551
|
Pfleger KDG, Eidne KA. Monitoring the formation of dynamic G-protein-coupled receptor-protein complexes in living cells. Biochem J 2005; 385:625-37. [PMID: 15504107 PMCID: PMC1134737 DOI: 10.1042/bj20041361] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
GPCRs (G-protein-coupled receptors) play an extremely important role in transducing extracellular signals across the cell membrane with high specificity and sensitivity. They are central to many of the body's endocrine and neurotransmitter pathways, and are consequently a major drug target. It is now clear that GPCRs interact with a range of proteins, including other GPCRs. Identifying and elucidating the function of such interactions will significantly enhance our understanding of cellular function, with the promise of new and improved pharmaceuticals. Biophysical techniques involving resonance energy transfer, namely FRET (fluorescence resonance energy transfer) and BRET (bioluminescence resonance energy transfer), now enable us to monitor the formation of dynamic GPCR-protein complexes in living cells, in real time. Their use has firmly established the concept of GPCR oligomerization, as well as demonstrating GPCR interactions with GPCR kinases, beta-arrestins, adenylate cyclase and a subunit of an inwardly rectifying K+ channel. The present review examines recent technological advances and experimental applications of FRET and BRET, discussing particularly how they have been adapted to extract an ever-increasing amount of information about the nature, specificity, stoichiometry, kinetics and agonist-dependency of GPCR-protein interactions.
Collapse
Affiliation(s)
- Kevin D G Pfleger
- Molecular Endocrinology Research Group/7TM Receptor Laboratory, Western Australian Institute for Medical Research, The University of Western Australia, Sir Charles Gairdner Hospital, Nedlands, Perth, WA 6009.
| | | |
Collapse
|
552
|
Neel NF, Schutyser E, Sai J, Fan GH, Richmond A. Chemokine receptor internalization and intracellular trafficking. Cytokine Growth Factor Rev 2005; 16:637-58. [PMID: 15998596 PMCID: PMC2668263 DOI: 10.1016/j.cytogfr.2005.05.008] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 05/03/2005] [Indexed: 01/25/2023]
Abstract
The internalization and intracellular trafficking of chemokine receptors have important implications for the cellular responses elicited by chemokine receptors. The major pathway by which chemokine receptors internalize is the clathrin-mediated pathway, but some receptors may utilize lipid rafts/caveolae-dependent internalization routes. This review discusses the current knowledge and controversies regarding these two different routes of endocytosis. The functional consequences of internalization and the regulation of chemokine receptor recycling will also be addressed. Modifications of chemokine receptors, such as palmitoylation, ubiquitination, glycosylation, and sulfation, may also impact trafficking, chemotaxis and signaling. Finally, this review will cover the internalization and trafficking of viral and decoy chemokine receptors.
Collapse
Affiliation(s)
- Nicole F Neel
- Department of Veterans Affairs Medical Center, Vanderbilt University School of Medicine, 432 PRB, 23rd Avenue South at Pierce, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
553
|
Proulx C, Simaan M, Escher E, Laporte S, Guillemette G, Leduc R. Involvement of a cytoplasmic-tail serine cluster in urotensin II receptor internalization. Biochem J 2005; 385:115-23. [PMID: 15458389 PMCID: PMC1134679 DOI: 10.1042/bj20040807] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most G-protein-coupled receptors that undergo agonist-dependent internalization require the presence of specific cytoplasmic-tail residues to initiate interactions with proteins of the endocytic machinery. Here we show that the UT receptor (urotensin II receptor) undergoes internalization, and that specific serine residues of the receptor's cytoplasmic tail participate in this process. We first observed a time-dependent increase in internalization of the UT receptor expressed in COS-7 cells following binding of the agonist urotensin II. This sequestration was significantly reduced in the presence of sucrose, demonstrating that the agonist-activated UT receptor is internalized in part by clathrin-coated pits. Moreover, the sequestered receptor was co-localized in endocytic vesicles with beta-arrestin1 and beta-arrestin2. To assess whether specific regions of the receptor's cytoplasmic tail were involved in internalization, five UT receptor mutants were constructed. In four constructs the receptor's cytoplasmic tail was truncated at various positions (UTDelta367, UTDelta363, UTDelta350 and UTDelta336), and in the other four adjacent serine residues at positions 364-367 were replaced by Ala (Mut4S). Each mutant, except UTDelta367, demonstrated a significantly reduced internalization rate, thereby revealing the importance of specific serine residues within the cytoplasmic tail of the UT receptor for its ability to be internalized efficiently.
Collapse
Affiliation(s)
- Christophe D. Proulx
- *Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - May Simaan
- †Hormones and Cancer Research Unit, McGill University Health Centre, 687 Pine Avenue West, Montreal, Canada H3A 1A1
| | - Emanuel Escher
- *Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Stéphane A. Laporte
- †Hormones and Cancer Research Unit, McGill University Health Centre, 687 Pine Avenue West, Montreal, Canada H3A 1A1
| | - Gaétan Guillemette
- *Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Richard Leduc
- *Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
- To whom correspondence should be addressed (email )
| |
Collapse
|
554
|
Johnson EC, Shafer OT, Trigg JS, Park J, Schooley DA, Dow JA, Taghert PH. A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. ACTA ACUST UNITED AC 2005; 208:1239-46. [PMID: 15781884 DOI: 10.1242/jeb.01529] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila orphan G protein-coupled receptor encoded by CG17415 is related to members of the calcitonin receptor-like receptor (CLR) family. In mammals, signaling from CLR receptors depend on accessory proteins, namely the receptor activity modifying proteins (RAMPs) and receptor component protein (RCP). We tested the possibility that this Drosophila CLR might also require accessory proteins for proper function and we report that co-expression of the mammalian or Drosophila RCP or mammalian RAMPs permitted neuropeptide diuretic hormone 31 (DH31) signaling from the CG17415 receptor. RAMP subtype expression did not alter the pharmacological profile of CG17415 activation. CG17415 antibodies revealed expression within the principal cells of Malpighian tubules, further implicating DH31 as a ligand for this receptor. Immunostaining in the brain revealed an unexpected convergence of two distinct DH signaling pathways. In both the larval and adult brain, most DH31 receptor-expressing neurons produce the neuropeptide corazonin, and also express the CRFR-related receptor CG8422, which is a receptor for the neuropeptide diuretic hormone 44 (DH44). There is extensive convergence of CRF and CGRP signaling within vertebrates and we report a striking parallel in Drosophila involving DH44 (CRF) and DH31 (CGRP). Therefore, it appears that both the molecular details as well as the functional organization of CGRP signaling have been conserved.
Collapse
Affiliation(s)
- Erik C Johnson
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
555
|
Bouley R, Lin HY, Raychowdhury MK, Marshansky V, Brown D, Ausiello DA. Downregulation of the vasopressin type 2 receptor after vasopressin-induced internalization: involvement of a lysosomal degradation pathway. Am J Physiol Cell Physiol 2005; 288:C1390-401. [PMID: 15677378 DOI: 10.1152/ajpcell.00353.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasopressin (VP) increases urinary concentration by signaling through the vasopressin receptor (V2R) in collecting duct principal cells. After downregulation, V2R reappears at the cell surface via an unusually slow (several hours) “recycling” pathway. To examine this pathway, we expressed V2R-green fluorescent protein (GFP) in LLC-PK1a cells. V2R-GFP showed characteristics similar to those of wild-type V2R, including high affinity for VP and adenylyl cyclase stimulation. V2R-GFP was located mainly in the plasma membrane in unstimulated cells, but it colocalized with the lysosomal marker Lysotracker after VP-induced internalization. Western blot analysis of V2R-GFP showed a broad 57- to 68-kDa band and a doublet at 46 and 52 kDa before VP treatment. After 4-h VP exposure, the 57- to 68-kDa band lost 50% of its intensity, whereas the lower 46-kDa band increased by 200%. The lysosomal inhibitor chloroquine abolished this VP effect, whereas lactacystin, a proteasome inhibitor, had no effect. Incubating cells at 20°C to block trafficking from the trans-Golgi network reduced V2R membrane fluorescence, and a perinuclear patch developed. Cycloheximide reduced the intensity of this patch, showing that newly synthesized V2R-GFP contributed significantly to its appearance. Cycloheximide also inhibited the reappearance of cell surface V2R after downregulation. We conclude that after downregulation, V2R-GFP is delivered to lysosomes and degraded. Reappearance of V2R at the cell surface depends on new protein synthesis, partially explaining the long time lag needed to fully reestablish V2R at the cell surface after downregulation. This degradative pathway may be an adaptive response to allow receptor-ligand association in the hypertonic and acidic environment of the renal medulla.
Collapse
Affiliation(s)
- Richard Bouley
- Program in Membrane Biology and Renal Unit, Department of Medicine, Massachusetts General Hospital East, 149 13th St., Charlestown, MA 02129, USA.
| | | | | | | | | | | |
Collapse
|
556
|
Key TA, Vines CM, Wagener BM, Gurevich VV, Sklar LA, Prossnitz ER. Inhibition of chemoattractant N-formyl peptide receptor trafficking by active arrestins. Traffic 2005; 6:87-99. [PMID: 15634210 DOI: 10.1111/j.1600-0854.2004.00248.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies have highlighted the emergence of a class of G protein-coupled receptors that are internalized in an arrestin-independent manner. In addition to demonstrating that the N-formyl peptide receptor belongs in this family, we have recently shown that recycling of the receptor requires the presence of arrestins. To further elucidate mechanisms of arrestin-dependent regulation of G protein-coupled receptor processing, we examined the effects of altering the receptor-arrestin complex on ternary complex formation and cellular trafficking of the N-formyl peptide receptor by studying two active arrestin-2 mutants (truncated arrestin-2 [1-382], and arrestin-2 I386A, V387A, F388A). Complexes between the N-formyl peptide receptor and active arrestins exhibited higher affinity in vitro than the complex between the N-formyl peptide receptor and wild-type arrestin and furthermore were observed in vivo by colocalization studies using confocal microscopy. To assess the effects of these altered interactions on receptor trafficking, we demonstrated that active, but not wild-type, arrestin expression retards N-formyl peptide receptor internalization. Furthermore, expression of arrestin-2 I386A/V387A/F388A but not arrestin-2 [1-382] inhibited recycling of the N-formyl peptide receptor, reflecting an expanded role for arrestins in G protein-coupled receptor processing and trafficking. Whereas the extent of N-formyl peptide receptor phosphorylation had no effect on the inhibition of internalization, N-formyl peptide receptor recycling was restored when the receptor was only partially phosphorylated. These results indicate not only that a functional interaction between receptor and arrestin is required for recycling of certain G protein-coupled receptors, such as the N-formyl peptide receptor, but that the pattern of receptor phosphorylation further regulates this process.
