is important for the antibacterial effectiveness of neutrophils. ACE knockout mice or mice treated with an ACE inhibitor were more susceptible to bacterial infection by methicillin-resistant Staphylococcus aureus (MRSA). In contrast, mice overexpressing ACE in neutrophils (NeuACE mice) have increased resistance to MRSA and better in vitro killing of MRSA, Pseudomonas aeruginosa, and Klebsiella pneumoniae ACE overexpression increased neutrophil production of reactive oxygen species (ROS) following MRSA challenge, an effect independent of the angiotensin II AT1 receptor. Specifically, as compared with wild-type (WT) mice, there was a marked increase of superoxide generation (>twofold, P < .0005) in NeuACE neutrophils following infection, whereas ACE knockout neutrophils decreased superoxide production. Analysis of membrane p47-phox and p67-phox indicates that ACE increases reduced NAD phosphate oxidase activity but does not increase expression of these subunits. Increased ROS generation mediates the enhanced bacterial resistance of NeuACE mice because the enhanced resistance is lost with DPI (an inhibitor of ROS production by flavoenzymes) inhibition. NeuACE granulocytes also have increased neutrophil extracellular trap formation and interleukin-1β release in response to MRSA. In a mouse model of chemotherapy-induced neutrophil depletion, transfusion of ACE-overexpressing neutrophils was superior to WT neutrophils in treating MRSA infection. These data indicate a previously unknown function of ACE in neutrophil antibacterial defenses and suggest caution in the treatment of certain individuals with ACE inhibitors. ACE overexpression in neutrophils may be useful in boosting the immune response to antibiotic-resistant bacterial infection.
Collapse
|
586
|
Dicker AJ, Crichton ML, Pumphrey EG, Cassidy AJ, Suarez-Cuartin G, Sibila O, Furrie E, Fong CJ, Ibrahim W, Brady G, Einarsson GG, Elborn JS, Schembri S, Marshall SE, Palmer CNA, Chalmers JD. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2017; 141:117-127. [PMID: 28506850 PMCID: PMC5751731 DOI: 10.1016/j.jaci.2017.04.022] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 11/25/2022]
Abstract
Background Neutrophil extracellular traps (NETs) have been observed in the airway in patients with chronic obstructive pulmonary disease (COPD), but their clinical and pathophysiologic implications have not been defined. Objective We sought to determine whether NETs are associated with disease severity in patients with COPD and how they are associated with microbiota composition and airway neutrophil function. Methods NET protein complexes (DNA-elastase and histone-elastase complexes), cell-free DNA, and neutrophil biomarkers were quantified in soluble sputum and serum from patients with COPD during periods of disease stability and during exacerbations and compared with clinical measures of disease severity and the sputum microbiome. Peripheral blood and airway neutrophil function were evaluated by means of flow cytometry ex vivo and experimentally after stimulation of NET formation. Results Sputum NET complexes were associated with the severity of COPD evaluated by using the composite Global Initiative for Obstructive Lung Disease scale (P < .0001). This relationship was due to modest correlations between NET complexes and FEV1, symptoms evaluated by using the COPD assessment test, and higher levels of NET complexes in patients with frequent exacerbations (P = .002). Microbiota composition was heterogeneous, but there was a correlation between NET complexes and both microbiota diversity (P = .009) and dominance of Haemophilus species operational taxonomic units (P = .01). Ex vivo airway neutrophil phagocytosis of bacteria was reduced in patients with increased sputum NET complexes. Consistent results were observed regardless of the method of quantifying sputum NETs. Failure of phagocytosis could be induced experimentally by incubating healthy control neutrophils with soluble sputum from patients with COPD. Conclusion NET formation is increased in patients with severe COPD and associated with more frequent exacerbations and a loss of microbiota diversity.