Collapse
Affiliation(s)
- T Alexander Key
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
557
|
Macey TA, Liu Y, Gurevich VV, Neve KA. Dopamine D1 receptor interaction with arrestin3 in neostriatal neurons. J Neurochem 2005; 93:128-34. [PMID: 15773912 DOI: 10.1111/j.1471-4159.2004.02998.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dopamine D1 receptor interactions with arrestins have been characterized using heterologously expressed D1 receptor and arrestins. The purpose of this study was to investigate the interaction of the endogenous D1 receptor with endogenous arrestin2 and 3 in neostriatal neurons. Endogenous arrestin2 and 3 in striatal homogenates bound to the C-terminus of the D1 receptor in a glutathione-S-transferase (GST) pulldown assay, with arrestin3 binding more strongly. The D1 C-terminus and, to a lesser extent, the third cytoplasmic loop also bound purified arrestin2 and 3. In neostriatal neurons, 2, 5, and 20 min agonist treatment increased the colocalization of the D1 receptor and arrestin3 immunoreactivity without altering the colocalization of the D1 receptor and arrestin2. Further, agonist treatment for 5 and 20 min caused translocation of arrestin3, but not arrestin2, to the membrane. The binding of arrestin3, but not arrestin2, to the D1 receptor was increased as assessed by coimmunoprecipitation after agonist treatment for 5 and 20 min. Agonist treatment of neurons induced D1 receptor internalization (35-45%) that was maximal within 2-5 min, a time-course similar to that of the increase in colocalization of the D1 receptor with arrestin3. These data indicate that the D1 receptor preferentially interacts with arrestin3 in neostriatal neurons.
Collapse
Affiliation(s)
- Tara A Macey
- Department of Behavioral Neuroscience, Oregon Health & Science University and Veterans Affairs Medical Center, Portland, Oregon 97239-2999, USA
| | | | | | | |
Collapse
|
558
|
Bezard E, Gross CE, Qin L, Gurevich VV, Benovic JL, Gurevich EV. L-DOPA reverses the MPTP-induced elevation of the arrestin2 and GRK6 expression and enhanced ERK activation in monkey brain. Neurobiol Dis 2005; 18:323-35. [PMID: 15686961 DOI: 10.1016/j.nbd.2004.10.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 08/04/2004] [Accepted: 10/13/2004] [Indexed: 11/29/2022] Open
Abstract
Dysregulation of dopamine receptors (DARs) is believed to contribute to Parkinson disease (PD) pathology. G protein-coupled receptors (GPCR) undergo desensitization via activation-dependent phosphorylation by G protein-coupled receptor kinases (GRKs) followed by arrestin binding. Using quantitative Western blotting, we detected profound differences in the expression of arrestin2 and GRKs among four experimental groups of nonhuman primates: (1) normal, (2) parkinsonian, (3) parkinsonian treated with levodopa without or (4) with dyskinesia. Arrestin2 and GRK6 expression was significantly elevated in the MPTP-lesioned group in most brain regions; GRK2 was increased in caudal caudate and internal globus pallidus. Neither levodopa-treated group differed significantly from control. The only dyskinesia-specific change was an elevation of GRK3 in the ventral striatum of the dyskinetic group. Changes in arrestin and GRK expression in the MPTP group were accompanied by enhanced ERK activation and elevated total ERK expression, which were also reversed by L-DOPA. The data suggest the involvement of arrestins and GRKs in Parkinson disease pathology and the effects of levodopa treatment.
Collapse
Affiliation(s)
- E Bezard
- Basal Gang, CNRS UMR 5543, Université Victor Segalen-Bordeaux 2, 33076 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
559
|
Abstract
The transmission of extracellular signals to the interior of the cell is a function of plasma membrane receptors, of which the seven transmembrane receptor family is by far the largest and most versatile. Classically, these receptors stimulate heterotrimeric G proteins, which control rates of generation of diffusible second messengers and entry of ions at the plasma membrane. Recent evidence, however, indicates another previously unappreciated strategy used by the receptors to regulate intracellular signaling pathways. They direct the recruitment, activation, and scaffolding of cytoplasmic signaling complexes via two multifunctional adaptor and transducer molecules, beta-arrestins 1 and 2. This mechanism regulates aspects of cell motility, chemotaxis, apoptosis, and likely other cellular functions through a rapidly expanding list of signaling pathways.
Collapse
|
560
|
Estall JL, Koehler JA, Yusta B, Drucker DJ. The glucagon-like peptide-2 receptor C terminus modulates beta-arrestin-2 association but is dispensable for ligand-induced desensitization, endocytosis, and G-protein-dependent effector activation. J Biol Chem 2005; 280:22124-34. [PMID: 15817468 DOI: 10.1074/jbc.m500078200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Classic models of receptor desensitization and internalization have been largely based on the behavior of Family A G-protein-coupled receptors (GPCRs). The glucagon-like peptide-2 receptor (GLP-2R) is a member of the Family B glucagon-secretin GPCR family, which exhibit significant sequence and structural differences from the Family A receptors in their intracellular and extracellular domains. To identify structural motifs that regulate GLP-2R signaling and cell surface receptor expression, we analyzed the functional properties of a series of mutant GLP-2Rs. The majority of the C-terminal receptor tail was dispensable for GLP-2-induced cAMP accumulation, ERK1/2 activation, and endocytosis in transfected cells. However, progressive truncation of the C terminus reduced cell surface receptor expression, altered agonist-induced GLP-2R trafficking, and abrogated protein kinase A-mediated heterologous receptor desensitization. Elimination of the distal 21 amino acids of the receptor was sufficient to promote constitutive receptor internalization and prevent agonist-induced recruitment of beta-arrestin-2. Site-directed mutagenesis identified specific amino acid residues within the distal GLP-2R C terminus that mediate the stable association with beta-arrestin-2. Surprisingly, although the truncated mutant receptors failed to interact with beta-arrestin-2, they underwent homologous desensitization and subsequent resensitization with kinetics similar to that observed with the wild-type GLP-2R. Our data suggest that, although the GLP-2R C terminus is not required for coupling to cellular machinery regulating signaling or desensitization, it may serve as a sorting signal for intracellular trafficking. Taken together with the previously demonstrated clathrin and dynamin-independent, lipid-raft-dependent pathways for internalization, our data suggest that GLP-2 receptor signaling has evolved unique structural and functional mechanisms for control of receptor trafficking, desensitization, and resensitization.
Collapse
Affiliation(s)
- Jennifer L Estall
- Departments of Laboratory Medicine and Pathobiology, and Medicine, University of Toronto, The Banting and Best Diabetes Centre, Toronto General Hospital, University of Toronto, Toronto M5G 2C4, Canada
| | | | | | | |
Collapse
|
561
|
|
562
|
Kobayashi H, Narita Y, Nishida M, Kurose H. Beta-arrestin2 enhances beta2-adrenergic receptor-mediated nuclear translocation of ERK. Cell Signal 2005; 17:1248-53. [PMID: 16038799 DOI: 10.1016/j.cellsig.2004.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 12/22/2004] [Accepted: 12/22/2004] [Indexed: 11/30/2022]
Abstract
Beta-arrestin mediates desensitization and internalization of beta-adrenergic receptors (betaARs), but also acts as a scaffold protein in extracellular signal-regulated kinase (ERK) cascade. Thus, we have examined the role of beta-arrestin2 in the betaAR-mediated ERK signaling pathways. Isoproterenol stimulation equally activated cytoplasmic and nuclear ERK in COS-7 cells expressing beta1AR or beta2AR. However, the activity of nuclear ERK was enhanced by co-expression of beta-arrestin2 in beta2AR-but not beta1AR-expressing cells. Pertussis toxin treatment and blockade of Gbetagamma action inhibited beta-arrestin2-enhanced nuclear activation of ERK, suggesting that beta-arrestin2 promotes nuclear ERK localization in a Gbetagamma dependent mechanism upon receptor stimulation. beta2AR containing the carboxyl terminal region of beta1AR lost the beta-arrestin2-promoted nuclear translocation. As the carboxyl terminal region is important for beta-arrestin binding, these results demonstrate that recruitment of beta-arrestin2 to carboxyl terminal region of beta2AR is important for ERK localization to the nucleus.
Collapse
MESH Headings
- Animals
- Arrestins/genetics
- Arrestins/metabolism
- Arrestins/physiology
- COS Cells
- Cell Nucleus/metabolism
- Chlorocebus aethiops
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cytoplasm/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Heterotrimeric GTP-Binding Proteins/antagonists & inhibitors
- Humans
- Isoproterenol/pharmacology
- Microscopy, Fluorescence
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Phosphorylation/drug effects
- Protein Binding
- Protein Kinase Inhibitors/pharmacology
- Protein Transport
- Pyrimidines/pharmacology
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/physiology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Transfection
- beta-Adrenergic Receptor Kinases
- beta-Arrestins
- src-Family Kinases/antagonists & inhibitors
Collapse
Affiliation(s)
- Hiroyuki Kobayashi
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
563
|
Varga EV, Navratilova E, Stropova D, Jambrosic J, Roeske WR, Yamamura HI. Agonist-specific regulation of the delta-opioid receptor. Life Sci 2005; 76:599-612. [PMID: 15567186 DOI: 10.1016/j.lfs.2004.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 07/09/2004] [Indexed: 01/28/2023]
Abstract
Delta opioid receptor (DOR) agonists are attractive potential analgesics, since these compounds exhibit strong antinociceptive activity with relatively few side effects. In the past decade, several novel classes of delta-opioid agonists have been synthesized. Recent experimental data indicate that structurally distinct opioid agonists interact differently with the delta-opioid receptor. Consequently, individual agonist-bound DOR conformations may interact differently with intracellular proteins. In the present paper, after a brief review of the cellular processes that contribute to homologous desensitization of the DOR signaling, we shall focus on experimental data demonstrating that chemically different agonists differ in their ability to phosphorylate, internalize, and/or down-regulate the DOR. Homologous regulation of the opioid receptor signaling is thought to play an important role in the development of opioid tolerance. Therefore, agonist-specific differences in DOR regulation suggest that by further chemical modification, delta-selective opioid analgesics can be designed that exhibit a reduced propensity for analgesic tolerance.
Collapse
Affiliation(s)
- Eva V Varga
- Department of Pharmacology, and the Sarver Heart Center, The University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | | | | | |
Collapse
|
564
|
Szabó EZ, Numata M, Lukashova V, Iannuzzi P, Orlowski J. beta-Arrestins bind and decrease cell-surface abundance of the Na+/H+ exchanger NHE5 isoform. Proc Natl Acad Sci U S A 2005; 102:2790-5. [PMID: 15699339 PMCID: PMC549460 DOI: 10.1073/pnas.0407444102] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neuronal Na(+)/H(+) exchanger NHE5 isoform not only resides in the plasma membrane but also accumulates in recycling vesicles by means of clathrin-mediated endocytosis. To further investigate the underlying molecular mechanisms, a human brain cDNA library was screened for proteins that interact with the cytoplasmic C-terminal region of NHE5 by using yeast two-hybrid methodology. One candidate cDNA identified by this procedure encoded beta-arrestin2, a specialized adaptor/scaffolding protein required for internalization and signaling of members of the G protein-coupled receptor superfamily. Direct interaction between the two proteins was demonstrated in vitro by GST fusion protein pull-down assays. Sequences within the N-terminal receptor activation-recognition domain and the C-terminal secondary receptor-binding domain of beta-arrestin2 conferred strong binding to the C terminus of NHE5. Full-length NHE5 and beta-arrestin2 also associated in intact cells, as revealed by their coimmunoprecipitation from extracts of transfected CHO cells. Moreover, ectopic expression of both proteins caused a redistribution of beta-arrestin2 from the cytoplasm to vesicles containing NHE5, and significantly decreased the abundance of the transporter at the cell surface. Comparable results were also obtained for the beta-arrestin1 isoform. These data reveal a broader role for arrestins in the trafficking of integral plasma membrane proteins than previously recognized.
Collapse
Affiliation(s)
- Elöd Z Szabó
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
565
|
Kim J, Ahn S, Ren XR, Whalen EJ, Reiter E, Wei H, Lefkowitz RJ. Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. Proc Natl Acad Sci U S A 2005; 102:1442-7. [PMID: 15671181 PMCID: PMC547874 DOI: 10.1073/pnas.0409532102] [Citation(s) in RCA: 276] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
beta-arrestins bind to G protein-coupled receptor kinase (GRK)-phosphorylated seven transmembrane receptors, desensitizing their activation of G proteins, while concurrently mediating receptor endocytosis, and some aspects of receptor signaling. We have used RNA interference to assess the roles of the four widely expressed isoforms of GRKs (GRK 2, 3, 5, and 6) in regulating beta-arrestin-mediated signaling to the mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK) 1/2 by the angiotensin II type 1A receptor. Angiotensin II-stimulated receptor phosphorylation, beta-arrestin recruitment, and receptor endocytosis are all mediated primarily by GRK2/3. In contrast, inhibiting GRK 5 or 6 expression abolishes beta-arrestin-mediated ERK activation, whereas lowering GRK 2 or 3 leads to an increase in this signaling. Consistent with these findings, beta-arrestin-mediated ERK activation is enhanced by overexpression of GRK 5 and 6, and reciprocally diminished by GRK 2 and 3. These findings indicate distinct functional capabilities of beta-arrestins bound to receptors phosphorylated by different classes of GRKs.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Medicine, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
566
|
Gurevich EV, Benovic JL, Gurevich VV. Arrestin2 expression selectively increases during neural differentiation. J Neurochem 2005; 91:1404-16. [PMID: 15584917 DOI: 10.1111/j.1471-4159.2004.02830.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arrestins and G protein-coupled receptor kinases (GRKs) are key players in homologous desensitization of G protein-coupled receptors. Two non-visual arrestins, arrestin2 and 3, and five GRKs (GRK2, 3, 4, 5 and 6) are involved in desensitization of many receptors. Here, we demonstrate a steady increase in arrestin2 expression during prenatal development. The density of arrestin2 mRNA is higher in differentiated areas as compared with proliferative zones, whereas arrestin3 mRNA shows the opposite distribution. At embryonic day 14, concentrations of arrestin proteins are similar (32-34 nM). Later in development, arrestin2 expression rises, leading to a fourfold excess of arrestin2 over arrestin3 at birth (48 vs. 11 ng/mg protein or 102 vs. 25 nM). Among GRKs, only GRK5 increased with embryonic age from 124 nm at E14 to 359 nM at birth. Similarly, in vitro differentiation of cultured precursor cells, neurospheres, leads to a significant up-regulation of arrestin2 resulting in > 20-fold excess of arrestin2 (160 vs. 7 nM). GRK5 is the only subtype increased with neurosphere differentiation, although the change is only about twofold. The data demonstrate selective increases in the expression of arrestin2 associated with neural development and suggest specific yet unappreciated roles for arrestin2 in neural differentiation.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | |
Collapse
|
567
|
Pi M, Oakley RH, Gesty-Palmer D, Cruickshank RD, Spurney RF, Luttrell LM, Quarles LD. Beta-arrestin- and G protein receptor kinase-mediated calcium-sensing receptor desensitization. Mol Endocrinol 2005; 19:1078-87. [PMID: 15637145 DOI: 10.1210/me.2004-0450] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Extracellular calcium rapidly controls PTH secretion through binding to the G protein-coupled calcium-sensing receptor (CASR) expressed in parathyroid glands. Very little is known about the regulatory proteins involved in desensitization of CASR. G protein receptor kinases (GRK) and beta-arrestins are important regulators of agonist-dependent desensitization of G protein-coupled receptors. In the present study, we investigated their role in mediating agonist-dependent desensitization of CASR. In heterologous cell culture models, we found that the transfection of GRK4 inhibits CASR signaling by enhancing receptor phosphorylation and beta-arrestin translocation to the CASR. In contrast, we found that overexpression of GRK2 desensitizes CASR by classical mechanisms as well as through phosphorylation-independent mechanisms involving disruption of Galphaq signaling. In addition, we observed lower circulating PTH levels and an attenuated increase in serum PTH after hypocalcemic stimulation in beta-arrestin2 null mice, suggesting a functional role of beta-arrestin2-dependent desensitization pathways in regulating CASR function in vivo. We conclude that GRKs and beta-arrestins play key roles in regulating CASR responsiveness in parathyroid glands.
Collapse
Affiliation(s)
- Min Pi
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | |
Collapse
|
568
|
Ozawa K, Hudson CC, Wille KR, Karaki S, Oakley RH. Development and validation of algorithms for measuring G-protein coupled receptor activation in cells using the LSC-based imaging cytometer platform. Cytometry A 2005; 65:69-76. [PMID: 15778994 DOI: 10.1002/cyto.a.20128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND A cell-based assay system (Transfluor) has been developed for measurement of G-protein coupled receptor (GPCR) activity by using cells transfected to express a fusion protein of arrestin plus green fluorescent protein (GFP) and the target GPCR. Upon agonist stimulation, the arrestin-GFP translocates to and binds the activated GPCR at the plasma membrane. The receptor/arrestin-GFP complexes then localize in clathrin-coated pits and/or intracellular vesicles. This redistribution of arrestin-GFP into condensed fluorescent spots is useful for visually monitoring the active status of GPCRs and its quantitation is possible with certain types of digital image analysis systems. METHODS We designed two lines of image processing algorithms to carry out quantitative measurement of the arrestin-GFP movement on an inverted version of laser scanning cytometry (iCyte) as an imaging platform. We used a cell line expressing arrestin-GFP and the wild-type beta2-adrenergic receptor or a modified version of this receptor with enhanced affinity for arrestin. Each cell line was challenged with various concentrations of agonist. RESULTS A dose-dependent signal was measured and half-maximal effective concentration values were obtained that agreed well with results determined by other methods previously reported. CONCLUSIONS The results indicate that the combination of Transfluor, iCyte, and our algorithms is suitable for robust and pharmacologically relevant GPCR ligand exploration.
Collapse
Affiliation(s)
- Kazuo Ozawa
- Olympus Corporation, Bioscience Division, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
569
|
Affiliation(s)
- François Boulay
- Dèpartement de Rèponse et Dynamique Cellulaires/Biochimie et Biophysique des Systèmes Intègrès (UMR 5092, Commissariat à l'Energie Atomique (CEA)/CNRS/Universitè Joseph Fourier), CEA/Grenoble, 17 rue des Martyrs, 38054 Grenoble 9, France.
| | | |
Collapse
|
570
|
Suvorova ES, Gripentrog JM, Miettinen HM. Different Endocytosis Pathways of the C5a Receptor and the N-formyl Peptide Receptor. Traffic 2004; 6:100-15. [PMID: 15634211 DOI: 10.1111/j.1600-0854.2004.00256.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two chemoattractant receptors, C5aR (the complement fragment C5a receptor) and FPR (the N-formyl peptide receptor), are involved in neutrophil activation at sites of inflammation. In this study, we found major differences in the intracellular trafficking of the receptors in transfected Chinese hamster ovary (CHO) cells. Western blot analysis showed that FPR was stable during a 3 h stimulation with ligand, but C5aR was reduced in quantity by 50%. Not all C5aR was targeted directly for degradation however; a small, but visible fraction of the receptor became re-phosphorylated upon subsequent addition of ligand, suggesting that some of the receptor had cycled to the cell surface. Light membrane fractions isolated from activated cells showed C5aR distribution at the bottom of a glycerol gradient, colocalizing with the main distribution of the late endosomal/lysosomal marker LAMP2, whereas FPR was found at the bottom of the gradient as well as in the middle of the gradient, where it cofractionated with the early/sorting endosomal marker Rab5. Using fluorescence microscopy, we observed ligand-dependent redistribution of C5aR-EGFP from the plasma membrane to LAMP2-positive compartments, whereas FPR-EGFP showed significant colocalization with the early/sorting endosomes. Analysis of endogenous C5aR and FPR in neutrophils revealed a pattern similar to the CHO transfectants: C5aR underwent degradation after prolonged ligand stimulation, while FPR did not. Finally, we confirmed the down-regulation of C5aR in a functional assay by showing reduced chemotaxis toward C5a in both CHO transfectants and neutrophils after preincubation with C5a. A similar decrease in FPR-mediated chemotaxis was not observed.