Collapse
Affiliation(s)
- Alison J Dicker
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Megan L Crichton
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Eleanor G Pumphrey
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Andrew J Cassidy
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Guillermo Suarez-Cuartin
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Institut d'Invesitgacio Biomedica (IIB) Sant Pau, Barcelona, Spain
| | - Oriol Sibila
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Institut d'Invesitgacio Biomedica (IIB) Sant Pau, Barcelona, Spain
| | - Elizabeth Furrie
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Christopher J Fong
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Wasyla Ibrahim
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Gill Brady
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Gisli G Einarsson
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - J Stuart Elborn
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stuart Schembri
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Sara E Marshall
- Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, and the Wellcome Trust, London, United Kingdom
| | - Colin N A Palmer
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom.
| |
Collapse
|
587
|
Hoppenbrouwers T, Autar ASA, Sultan AR, Abraham TE, van Cappellen WA, Houtsmuller AB, van Wamel WJB, van Beusekom HMM, van Neck JW, de Maat MPM. In vitro induction of NETosis: Comprehensive live imaging comparison and systematic review. PLoS One 2017; 12:e0176472. [PMID: 28486563 PMCID: PMC5423591 DOI: 10.1371/journal.pone.0176472] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/11/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple inducers of in vitro Neutrophil Extracellular Trap (NET) formation (NETosis) have been described. Since there is much variation in study design and results, our aim was to create a systematic review of NETosis inducers and perform a standardized in vitro study of NETosis inducers important in (cardiac) wound healing. METHODS In vitro NETosis was studied by incubating neutrophils with PMA, living and dead bacteria (S. aureus and E. coli), LPS, (activated) platelets (supernatant), glucose and calcium ionophore Ionomycin using 3-hour periods of time-lapse confocal imaging. RESULTS PMA is a consistent and potent inducer of NETosis. Ionomycin also consistently resulted in extrusion of DNA, albeit with a process that differs from the NETosis process induced by PMA. In our standardized experiments, living bacteria were also potent inducers of NETosis, but dead bacteria, LPS, (activated) platelets (supernatant) and glucose did not induce NETosis. CONCLUSION Our systematic review confirms that there is much variation in study design and results of NETosis induction. Our experimental results confirm that under standardized conditions, PMA, living bacteria and Ionomycin all strongly induce NETosis, but real-time confocal imaging reveal different courses of events.
Collapse
Affiliation(s)
- Tamara Hoppenbrouwers
- Department of Plastic and Reconstructive Surgery, Erasmus MC, Rotterdam, The Netherlands
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Anouchska S. A. Autar
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Andi R. Sultan
- Department of Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Tsion E. Abraham
- Optical Imaging Center, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Willem J. B. van Wamel
- Department of Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | | | - Johan W. van Neck
- Department of Plastic and Reconstructive Surgery, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
588
|
Stephan A, Batinica M, Steiger J, Hartmann P, Zaucke F, Bloch W, Fabri M. LL37:DNA complexes provide antimicrobial activity against intracellular bacteria in human macrophages. Immunology 2017; 148:420-32. [PMID: 27177697 DOI: 10.1111/imm.12620] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 12/30/2022] Open
Abstract
As part of the innate host response neutrophils release neutrophil extracellular traps (NETs), protein:DNA complexes that contain a number of antimicrobial peptides (AMPs), such as cathelicidin. Human cathelicidin in its active form, LL37, has potent antimicrobial activity against bacteria. However, whether LL37 derived from NETs contributes to antimicrobial activity against intracellular pathogens remains unclear. Here, we report that NETs induced by mycobacteria contain cathelicidin. Human macrophages internalized NET-bound cathelicidin, which is transported to lysosomal compartments. Furthermore, using a model of in vitro-generated LL37:DNA complexes we found that LL37 derived from such complexes attacks mycobacteria in macrophage phagolysosomes resulting in antimicrobial activity. Taken together, our results suggest a mechanism by which LL37 in complex with DNA contributes to host defence against intracellular bacteria in human macrophages.
Collapse
Affiliation(s)
| | - Marina Batinica
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Julia Steiger
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Pia Hartmann
- 1st Department of Internal Medicine, University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.,Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), University of Cologne, Cologne, Germany.,Department of Hospital Hygiene and Infection Control, University of Cologne, Cologne, Germany
| | - Frank Zaucke
- Centre for Biochemistry, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Mario Fabri
- Department of Dermatology, University of Cologne, Cologne, Germany.,Centre for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
589
|
Döring Y, Soehnlein O, Weber C. Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circ Res 2017; 120:736-743. [PMID: 28209798 DOI: 10.1161/circresaha.116.309692] [Citation(s) in RCA: 337] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 12/17/2022]
Abstract
Neutrophil extracellular traps expelled from suicidal neutrophils comprise a complex structure of nuclear chromatin and proteins of nuclear, granular, and cytosolic origin. These net-like structures have also been detected in atherosclerotic lesions and arterial thrombi in humans and mice. Functionally, neutrophil extracellular traps have been shown to induce activation of endothelial cells, antigen-presenting cells, and platelets, resulting in a proinflammatory immune response. Overall, this suggests that they are not only present in plaques and thrombi but also they may play a causative role in triggering atherosclerotic plaque formation and arterial thrombosis. This review will focus on current findings of the involvement of neutrophil extracellular traps in atherogenesis and atherothrombosis.
Collapse
Affiliation(s)
- Yvonne Döring
- From the Institute for Cardiovascular Prevention (IPEK), Department of Medicine, LMU Munich, Germany (Y.D., O.S., C.W.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands (O.S.); and Department of Biochemistry, Cardiovascular Research Institute (CARIM), Maastricht University, The Netherlands (C.W.).
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention (IPEK), Department of Medicine, LMU Munich, Germany (Y.D., O.S., C.W.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands (O.S.); and Department of Biochemistry, Cardiovascular Research Institute (CARIM), Maastricht University, The Netherlands (C.W.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), Department of Medicine, LMU Munich, Germany (Y.D., O.S., C.W.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands (O.S.); and Department of Biochemistry, Cardiovascular Research Institute (CARIM), Maastricht University, The Netherlands (C.W.).
| |
Collapse
|
590
|
Karadjian G, Fercoq F, Pionnier N, Vallarino-Lhermitte N, Lefoulon E, Nieguitsila A, Specht S, Carlin LM, Martin C. Migratory phase of Litomosoides sigmodontis filarial infective larvae is associated with pathology and transient increase of S100A9 expressing neutrophils in the lung. PLoS Negl Trop Dis 2017; 11:e0005596. [PMID: 28486498 PMCID: PMC5438187 DOI: 10.1371/journal.pntd.0005596] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/19/2017] [Accepted: 04/25/2017] [Indexed: 01/22/2023] Open
Abstract
Filarial infections are tropical diseases caused by nematodes of the Onchocercidae family such as Mansonella perstans. The infective larvae (L3) are transmitted into the skin of vertebrate hosts by blood-feeding vectors. Many filarial species settle in the serous cavities including M. perstans in humans and L. sigmodontis, a well-established model of filariasis in mice. L. sigmodontis L3 migrate to the pleural cavity where they moult into L4 around day 9 and into male and female adult worms around day 30. Little is known of the early phase of the parasite life cycle, after the L3 is inoculated in the dermis by the vector and enters the afferent lymphatic vessels and before the moulting processes in the pleural cavity. Here we reveal a pulmonary phase associated with lung damage characterized by haemorrhages and granulomas suggesting L3 reach the lung via pulmonary capillaries and damage the endothelium and parenchyma by crossing them to enter the pleural cavity. This study also provides evidence for a transient inflammation in the lung characterized by a very early recruitment of neutrophils associated with high expression levels of S100A8 and S100A9 proteins.