Collapse
Affiliation(s)
- Elena S Suvorova
- Department of Microbiology, Montana State University, Bozeman, MT 59717-3520, USA
| | | | | |
Collapse
|
571
|
Jala VR, Shao WH, Haribabu B. Phosphorylation-independent beta-arrestin translocation and internalization of leukotriene B4 receptors. J Biol Chem 2004; 280:4880-7. [PMID: 15561704 DOI: 10.1074/jbc.m409821200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukotriene B4 (LTB4) activates the G-protein-coupled receptor leukotriene B4 receptor 1 (BLT1) to mediate a diverse array of cellular responses in leukocytes including chemotaxis, calcium mobilization, degranulation, and gene expression. To determine the role of phosphorylation in BLT1 regulation, we generated mutants of BLT1 in which all of the serine/threonine residues in the C-tail are converted to alanine or to aspartate/glutamate. These mutants expressed in rat basophilic leukemia RBL-2H3 cells bound LTB4 with similar affinity and activated all of the known functional activities of BLT1, albeit at different levels. The conversion of phosphorylation sites to alanine resulted in enhanced G-protein-mediated activities, whereas conversion to aspartate/glutamate resulted in reduced responses and a right shift in dose response, indicating that receptor phosphorylation is a critical regulator of G-protein-mediated pathways. Surprisingly, translocation of beta-arrestin and receptor internalization was completely independent of BLT1 phosphorylation. Real-time analysis of beta-arrestin translocation and receptor internalization using digital fluorescence video microscopy in cells expressing a red fluorescent protein labeled BLT1 and a green fluorescent protein-tagged beta-arrestin confirmed phosphorylation-independent beta-arrestin translocation and internalization of BLT1. In beta-arrestin-deficient mouse embryo fibroblasts, the BLT1 receptors failed to display endosomal localization upon stimulation. In these cells, co-expression of beta-arrestin-green fluorescent protein with BLT1-red fluorescent protein resulted in co-localization of BLT1 and beta-arrestin upon activation. Thus, receptor phosphorylation-dependent mechanisms regulate G-protein-mediated pathways; however, phosphorylation-independent mechanisms regulate beta-arrestin association and internalization of BLT1.
Collapse
Affiliation(s)
- Venkatakrishna R Jala
- James Graham Brown Cancer Center and The Department of Microbiology & Immunology, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | | | | |
Collapse
|
572
|
Abstract
Once thought to function only in the desensitization of seven membrane spanning receptors (7MSRs), the ubiquitous beta-arrestin molecules are increasingly appreciated to play important roles in the endocytosis and signaling of these receptors. These functions reflect the ability of the beta-arrestins to bind an ever-growing list of signaling and endocytic elements, often in an agonist-dependent fashion. One heavily studied system is that leading to MAP kinase activation via beta-arrestin-mediated scaffolding of these pathways in a receptor-dependent fashion. The beta-arrestins are also found to be involved in the regulation of novel receptor systems, such as Frizzled and TGFbeta receptors.
Collapse
Affiliation(s)
- Robert J Lefkowitz
- Howard Hughes Medical Institute, Duke University Medical Center, DUMC Box 3821, Durham, NC 27710, USA.
| | | |
Collapse
|
573
|
Perroy J, Pontier S, Charest PG, Aubry M, Bouvier M. Real-time monitoring of ubiquitination in living cells by BRET. Nat Methods 2004; 1:203-8. [PMID: 15782195 DOI: 10.1038/nmeth722] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 10/20/2004] [Indexed: 11/09/2022]
Abstract
Ubiquitin has emerged as an important regulator of protein stability and function in organisms ranging from yeast to mammals. The ability to detect in situ changes in protein ubiquitination without perturbing the physiological environment of cells would be a major step forward in understanding the ubiquitination process and its consequences. Here, we describe a new method to study this dynamic post-translational modification in intact human embryonic kidney cells. Using bioluminescence resonance energy transfer (BRET), we measured the ubiquitination of beta-arrestin 2, a regulatory protein implicated in the modulation of G protein-coupled receptors. In addition to allowing the detection of basal and GPCR-regulated ubiquitination of beta-arrestin 2 in living cells, real-time BRET measurements permitted the recording of distinct ubiquitination kinetics that are dictated by the identity of the activated receptor. The ubiquitination BRET assay should prove to be a useful tool for studying the dynamic ubiquitination of proteins and for understanding which cellular functions are regulated by this post-translational event.
Collapse
Affiliation(s)
- Julie Perroy
- Département de Biochimie and Groupe de Recherche sur le Système Nerveux Autonome, Université de Montréal, C.P. 6128 Succursale Centre-Ville Montréal, Québec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
574
|
Dinh DT, Qian H, Seeber R, Lim E, Pfleger K, Eidne KA, Thomas WG. Helix I of beta-arrestin is involved in postendocytic trafficking but is not required for membrane translocation, receptor binding, and internalization. Mol Pharmacol 2004; 67:375-82. [PMID: 15523053 DOI: 10.1124/mol.104.004721] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
beta-Arrestins bind to phosphorylated, seven-transmembrane-spanning, G protein-coupled receptors (GPCRs), including the type 1 angiotensin II receptor (AT(1)R), to promote receptor desensitization and internalization. The AT(1) R is a class B GPCR that recruits both beta-arrestin1 and beta-arrestin2, forming stable complexes that cotraffic to deep-core endocytic vesicles. beta-Arrestins contain one amphipathic and potentially amphitropic (membrane-targeting) alpha-helix (helix I) that may promote translocation to the membrane or influence receptor internalization or trafficking. Here, we investigated the trafficking and function of beta-arrestin1 and beta-arrestin2 mutants bearing substitutions in both the hydrophobic and positively charged faces of helix I. The level of expression of these mutants and their cytoplasmic localization (in the absence of receptor activation) was similar to wild-type beta-arrestins. After angiotensin II stimulation, both wild-type and beta-arrestin mutants translocated to the cell membrane, although recruitment was weaker for mutants of the hydrophobic face of helix I. For all beta-arrestin mutants, the formation of deep-core vesicles was less observed compared with wild-type beta-arrestins. Furthermore, helix I conjugated to green fluorescent protein is not membrane-localized, suggesting that helix I, in isolation, is not amphitropic. Bioluminescence resonance energy transfer analysis revealed that both wild-type and beta-arrestin mutants retained a capacity to interact with the AT(1)R, although the interaction with the mutants was less stable. Finally, wild-type and mutant beta-arrestins fully supported receptor internalization in human embryonic kidney cells and mouse embryonic fibroblasts deficient in beta-arrestin1 and -2. Thus, helix I is implicated in postmembrane trafficking but is not strongly amphitropic.
Collapse
Affiliation(s)
- Diem T Dinh
- Baker Heart Research Institute, St. Kilda Road Central, Melbourne 8008, Australia
| | | | | | | | | | | | | |
Collapse
|
575
|
Wei H, Ahn S, Barnes WG, Lefkowitz RJ. Stable Interaction between β-Arrestin 2 and Angiotensin Type 1A Receptor Is Required for β-Arrestin 2-mediated Activation of Extracellular Signal-regulated Kinases 1 and 2. J Biol Chem 2004; 279:48255-61. [PMID: 15355986 DOI: 10.1074/jbc.m406205200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of beta-arrestins to seven-membrane-spanning receptors (7MSRs) not only leads to receptor desensitization and endocytosis but also elicits additional signaling processes. We recently proposed that stimulation of the angiotensin type 1A (AT(1A)) receptor results in independent beta-arrestin 2- and G protein-mediated extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation. Here we utilize two AT(1A) mutant receptors to study these independent pathways, one truncated at residue 324, thus removing all potential carboxyl-terminal phosphorylation sites, and the other bearing four mutations in the serine/threonine-rich clusters in the carboxyl terminus. As assessed by confocal microscopy, the two mutant receptors interacted with beta-arrestin 2-green fluorescent protein with much lower affinity than did the wild-type receptor. In addition, the mutant receptors more robustly stimulated G protein-mediated inositol phosphate production. Approximately one-half of the wild-type AT(1A) receptor-stimulated ERK1/2 activation was via a beta-arrestin 2-dependent pathway (suppressed by beta-arrestin 2 small interfering RNA), whereas the rest was mediated by a G protein-dependent pathway (suppressed by protein kinase C inhibitor). ERK1/2 activation by the mutant receptors was insensitive to beta-arrestin 2 small interfering RNA but was reduced more than 80% by a protein kinase C inhibitor. The biochemical consequences of ERK activation by the G protein and beta-arrestin 2-dependent pathways were also distinct. G-protein-mediated ERK activation enhanced the transcription of early growth response 1, whereas beta-arrestin 2-dependent ERK activation did not. In addition, stimulation of the truncated AT(1A) mutant receptor caused significantly greater early growth response 1 transcription than did the wild-type receptor. These findings demonstrate how the ability of receptors to interact with beta-arrestins determines both the mechanism of ERK activation as well as the physiological consequences of this activation.
Collapse
Affiliation(s)
- Huijun Wei
- Howard Hughes Medical Institute, Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
576
|
Connor M, Osborne PB, Christie MJ. Mu-opioid receptor desensitization: is morphine different? Br J Pharmacol 2004; 143:685-96. [PMID: 15504746 PMCID: PMC1575925 DOI: 10.1038/sj.bjp.0705938] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Opioid tolerance and dependence are important phenomena. The contribution of acute mu-opioid receptor regulatory mechanisms to the development of analgesic tolerance or physical dependence are unknown, and even the mechanisms underlying relatively rapid receptor desensitization in single cells are unresolved. To a large degree, the uncertainty surrounding the mechanisms and consequences of short-term regulation of tau-opioid receptors in single cells arises from the limitations in the experimental design in many of the studies that have investigated these events. Receptor overexpression and use of assays in which regulatory mechanisms are likely to blunt control determinations have led to measurements of opioid receptor activity that are likely to be insensitive to receptor uncoupling. Together with uncertainties concerning molecular details of tau-opioid receptor interactions with potential regulatory molecules such as G protein-coupled receptor kinases and arrestins, we are left with an incomplete picture crudely copied from the well-worked-out regulatory schema for beta(2)-adrenoceptors. As a consequence, suggestions that clinically relevant tau-opioid receptor agonists may have different propensities to produce tolerance and dependence that arise from their differential recruitment of regulatory mechanisms are premature, and have not yet been appropriately assessed, nor explained in the context of a thoroughly established regulatory scheme. In this commentary, we outline the experimental limitations that have given rise to conflicting ideas about how mu-opioid receptors are regulated, and identify the issues we feel still need to be addressed before we can understand why morphine promotes receptor trafficking differently to other opioids.