Collapse
Affiliation(s)
- Gregory Karadjian
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Frédéric Fercoq
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Nicolas Pionnier
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Nathaly Vallarino-Lhermitte
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Emilie Lefoulon
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Adélaïde Nieguitsila
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Sabine Specht
- Institute for Medical Microbiology, Immunology & Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Leo M. Carlin
- Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| |
Collapse
|
591
|
Bouklas T, Alonso-Crisóstomo L, Székely T, Diago-Navarro E, Orner EP, Smith K, Munshi MA, Del Poeta M, Balázsi G, Fries BC. Generational distribution of a Candida glabrata population: Resilient old cells prevail, while younger cells dominate in the vulnerable host. PLoS Pathog 2017; 13:e1006355. [PMID: 28489916 PMCID: PMC5440053 DOI: 10.1371/journal.ppat.1006355] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/22/2017] [Accepted: 04/15/2017] [Indexed: 12/15/2022] Open
Abstract
Similar to other yeasts, the human pathogen Candida glabrata ages when it undergoes asymmetric, finite cell divisions, which determines its replicative lifespan. We sought to investigate if and how aging changes resilience of C. glabrata populations in the host environment. Our data demonstrate that old C. glabrata are more resistant to hydrogen peroxide and neutrophil killing, whereas young cells adhere better to epithelial cell layers. Consequently, virulence of old compared to younger C. glabrata cells is enhanced in the Galleria mellonella infection model. Electron microscopy images of old C. glabrata cells indicate a marked increase in cell wall thickness. Comparison of transcriptomes of old and young C. glabrata cells reveals differential regulation of ergosterol and Hog pathway associated genes as well as adhesion proteins, and suggests that aging is accompanied by remodeling of the fungal cell wall. Biochemical analysis supports this conclusion as older cells exhibit a qualitatively different lipid composition, leading to the observed increased emergence of fluconazole resistance when grown in the presence of fluconazole selection pressure. Older C. glabrata cells accumulate during murine and human infection, which is statistically unlikely without very strong selection. Therefore, we tested the hypothesis that neutrophils constitute the predominant selection pressure in vivo. When we altered experimentally the selection pressure by antibody-mediated removal of neutrophils, we observed a significantly younger pathogen population in mice. Mathematical modeling confirmed that differential selection of older cells is sufficient to cause the observed demographic shift in the fungal population. Hence our data support the concept that pathogenesis is affected by the generational age distribution of the infecting C. glabrata population in a host. We conclude that replicative aging constitutes an emerging trait, which is selected by the host and may even play an unanticipated role in the transition from a commensal to a pathogen state.
Collapse
Affiliation(s)
- Tejas Bouklas
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biomedical Sciences, Long Island University-Post, Brookville, New York, United States of America
| | | | - Tamás Székely
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Elizabeth Diago-Navarro
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
| | - Erika P. Orner
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kalie Smith
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
| | - Mansa A. Munshi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Administration Medical Center, Northport, New York, United States of America
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Bettina C. Fries
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
592
|
Kobayashi SD, Malachowa N, DeLeo FR. Influence of Microbes on Neutrophil Life and Death. Front Cell Infect Microbiol 2017; 7:159. [PMID: 28507953 PMCID: PMC5410578 DOI: 10.3389/fcimb.2017.00159] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/12/2017] [Indexed: 01/10/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in humans and they are among the first white cells recruited to infected tissues. These leukocytes are essential for the innate immune response to bacteria and fungi. Inasmuch as neutrophils produce or contain potent microbicides that can be toxic to the host, neutrophil turnover and homeostasis is a highly regulated process that prevents unintended host tissue damage. Indeed, constitutive neutrophil apoptosis and subsequent removal of these cells by mononuclear phagocytes is a primary means by which neutrophil homeostasis is maintained in healthy individuals. Processes that alter normal neutrophil turnover and removal of effete cells can lead to host tissue damage and disease. The interaction of neutrophils with microbes and molecules produced by microbes often alters neutrophil turnover. The ability of microbes to alter the fate of neutrophils is highly varied, can be microbe-specific, and ranges from prolonging the neutrophil lifespan to causing rapid neutrophil lysis after phagocytosis. Here we provide a brief overview of these processes and their associated impact on innate host defense.