Collapse
Affiliation(s)
- Mark Connor
- Pain Management Research Institute, E25, Kolling Institute, University of Sydney at Royal North Shore Hospital, Pacific Highway, St Leonards, NSW, 2065, Australia.
| | | | | |
Collapse
|
577
|
Xiao K, Shenoy SK, Nobles K, Lefkowitz RJ. Activation-dependent conformational changes in {beta}-arrestin 2. J Biol Chem 2004; 279:55744-53. [PMID: 15501822 DOI: 10.1074/jbc.m409785200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Beta-arrestins are multifunctional adaptor proteins, which mediate desensitization, endocytosis, and alternate signaling pathways of seven membrane-spanning receptors (7MSRs). Crystal structures of the basal inactive state of visual arrestin (arrestin 1) and beta-arrestin 1 (arrestin 2) have been resolved. However, little is known about the conformational changes that occur in beta-arrestins upon binding to the activated phosphorylated receptor. Here we characterize the conformational changes in beta-arrestin 2 (arrestin 3) by comparing the limited tryptic proteolysis patterns and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) profiles of beta-arrestin 2 in the presence of a phosphopeptide (V(2)R-pp) derived from the C terminus of the vasopressin type II receptor (V(2)R) or the corresponding nonphosphopeptide (V(2)R-np). V(2)R-pp binds to beta-arrestin 2 specifically, whereas V(2)R-np does not. Activation of beta-arrestin 2 upon V(2)R-pp binding involves the release of its C terminus, as indicated by exposure of a previously inaccessible cleavage site, one of the polar core residues Arg(394), and rearrangement of its N terminus, as indicated by the shielding of a previously accessible cleavage site, residue Arg(8). Interestingly, binding of the polyanion heparin also leads to release of the C terminus of beta-arrestin 2; however, heparin and V(2)R-pp have different binding site(s) and/or induce different conformational changes in beta-arrestin 2. Release of the C terminus from the rest of beta-arrestin 2 has functional consequences in that it increases the accessibility of a clathrin binding site (previously demonstrated to lie between residues 371 and 379) thereby enhancing clathrin binding to beta-arrestin 2 by 10-fold. Thus, the V(2)R-pp can activate beta-arrestin 2 in vitro, most likely mimicking the effects of an activated phosphorylated 7MSR. These results provide the first direct evidence of conformational changes associated with the transition of beta-arrestin 2 from its basal inactive conformation to its biologically active conformation and establish a system in which receptor-beta-arrestin interactions can be modeled in vitro.
Collapse
Affiliation(s)
- Kunhong Xiao
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
578
|
Cao TT, Brelot A, von Zastrow M. The Composition of the β-2 Adrenergic Receptor Oligomer Affects Its Membrane Trafficking after Ligand-Induced Endocytosis. Mol Pharmacol 2004; 67:288-97. [PMID: 15492118 DOI: 10.1124/mol.104.003608] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The beta-2 adrenergic receptor (B2AR) is well known to form oligomeric complexes in vivo, but the functional significance of this process is not fully understood. The present results identify an effect of oligomerization of the human B2AR on the membrane trafficking of receptors after agonist-induced endocytosis in stably transfected human embryonic kidney 293 cells. A sequence present in the cytoplasmic tail of the B2AR has been shown previously to be required for efficient recycling of internalized receptors. Mutation of this sequence was observed to inhibit recycling not only of the receptor containing the mutation but also of the coexpressed wild-type B2AR. Coexpression of recycling-defective mutant B2ARs also enhanced proteolytic degradation of the wild-type B2AR after agonist-induced endocytosis, consistent with trafficking of both receptors to lysosomes in an oligomeric complex. Coexpression of the delta opioid receptor (DOR) at similar levels produced a much smaller effect on endocytic trafficking of the B2AR, even though DOR traverses a similar membrane pathway as recycling-defective mutant B2ARs. Biochemical studies confirmed that B2AR/B2AR-ala homomeric complexes form more readily than DOR/B2AR heteromers in expression-matched cell clones and support the hypothesis that B2AR/B2AR-ala complexes are not disrupted by agonist. These results suggest that a significant fraction of B2ARs exists in oligomeric complexes after ligand-induced endocytosis and that the composition of the oligomeric complex influences the sorting of endocytosed receptors between functionally distinct recycling and degradative membrane pathways.
Collapse
Affiliation(s)
- Tracy T Cao
- Genentech Hall, Rm N212E, University of California-San Francisco, 600 16th Street, San Francisco, CA 94143-2140, USA
| | | | | |
Collapse
|
579
|
Laferrière A, Moss IR. Respiratory responses to intermittent hypoxia in unsedated piglets: relation to substance P binding in brainstem. Respir Physiol Neurobiol 2004; 143:21-35. [PMID: 15477170 DOI: 10.1016/j.resp.2004.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 11/17/2022]
Abstract
Respiratory responses to single intermittent hypoxia (5 min 21% O(2), 5 min 8% O(2) X6) in 5-6, 10-11, 21-22 and 26-27 day-old piglets, and to recurrent six daily intermittent hypoxia in 10-11 and 26-27 day-old piglets were assessed. Substance P binding in the piglets' brainstem immediately after the last hypoxic episode was measured. All piglets hyperventilated during hypoxia. Weight adjusted inspired ventilation, tidal volume and instantaneous flow decreased with age. The oldest piglets uniquely displayed attenuated ventilation and tidal volume during the sixth versus first hypoxic episode with single intermittent hypoxia, and reduced inspired ventilation and tidal volume during the first hypoxic episode on the sixth daily hypoxia compared to single hypoxia. By contrast, substance P binding was greatly reduced in the solitary, hypoglossal, paraambigual and lateral reticular brainstem nuclei of both younger and older piglets following either single or recurrent intermittent hypoxia. Thus, the reduction in membrane-bound neurokinin receptors by intermittent hypoxia, presumably consequent to endogenously released substance P, does not exclusively determine whether the ventilatory response to that hypoxia will be attenuated or not.
Collapse
Affiliation(s)
- André Laferrière
- Department of Pediatrics, McGill University Health Centre Research Institute, The Montreal Children's Hospital, 2300 Tupper Street, Montreal, QB, Canada
| | | |
Collapse
|
580
|
Schäfer A, Bogerd HP, Cullen BR. Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor. Virology 2004; 328:163-8. [PMID: 15464836 DOI: 10.1016/j.virol.2004.08.006] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
In cells infected by HIV-1 mutants lacking a functional Vif protein, APOBEC3G is specifically packaged into progeny virions and then interferes with the process of virus infection. Here, we show that incorporation of APOBEC3G into HIV-1 virions is mediated by the specific interaction of APOBEC3G with the carboxy-terminal nucleocapsid/p6 domain of the Gag polyprotein precursor. As a result, HIV-1 virus-like particles that lack the nucleocapsid domain fail to package APOBEC3G. Surprisingly, RNA was also found to be essential for formation of the nucleocapsid--APOBEC3G complex in vitro, thus raising the possibility that RNA may form a bridge between these two proteins.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Howard Hughes Medical Institute and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
581
|
Szymkiewicz I, Shupliakov O, Dikic I. Cargo- and compartment-selective endocytic scaffold proteins. Biochem J 2004; 383:1-11. [PMID: 15219178 PMCID: PMC1134037 DOI: 10.1042/bj20040913] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 06/24/2004] [Indexed: 01/05/2023]
Abstract
The endocytosis of membrane receptors is a complex and tightly controlled process that is essential for maintaining cellular homoeostasis. The removal of receptors from the cell surface can be constitutive or ligand-induced, and occurs in a clathrin-dependent or -independent manner. The recruitment of receptors into specialized membrane domains, the formation of vesicles and the trafficking of receptors together with their ligands within endocytic compartments are regulated by reversible protein modifications, and multiple protein-protein and protein-lipid interactions. Recent reports describe a variety of multidomain molecules that facilitate receptor endocytosis and function as platforms for the assembly of protein complexes. These scaffold proteins typically act in a cargo-specific manner, recognizing one or more receptor types, or function at the level of endocytic cellular microcompartments by controlling the movement of cargo molecules and linking endocytic machineries to signalling pathways. In the present review we summarize present knowledge on endocytic scaffold molecules and discuss their functions.
Collapse
Key Words
- cargo
- endocytosis
- microcompartment
- scaffold
- alix, alg-2 (apoptosis-linked gene 2)-interacting protein x
- anth domain, ap180 n-terminal homology domain
- ap-2, adaptor protein-2
- arh, autosomal recessive hypercholesterolaemia
- bar domain, bin/amphiphysin/rvs domain
- cd2ap, cd2-associated protein
- cin85, cbl-interacting protein of 85 kda
- dab2, disabled-2
- eea1, early endosome antigen 1
- egfr, epidermal growth factor receptor
- eh domain, eps15 homology domain
- enth domain, epsin n-terminal homology domain
- escrt, endosomal sorting complexes required for transport
- fyve, fab1p, yotb, vac1p and eea1
- gap, gtpase-activating protein
- gpcr, g-protein-coupled receptor
- hrs, hepatocyte growth factor-regulated tyrosine kinase substrate
- lbpa, lysobiphosphatidic acid
- ldl, low-density lipoprotein
- lnx, ligand of numb protein x
- mvb, multivesicular body
- nak, numb-associated kinase
- nsf, n-ethylmaleimide-sensitive fusion protein
- pon, partner of numb
- ptb domain, phosphotyrosine-binding domain
- rtk, receptor tyrosine kinase
- sh3, src homology 3
- snare, soluble nsf attachment protein receptor
- stam, signal-transducing adaptor molecule
- tcr, t-cell receptor
Collapse
Affiliation(s)
- Iwona Szymkiewicz
- *Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt, Germany
| | - Oleg Shupliakov
- †Department of Neuroscience, CEDB, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ivan Dikic
- *Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt, Germany
| |
Collapse
|
582
|
Terrillon S, Bouvier M. Receptor activity-independent recruitment of betaarrestin2 reveals specific signalling modes. EMBO J 2004; 23:3950-61. [PMID: 15385966 PMCID: PMC524336 DOI: 10.1038/sj.emboj.7600387] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 08/03/2004] [Indexed: 01/07/2023] Open
Abstract
The roles of betaarrestins in regulating G protein coupling and receptor endocytosis following agonist stimulation of G protein-coupled receptors are well characterised. However, their ability to act on their own as direct modulators or activators of signalling remains poorly characterised. Here, betaarrestin2 intrinsic signalling properties were assessed by forcing the recruitment of this accessory protein to vasopressin V1a or V2 receptors independently of agonist-promoted activation of the receptors. Such induction of a stable interaction with betaarrestin2 initiated receptor endocytosis leading to intracellular accumulation of the betaarrestin/receptor complexes. Interestingly, betaarrestin2 association to a single receptor protomer was sufficient to elicit receptor dimer internalisation. In addition to recapitulating betaarrestin2 classical actions on receptor trafficking, the receptor activity-independent recruitment of betaarrestin2 activated the extracellular signal-regulated kinases. In the latter case, recruitment to the receptor itself was not required since kinase activation could be mediated by betaarrestin2 translocation to the plasma membrane in the absence of any interacting receptor. These data demonstrate that betaarrestin2 can act as a 'bonafide' signalling molecule even in the absence of activated receptor.
Collapse
Affiliation(s)
- Sonia Terrillon
- Department of Biochemistry and Groupe de Recherche sur le Système Nerveux Autonome, Université de Montréal, Québec, Canada
| | - Michel Bouvier
- Department of Biochemistry and Groupe de Recherche sur le Système Nerveux Autonome, Université de Montréal, Québec, Canada
- Département de Biochimie, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7. Tel.: +1 514 343 6372; Fax: +1 514 343 2210; E-mail:
| |
Collapse
|
583
|
Macey TA, Gurevich VV, Neve KA. Preferential Interaction between the dopamine D2 receptor and Arrestin2 in neostriatal neurons. Mol Pharmacol 2004; 66:1635-42. [PMID: 15361545 DOI: 10.1124/mol.104.001495] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine D2 receptor interactions with arrestins and arrestin-dependent internalization have been characterized using heterologously expressed D2 receptor and arrestins. The purpose of this study was to investigate D2 receptor interaction with endogenous arrestins. Arrestin2 and arrestin3 in striatal homogenates bound to the third cytoplasmic loop of the D2 receptor, and purified arrestin2 and arrestin3 bound to the second and third loops and C terminus of the D2 receptor, in a glutathione S-transferase pull-down assay. In NS20Y neuroblastoma cells expressing an enhanced green-fluorescent protein-tagged D2 receptor (D2-EGFP), 2-h D2 agonist stimulation enhanced the colocalization of D2-EGFP with endogenous arrestin2 and arrestin3. These results suggest that the D2 receptor has the intrinsic ability to bind both nonvisual arrestins. Agonist treatment of D2-EGFP NS20Y cells induced D2 receptor internalization (36-46%) that was maximal within 20 min, but that was prevented by small interfering RNA-induced depletion of arrestin2 and arrestin3. In neostriatal neurons, 2-h agonist treatment selectively increased the colocalization of the endogenous D2 receptor with arrestin2, whereas receptor colocalization with arrestin3 was reduced. Agonist stimulation caused translocation of arrestin2, but not arrestin3, to the membrane in neurons and selectively enhanced the coimmunoprecipitation of the D2 receptor and arrestin2. All three measures of receptor/arrestin interaction (colocalization, translocation, and coprecipitation) demonstrated selective agonist-induced interaction between the D2 receptor and arrestin2 in neurons.
Collapse
Affiliation(s)
- Tara A Macey
- Department of Behavioral Neuroscience, Oregon Health & Science University and Veterans Affairs Medical Center, Portland, Oregon 97239-2999, USA
| | | | | |
Collapse
|
584
|
Neuschäfer-Rube F, Hermosilla R, Rehwald M, Rönnstrand L, Schülein R, Wernstedt C, Püschel GP. Identification of a Ser/Thr cluster in the C-terminal domain of the human prostaglandin receptor EP4 that is essential for agonist-induced beta-arrestin1 recruitment but differs from the apparent principal phosphorylation site. Biochem J 2004; 379:573-85. [PMID: 14709160 PMCID: PMC1224101 DOI: 10.1042/bj20031820] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 01/06/2004] [Accepted: 01/06/2004] [Indexed: 11/17/2022]
Abstract
hEP4-R (human prostaglandin E2 receptor, subtype EP4) is a G(s)-linked heterotrimeric GPCR (G-protein-coupled receptor). It undergoes agonist-induced desensitization and internalization that depend on the presence of its C-terminal domain. Desensitization and internalization of GPCRs are often linked to agonist-induced beta-arrestin complex formation, which is stabilized by phosphorylation. Subsequently beta-arrestin uncouples the receptor from its G-protein and links it to the endocytotic machinery. The C-terminal domain of hEP4-R contains 38 Ser/Thr residues that represent potential phosphorylation sites. The present study aimed to analyse the relevance of these Ser/Thr residues for agonist-induced phosphorylation, interaction with beta-arrestin and internalization. In response to agonist treatment, hEP4-R was phosphorylated. By analysis of proteolytic phosphopeptides of the wild-type receptor and mutants in which groups of Ser/Thr residues had been replaced by Ala, the principal phosphorylation site was mapped to a Ser/Thr-containing region comprising residues 370-382, the presence of which was necessary and sufficient to obtain full agonist-induced phosphorylation. A cluster of Ser/Thr residues (Ser-389-Ser-390-Thr-391-Ser-392) distal to this site, but not the principal phosphorylation site, was essential to allow agonist-induced recruitment of beta-arrestin1. However, phosphorylation greatly enhanced the stability of the beta-arrestin1-receptor complexes. For maximal agonist-induced internalization, phosphorylation of the principal phosphorylation site was not required, but both beta-arrestin1 recruitment and the presence of Ser/Thr residues in the distal half of the C-terminal domain were necessary.
Collapse
Affiliation(s)
- Frank Neuschäfer-Rube
- Universität Potsdam, Institut für Ernährungswissenschaft, Biochemie der Ernährung, Arthur-Scheunert-Allee 114-116, 14558 Bergholz-Rehbrücke, Germany.
| | | | | | | | | | | | | |
Collapse
|
585
|
Luttrell DK, Luttrell LM. Signaling in time and space: G protein-coupled receptors and mitogen-activated protein kinases. Assay Drug Dev Technol 2004; 1:327-38. [PMID: 15090198 DOI: 10.1089/15406580360545143] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Because of their central role in the cellular response to growth factors, assays of MAP kinase activity are commonly used in pharmaceutical screening efforts aimed at detecting chemical modifiers of growth regulatory pathways. As our understanding of the complexity of signal transduction networks expands, however, it is becoming apparent that previously unappreciated temporal and contextual factors have profound effects on MAP kinase function. This is exemplified by recent studies of the regulation of the ERK1/2 MAP kinase cascade by GPCRs. Depending on receptor and cell type, GPCR stimulation of ERK1/2 can reflect a heterogenous array of signaling events. Activation of second messenger-dependent protein kinases and cross talk between GPCRs and receptor or nonreceptor tyrosine kinases can all induce ERK1/2 activation. Furthermore, a growing body of data indicates that the mechanism of ERK1/2 activation is a major determinant of ERK1/2 function. Activation of a nuclear pool of ERK1/2 as a consequence of cross talk between GPCRs and growth factor receptor tyrosine kinases may provide a mitogenic stimulus. In contrast, activation of ERK1/2 in localized pools on the membrane or confined to endosomal vesicles through the utilization of focal adhesions or beta-arrestins as "scaffolds" may spatially constrain ERK1/2 activity and favor the phosphorylation of nonnuclear ERK substrates. Findings such as these suggest that screening strategies that use single readouts of MAP kinase activity or function are likely to miss important signaling events, and point to the need for a multidimensional approach to MAP kinase-based screening efforts.
Collapse
Affiliation(s)
- Deirdre K Luttrell
- Department of High Throughput Biology, GlaxoSmithKline, Research Triangle Park, North Carolina, USA.
| | | |
Collapse
|
586
|
Chen J, Rusnak M, Luedtke RR, Sidhu A. D1 Dopamine Receptor Mediates Dopamine-induced Cytotoxicity via the ERK Signal Cascade. J Biol Chem 2004; 279:39317-30. [PMID: 15247297 DOI: 10.1074/jbc.m403891200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Postsynaptic striatal neurodegeneration occurs through unknown mechanisms, but it is linked to high extracellular levels of synaptic dopamine. Dopamine-mediated cytotoxicity of striatal neurons occurs through two distinct pathways: autoxidation and the D1 dopamine receptor-linked signaling pathway. Here we investigated the mitogen-activated protein kinase (MAPK) signaling pathways activated upon the acute stimulation of D1 dopamine receptors. In SK-N-MC neuroblastoma cells, endogenously expressing D1 dopamine receptors, dopamine caused activation of phosphorylated (p-)ERK1/2 and of the stress-signaling kinases, p-JNK and p-p38 MAPK, in a time- and dose-dependent manner. Selective stimulation of D1 receptors with the agonist SKF R-38393 caused p-ERK1/2, but not p-JNK or p-p38 MAPK activation, in a manner sensitive to the receptor-selective antagonist SCH 23390, protein kinase A inhibition (KT5720), and MEK1/2 inhibition (U0126 or PD98059). Activation of ERK by D1 dopamine receptors resulted in oxidative stress and cytotoxicity. In cells transfected with a catalytically defective mutant of MEK1, the upstream ERK-specific kinase, both dopamine- and SKF R-38393-mediated cytotoxicity was markedly attenuated, confirming the participation of the ERK signaling pathway. Cell fractionation studies showed that only a small amount of p-ERK1/2 was translocated to the nucleus, with the majority retained in the cytoplasm. From coimmunoprecipitation studies, p-ERK was found to form stable heterotrimeric complexes with the D1 dopamine receptor and beta-arrestin2. In cells transfected with the dominant negative mutant of beta-arrestin2, the formation of such complexes was substantially inhibited. These data provide novel mechanistic insights into the role of ERK in the cytotoxicity mediated upon activation of the D1 dopamine receptor.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pediatrics, Georgetown University, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
587
|
Liang W, Fishman PH. Resistance of the human beta1-adrenergic receptor to agonist-induced ubiquitination: a mechanism for impaired receptor degradation. J Biol Chem 2004; 279:46882-9. [PMID: 15331590 DOI: 10.1074/jbc.m406501200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Down-regulation is a classic response of most G protein-coupled receptors to prolonged agonist stimulation. We recently showed that when expressed in baby hamster kidney cells, the human beta1-but not the beta2-adrenergic receptor (AR) is totally resistant to agonist-mediated down-regulation, whereas both have similar rates of basal degradation (Liang, W., Austin, S., Hoang, Q., and Fishman, P. H. (2003) J. Biol. Chem. 278, 39773-39781). To identify the underlying mechanism(s) for this resistance, we investigated the role of proteasomes, lysosomes, and ubiquitination in the degradation of beta1AR expressed in baby hamster kidney and human embryonic kidney 293 cells. Both lysosomal and proteasomal inhibitors reduced beta1AR degradation in agonist-stimulated cells but were less effective on basal degradation. To determine whether beta1AR trafficked to lysosomes we used confocal fluorescence microscopy. We observed some colocalization of beta1AR and lysosomal markers in agonist-treated cells but much less than that of beta2AR even in cells co-transfected with arrestin-2, which increases beta1AR internalization. Ubiquitination of beta2AR readily occurred in agonist-stimulated cells, whereas ubiquitination of beta1AR was not detectable even under conditions optimal for that of beta2AR. Moreover, in cells expressing betaAR chimeras in which the C termini have been switched, the chimeric beta1AR with beta2AR C-tail underwent ubiquitination and down-regulation, but the chimeric beta2AR with beta1AR C-tail did not. Our results demonstrate for the first time that beta1AR and beta2AR differ in the ability to be ubiquitinated. Because ubiquitin serves as a signal for sorting membrane receptors to lysosomes, the lack of agonist-mediated ubiquitination of beta1AR may prevent its extensive trafficking to lysosomes and, thus, account for its resistance to down-regulation.