Collapse
Affiliation(s)
- Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamilton, MT, USA
| | - Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamilton, MT, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamilton, MT, USA
| |
Collapse
|
593
|
Warnatsch A, Tsourouktsoglou TD, Branzk N, Wang Q, Reincke S, Herbst S, Gutierrez M, Papayannopoulos V. Reactive Oxygen Species Localization Programs Inflammation to Clear Microbes of Different Size. Immunity 2017; 46:421-432. [PMID: 28314592 PMCID: PMC5965455 DOI: 10.1016/j.immuni.2017.02.013] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/22/2016] [Accepted: 01/13/2017] [Indexed: 12/12/2022]
Abstract
How the number of immune cells recruited to sites of infection is determined and adjusted to differences in the cellular stoichiometry between host and pathogen is unknown. Here, we have uncovered a role for reactive oxygen species (ROS) as sensors of microbe size. By sensing the differential localization of ROS generated in response to microbes of different size, neutrophils tuned their interleukin (IL)-1β expression via the selective oxidation of NF-κB, in order to implement distinct inflammatory programs. Small microbes triggered ROS intracellularly, suppressing IL-1β expression to limit neutrophil recruitment as each phagocyte eliminated numerous pathogens. In contrast, large microbes triggered ROS extracellularly, amplifying IL-1β expression to recruit numerous neutrophils forming cooperative clusters. Defects in ROS-mediated microbe size sensing resulted in large neutrophil infiltrates and clusters in response to small microbes that contribute to inflammatory disease. These findings highlight the impact of ROS localization on signal transduction.
Collapse
Affiliation(s)
- Annika Warnatsch
- Antimicrobial Defence Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | | | - Nora Branzk
- Antimicrobial Defence Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Qian Wang
- Antimicrobial Defence Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Susanna Reincke
- Antimicrobial Defence Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Susanne Herbst
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Maximiliano Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | | |
Collapse
|
594
|
Abstract
In this issue of Immunity, Warnatsch et al. (2017) describe how neutrophils measure their microbial opponents by differential shuttling of reactive oxygen species (ROS), a process that determines their recruitment and distribution and ultimately the strength of anti-microbial responses.
Collapse
Affiliation(s)
- Carlos Del Fresno
- Department of Myocardial Pathophysiology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid 28029, Spain.
| | - Andrés Hidalgo
- Department of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid 28029, Spain.
| |
Collapse
|
595
|
Ma F, Yi L, Yu N, Wang G, Ma Z, Lin H, Fan H. Streptococcus suis Serotype 2 Biofilms Inhibit the Formation of Neutrophil Extracellular Traps. Front Cell Infect Microbiol 2017; 7:86. [PMID: 28373968 PMCID: PMC5357632 DOI: 10.3389/fcimb.2017.00086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
Invasive infections caused by Streptococcus suis serotype 2 (SS2) has emerged as a clinical problem in recent years. Neutrophil extracellular traps (NETs) are an important mechanism for the trapping and killing of pathogens that are resistant to phagocytosis. Biofilm formation can protect bacteria from being killed by phagocytes. Until now, there have only been a few studies that focused on the interactions between bacterial biofilms and NETs. SS2 in both a biofilm state and a planktonic cell state were incubated with phagocytes and NETs, and bacterial survival was assessed. DNase I and cytochalasin B were used to degrade NET DNA or suppress phagocytosis, respectively. Extracellular DNA was stained with impermeable fluorescent dye to quantify NET formation. Biofilm formation increased up to 6-fold in the presence of neutrophils, and biofilms were identified in murine tissue. Both planktonic and biofilm cells induced neutrophils chemotaxis to the infection site, with neutrophils increasing by 85.1 and 73.8%, respectively. The bacteria in biofilms were not phagocytized. The bactericidal efficacy of NETs on the biofilms and planktonic cells were equal; however, the biofilm extracellular matrix can inhibit NET release. Although biofilms inhibit NETs release, NETs appear to be an important mechanism to eliminate SS2 biofilms. This knowledge advances the understanding of biofilms and may aid in the development of treatments for persistent infections with a biofilm component.