Collapse
Affiliation(s)
- Wei Liang
- Membrane Biochemistry Section, Laboratory of Molecular and Cellular Neurobiology, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
588
|
van Koppen CJ, Jakobs KH. Arrestin-Independent Internalization of G Protein-Coupled Receptors:
Fig. 1. Mol Pharmacol 2004; 66:365-7. [PMID: 15322226 DOI: 10.1124/mol.104.003822] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Chris J van Koppen
- Department of Molecular Pharmacology, N.V. Organon, PO Box 20, 5340 BH Oss, The Netherlands.
| | | |
Collapse
|
589
|
Bohn LM, Dykstra LA, Lefkowitz RJ, Caron MG, Barak LS. Relative opioid efficacy is determined by the complements of the G protein-coupled receptor desensitization machinery. Mol Pharmacol 2004; 66:106-12. [PMID: 15213301 DOI: 10.1124/mol.66.1.106] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptor regulation by G protein-coupled receptor kinases and beta-arrestins can lead to desensitization and subsequent internalization of the receptor. In in vitro and cellular systems, beta-arrestins do not seem to play a major role in regulating micro opioid receptor (microOR) responsiveness. Removal of the betaarrestin2 (betaarr2) gene in mice leads paradoxically to enhanced and prolonged microOR-mediated antinociception. The betaarr2 knockout (betaarr2-KO) mice also fail to develop morphine antinociceptive tolerance in the hot-plate test, further indicating that the betaarr2 protein plays an essential role in microOR regulation in vivo. In this study, the contribution of betaarr2 to the regulation of the microOR was examined in both human embryonic kidney 293 cells and in betaarr2-KO mice after treatment with several opiate agonists. A green fluorescent protein tagged betaarr2 was used to assess receptor-betaarr2 interactions in living cells. Opiate agonists that induced robust betaarr2-green fluorescent protein translocation produced similar analgesia profiles in wild-type and betaarr2-KO mice, whereas those that do not promote robust betaarr2 recruitment, such as morphine and heroin, produce enhanced analgesia in vivo. In this report, we present a rationale to explain the seemingly paradoxical relationship between beta-arrestins and microOR regulation wherein morphine-like agonists fail to promote efficient internalization and resensitization of the receptor.
Collapse
Affiliation(s)
- L M Bohn
- Department of Pharmacology, Ohio State University College of Medicine and Public Health, Columbus, USA
| | | | | | | | | |
Collapse
|
590
|
Prossnitz ER. Novel roles for arrestins in the post-endocytic trafficking of G protein-coupled receptors. Life Sci 2004; 75:893-9. [PMID: 15193949 DOI: 10.1016/j.lfs.2004.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 04/09/2004] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling molecules in the human genome. As such, they interact with numerous intracellular molecules, which can act either to propagate or curtail signaling from the receptor. Their primary mode of cellular activation occurs through heterotrimeric G proteins, which in turn can activate a wide spectrum of effector molecules, including phosphodiesterases, phospholipases, adenylyl cyclases and ion channels. Active GPCRs are also the target of G protein-coupled receptor kinases, which phosphorylate the receptors culminating in the binding of the protein arrestin. This results in rapid desensitization through inhibition of G protein binding, as well as novel mechanisms of cellular activation that involve the scaffolding of cellular kinases to GPCR-arrestin complexes. Arrestins can also serve to mediate the internalization of certain GPCRs, a process which plays an important role in regulating cellular activity both by mediating long-term desensitization through down regulation (degradation) of receptors and by recycling desensitized receptors back to the cell surface to initiate additional rounds of signaling. The mechanisms that regulate the subsequent intracellular trafficking of GPCRs following internalization are largely unknown. Recently however, it has become clear that the pattern of receptor phosphorylation and subsequent binding of arrestin play a critical role in the intracellular trafficking of internalized receptors, thereby dictating the ultimate fate of the receptor. In addition, arrestins have now been shown to be required for the recycling of GPCRs that are capable of internalizing through arrestin-independent mechanisms. This review will summarize recent advances in our understanding of the roles of arrestins in post-endocytic GPCR trafficking.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Cell Biology & Physiology and UNM Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
591
|
Cook LB, Hinkle PM. Fate of internalized thyrotropin-releasing hormone receptors monitored with a timer fusion protein. Endocrinology 2004; 145:3095-100. [PMID: 15117874 DOI: 10.1210/en.2004-0304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trafficking of TRH receptors was studied in a stable HEK293 cell line expressing receptor fused to a Timer protein (TRHR-Timer) that spontaneously changes from green to red over 10 h. Cells expressing TRHR-Timer responded to TRH with an 11-fold increase in inositol phosphate formation, increased intracellular free calcium, and internalization of 75% of bound [(3)H][N(3)-methyl-His(2)]TRH within 10 min. After a 20-min exposure to TRH at 37 C, 75-80% of surface binding sites disappeared as receptors internalized. When TRH was removed and cells incubated in hormone-free medium, approximately 75% of [(3)H][N(3)-methyl-His(2)]TRH binding sites reappeared at the surface over the next 2 h with or without cycloheximide. Trafficking of TRHR-Timer was monitored microscopically after addition and withdrawal of TRH. In untreated cells, both new (green) and old (red) receptors were seen at the plasma membrane, and TRH caused rapid movement of young and old receptors into cytoplasmic vesicles. When TRH was withdrawn, some TRHR-Timer reappeared at the plasma membrane after several hours, but much of the internalized receptor remained intracellular in vesicles that condensed to larger structures in perinuclear regions deeper within the cell. Strikingly, receptors that moved to the plasma membrane were generally younger (more green) than those that underwent endocytosis. There was no change in the red to green ratio over the course of the experiment in cells exposed to vehicle. The results indicate that, after agonist-driven receptor internalization, the plasma membrane is replenished with younger receptors, arising either from an intracellular pool or preferential recycling of younger receptors.
Collapse
Affiliation(s)
- Laurie B Cook
- Department of Pharmacology and Physiology, Box 711, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
592
|
Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG. Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 2004; 27:107-44. [PMID: 15217328 DOI: 10.1146/annurev.neuro.27.070203.144206] [Citation(s) in RCA: 632] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G protein-coupled receptors (GPCRs) have proven to be the most highly favorable class of drug targets in modern pharmacology. Over 90% of nonsensory GPCRs are expressed in the brain, where they play important roles in numerous neuronal functions. GPCRs can be desensitized following activation by agonists by becoming phosphorylated by members of the family of G protein-coupled receptor kinases (GRKs). Phosphorylated receptors are then bound by arrestins, which prevent further stimulation of G proteins and downstream signaling pathways. Discussed in this review are recent progress in understanding basics of GPCR desensitization, novel functional roles, patterns of brain expression, and receptor specificity of GRKs and beta arrestins in major brain functions. In particular, screening of genetically modified mice lacking individual GRKs or beta arrestins for alterations in behavioral and biochemical responses to cocaine and morphine has revealed a functional specificity in dopamine and mu-opioid receptor regulation of locomotion and analgesia. An important and specific role of GRKs and beta arrestins in regulating physiological responsiveness to psychostimulants and morphine suggests potential involvement of these molecules in certain brain disorders, such as addiction, Parkinson's disease, mood disorders, and schizophrenia. Furthermore, the utility of a pharmacological strategy aimed at targeting this GPCR desensitization machinery to regulate brain functions can be envisaged.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Howard Hughes Medical Institute Laboratories, Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
593
|
Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B, Pei G. Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell 2004; 14:303-17. [PMID: 15125834 DOI: 10.1016/s1097-2765(04)00216-3] [Citation(s) in RCA: 248] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Revised: 03/17/2004] [Accepted: 03/29/2004] [Indexed: 02/07/2023]
Abstract
Norepinephrine released by the sympathetic nerve terminals regulates the immune system primarily via its stimulation of beta(2)-adrenergic receptor (beta(2)AR), but the underlying molecular mechanisms remain to be elicited. Beta(2)AR, a well-studied G protein-coupled receptor (GPCR), is functionally regulated by beta-arrestin2, which not only causes receptor desensitization and internalization but also serves as a signaling molecule in GPCR signal transduction. Here we show that beta-arrestin2 directly interacts with IkappaBalpha (inhibitor of NF-kappaB, the key molecule in innate and adaptive immunity) and thus prevents the phosphorylation and degradation of IkappaBalpha. Consequently, beta-arrestin2 effectively modulates activation of NF-kappaB and expression of NF-kappaB target genes. Moreover, stimulation of beta(2)AR significantly enhances beta-arrestin2-IkappaBalpha interaction and greatly promotes beta-arrestin2 stabilization of IkappaBalpha, indicating that beta-arrestin2 mediates a crosstalk between beta(2)AR and NF-kappaB signaling pathways. Taken together, the current study may present a novel mechanism for regulation of the immune system by the sympathetic nervous system.
Collapse
Affiliation(s)
- Hua Gao
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
594
|
Ahn S, Shenoy SK, Wei H, Lefkowitz RJ. Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 2004; 279:35518-25. [PMID: 15205453 DOI: 10.1074/jbc.m405878200] [Citation(s) in RCA: 417] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The seven-membrane-spanning angiotensin II type 1A receptor activates the mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 (ERK1/2) by distinct pathways dependent on either G protein (likely G(q)/G(11)) or beta-arrestin2. Here we sought to distinguish the kinetic and spatial patterns that characterize ERK1/2 activated by these two mechanisms. We utilized beta-arrestin RNA interference, the protein kinase C inhibitor Ro-31-8425, a mutant angiotensin II receptor (DRY/AAY), and a mutant angiotensin II peptide (SII-angiotensin), which are incapable of activating G proteins, to isolate the two pathways in HEK-293 cells. G protein-dependent activation was rapid (peak <2 min), quite transient (t((1/2)) approximately 2 min), and led to nuclear translocation of the activated ERK1/2 as assessed by confocal microscopy. In contrast, beta-arrestin2-dependent activation was slower (peak 5-10 min), quite persistent with little decrement noted out to 90 min, and entirely confined to the cytoplasm. Moreover, ERK1/2 activated via beta-arrestin2 accumulated in a pool of cytoplasmic endosomal vesicles that also contained the internalized receptors and beta-arrestin. Such differential regulation of the temporal and spatial patterns of ERK1/2 activation via these two pathways strongly implies the existence of distinct physiological endpoints.
Collapse
Affiliation(s)
- Seungkirl Ahn
- Howard Hughes Medical Institute, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
595
|
Pfleger KDG, Kroeger KM, Eidne KA. Receptors for hypothalamic releasing hormones TRH and GnRH: oligomerization and interactions with intracellular proteins. Semin Cell Dev Biol 2004; 15:269-80. [PMID: 15125890 DOI: 10.1016/j.semcdb.2003.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studies of TRH and GnRH receptors have revealed much information about the roles of G-proteins and beta-arrestins, as well as receptor residues important for signaling, desensitization and internalization. However, the proteins involved are only just beginning to be identified and characterized. Additional complexity now exists with the observation that these receptors form oligomers in live cells. Indeed, hetero-oligomerization of TRH receptor subtypes 1 and 2 potentially alters interactions with intracellular regulatory proteins. Knowledge of proteins that interact with TRH or GnRH receptors will increase our understanding of receptor function and provide potential drug targets for a range of receptor-associated conditions.
Collapse
Affiliation(s)
- Kevin Donald George Pfleger
- Molecular Endocrinology Research Group/7TM Receptor Laboratory, Western Australian Institute for Medical Research, Centre for Medical Research, Sir Charles Gairdner Hospital, University of Western Australia, Nedlands, Perth, 6009, Australia
| | | | | |
Collapse
|
596
|
Bernier V, Lagacé M, Lonergan M, Arthus MF, Bichet DG, Bouvier M. Functional rescue of the constitutively internalized V2 vasopressin receptor mutant R137H by the pharmacological chaperone action of SR49059. Mol Endocrinol 2004; 18:2074-84. [PMID: 15166253 DOI: 10.1210/me.2004-0080] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In most cases, nephrogenic diabetes insipidus results from mutations in the V2 vasopressin receptor (V2R) gene that cause intracellular retention of improperly folded receptors. We previously reported that cell permeable V2R antagonists act as pharmacological chaperones that rescue folding, trafficking, and function of several V2R mutants. More recently, the vasopressin antagonist, SR49059, was found to be therapeutically active in nephrogenic diabetes insipidus patients. Three of the patients with positive responses harbored the mutation R137H, previously reported to lead to constitutive endocytosis. This raises the possibility that, instead of acting as a pharmacological chaperone by favoring proper maturation of the receptors, SR49059 could mediate its action on R137H V2R by preventing its endocytosis. Here we report that the beta-arrestin-mediated constitutive endocytosis of R137H V2R is not affected by SR49059, indicating that the functional rescue observed does not result from a stabilization of the receptor at the cell surface. Moreover, metabolic labeling revealed that R137H V2R is also poorly processed to the mature form. SR49059 treatment significantly improved its maturation and cell surface targeting, indicating that the functional rescue of R137H V2Rs results from the pharmacological chaperone action of the antagonist.
Collapse
Affiliation(s)
- Virginie Bernier
- Department of Biochemistry, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | | | |
Collapse
|
597
|
Wiegand HL, Doehle BP, Bogerd HP, Cullen BR. A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J 2004; 23:2451-8. [PMID: 15152192 PMCID: PMC423288 DOI: 10.1038/sj.emboj.7600246] [Citation(s) in RCA: 388] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 04/30/2004] [Indexed: 12/31/2022] Open
Abstract
The HIV-1 Vif protein suppresses the inhibition of viral replication caused by the human antiretroviral factor APOBEC3G. As a result, HIV-1 mutants that do not express the Vif protein are replication incompetent in 'nonpermissive' cells, such as primary T cells and the T-cell line CEM, that express APOBEC3G. In contrast, Vif-defective HIV-1 replicates effectively in 'permissive' cell lines, such as a derivative of CEM termed CEM-SS, that do not express APOBEC3G. Here, we show that a second human protein, APOBEC3F, is also specifically packaged into HIV-1 virions and inhibits their infectivity. APOBEC3F binds the HIV-1 Vif protein specifically and Vif suppresses both the inhibition of virus infectivity caused by APOBEC3F and virion incorporation of APOBEC3F. Surprisingly, APOBEC3F and APOBEC3G are extensively coexpressed in nonpermissive human cells, including primary lymphocytes and the cell line CEM, where they form heterodimers. In contrast, both genes are quiescent in the permissive CEM derivative CEM-SS. Together, these data argue that HIV-1 Vif has evolved to suppress at least two distinct but related human antiretroviral DNA-editing enzymes.
Collapse
Affiliation(s)
- Heather L Wiegand
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Brian P Doehle
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Hal P Bogerd
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Bryan R Cullen
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Genetics, HHMI, Box 3025, Duke University Medical Center, Durham, NC 27710, USA. Tel.: +1 919 684 3369; Fax: +1 919 681 8979; E-mail:
| |
Collapse
|
598
|
Abstract
G protein-coupled receptors (GPCRs) modulate diverse physiological and behavioral signaling pathways by virtue of changes in receptor activation and inactivation states. Functional changes in receptor properties include dynamic interactions with regulatory molecules and trafficking to various cellular compartments at various stages of the life cycle of a GPCR. This review focuses on trafficking of GPCRs to the cell surface, stabilization there, and agonist-regulated turnover. GPCR interactions with a variety of newly revealed partners also are reviewed with the intention of provoking further analysis of the relevance of these interactions in GPCR trafficking, signaling, or both. The disease consequences of mislocalization of GPCRs also are described.
Collapse
Affiliation(s)
- Christopher M Tan
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
599
|
Abstract
Arrestin proteins play a key role in desensitizing G-protein-coupled receptors and re-directing their signaling to alternative pathways. The precise timing of arrestin binding to the receptor and its subsequent dissociation is ensured by its exquisite selectivity for the activated phosphorylated form of the receptor. The interaction between arrestin and the receptor involves the engagement of arrestin sensor sites that discriminate between active and inactive and phosphorylated and unphosphorylated forms of the receptor. This initial interaction is followed by a global conformational rearrangement of the arrestin molecule in the process of its transition into the high-affinity receptor-binding state that brings additional binding sites into action. In this article, we discuss the molecular mechanisms that underlie the sequential multi-site binding that ensures arrestin selectivity for the active phosphoreceptor and high fidelity of signal regulation by arrestin proteins.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
600
|
Roosterman D, Cottrell GS, Schmidlin F, Steinhoff M, Bunnett NW. Recycling and resensitization of the neurokinin 1 receptor. Influence of agonist concentration and Rab GTPases. J Biol Chem 2004; 279:30670-9. [PMID: 15128739 DOI: 10.1074/jbc.m402479200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substance P (SP) induces endocytosis and recycling of the neurokinin 1 receptor (NK1R) in endothelial cells and spinal neurons at sites of inflammation and pain, and it is thus important to understand the mechanism and function of receptor trafficking. We investigated how the SP concentration affects NK1R trafficking and determined the role of Rab GTPases in trafficking. NK1R trafficking was markedly influenced by the SP concentration. High SP (10 nM) induced translocation of the NK1R and beta-arrestin 1 to perinuclear sorting endosomes containing Rab5a, where NK1R remained for >60 min. Low SP (1 nM) induced translocation of the NK1R to early endosomes located immediately beneath the plasma membrane that also contained Rab5a and beta-arrestin 1, followed by rapid recycling of the NK1R. Overexpression of Rab5a promoted NK1R translocation to perinuclear sorting endosomes, whereas the GTP binding-deficient mutant Rab5aS34N caused retention of the NK1R in superficial early endosomes. NK1R translocated from superficial early endosomes to recycling endosomes containing Rab4a and Rab11a, and Rab11aS25N inhibited NK1R recycling. Rapid NK1R recycling coincided with resensitization of SP-induced Ca2+ mobilization and with the return of surface SP binding sites. Resensitization was minimally affected by inhibition of vacuolar H(+)-ATPase and phosphatases but was markedly suppressed by disruption of Rab4a and Rab11a. Thus, whereas beta-arrestins mediate NK1R endocytosis, Rab5a regulates translocation between early and sorting endosomes, and Rab4a and Rab11a regulate trafficking through recycling endosomes. We have thus identified a new function of Rab5a as a control protein for directing concentration-dependent trafficking of the NK1R into different intracellular compartments and obtained evidence that Rab4a and Rab11a contribute to G-protein-coupled receptor recycling from early endosomes.
Collapse
Affiliation(s)
- Dirk Roosterman
- Departments of Surgery and Physiology, University of California San Francisco, San Francisco, California 94143-0660, USA
| | | | | | | | | |
Collapse
|