Collapse
Affiliation(s)
- Fang Ma
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Li Yi
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; College of Life Science, Luoyang Normal UniversityLuoyang, China
| | - Ningwei Yu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Guangyu Wang
- National Center of Meat Quality and Safety Control, Nanjing Agriculture University Nanjing, China
| | - Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Huixing Lin
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
596
|
Affiliation(s)
- Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India 560012
| |
Collapse
|
597
|
Vaginal Heparan Sulfate Linked to Neutrophil Dysfunction in the Acute Inflammatory Response Associated with Experimental Vulvovaginal Candidiasis. mBio 2017; 8:mBio.00211-17. [PMID: 28292981 PMCID: PMC5350465 DOI: 10.1128/mbio.00211-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite acute inflammation by polymorphonuclear neutrophils (PMNs) during vulvovaginal candidiasis (VVC), clearance of Candida fails to occur. The purpose of this study was to uncover the mechanism of vaginal PMN dysfunction. Designs included assessing PMN migration, proinflammatory mediators, and tissue damage (by analysis of the activity of lactate dehydrogenase [LDH]) in mice susceptible (C3H/HeN-C57BL/6) or resistant (CD-1) to chronic VVC (CVVC-S or CVVC-R) and testing morphology-specific Candida albicans strains under conditions of preinduced PMN migration (CVVC-S mice) or PMN depletion (CVVC-R mice). In vitro designs included evaluation of C. albicans killing by elicited vaginal or peritoneal PMNs in standard or vaginal conditioned medium (VCM). Results showed that despite significant migration of PMNs and high levels of vaginal beta interleukin-1 (IL-1β) and alarmin S100A8, CVVC-S mice failed to reduce vaginal fungal burden irrespective of morphology or whether PMNs were present pre- or postinoculation, and had high LDH levels. In contrast, CVVC-R mice had reduced fungal burden and low LDH levels following PMN recruitment and IL-1β/S100A8 production, but maintained colonization in the absence of PMNs. Elicited vaginal and peritoneal PMNs showed substantial killing activity in standard media or VCM from CVVC-R mice but not in VCM from CVVC-S mice. The inhibitory effect of VCM from CVVC-S mice was unaffected by endogenous or exogenous estrogen and was ablated following depletion/neutralization of Mac-1 ligands using Mac-1+/+ PMNs or recombinant Mac-1. Heparan sulfate (HS) was identified as the putative inhibitor as evidenced by the rescue of PMN killing following heparanase treatment of VCM, as well as by inhibition of killing by purified HS. These results suggest that vaginal HS is linked to PMN dysfunction in CVVC-S mice as a competitive ligand for Mac-1.IMPORTANCE Vaginal candidiasis, caused by Candida albicans, affects a significant number of women worldwide. Despite an acute inflammatory response by neutrophils during infection, the response fails to reduce the organism. Instead, the response is considered a key process underlying the symptoms of vaginitis. Therefore, it is important to determine the mechanism(s) associated with the lack of vaginal neutrophil antifungal activity. The established mouse model of Candida vaginitis was used to uncover the mechanism of neutrophil dysfunction. Results revealed that heparan sulfate present in the vagina of mice susceptible to chronic vaginitis served as a competitive ligand for the receptor (Mac-1) necessary for fungal recognition and neutrophil-mediated killing. This inhibitory function of heparan sulfate, confirmed through several approaches, provides the first evidence to explain the lack of antifungal immune reactivity during vaginal candidiasis. This finding paves the way for design of therapeutic strategies to reduce/eliminate symptomatic vaginal candidiasis and restore quality of life to those affected.
Collapse
|
598
|
Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis. Pathogens 2017; 6:pathogens6010010. [PMID: 28282951 PMCID: PMC5371898 DOI: 10.3390/pathogens6010010] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/03/2017] [Indexed: 12/23/2022] Open
Abstract
Cystic fibrosis (CF) affects 70,000 patients worldwide. Morbidity and mortality in CF is largely caused by lung complications due to the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Cystic fibrosis airway inflammation is mediated by robust infiltration of polymorphonuclear neutrophil granulocytes (PMNs, neutrophils). Neutrophils are not capable of clearing lung infections and contribute to tissue damage by releasing their dangerous cargo. Pseudomonas aeruginosa is an opportunistic pathogen causing infections in immunocompromised individuals. P. aeruginosa is a main respiratory pathogen in CF infecting most patients. Although PMNs are key to attack and clear P. aeruginosa in immunocompetent individuals, PMNs fail to do so in CF. Understanding why neutrophils cannot clear P. aeruginosa in CF is essential to design novel therapies. This review provides an overview of the antimicrobial mechanisms by which PMNs attack and eliminate P. aeruginosa. It also summarizes current advances in our understanding of why PMNs are incapable of clearing P. aeruginosa and how this bacterium adapts to and resists PMN-mediated killing in the airways of CF patients chronically infected with P. aeruginosa.
Collapse
|
599
|
Zelante T, Wong AYW, Mencarelli A, Foo S, Zolezzi F, Lee B, Poidinger M, Ricciardi-Castagnoli P, Fric J. Impaired calcineurin signaling in myeloid cells results in downregulation of pentraxin-3 and increased susceptibility to aspergillosis. Mucosal Immunol 2017; 10:470-480. [PMID: 27301880 DOI: 10.1038/mi.2016.52] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 05/08/2016] [Indexed: 02/04/2023]
Abstract
Treatment of post-transplant patients with immunosuppressive drugs targeting the calcineurin-nuclear factor of activated T cells (NFAT) pathway, including cyclosporine A or tacrolimus, is commonly associated with a higher incidence of opportunistic infections, such as Aspergillus fumigatus, which can lead to severe life-threatening conditions. A component of the A. fumigatus cell wall, β-glucan, is recognized by dendritic cells (DCs) via the Dectin-1 receptor, triggering downstream signaling that leads to calcineurin-NFAT binding, NFAT translocation, and transcription of NFAT-regulated genes. Here, we address the question of whether calcineurin signaling in CD11c-expressing cells, such as DCs, has a specific role in the innate control of A. fumigatus. Impairment of calcineurin in CD11c-expressing cells (CD11ccrecnb1loxP) significantly increased susceptibility to systemic A. fumigatus infection and to intranasal infection in irradiated mice undergoing bone marrow transplant. Global expression profiling of bone marrow-derived DCs identified calcineurin-regulated processes in the immune response to infection, including expression of pentraxin-3, an important antifungal defense protein. These results suggest that calcineurin inhibition directly impairs important immunoprotective functions of myeloid cells, as shown by the higher susceptibility of CD11ccrecnbloxP mice in models of systemic and invasive pulmonary aspergillosis, including after allogeneic bone marrow transplantation. These findings are relevant to the clinical management of transplant patients with severe Aspergillus infections.
Collapse
Affiliation(s)
- T Zelante
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - A Y W Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - A Mencarelli
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Emerging Infectious Diseases Programme, Duke-NUS, Singapore
| | - S Foo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - F Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - B Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - M Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| | - P Ricciardi-Castagnoli
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - J Fric
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Center for Translational Medicine, International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
600
|
Garth JM, Steele C. Innate Lung Defense during Invasive Aspergillosis: New Mechanisms. J Innate Immun 2017; 9:271-280. [PMID: 28231567 DOI: 10.1159/000455125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022] Open
Abstract
Invasive aspergillosis (IA) is one of the most difficult to treat and, consequently, one of the most lethal fungal infections known to man. Continued use of immunosuppressive agents during chemotherapy and organ transplantation often leads to the development of neutropenia, the primary risk factor for IA. However, IA is also becoming more appreciated in chronic diseases associated with corticosteroid therapy. The innate immune response to Aspergillus fumigatus, the primary agent in IA, plays a pivotal role in the recognition and elimination of organisms from the pulmonary system. This review highlights recent findings about innate host defense mechanisms, including novel aspects of innate cellular immunity and pathogen recognition, and the inflammatory mediators that control infection with A. fumigatus.
Collapse
Affiliation(s)
- Jaleesa M Garth
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|